National Library of Energy BETA

Sample records for metal catalysts platinum

  1. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  2. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  3. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  4. Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Presented at the Department of Energy Fuel Cell...

  5. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander (Sunnyvale, CA)

    2003-01-01

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  6. Platinum-ruthenium-nickel alloy for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-04-20

    An improved noble metal alloy composition for a fuel cell catalyst, the alloy containing platinum, ruthenium, and nickel. The alloy shows methanol oxidation activity.

  7. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect (OSTI)

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  8. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOE Patents [OSTI]

    Gorer, Alexander (Sunnyvale, CA)

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  9. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Energy Savers [EERE]

    Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented...

  10. Porous platinum-based catalysts for oxygen reduction

    DOE Patents [OSTI]

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  11. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    SciTech Connect (OSTI)

    Coble, Inger M

    2008-08-15

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  12. Studies of n-butane conversion over silica-supported platinum, platinum-silver and platinum-copper catalysts

    SciTech Connect (OSTI)

    Gu, Junhua

    1992-06-09

    The present work was undertaken to elucidate effect of adding silver and copper to silica-supported platinum catalyst on the activity and selectivity in the n-butane reactions. At the conditions of this study n-butane underwent both hydrogenolysis and structural isomerization. The catalytic activity and selectivities between hydrogenolysis and isomerization and within hydrogenolysis were measured at temperature varying from 330 C to 370 C. For platinum-silver catalysts, at lower temperatures studied the catalytic activity per surface platinum atom (turnover frequency) remained constant at lower silver content (between 0 at. % and 30 at. %) and decreased with further increased silver loading, suggesting that low- index planes could be dominant in the hydrogenolysis of n-butane. Moreover, increasing silver content resulted in an enhancement of the selectivity of isomerization products relative to hydrogenolysis products. At the higher temperature studied, no suppression in catalytic activity was observed. It is postulated that surface structure could change due to the mobility of surface silver atoms, leading to surface silver atoms forming islands or going to the bulk, and leaving large portions of basal planes exposed with active platinum atoms. It is also suggested that the presence of inert silver atoms results in weakening of the H-surface bond. This results in increased mobility of hydrogen atoms on the surface and hence, higher reactivity with other adsorbed species. For platinum copper catalysts, the mixed ensembles could play an active role in the hydrogenolysis of n-butane.

  13. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra (Iowa City, IA); Singh, Ajeet (Iowa City, IA); Halasz, Istvan (Iowa City, IA); Serban, Manuela (Iowa City, IA)

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  14. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore »challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  15. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect (OSTI)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The increase of adhesion upon heat treatment indicates stronger bonding between the Pt and the support at the metal-oxide interface.

  16. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  17. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  18. Novel platinum/carbon catalysts with cluster size control for hydrogen fuel cells

    E-Print Network [OSTI]

    Novel platinum/carbon catalysts with cluster size control for hydrogen fuel cells Eric N. Coker Company, for the United States Department of Energy's National Nuclear Security Administration under

  19. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect (OSTI)

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  20. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  1. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  2. Metal phthalocyanine catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  3. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  4. Supported metal catalysts: Preparation, characterization, and function

    SciTech Connect (OSTI)

    Jackson, S.D.; Leeming, P. [ICI Katalco, Cleveland (United Kingdom)] [ICI Katalco, Cleveland (United Kingdom); Webb, G. [Univ. of Glasgow (United Kingdom)] [Univ. of Glasgow (United Kingdom)

    1996-05-01

    The sorptive properties of supported platinum catalysts has been studied for the adsorption of carbonyl sulfide and hydrogen sulfide. It was observed that hydrogen sulfide adsorption disallowed carbon monoxide adsorption. Dissociation chemistry was probed using labelled compounds. 32 refs., 8 tabs.

  5. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    E-Print Network [OSTI]

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  6. The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts

    E-Print Network [OSTI]

    The Reactivity Limit for Methanol Oxidation on Platinum/Ruthenium Catalysts A. Wieckowski 0.5 1.0 1.5 2.0 2.5 3.0 Pt/Ru Decorated (UIUC) PtRu Alloy (JM) E = 0.4 V Oxidation in 0.5 M Methanol

  7. Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes...

  8. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  9. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect (OSTI)

    Hibst, N.; Strehle, S. [Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89081 Ulm (Germany); Knittel, P.; Kranz, C.; Mizaikoff, B. [Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany)

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  10. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications...

  11. Metal nanoparticles as a conductive catalyst

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2010-08-03

    A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.

  12. Reactivity and stability of platinum and platinum alloy catalysts toward the oxygen reduction reaction 

    E-Print Network [OSTI]

    Calvo, Sergio Rafael

    2009-05-15

    Density functional theory (DFT) is used to study the reactivity of Pt and Pt-M (M: Pd, Co, Ni, V, and Rh) alloy catalysts towards the oxygen reduction reaction (ORR) as a function of the alloy overall composition and surface atomic distribution...

  13. Impact of Fuel Metal Impurities on Diesel Exhaust Catalysts ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust Catalysts Investigates impact of metal impurities in biodiesel on full useful life durability of catalysts in diesel exhaust aftertreatment systems...

  14. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  15. Reactions of platinum in oxygen- and hydrogen-treated Pt/. gamma. -Al/sub 2/O/sub 3/ catalysts. II. Ultraviolet-visible studies, sintering of platinum, and soluble platinum

    SciTech Connect (OSTI)

    Lietz, G.; Lieske, H.; Spindler, H.; Hanke, W.; Voelter, J.

    1983-05-01

    Alumina-supported platinum (Pt/..gamma..-Al/sub 2/O/sub 3/) catalysts treated in oxygen between 100 and 600/sup 0/C and in hydrogen at 500/sup 0/C were studied by uv-vis reflectance spectroscopy. The formation of different oxidized Pt surface species previously indicated by temperature programmed reduction (TPR) studies (H. Lieske, G. Lietz, H. Spindler, and J. Voelter, J. Catal. 81, 8(1983)) was confirmed by characteristic uv-vis spectra. The results are used as the basis for a model describing the types of surface reactions and details of the platinum surface species formed in oxygen and in hydrogen, and for a model of the sintering in oxygen. The amount of soluble platinum was found to correspond with the amount of highly dispersed platinum. Hence, only surface platinum atoms are soluble. 16 figures.

  16. Single-layer transition metal sulfide catalysts

    DOE Patents [OSTI]

    Thoma, Steven G. (Albuquerque, NM)

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  17. Platinum Group Metal Recycling Technology Development - Final Report

    SciTech Connect (OSTI)

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  18. New applications of noble metal catalysts in hydrocracking

    SciTech Connect (OSTI)

    Mitchell, D.H.G.; Bertram, R.V. [UOP, Des Plaines, IL (United States); Dencker, G.D. [Marathon Oil Co., Robinson, IL (United States). Illinois Refining Div.

    1995-09-01

    The paper explores how a noble metal hydrocracking catalyst functions stably in a hydrogen sulfide and ammonia environment and, in particular, how the physical positioning of the noble metal molecules affects catalyst performance. A commercial example, HC-28 catalyst in the Unicracking unit at Marathon Oil Refinery in Robinson, Illinois, demonstrates the success of the noble metal catalyst approach for naphtha production. In addition, a new Unicracking catalyst, HC-35, which uses a noble metal component to produce high-quality middle distillates, is introduced. The paper also shows how refiners may derive increased economic and operational benefits from their catalyst investment by using the latest developments in reactor internals design.

  19. Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.

    SciTech Connect (OSTI)

    Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

    2009-03-01

    Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

  20. Mapping Metals Incorporation of a Single Catalyst Particle Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Metals Incorporation of a Single Catalyst Particle Using Element Specific X-ray Nanotomography Tuesday, March 31, 2015 Fluid catalytic cracking (FCC) is the refining...

  1. In situ structural characterization of metal catalysts and materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In situ structural characterization of metal catalysts and materials using XAFS spectroscopy in combination with complementary techniques. Wednesday, October 17, 2012 - 1:00pm SSRL...

  2. Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon

    E-Print Network [OSTI]

    Nordlund, Kai

    Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum for this potential makes use of the fact that chemical bonding in both covalent systems and d-transition metals can for describing the C-C/Pt-Pt/Pt-C interactions. It resembles, in the case of the pure metal interaction

  3. Cobalt discovery replaces precious metals as industrial catalyst

    E-Print Network [OSTI]

    chemistry #12;- 2 - LOS ALAMOS, N.M., November 26, 2012--Cobalt, a common metal, holds promise. 26 in the international edition of the chemistry journal Angewandte Chemie, Los Alamos National. They are the noble metal elements such as platinum, palladium, rhodium, and ruthenium, which are a prohibitively

  4. Impact of catalyst metal-acid balance in n-hexadecane hydroisomerization and hydrocracking

    SciTech Connect (OSTI)

    Girgis, M.J.; Tsao, Y.P. [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.] [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.

    1996-02-01

    The reaction pathways and kinetics of n-hexadecane hydroisomerization and hydrocracking were determined in the presence of each of three platinum-containing dual-function catalysts: (a) Pt on a proprietary zeolite (Pt/Z), (b) Pt on silica-alumina (Pt/Si-Al), and (c) Pt on MCM-41 (Pt/MCM-41). The reaction networks were used to interpret differences in isomerization selectivity. The low isomerization selectivity observed in the presence of Pt/Si-Al was shown to be a consequence of changes in both relative isomerization/cracking rates and reaction pathways. Using the classical bifunctional reaction scheme, the changes in pathway were hypothesized to be consistent with changes in the relative concentrations of metal and acid sites (i.e., the metal-acid balance). On the basis of a recently proposed model of dual-function catalysis, the different observed pathways were subsequently shown to be those expected in two limiting cases of the metal-acid balance. The simplified quantitative picture given here provides a preliminary basis for relating catalyst preparation variables to catalyst performance for dual-function catalysts.

  5. Method of making metal-polymer composite catalysts

    DOE Patents [OSTI]

    Zelena, Piotr (Los Alamos, NM); Bashyam, Rajesh (Los Alamos, NM)

    2009-06-23

    A metal-polymer-carbon composite catalyst for use as a cathode electrocatalyst in fuel cells. The catalyst includes a heteroatomic polymer; a transition metal linked to the heteroatomic polymer by one of nitrogen, sulfur, and phosphorus, and a recast ionomer dispersed throughout the heteroatomic polymer-carbon composite. The method includes forming a heteroatomic polymer-carbon composite and loading the transition metal onto the composite. The invention also provides a method of making a membrane electrode assembly for a fuel cell that includes the metal-polymer-carbon composite catalyst.

  6. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Rodriguez, Brandon A. (Evanston, IL); Delferro, Massimiliano (Chicago, IL)

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  7. Application of a Turbulent Metal Foil Substrate for a PGM optimized DOC on a U.S. HD Diesel Engine

    Broader source: Energy.gov [DOE]

    Lower platinum-metal group catalysts can be used to save money while offering equivalent or better hydrocarbon performanc and longer life and durability.

  8. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstratedmore »in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  9. Highly active non-PGM catalysts prepared from metal organic frameworks

    SciTech Connect (OSTI)

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  10. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOE Patents [OSTI]

    Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ); Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI)

    2011-05-17

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

  11. of hydrogen-powered cars," he says. But a major hurdle remains: the cost of platinum metal

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    of hydrogen-powered cars," he says. But a major hurdle remains: the cost of platinum metal needed cars," says Holdcroft. The new research network will determine if the amount of platinum can be reduced for hydrogen-powered cars in mass production facilities," says SFU chemistry professor Steve Holdcroft, who

  12. Recently published research from the National Renewable Energy Laboratory (NREL) reports that biohybrid hydrogen electrodes comprising metallic single-

    E-Print Network [OSTI]

    alternative to the precious metal catalysts such as platinum that are now used in photoelectrochemical or fuel that biohybrid hydrogen electrodes comprising metallic single- walled carbon nanotube (SWNT) networks a cheaper but equally efficient alternative to the precious metal catalysts, such as platinum

  13. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  14. Effect of metal on zeolite catalysts for extinction hydrocracking

    SciTech Connect (OSTI)

    Yan, T.Y. (Mobil Research and Development Corp., Princeton, NJ (US))

    1990-10-01

    This paper reports on the slow diffusivity of large molecules into the micropores which results in shape selectivity in the conversion of mixed feeds. The metals deposit on the zeolite, as the hydrogenation components further reduce this diffusivity through pore filling and pore mouth blocking, leading to ineffective catalysts for extinction hydrocracking. By using active metals at low loadings, these adverse effects can be minimized. To demonstrate this principle, experimental catalysts were compared. Unlike NiW/REX (REX = rare earth exchanged X-type zeolite), the experimental catalysts Pt and Pd on REX at 0.5 wt% levels were effective for the extinction hydrocracking of heavy gas oil blends. There was no heavy-end buildup in the recycle feed. The catalysts were active, low in aging rate, and high in selectivity for naphthas.

  15. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    E-Print Network [OSTI]

    Yoon, Wonseok

    2013-01-01

    of Low Pt- Loading Cathodes in PEM Fuel Cells, in8th International Fuel Cell Science, Engineeriung &Loading Effects in Fuel-Cell Catalyst Layers Wonseok Yoon*

  16. Effect of Nafion and platinum content in a catalyst layer processed in a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    storage and fuel cell (FC) cost and efficiency. Proton Exchange Membrane Fuel Cells (PEMFC) using solid fuel cells (PEMFC). Electrodes with low Pt loading are prepared, assembled in custom-made membrane in the commercial cathode. Keywords: Fuel cells; Plasma; sputtering; Nafion® ; platinum; utilization PACS

  17. Metal salt catalysts for enhancing hydrogen spillover

    SciTech Connect (OSTI)

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  18. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2

    Broader source: Energy.gov [DOE]

    This study demonstrates the feasibility of developing highly stable, sulfur-tolerant oxidation catalysts that use less Pt via surface modification of silica supports with transition metal oxides.

  19. A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel Engines A Bimetmallic Fuel-Borne Catalyst for Reduce Precious Metal Use in Medium-Duty Diesel...

  20. Characterization and Reaction Studies of Silica Supported Platinum and Rhodium Model Catalysts 

    E-Print Network [OSTI]

    Lundwall, Matthew James

    2012-02-14

    by dispersing nanoparticles leading to inhibition of catalytic pathways. Moreover, the relationships between high index single crystals, oxide supported nanoparticles, and high surface area technical catalysts are established. Overall, the results demonstrate...

  1. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  2. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOE Patents [OSTI]

    Lyons, James E. (Wallingford, PA); Ellis, Jr., Paul E. (Downingtown, PA); Wagner, Richard W. (Murrysville, PA)

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  3. Metal catalyst technique for texturing silicon solar cells

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Zaidi, Saleem H. (Albuquerque, NM)

    2001-01-01

    Textured silicon solar cells and techniques for their manufacture utilizing metal sources to catalyze formation of randomly distributed surface features such as nanoscale pyramidal and columnar structures. These structures include dimensions smaller than the wavelength of incident light, thereby resulting in a highly effective anti-reflective surface. According to the invention, metal sources present in a reactive ion etching chamber permit impurities (e.g. metal particles) to be introduced into a reactive ion etch plasma resulting in deposition of micro-masks on the surface of a substrate to be etched. Separate embodiments are disclosed including one in which the metal source includes one or more metal-coated substrates strategically positioned relative to the surface to be textured, and another in which the walls of the reaction chamber are pre-conditioned with a thin coating of metal catalyst material.

  4. Author's personal copy Methanol oxidation in nanostructured platinum/cerium-phosphate thin films

    E-Print Network [OSTI]

    Park, Byungwoo

    rights reserved. 1. Introduction Direct methanol fuel cells (DMFCs) have been considered to be one chosen metals in low-temperature fuel cells. However, it is hard to avoid CO adsorption on a bare Pt and optimize several types of catalysts [1]. Pure platinum as an anode catalyst is one of the most frequently

  5. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOE Patents [OSTI]

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  6. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect (OSTI)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  7. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology; Columbia Univ., New York, NY (United States); Chen, Jingguang G. [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Chang, Kuan [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology; Wang, Tiefeng [Tsinghua Univ., Beijing (China). Beijing Key Lab. of Green Chemical Reaction Engineering and Technology

    2015-04-01

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  8. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore »modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  9. Vapor Synthesis and Thermal Modification of Supportless Platinum-Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    SciTech Connect (OSTI)

    Atkinson III, Robert [University of Tennessee (UT); Unocic, Raymond R [ORNL; Unocic, Kinga A [ORNL; Veith, Gabriel M [ORNL; Papandrew, Alexander B [ORNL; Zawodzinski, Thomas A [ORNL

    2015-01-01

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.

  10. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    SciTech Connect (OSTI)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-20

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  11. Zwitterionic late transition metal alkene polymerisation catalysts containing aminofulvene-aldiminate (AFA) ligands 

    E-Print Network [OSTI]

    Rahman, Mohammed Mahmudur

    2010-01-01

    Over recent years significant progress has been made in the design and development of late transition metal cationic catalysts for olefin polymerisation. Never-the-less, the activation of catalyst precursors and generation ...

  12. The Use of Soluble Polyolefins as Supports for Transition Metal Catalysts 

    E-Print Network [OSTI]

    Hobbs, Christopher Eugene

    2012-10-19

    The use of polymer supports for transition metal catalysts are very important and useful in synthetic organic chemistry as they make possible the separation and isolation of catalysts and products quite easy. These ...

  13. Non-precious metal catalysts prepared from precursor comprising cyanamide

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-10-27

    Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700.degree. C. to about 1100.degree. C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.

  14. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deposition for Potential Marine Applications Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their...

  15. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  16. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect (OSTI)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  17. Method for hydrogen production and metal winning, and a catalyst/cocatalyst composition useful therefor

    DOE Patents [OSTI]

    Dhooge, Patrick M. (Corrales, NM)

    1987-10-13

    A catalyst/cocatalyst/organics composition of matter is useful in electrolytically producing hydrogen or electrowinning metals. Use of the catalyst/cocatalyst/organics composition causes the anode potential and the energy required for the reaction to decrease. An electrolyte, including the catalyst/cocatalyst composition, and a reaction medium composition further including organic material are also described.

  18. Method of inducing surface ensembles on a metal catalyst

    DOE Patents [OSTI]

    Miller, Steven S. (Morgantown, WV)

    1989-01-01

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO+H.sub.2) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  19. Method of inducing surface ensembles on a metal catalyst

    DOE Patents [OSTI]

    Miller, S.S.

    1987-10-02

    A method of inducing surface ensembles on a transition metal catalyst used in the conversion of a reactant gas or gas mixture, such as carbon monoxide and hydrogen into hydrocarbons (the Fischer-Tropsch reaction) is disclosed which comprises adding a Lewis base to the syngas (CO + H/sub 2/) mixture before reaction takes place. The formation of surface ensembles in this manner restricts the number and types of reaction pathways which will be utilized, thus greatly narrowing the product distribution and maximizing the efficiency of the Fischer-Tropsch reaction. Similarly, amines may also be produced by the conversion of reactant gas or gases, such as nitrogen, hydrogen, or hydrocarbon constituents.

  20. Platinum-Coated Non-Noble Metal-Noble Metal Core-Shell Electrocatalysts -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum NanoclustersPlatinumand uses

  1. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect (OSTI)

    Keith James Stanger

    2003-05-31

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-{alpha}-acetamidocinnamate (MAC), has the illustrated structure as established by {sup 31}P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]{sub 4}, [Rh(COD){sub 2}]{sup +}BF{sub 4}{sup -}, [Rh(COD)Cl]{sub 2}, and RhCl{sub 3} {center_dot} 3H{sub 2}O, adsorbed on SiO{sub 2} are optimally activated for toluene hydrogenation by pretreatment with H{sub 2} at 200 C. The same complexes on Pd-SiO{sub 2} are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH{sub 2}){sub 3}s-]Re(O)(Me)(PPh{sub 3}) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  2. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  3. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    DOE Patents [OSTI]

    Wickham, David (Boulder, CO); Cook, Ronald (Lakewood, CO)

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  4. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-09-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years’ effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400°C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts, development and testing of metal oxide based H2SO4 catalysts, support of the ILS for catalyst studies, conducting a long term catalyst stability test at anticipated operating temperatures and pressures, and developing capabilities for conducting pressurized catalyst tests.

  5. Reactions of platinum in oxygen- and hydrogen-treated Pt/. gamma. -Al/sub 2/O/sub 3/ catalysts. I. Temperature-programmed reduction, adsorption, and redispersion of platinum

    SciTech Connect (OSTI)

    Lieske, H.; Lietz, G.; Spindler, H.; Voelter, J.

    1983-05-01

    Alumina-supported platinum (Pt/..gamma..-Al/sub 2/O/sub 3/) catalysts with and without chloride (Cl) were treated at different temperatures in oxygen (O) or hydrogen (H/sub 2/) and were studied by temperature-programmed reduction and by hydrogen adsorption. Two surface oxides, ..cap alpha..- and ..beta..-(PtO/sub 2/)/sub s/, and two chloride-containing surface complexes, (Pt/sup IV/(OH)/sub x/Cl/sub y/)/sub s/ and (Pt/sup IV/O/sub x/Cl/sub y/)/sub s/, could be found and a comprehensive scheme of surface reactions is proposed. Redispersion of Pt in oxygen is possible only in the presence of chloride and is connected with the formation of (Pt/sup IV/O/sub x/Cl/sub y/)/sub s/. A model for the redispersion is proposed. 7 figures.

  6. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  7. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  8. Combined aberration-corrected in-situ TEM characterization and ab initio calculations on the morphological changes of platinum nanoparticles

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    -Madison, Wisconsin Among metal catalysts, platinum is by far the most efficient for most industrially relevant catalytic reactions. It is the most popular electrocatalyst for PEM fuel cells and is also used in catalytic on reducing particle sizes, better dispersion of particles, adding second metallic components to make

  9. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect (OSTI)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.

  10. Applications of hydrogenation and dehydrogenation on noble metal catalysts 

    E-Print Network [OSTI]

    Wang, Bo

    2009-05-15

    Hydrogenation and dehydrogenation on Pd- and Pt- catalysts are encountered in many industrial hydrocarbon processes. The present work considers the development of catalysts and their kinetic modeling along a general and rigorous approach. The first...

  11. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  12. Experimental Study of In Situ Combustion with Tetralin and Metallic Catalysts 

    E-Print Network [OSTI]

    Palmer-Ikuku, Emuobonuvie

    2010-01-16

    Experimental studies showed the feasibility of adding metallic catalysts and tetralin for the upgrade and increased recovery of heavy oil during the in situ combustion process. Further experimental studies also showed the applicability of in situ...

  13. The Use of Heterogeneous Metal Alkoxide Catalysts in Biodiesel Transesterification Reactions. 

    E-Print Network [OSTI]

    Rooney, William 1991-

    2012-04-18

    for such a catalyst. Some previously studied heterogeneous catalysts include: metal oxides such as KOH/ZrO2-SiO2, Co2O3- SiO2, Mo2O5- SiO2, Na2O- SiO2, ZrO2- SiO2; metal powders of nickel and palladium; cast iron shavings; steel shavings; zeolites; salts...

  14. Hydrocracking of n-decane over zeolite-supported metal sulfide catalysts. 1: CaY-supported transition metal sulfides

    SciTech Connect (OSTI)

    Welters, W.J.J.; Waerden, O.H. van der; Beer, V.H.J. de; Santen, R.A. van [Eindhoven Univ. of Technology (Netherlands). Schuit Inst. of Catalysis; Zandbergen, H.W. [Delft Univ. of Technology (Netherlands). Centre for High Resolution Electron Microscopy

    1995-04-01

    The hydrocracking properties of various CaY-supported metal (Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Ir, and Pt) sulfide catalysts (prepared by impregnation) are examined by studying the hydroconversion of n-decane. All catalysts show cracking conversions which are significantly higher than that of the CaY support. There are large differences in catalytic behavior dependent on the metal sulfide present on the zeolite support. The amounts of S present on the catalyst are analyzed to determine the degree of sulfidation of the metal sulfide, while high resolution electron microscopy is used to characterize the distribution of the metal sulfide phase over the zeolite support. The observed differences in activity can be explained by the differences in intrinsic activity of the metal sulfide phase and the differences in distribution of this phase over the zeolite particle (internal or external sulfide deposition).

  15. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect (OSTI)

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  16. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  17. Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes

    E-Print Network [OSTI]

    Chen, Shuo

    Electrochemical measurements showed an ?75% Pt surface area loss and an ?40% specific activity loss for a membrane electrode assembly (MEA) cathode with acid-treated “Pt[subscript 3]Co ” catalyst particles in a H[subscript ...

  18. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect (OSTI)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup ?1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup ?1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup ?1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  19. Low-cost, non-precious metal/polymer composite catalysts for fuel cells

    E-Print Network [OSTI]

    Low-cost, non-precious metal/polymer composite catalysts for fuel cells R. Bashyam and P. Zelenay 1) activity in known-to-date non- precious metal. Fuel cell testing of the composite Figure 2 shows a hydrogen LALP-07-013 Winter 2007 F uel cells, which directly convert a fuel's chemical energy into electricity

  20. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol Deposition for Potential Marine Applications

    Broader source: Energy.gov [DOE]

    Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance

  1. Comparative studies of hydrodenitrogenation by mixed metal sulfide catalysts 

    E-Print Network [OSTI]

    Luchsinger, Mary Margaret

    1990-01-01

    of the Environmental Protection Agency's (EPA) regulations for emission of nitrogen oxides but also to decrease the poisoning of catalysts used in hydrocracking and This thesis follows the style of the AICHE Journal. hydrogenation. In addition, most nitrogen...

  2. Hydrocracking with a catalyst containing a noble metal and zeolite beta

    SciTech Connect (OSTI)

    Ward, J.W.

    1993-07-20

    A hydrocracking process is described which comprises contacting a hydrocarbon feedstock with a catalyst comprising a noble metal hydrogenation component and a boron-free zeolite Beta wider hydrocracking conditions in a hydrocracking zone in the presence of a gas phase containing hydrogen and greater than about 200 ppmv ammonia, wherein said catalyst is not steamed prior to contact with said hydrocarbon feedstock and has a relatively uniform concentration of boron-free zeolite Beta throughout said hydrocracking zone.

  3. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect (OSTI)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.

  4. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  5. Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinum catalysts in the hydrogenation of ethane.

    SciTech Connect (OSTI)

    Wyrzgol, S. A.; Schafer, S.; Lee, S.; Lee, B.; Di Vece, M.; Li, X.; Seifert, S.; Winans, R. E.; Stutzmann, M.; Lercher, J. A.; Vajda, S.; Technische Univ. Munchen; Yale Univ.

    2010-01-01

    The preparation, characterization and catalytic reactivity of a GaN supported Pt catalyst in the hydrogenation of ethene are presented in this feature article, highlighting the use of in situ characterization of the material properties during sample handling and catalysis by combining temperature programmed reaction with in situ grazing incidence small-angle X-ray scattering and X-ray absorption spectroscopy. The catalysts are found to be sintering resistant at elevated temperatures as well as during reduction and hydrogenation reactions. In contrast to Pt particles of approximately 7 nm diameter, smaller particles of 1.8 nm in size are found to dynamically adapt their shape and oxidation state to the changes in the reaction environment. These smaller Pt particles also showed an initial deactivation in ethene hydrogenation, which is paralleled by the change in the particle shape. The subtle temperature-dependent X-ray absorbance of the 1.8 nm sized Pt particles indicates that subtle variations in the electronic structure induced by the state of reduction by electron tunnelling over the Schottky barrier between the Pt particles and the GaN support can be monitored.

  6. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction

    E-Print Network [OSTI]

    Cui, Yi

    through the electro- chemical reduction of water is a key component of many clean energy technologies.1­4 State-of-the-art hydrogen evolution reaction (HER) catalysts contain noble metals such as Pt the potential to lower the overall capital cost.12 Research efforts have therefore been directed to search

  7. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes Common cobalt may replace pricier, rare metal relatives Potential applications: biofuel production, carbon dioxide reduction, basic necessary chemistry LOS ALAMOS, N.M.,...

  8. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  9. Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation 

    E-Print Network [OSTI]

    Hamlin, Kellee Hall

    1986-01-01

    area. The NAA results for the catalysts indicated a nickel content in the range of 6. 05 ? 7. 81 wt% and Group VIII metal contents which ranged from 1. 81-2. 33 wt%, The activity of all the fresh catalysts, except Ni/Rh/7-AltOs, reached approximate... deactivation due to sintering; an increase indicates disintegration or powdering of the support, The NAA wss performed on the Texas AgrM University campus at the Nuclear Sci- ence Center experimental research reactor, by the Center for Chemical...

  10. Catalytic hydrocracking of Athabasca bitumen with oil-soluble throw-away metal catalysts

    SciTech Connect (OSTI)

    Strausz, O.P.; Mojelsky, T.W.; Lown, E.M. [Univ. of Alberta, Edmonton (Canada)

    1995-12-31

    The mild hydrocracking of Athabasca bitumen at 400-425{degrees}C and 1000-2000 psig hydrogen in a stirred laboratory autoclave in the presence of various oil-soluble transition metal (carboxylates, naphthenates, acetylacetonate) catalysts has been investigated. Determined were the yields of liquid and solid products, the elemental and class compositions of the liquids as well as some of their physical properties as a function of catalyst type, amount and physical state, along with other experimental variables. Some of the chemical changes taking place at the molecular level were also explored and compared to those observed in the mild thermolysis of the bitumen.

  11. The role of hydrogen in methane formation from carbon and water over metal catalysts 

    E-Print Network [OSTI]

    Moore, Stanley Edwin

    1982-01-01

    an extremely fast reaction. Two experiments to determine the effect of carbon on the rate of reaction were carried out and the results are summarized in Figure 11. The quantity of carbon on the nickel-zirconia catalyst in the second experiment was twice...THE ROLE OF HYDROGEN IN METHANE FORMATION FROM CARBON AND WATER OVER METAL CATALYSTS A Thesis by STANLEY EDWIN MOORE Submitted to the Graduate College of Texas AaM University in partial fulfillment of the requirement for the degree MASTER...

  12. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore »a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A?cm-3 at 0.9 V or 450 A?cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less

  13. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    SciTech Connect (OSTI)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A?cm-3 at 0.9 V or 450 A?cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

  14. Operando Raman and Theoretical Vibration Spectroscopy of Non-PGM Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation about spectroscopy techniques for non-platinum group metal (PGM) catalysts, presented by Eugene Smotkin, Northeastern University, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  15. A Comparative Study of the Water Gas Shift Reaction Over Platinum Catalysts Supported on CeO2, TiO2 and Ce-Modified TiO2

    SciTech Connect (OSTI)

    Gonzalez, I.; Navarro, R; Wen, W; Marinkovic, N; Rodriguez, J; Rosa, F; Fierro, J

    2010-01-01

    WGS reaction has been investigated on catalysts based on platinum supported over CeO{sub 2}, TiO{sub 2} and Ce-modified TiO{sub 2}. XPS and XANES analyses performed on calcined catalysts revealed a close contact between Pt precursors and cerium species on CeO{sub 2} and Ce-modified TiO{sub 2} supports. TPR results corroborate the intimate contact between Pt and cerium entities in the Pt/Ce-TiO{sub 2} catalyst that facilitates the reducibility of the support at low temperatures while the Ce-O-Ti surface interactions established in the Ce-modified TiO{sub 2} support decreases the reduction of TiO{sub 2} at high temperature. The changes in the support reducibility leads to significant differences in the WGS activity of the studied catalysts. Pt supported on Ce-modified TiO{sub 2} support exhibits better activity than those corresponding to individual CeO{sub 2} and TiO{sub 2}-supported catalysts. Additionally, the Ce-TiO{sub 2}-supported catalyst displays better stability at reaction temperatures higher than 573 K that observed on pure TiO{sub 2}-supported counterpart. Activity measurements, when coupled with the physicochemical characterization of catalysts suggest that the modifications in the surface reducibility of the support play an essential role in the enhancement of activity and stability observed when Pt is supported on the Ce-modified TiO{sub 2} substrate.

  16. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  17. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in platinum. Exploring metals that catalyze other important reactions-such as palladium, silver, copper, rhodium, iron, and cobalt-might also help researchers determine...

  18. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The next steps will be to determine whether other adsorbed reactants, such as oxygen or hydrogen, also result in the creation of nanoclusters in platinum. Exploring metals that...

  19. Metal Nitride Catalysts to Enhance Hydrogen Evolution Reactions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the Director HereMetalInnovation

  20. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOE Patents [OSTI]

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  1. Method for forming porous platinum films

    DOE Patents [OSTI]

    Maya, Leon (Oak Ridge, TN)

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  2. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  3. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle.more »Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.« less

  4. Mapping Metals Incorporation of a Whole Single Catalyst Particle Using Element Specific X-ray Nanotomography

    SciTech Connect (OSTI)

    Meirer, Florian; Morris, Darius T.; Kalirai, Sam; Liu, Yijin; Andrews, Joy C.; Weckhuysen, Bert M.

    2015-01-02

    Full-field transmission X-ray microscopy has been used to determine the 3D structure of a whole individual fluid catalytic cracking (FCC) particle at high spatial resolution and in a fast, noninvasive manner, maintaining the full integrity of the particle. Using X-ray absorption mosaic imaging to combine multiple fields of view, computed tomography was performed to visualize the macropore structure of the catalyst and its availability for mass transport. We mapped the relative spatial distributions of Ni and Fe using multiple-energy tomography at the respective X-ray absorption K-edges and correlated these distributions with porosity and permeability of an equilibrated catalyst (E-cat) particle. Both metals were found to accumulate in outer layers of the particle, effectively decreasing porosity by clogging of pores and eventually restricting access into the FCC particle.

  5. Method for making oxygen-reducing catalyst layers

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

    2010-06-22

    Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  6. Insertion of Elemental Sulfur and SO2 into the Metal-Hydride and Metal-Carbon Bonds of Platinum

    E-Print Network [OSTI]

    Jones, William D.

    and other alkyl and aryl compounds, followed by insertion of sulfur-bearing species to syn- thesize sulfur-bearing or main- group metals.2,3 A second resonance is seen in the 31P NMR spectrum at 67.02 (JPtP ) 1811 Hz

  7. Encapsulation of metal nanocluster catalysts in silica materials via an inverse micelle/sol-gel synthesis

    SciTech Connect (OSTI)

    Martino, A.; Kawola, J.S.; Yamanaka, S.A.; Loy, D.A.

    1997-05-01

    Nanometer sized metal particles were encapsulated in the micropores of xerogels and aerogels. The synthesis involves the sequential reduction of a metal salt followed by sol-gel processing in an inverse micelle solution. The inverse micelle solution solubilizes the metal salt and provides a micro-reactor for the nucleation, growth, and stabilization of the nanometer sized clusters. Hydrolysis and condensation of an added siloxane precursor produces a wet gel embedding the particles. Characterization of the particle size and composition and the particle growth process was completed with transmission electron microscopy (TEM), electron diffraction, and UV-visible absorption spectrometry. Characterization of the gel surface areas was completed with N{sub 2} porosimetry. Material properties determined as a function of the gel precursor (TEOS vs. a pre-hydrolyzed form of TEOS), the water to gel precursor reaction stoichiometry, and surfactant concentration are discussed in terms of the unique solution chemistry occurring in the micro-heterogeneous inverse micelle solutions. Finally, catalyst development and catalyst activity of the materials are discussed. 1-hexene hydrogenation was chosen as a model reaction.

  8. Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation

    SciTech Connect (OSTI)

    Chan-Thaw, Carine E. [Universita di Milano, Italy; Veith, Gabriel M [ORNL; Villa, Alberto [Universita di Milano, Italy; Prati, Laura [Universita di Milano, Italy

    2015-01-01

    This work focuses on understanding how the bonding of nitrogen heteroatoms contained on/in a activated carbon support influence the stability and reactivity of a supported Pd catalyst for the oxidation of alcohols in solution. The results show that simply adding N groups via solution chemistry is insufficient to improve catalytic properties. Instead a strongly bound N moiety is required to activate the catalyst and stabilize the metal particles.

  9. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  10. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Luo, Lubin (Baton Rouge, LA); Yoon, Sung Cheol (Evanston, IL)

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  11. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Luo, Lubin (Baton Rouge, LA); Yoon, Sung Cheol (Evanston, IL)

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  12. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  13. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOE Patents [OSTI]

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  14. Development of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll

    E-Print Network [OSTI]

    Development of Ultra-low Platinum Alloy C th d C t l t f PEM F l C ll Cathode Catalyst for PEM Objectives · Ultra-low loading Pt catalyysts for oxygen reduction reaction with higgh activityyand ggoodg yg Definition ­ In Developing Low Loading Platinum Catalysts · C l PCatalyst Perfformance ¾ Platinum

  15. Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.

    SciTech Connect (OSTI)

    Rossignol, C.; Krause, T.; Krumpelt, M.

    2002-01-11

    For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

  16. Method for forming gold-containing catalyst with porous structure

    SciTech Connect (OSTI)

    Biener, Juergen; Hamza, Alex V; Baeumer, Marcus; Schulz, Christian; Jurgens, Birte; Biener, Monika M.

    2014-07-22

    A method for forming a gold-containing catalyst with porous structure according to one embodiment of the present invention includes producing a starting alloy by melting together of gold and at least one less noble metal that is selected from the group consisting of silver, copper, rhodium, palladium, and platinum; and a dealloying step comprising at least partial removal of the less noble metal by dissolving the at least one less noble metal out of the starting alloy. Additional methods and products thereof are also presented.

  17. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    SciTech Connect (OSTI)

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation. ?-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

  18. Hydrocracking catalyst

    SciTech Connect (OSTI)

    Welsh, W.A.

    1984-06-26

    A stable, highly active hydrocracking catalyst which contains a rare earth/noble metal exchanged ultrastable type Y zeolite dispersed in an inorganic oxide matrix. The catalyst is hydrated to a moisture level of from about 5 to 30 percent by weight H/sub 2/O prior to activation and use in a hydrocracking process.

  19. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  20. The carburization of transition metal molybdates (MxMoO?, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO? hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo?C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu?(MoO?)?(OH)?, a-NiMoO? and CoMoO?•nH?O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was ?-Mo?C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²?, Ni²? and Co²? cations inside each molybdate. The synthesized Cu/Mo?C, Ni/Mo?C and Co/Mo?C catalysts were highlymore »active for the hydrogenation of CO?. The metal/Mo?C systems exhibited large variations in the selectivity towards methanol, methane and CnH?n?? (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo?C displayed a high selectivity for CO and methanol production. Ni/Mo?C and Co/Mo?C were the most active catalysts for the activation and full decomposition of CO?, showing high selectivity for the production of methane (Ni case) and CnH?n?? (n > 2) hydrocarbons (Co case).« less

  1. The carburization of transition metal molybdates (MxMoO?, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO? hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, Wenqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Ramirez, Pedro J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Univ. Central De Venezuela, Caracas (Venesuela); Stachiola, Dario [Brookhaven National Lab. (BNL), Upton, NY (United States); Brito, Joaquin L. [Inst. Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo?C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu?(MoO?)?(OH)?, a-NiMoO? and CoMoO?•nH?O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was ?-Mo?C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²?, Ni²? and Co²? cations inside each molybdate. The synthesized Cu/Mo?C, Ni/Mo?C and Co/Mo?C catalysts were highly active for the hydrogenation of CO?. The metal/Mo?C systems exhibited large variations in the selectivity towards methanol, methane and CnH?n?? (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo?C displayed a high selectivity for CO and methanol production. Ni/Mo?C and Co/Mo?C were the most active catalysts for the activation and full decomposition of CO?, showing high selectivity for the production of methane (Ni case) and CnH?n?? (n > 2) hydrocarbons (Co case).

  2. CO-and NO-Induced Disintegration and Redispersion of Three-Way Catalysts Rhodium, Palladium, and Platinum: An ab Initio

    E-Print Network [OSTI]

    Li, Weixue

    CO- and NO-Induced Disintegration and Redispersion of Three-Way Catalysts Rhodium, Palladium increase of Pt adatom self-diffusion in the presence of hydrogen due to the formation of mobile Pt- hydrogen complexes33 and CO-induced Smoluchowski ripen- ing of Pt clusters on graphe

  3. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  4. Oxidation Reaction Induced Structural Changes in Sub-Nanometer Platinum Supported on Alumina

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on ?, ?, and ?-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. We find that sub-nanometermore »Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Furthermore, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles...

  6. Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios XPS and Mssbauer spectroscopic study

    E-Print Network [OSTI]

    Boolchand, Punit

    spectroscopy TPR XPS CeO2 Magnetite a b s t r a c t High temperature water gas shift reaction (WGS) at low/Ce and Co-, Zr-, Hf-, and Mo-doped Fe/Ce catalysts compared to the activated catalysts. For Cr-doped FeSulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO

  7. Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts 

    E-Print Network [OSTI]

    Yan, Zhen

    2009-05-15

    series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold...

  8. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOE Patents [OSTI]

    Popov, Branko N. (Columbia, SC); Subramanian, Nalini (Kennesaw, GA); Colon-Mercado, Hector R. (Columbia, SC)

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  9. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation.more »?-Alumina-supported single-atom alloy nanoparticle catalysts with « less

  10. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  11. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  12. Textured catalysts and methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays

    SciTech Connect (OSTI)

    Levchenko, I.; Ostrikov, K.

    2008-02-11

    It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures.

  14. Hydrodehalogenation of bromo- and chloropyridines over palladium complex and palladium metal catalysts

    SciTech Connect (OSTI)

    Gurovets, A.S.; Sharf, V.Z.; Belen'kii, L.I.

    1986-03-01

    The hydrodehalogenation of 2-chloro-, 2-bromo-, 3-bromo, and 3,5-dibromopyridine has been studied in the presence of a palladium complex catalyst immobilized on silica gel, and a Pd/C catalyst. Cleavage of bromine from bromopyridines over the Pd complex is significantly faster than from the bromo-substituted furanes and thiophenes previously studied. Debromination over Pd/C is faster than over the complex catalyst. Over both catalysts 3-bromopyridine debrominates faster than the 2-isomer. When molecular deuterium is used, the respective deuterated pyridines can be obtained.

  15. Methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  16. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  17. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  18. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  19. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  20. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    E-Print Network [OSTI]

    Li, Yujing

    2012-01-01

    membrane fuel cell (PEMFC) and direct methanol fuel cell (operation and performance of PEMFC and DMFC depend largelyused electro-catalysts for PEMFC and DMFC are Pt-based noble

  1. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    E-Print Network [OSTI]

    Li, Yujing

    2012-01-01

    materials are capable of serving as electro-catalysts in PEMFC andMaterials Science and Engineering University of California, Los Angeles, 2012 Professor Yu Huang, Chair Today, proton electrolyte membrane fuel cell (PEMFC) and

  2. Oxygen Reduction Reaction on Dispersed and Core-Shell Metal Alloy Catalysts: Density Functional Theory Studies 

    E-Print Network [OSTI]

    Hirunsit, Pussana

    2011-10-21

    stability against dissolution, surface Pourbaix diagrams, and reaction mechanisms provide useful predictions on catalyst durability, onset potential for water oxidation, surface atomic distribution, coverage of oxygenated species, and activity. The roles...

  3. Mass-selected Nanoparticles of PtxY as Model Catalysts for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts, due to a mildly weaker bond between the platinum surface atoms and the hydroxyl reaction intermediates. The EXAFS experiments were performed under grazing incidence...

  4. Recent Advances in Developing Platinum Monolayer Electrocatalysts for the O2 Reduction Reaction

    SciTech Connect (OSTI)

    Vukmirovic,M.B.; Sasaki, K.; Zhou, W.-P.; Li, M.; Liu, P.; Wang, J.X.; Adzic, R.R.

    2008-09-15

    For Pt, the best single-element catalyst for many reactions, the question of content and loading is exceedingly important because of its price and availability. Using platinum as a fuel-cell catalyst in automotive applications will cause an unquantifiable increase in the demand for this metal. This big obstacle for using fuel cells in electric cars must be solved by decreasing the content of Pt, which is a great challenge of electrocatalysis Over the last several years we inaugurated a new class of electrocatalysts for the oxygen reduction reaction (ORR) based on a monolayer of Pt deposited on metal or alloy carbon-supported nanoparticles. The possibility of decreasing the Pt content in the ORR catalysts down to a monolayer level has a considerable importance because this reaction requires high loadings due to its slow kinetics. The Pt-monolayer approach has several unique features and some of them are: high Pt utilization, enhanced (or decreased) activity, enhanced stability, and direct activity correlations. The synthesis of Pt monolayer (ML) electrocatalysts was facilitated by our new synthesis method which allowed us to deposit a monolayer of Pt on various metals, or alloy nanoparticles [1, 2] for the cathode electrocatalyst. In this synthesis approach Pt is laid down by the galvanically displacing a Cu monolayer, which was deposited at underpotentials in a monolayer-limited reaction on appropriate metal substrate, with Pt after immersing the electrode in a K{sub 2}PtCl{sub 4} solution.

  5. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA)

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  6. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L. (Richland, WA); Balmer-Miller, Mari Lou (West Richland, WA); Chanda, Ashok (Peoria, IL); Habeger, Craig F. (West Richland, WA); Koshkarian, Kent A. (Peoria, IL); Park, Paul W. (Peoria, IL)

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  7. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect (OSTI)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.

  8. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    SciTech Connect (OSTI)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.

  9. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect (OSTI)

    Krebs, L.C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  10. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Developing Intermetallic Catalysts | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Precious metals and metal alloys are important heterogeneous catalysts for renewable energies and materials. However, both of them have their limitations. Precious metals have...

  13. Low platinum loading electrospun electrodes for proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Singer, Simcha Lev

    2006-01-01

    An experimental study was performed to evaluate the utility of electrospun carbon nanofiber supports for sputtered platinum catalyst in proton exchange membrane fuel cells. The performance of the sputtered nanofiber supports ...

  14. Experimental Study of In Situ Combustion with Decalin and Metallic Catalyst 

    E-Print Network [OSTI]

    Mateshov, Dauren

    2011-02-22

    Using a hydrogen donor and a catalyst for upgrading and increasing oil recovery during in situ combustion is a known and proven technique. Based on research conducted on this process, it is clear that widespread practice in industry is the usage...

  15. INVESTIGATION OF MIXED METAL SORBENT/CATALYSTS FOR THE SIMULTANEOUS REMOVAL OF SULFUR AND NITROGEN OXIDES

    SciTech Connect (OSTI)

    Ates Akyurtlu; Jale F. Akyurtle

    2001-08-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}.

  16. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect (OSTI)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  17. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1999-03-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823-900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4}-air mixtures.

  18. USGS Mineral Resources Program Platinum-Group Elements--So Many Excellent Properties

    E-Print Network [OSTI]

    as jewelry and as an investment commodity, the major applications of PGE are industrial. Their leading use industry, platinum-supported catalysts are needed to refine crude oil and to produce high-octane gasoline alloys an ideal choice for jewelry. Platinum, palladium, and rhodium are used for investment in the form

  19. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect (OSTI)

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh/SiO2 and Pt/Al2O3 catalysts.

  20. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect (OSTI)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, induced by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  1. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect (OSTI)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  2. Hydrocracking of n-decane over zeolite-supported metal sulfide catalysts. 2: Zeolite Y-supported Ni and Ni-Mo sulfides

    SciTech Connect (OSTI)

    Welters, W.J.J.; Waerden, O.H. van der; Beer, V.H.J. de; Santen, R.A. van [Eindhoven Univ. of Technology (Netherlands). Schuit Inst. of Catalysis

    1995-04-01

    For zeolite Y-supported nickel sulfide catalysts the influence of the metal sulfide dispersion on the hydrocracking properties for n-decane is examined. In order to obtain different nickel sulfide distributions (inside or outside the zeolite structure) and dispersions, the preparation method (impregnation of CaY or ion exchange of NaY), sulfidation procedure (direct sulfidation or sulfidation after drying), and metal loading are varied. A higher nickel sulfide surface (as measured by dynamic oxygen chemisorption) results in a strong increase of the n-decane conversion, but this is not accompanied by an improvement of the catalytic properties toward ideal hydrocracking. Additionally, some zeolite Y-supported Ni-Mo sulfide catalysts (varying in preparation method and sulfidation procedure) are tested for the hydroconversion of it-decane. However, no promoter effect could be observed. The activity of the bimetallic sulfide catalysts is always almost equal to that of the most active monometallic sulfide constituent.

  3. Catalysts for the production of hydrocarbons from carbon monoxide and water

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  4. Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst

    SciTech Connect (OSTI)

    McGuiggan, M.F.; Kuch, P.L.

    1984-05-08

    Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.

  5. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi , Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08

    Achieving DOE�¢����s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  6. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    DOE Patents [OSTI]

    Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  7. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J. (Ames, IA); Gao, Hanrong (Ames, IA)

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  8. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  9. Syntheses and applications of soluble polyisobutylene (PIB)-supported transition metal catalysts 

    E-Print Network [OSTI]

    Tian, Jianhua

    2009-05-15

    Soluble polymer supports facilitate the recovery and recycling of expensive transition metal complexes. Recently, polyisobutylene (PIB) oligomers have been found to be suitable polymer supports for the recovery of a variety ...

  10. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOE Patents [OSTI]

    Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  11. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hod, Idan; Sampson, Matthew D.; Deria, Pravas; Kubiak, Clifford P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-18

    Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~1015 sites/cm2). The chemical products of the reduction, obtained with ~100% Faradaic efficiency, aremore »mixtures of CO and H2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less

  12. Effect of modifier Pd metal on hydrocracking of polyaromatic compounds over Ni-loaded Y-type zeolite and its application as hydrodesulfurization catalysts

    SciTech Connect (OSTI)

    Wada, Takema; Murata, Satoru; Nomura, Masakatsu [Osaka Univ. (Japan)

    1995-12-31

    Coal tar obtained from coal carbonization is a treasure of polyaromatic hydrocarbons, where more than 400 kinds of aromatic compounds are found to be contained. The development of new catalysts being able to convert these aromatics into mono or diaromatic compounds is one of objectives for utilization of polyaromatics. Hydrocracking of polyaromatic compounds is believed to proceed via formation of terminal-naphthenic ring of starting aromatic compounds, followed by cleavage of the naphthenic ring to produce alkylated aromatic compounds which has less numbers of ring than starting aromatics. Accordingly, hydrogenation of aromatic rings and cracking of resulting naphthenic rings are key steps of hydrocracking reaction, so that dual functional catalysts such as metal-supported acid catalysts are considered to be one of the best catalysts. Zeolite has controlled pore structures and strong acidity enough to crack naphthenic rings, being characteristics in exchanging metal species with ease. We have been studying the hydrocracking of polyaromatic compounds over Ni-loaded zeolite catalysts (ZSM-5, mordenite, and Y-type) and found the fact that pore size of zeolite exerts an interesting effect on product distribution. We also conducted computer-simulation for diffusion phenomena of the polyaromatic hydrocarbons in the pore of these zeolites and found that diffusion ability of the substrate affects strongly the product distributions Recently we found that modifying of Ni-loaded Y-type zeolite by Pd-loading enhanced hydrocracking ability of the catalyst. In this report, we would like to refer to the results of both hydrocracking reaction of pyrene and hydrodesulfurization of dibenzothiophene using Pd-modified Ni-loaded Y-type zeolite.

  13. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Zhang, Junliang (Stony Brook, NY); Vukmirovic, Miomir (Port Jefferson Station, NY)

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  14. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  15. New Catalysts for Direct Methanol Oxidation Fuel Cells

    SciTech Connect (OSTI)

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  16. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOE Patents [OSTI]

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  17. Catalyst Support Interactions | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the reactivity of metal catalyst particles. The research team will also study the adhesion properties by simulating the interactions between metal particles of different sizes...

  18. The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study

    E-Print Network [OSTI]

    Tobin, Roger G.

    active transition metals such as platinum and palladium, show great promise as sen- sors for hydrogenThe role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh with nonporous platinum gates. The devices studied are shown to be sensitive both to hydrogen and to propene. All

  19. The role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    active transition metals such as platinum and palladium, show great promise as sen- sors for hydrogenThe role of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh of oxygen in hydrogen sensing by a platinum-gate silicon carbide gas sensor: An ultrahigh vacuum study Yung

  20. Method for localized deposition of noble metal catalysts with control of morphology

    DOE Patents [OSTI]

    Ricco, Antonio J. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Huber, Robert J. (Bountiful, UT)

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  1. The Science and Engineering of Durable Ultralow PGM Catalysts- 2012 DOE-EERE-FCT annual progress report

    SciTech Connect (OSTI)

    Garzon, Fernando H. [Los Alamos National Laboratory

    2012-07-16

    Minimizing the quantity of Pt group metals used in polymer membrane fuel cells (PEMFCs) is one of the remaining grand challenges for fuel cell commercialization. Tremendous progress has been achieved over the last two decades in decreasing the Pt loading required for efficient fuel cell performance. Unfortunately, the fluctuations in the price of Pt represent a substantial barrier to the economics of widespread fuel cell use. Durability and impurity tolerance are also challenges that are tightly coupled to fuel cell Pt electrode loading. Traditional approaches to decreasing the amount of Pt required for good performance include: (1) Increasing mass activity by decreasing Pt particle size by supporting on carbon; (2) Alloy formulation Pt-Co, Pt-Cr alloys to improve mass activity; (3) Increasing Pt utilization by optimization of electronic and ionic contact of the Pt particles; (4) Improving conductivity of the electronic and ionic conducting constituents of the membrane electrode assembly; and (5) Improving reactant to and product mass transport away from the electroactive sites. Recent novel approaches include the nanoengineering of core shell catalysts and Pt particles of unusual geometries such as nanowires/whiskers. The success of the aforementioned approaches has been great; however further advances using such approaches have been hampered by a lack of underlining scientific understanding of the catalyst activity, particle growth mechanisms, and optimization strategies for designing composite electrodes The objectives of this report are: (1) Development of durable, high mass activity Platinum Group Metal (PGM) cathode catalysts-enabling lower cost fuel cells; (2) Elucidation of the fundamental relationships between PGM catalyst shape, particle size and activity to help design better catalysts; (3) Optimization of the cathode electrode layer to maximize the performance of PGM catalysts-improving fuel cell performance and lowering cost; (4) Understanding the performance degradation mechanisms of high mass activity cathode catalysts-provide insights to better catalyst design; and (5) Development and testing of fuel cells using ultra-low loading high activity PGM catalysts-validation of advanced concepts.

  2. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  3. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  4. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Alonso-Vante, Nicolas (Buxerolles, FR); Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  5. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Alonso-Vante, Nicolas (France, FR); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  6. Direct Ethanol Fuel Cells: Platinum/Rhodium Anode

    E-Print Network [OSTI]

    Petta, Jason

    Direct Ethanol Fuel Cells: Platinum/Rhodium Anode Catalysis Ken Ellis-Guardiola PCCM REU 2010 #12 EtOH+3H2O 12H+ +2CO2+ 12e- Pt C 4H+ + 4e- + O2 2H2O O2 Anode Cathode The Direct Ethanol Fuel Cell #12;The addition of other metals to Platinum improves its fuel cell performance Pt alone is easily

  7. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  8. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules

    SciTech Connect (OSTI)

    Centeno, A.; Laurent, E.; Delmon, B. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)] [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1995-07-01

    The present work corresponds to part of a program aimed at upgrading oil obtained by pyrolysis of biomass by hydrotreatment (hydrodeoxygenation HDO). CoMo sulfide catalysts, nonsupported, supported on different supports (alumina, carbon, silica), or modified by K or Pt, were used. The authors used a model reacting mixture containing compounds representative of the molecules that must react to permit a primary stabilisation of the pyrolytic oil: 4-methy lacetophenone (4-MA), diethylsebacate (DES), and guaiacol (GUA). In the reaction of the carbonyl group of the 4-MA it is shown that no important role is played by any acid-base mechanism; dispersion determines the activity. Acidity of the support influences the formation of active sites for decarboxylation and hydrogenation of the carboxyl group of DES. It was confirmed that guaiacol-type molecules lead to coking reactions. The role of acidity in the mechanism of these reactions is confirmed, but the modifications made in the catalysts in this work are still not sufficient to control coke deposition. The catalysts supported on carbon lead to the direct elimination of the methoxyl group of the guaiacol. Carbon, on the whole, seems to be a promising support. This work suggests that appropriate modifications of the hydrotreating catalysts can lead to a more effective process for stabilisation of the bio-oils by reaction with hydrogen. 55 refs., 3 figs., 5 tabs.

  9. Catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  10. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  11. Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a multi-metal oxide/sulfide catalyst

    SciTech Connect (OSTI)

    Jevnikar, M. G.; Kuch, Ph. L.

    1985-02-19

    Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a catalytic composition containing an oxide and/or sulfide of at least one of molybdenum, tungsten, iron, chromium and vanadium in combination with at least one promoter metal, e.g. a catalyst of the formula Cs Cu /SUB 0.2/ Zn /SUB 0.5/ Mn /SUB 0.5/ Sn /SUB 2.4/ Mo O /SUB x/ S /SUB y/ .

  12. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM)

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  13. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  14. An evaluation of the single turnover (STO) procedure as a method for the determination of the active site densities on dispersed metal catalysts

    SciTech Connect (OSTI)

    Augustine, R.L.; Baum, D.R.; High, K.G.; Szivos, L.S.; O'Leary, S.T. (Seton Hall Univ., South Orange, NJ (USA))

    1991-02-01

    The extent of 2-butene formation during the STO reactions over Pd and Rh indicates that the alkene isomerization is nonstoichiometric. With Pt the extent of isomerization is also influenced by flow rate and reactant pulse size but to a lesser extent. Thus, the STO reaction procedure cannot be used for the determination of isomerization site densities on any of these catalysts. This procedure has been used to determine the saturation site densities on the EuroPt-I Pt/SiO{sub 2} and some northwestern Pt/SiO{sub 2} catalysts. The STO reaction sequence has also been run over Pt, Pd, and Rh catalysts using each of the isomeric butenes as the reactant alkene. Over all three catalysts the same amounts of direct and two-step saturation were observed regardless of the starting alkene showing that these saturation sites are not sensitive to the geometry of the reactant olefin. With Rh a near equilibrium mixture of all three double bond isomers is formed from each of the three starting alkenes. With Pt the extent of isomerization is characteristically low regardless of the starting olefin, so the low isomerization observed during the STO reaction of 1-butene on Pt is not the result of the formation of a primary metalalkyl on a large number of isomerization sites. The STO determined reactive site densities have been correlated with transition electron microscopy (TEM) measured metal particle sizes and turnover frequency (TOF) data for a number of reactions. From these results the sites on which specific reactions take place have been determined as has the site TOF for each of the active sites involved.

  15. Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst

    SciTech Connect (OSTI)

    Govindasamy, Agalya; Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2010-01-01

    The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

  16. Process for producing hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a heteropolyanionic metal complex catalyst

    SciTech Connect (OSTI)

    Kuch, Ph. L.

    1984-12-18

    Hydrogen and carbonyl sulfide are produced by a process comprising contracting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a heteropolymolybdate or tungstate complex. Use of these catalysts reduce the amount of by-product carbon dioxide and methane formation and thus enhance the make of hydrogen and carbonyl sulfide.

  17. Support shape effect in metal oxide catalysis: ceria nanoshapes supported vanadia catalysts for oxidative dehydrogenation of iso-butane

    SciTech Connect (OSTI)

    Wu, Zili; Schwartz, Viviane; Li, Meijun; Rondinone, Adam Justin; Overbury, Steven {Steve} H

    2012-01-01

    The activation energy of VOx/CeO2 catalysts in oxidative dehydrogenation of iso-butane was found dependent on the shape of ceria support: rods < octahedra, closely related to the surface oxygen vacancy formation energy and defects amount of the two ceria supports with different crystallographic surface planes.

  18. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  19. Chemistry of Cobalt-Platinum Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Cobalt-Platinum Nanocatalysts Chemistry of Cobalt-Platinum Nanocatalysts Print Monday, 25 February 2013 15:59 Bimetallic cobalt-platinum (CoPt) nanoparticles are...

  20. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.

  1. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO{sub x}, the addition of Pt increased the selectivity of hydrogenation over isomerization.

  2. PLATINUM-GROUP METALS (Platinum, palladium, rhodium, ruthenium, iridium, osmium)

    E-Print Network [OSTI]

    Africa, 59%; United Kingdom,14%; Russia, 9%; Germany, 5%; and other, 13%. Palladium: Russia, 48%; South the ore body, about 18,500 feet from the portal entrance, by the end of 1999. A second TBM also began

  3. Los Alamos catalyst could jumpstart e-cars, green energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials and alkaline fuel cells, metal-air batteries and certain electrolyzers. Economical non-precious-metal catalyst capitalizes on carbon nanotubes LOS...

  4. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automobile catalytic converters, and the degradation of platinum electrodes in hydrogen fuel cells. As the carbon monoxide coverage of the platinum surfaces increased, the...

  5. Catalysts and method

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  6. Middle distillate hydrocracking catalyst and process

    SciTech Connect (OSTI)

    Occelli, M.L.

    1991-06-11

    This patent describes a catalyst composition. It comprises at least one hydrogenation metal component; a layered magnesium silicate; an intercalated clay; and a zeolitic molecular sieve. This patent also describes a catalyst composition wherein the catalyst composition contains a hydrogenation component. It comprises tungsten and a hydrogenation component comprising nickel.

  7. Silver doped catalysts for treatment of exhaust

    DOE Patents [OSTI]

    Park, Paul Worn (Peoria, IL); Hester, Virgil Raymond (Edelstein, IL); Ragle, Christie Susan (Havana, IL); Boyer, Carrie L. (Shiloh, IL)

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  8. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    SciTech Connect (OSTI)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda; Agrawal, Nitin; Larsson, Elin M.; Hansen, Thomas W.; Karim, Ayman M.; Datye, Abhaya K.

    2012-10-31

    In this Environmental TEM (ETEM) study of supported Pt and Pd model catalysts, individual nanoparticles were tracked during heat treatments at temperatures up to 600°C in H2, O2, and vacuum. We found anomalous growth of nanoparticles occurred during the early stages of catalyst sintering wherein some particles started to grow significantly larger than the mean, resulting in a broadening of the particle size distribution. We can rule out sample non-uniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help explain particle size distributions in heterogeneous catalysts which often show particles that are significantly larger than the mean, resulting in a long tail to the right. It has been suggested that particle migration and coalescence could be the likely cause for the broad size distributions. This study shows that anomalous growth of nanoparticles can occur under conditions where Ostwald ripening is the primary sintering mechanism.

  9. Hydrocracking catalysts

    SciTech Connect (OSTI)

    Parrott, S.P.; Myers, J.W.

    1984-05-08

    The activity and deactivation rate of hydrocracking catalysts are improved by making them via a particular production sequence.

  10. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  11. Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future

    Broader source: Energy.gov [DOE]

    A low precious metal loading ammonia-slip catalyst was developed that is able to oxidize the ammonia that slips past the SCR catalyst to nitrogen.

  12. Synthesis and characterization of model MgO supported catalyst with Pt-Mo interactions.

    SciTech Connect (OSTI)

    Alexeev, O.; Kawi, S.; Gates, B.C. [Univ. of California, Davis, CA (United States)] [Univ. of California, Davis, CA (United States); Shelef, M. [Ford Motor Co., Dearborn, MI (United States)] [Ford Motor Co., Dearborn, MI (United States)

    1996-01-04

    MgO supported platinum and platinum-molybdenum catalysts were prepared from organometallic precursors and charaterized structurally to determine how the nature of the bimetallic precursors and the treatment conditions affected the interaction between the two metals. Samples were prepared from [PtCl{sub 2}(PhCN){sub 2}], [PtCl{sub 2}(PhCN){sub 2}] + [Mo(CO){sub 6}], and [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@ characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies, tranmission electron microscopy, and chemisorption of H{sub 2}, CO, and O{sub 2}. The samples were treated in H{sub 2} at 400{degree}C prior to most of the characterizatons. Incorporation of Mo reduced the chemisorption of CO and of H{sub 2}. EXAFS spectra measured at the Pt L{sub III} edge and at the Mo K edge showed substantial Pt-Mo contributions with a Pt-Mo cordination number of about 2 and an average distance of 2.63 A for the sample prepared from [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@. In constract, no significant Pt-Mo contribution was observed for the sample prepared from [PtCl{sub 2}(PhCN){sub 2}]+ [Mo(CO){sub 6}]. Electron micrographs and EXAFS results show that interaction between Pt and Mo ions in the former sample helped to maintain the platinum in a highly dispersed form, with supported platinum clusters being smaller than about 10 A. 53 refs., 9 figs., 9 tabs.

  13. Rejuvenation and reuse of spent fluid cracking catalysts

    SciTech Connect (OSTI)

    Elvin, F.J. (ChemCat Corp., New Orleans, LA (US))

    1988-01-01

    Refineries processing heavy, high metals feedstocks have reused other refineries' spent cracking catalyst for the past ten years without observing any yield debits. ChemCat has developed a process whereby a refinery can reuse its own spent catalyst without suffering any yield debits. The new DEMET process is being demonstrated in the world's first commercial fluid cracking catalyst rejuvenation and demetallization plant. The plant is located in Meraux, Louisiana and processes 20 tons/day of spent cracking catalyst for local refineries. The plant removes contaminant metals from zeolite catalysts, while simultaneously increasingly the zeolite and matrix surface areas. The demetallized catalyst has a higher activity and better selectivity than the undemetallized spent catalyst. The demetallized catalyst is also more hydrothermally stable than the spent catalyst. ChemCat's DEMET process enables refiners to eliminate the high cost of spent FCCU catalyst disposal and to significantly reduce their consumption and cost of fresh catalyst.

  14. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    SciTech Connect (OSTI)

    Manna, Kuntal [Ames Laboratory

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C?N/C?H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-iPr,Me2}){sub 2}}Zr(NMe{sub 2}){sub 2} ({S-2}Zr(NMe{sub 2}){sub 2}) displays highest activity and enantioselectivity. Interestingly, {S-2}Zr(NMe{sub 2}){sub 2} also desymmetrizes olefin moieties of achiral non-conjugated aminodienes and aminodiynes during cyclization. The cyclization of aminodienes catalyzed by {S-2}Zr(NMe{sub 2}){sub 2} affords diastereomeric mixture of cis and trans cylic amines with high diasteromeric ratios and excellent enantiomeric excesses. Similarly, the desymmetrization of alkyne moieties in {S-2}Zr(NMe{sub 2}){sub 2}-catalyzed cyclization of aminodiynes provides corresponding cyclic imines bearing quaternary stereocenters with enantiomeric excesses up to 93%. These stereoselective desymmetrization reactions are significantly affected by concentration of the substrate, temperature, and the presence of a noncyclizable primary amine. In addition, both the diastereomeric ratios and enantiomeric excesses of the products are markedly enhanced by N-deuteration of the substrates. Notably, the cationic zirconium-monoamide complex [{S-2}Zr(NMe{sub 2})][B(C{sub 6}F{sub 5}){sub 4}] obtained from neutral {S-2}Zr(NMe{sub 2}){sub 2} cyclizes primary aminopentenes providing pyrrolidines with S-configuration; whereas {S-2}Zr(NMe{sub 2}){sub 2} provides R-configured pyrrolidines. The yttrium complex {S-2}YCH{sub 2}SiMe{sub 3} also affords S-configured pyrrolidines by cyclization of aminopentenes, however the enantiomeric excesses of products are low. An alternative optically active yttrium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-tBu}){sub 2}}YCH{sub 2}SiMe{sub 3} ({S-3}YCH{sub 2}SiMe{sub 3}) is synthesized, which displays highly enantioselective in the cyclization of aminoalkenes at room temperature affording S-configured cyclic amines with enantiomeric excesses up to 96%. A noninsertive mechanism involving a six-membered transition state by a concerted C?N bond formation and N?H bond cleavage is proposed for {S-3}YCH{sub 2}SiMe{sub 3} system based on the kinetic, spectroscopic, and stereochemical features. In the end, a series of bis- and tris(oxazolinyl)borato iridium and rhodium complexes are synthesized with bis(oxazolinyl)phenylborane [PhB(Ox{sup Me2}){sub 2}]{sub n}, tris(oxazolinyl)borane [B(Ox{sup Me2}){sub 3}]n, and tris(4,4-dimethyl-2-oxazolinyl)phenylborate [To{sup M}]{sup ?}. All these new an

  15. Catalyst and method for aqueous phase reactions

    DOE Patents [OSTI]

    Elliott, Douglas C. (Richland, WA); Hart, Todd R. (Kennewick, WA)

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  16. An exploration of automotive platinum demand and its impacts on the platinum market

    E-Print Network [OSTI]

    Whitfield, Christopher George

    2009-01-01

    The platinum market is a material market of increasing interest, as platinum demand has grown faster than supply in recent years. As a result, the price of platinum has increased, causing end-user firms to experience ...

  17. Regeneration of Hydrotreating and FCC Catalysts

    SciTech Connect (OSTI)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare-earth exchanged Y zeolite in a silica-alumina matrix. X-ray fluorescence analyses showed that the rare earths used in preparing the catalysts were a mixture of lanthanum and cerium. Antimony found in the spent catalyst was added during operation of the FCC unit as a way to suppress the adverse effects of deposited nickel. The fresh HDS samples consisted of sulfided nickel and molybdenum on an alumina support. The spent catalyst showed nearly 10% vanadium on the catalyst and a modest increase in nickel and sulfur on the catalyst as a result of operations. Hydrocracking catalysts were not available for this study.

  18. Membrane catalyst layer for fuel cells

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  19. Method of forming supported doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  20. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  1. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  2. The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth

    E-Print Network [OSTI]

    Wirth, Christoph T.; Bayer, Bernhard C.; Gamalski, Andrew D.; Esconjauregui, Santiago; Weatherup, Robert S.; Ducati, Caterina; Baehtz, Carsten; Robertson, John; Hofmann, Stephan

    2012-11-28

    growth modes occur upon hydrocarbon exposure: For ?-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For ?-rich catalyst mixtures, Fe3C formation more...

  3. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts

    E-Print Network [OSTI]

    properties of carbon nitrides, they show unexpected catalytic activity for a variety of reactions, such as for the activation of benzene, trimerization reactions, and also the activation of carbon dioxide. Model calculationsGraphitic carbon nitride materials: variation of structure and morphology and their use as metal

  4. Deactivation of methanol synthesis catalysts

    SciTech Connect (OSTI)

    Roberts, G.W.; Brown, D.M.; Hsiung, T.H.; Lewnard, J.J. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1993-08-01

    A novel methanol synthesis process, the liquid-phase methanol (LPMEOH) process, has been developed and scaled up to a nominal 380 kg/h (10 ton/day) pilot plant. The process is based on a gas-sparged slurry reactor instead of a conventional, fixed-bed reactor. The use of slurry reactors, which are essentially gradientless, greatly facilitated the interpretation and quantification of catalyst deactivation phenomena. With a poison-free, CO-rich feedstream, the rate of deactivation of the Cu/ZnO catalyst increased rapidly with temperature. At constant temperature, in the absence of poisons, the decline with time in the rate constant for methanol synthesis correlated with the loss of BET surface area. Iron carbonyl, nickel carbonyl, and carbonyl sulfide are severe and highly specific poisons for methanol-synthesis catalyst. There was a linear relationship between the catalyst activity loss and the concentration of metal or sulfur on the catalyst.

  5. Process for coal liquefaction using electrodeposited catalyst

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA)

    1978-01-01

    A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

  6. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOE Patents [OSTI]

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  7. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect (OSTI)

    Kliewer, Christopher J.

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The {alpha}-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the {alpha},{beta}-unsaturated aldehydes acrolein, crotonaldehyde, and prenal were investigated over Pt(111) and Pt(100). The selectivity for the hydrogenation of the C=C bond was found to depend on the number of methyl groups added to the bond. The adsorption modes of the three aldehydes were determined. The hydrogenation of crotonaldehyde was found to be nearly structure insensitive as the TOF and selectivity were very close to the same over Pt(111) and Pt(100). SFG-VS indicated identical surface intermediates over the two crystal faces during crotonaldehyde hydrogenation.

  8. Stable catalyst layers for hydrogen permeable composite membranes

    DOE Patents [OSTI]

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  9. Integrated current collector and catalyst support

    DOE Patents [OSTI]

    Bregoli, Lawrence J. (Southwick, MA)

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  10. Integrated current collector and catalyst support

    DOE Patents [OSTI]

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  11. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meirer, F.; Kalirai, S.; Weker, J. Nelson; Liu, Y.; Andrews, J. C.; Weckhuysen, B. M.

    2015-04-14

    Metal accumulation at the catalyst particle surface plays a role in particle agglutination during fluid catalytic cracking.

  12. EIS Studies of Porous Oxygen Electrodes with Discrete I. Impedance of Oxide Catalyst Supports

    E-Print Network [OSTI]

    -cell and electrolyzer systems, where high utilization of noble metal catalysts at the anode and cathode of the cells

  13. Catalyst deactivation model for residual oil hydrodesulfurization

    SciTech Connect (OSTI)

    Takatsuka, T.; Higasino, S.; Hirohama, S. [Chiyoda Corporation, Yokohama (Japan)] [and others

    1995-12-31

    Hydrodesulfurization process plays a dominant role in the modern refineries to upgrade residual oil either by removing heterogeneous atoms or by hydrocracking the bottom to distillates products. The practical model is proposed to predict a catalyst life which is the most concern in the process. The catalyst is deactivated in the early stage of the operation by coke deposition on the catalyst active site. The ultimate catalyst life is determined by pore mouth plugging depending on its metal capacity. The phenomena are mathematically described by losses of catalyst surface area and effective diffusivity of feedstock molecules in catalyst pore. The model parameters were collected through the pilot plant tests with different types of catalysts and feedstocks.

  14. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    E-Print Network [OSTI]

    Coble, Inger M

    2008-01-01

    respectively. 7.2.2 CO Oxidation Catalytic reactions weresurface for CO oxidation under catalytic conditions for1 . 8.2.3 CO Oxidation Measurements Catalytic measurements

  15. Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin

  16. Platinum Supported on NbRuyOz as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells

    SciTech Connect (OSTI)

    Kotaro, S.; Konopka, D.A.; Li, M.; Artyushkova, K.; Marinkovic, N.; Adzic, R.; Ward, T.L.; Atanassov, P.

    2011-02-02

    Platinum supported on a mixed metal oxide, NbRu{sub y}O{sub z} (8Nb:1Ru), was evaluated as an electrocatalyst for the ethanol oxidation reaction (EOR) in 0.1 M HClO{sub 4} and 1 M KOH. The support was synthesized from a liquid precursor solution of metal chlorides that was aerosolized and thermally decomposed into a powder via the spray pyrolysis (SP) process. Two samples were of primary interest: 30%Pt deposited onto the support by dry impregnation and 60%Pt as part of the precursor solution that underwent in situ SP Pt dispersion. TEM, SEM, and XRD were used to confirm morphology and deposition of Pt. XPS and XAS studies confirmed elemental distribution and oxidation state of Pt catalyst. In situ IRRAS studies in 0.1 M HClO{sub 4} show that these electrocatalysts are capable of facilitating the complete oxidation pathway of EOR, involving scission of the C-C bond and CO oxidation.

  17. Platinum Supported on NbRuyOz as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells

    SciTech Connect (OSTI)

    D Konopka; M Li; K Artyushkova; N Marinkovic; K Sasaki; R Adzic; T Ward; P Atanassov

    2011-12-31

    Platinum supported on a mixed metal oxide, NbRu{sub y}O{sub z} (8Nb:1Ru), was evaluated as an electrocatalyst for the ethanol oxidation reaction (EOR) in 0.1 M HClO{sub 4} and 1 M KOH. The support was synthesized from a liquid precursor solution of metal chlorides that was aerosolized and thermally decomposed into a powder via the spray pyrolysis (SP) process. Two samples were of primary interest: 30%Pt deposited onto the support by dry impregnation and 60%Pt as part of the precursor solution that underwent in situ SP Pt dispersion. TEM, SEM, and XRD were used to confirm morphology and deposition of Pt. XPS and XAS studies confirmed elemental distribution and oxidation state of Pt catalyst. In situ IRRAS studies in 0.1 M HClO{sub 4} show that these electrocatalysts are capable of facilitating the complete oxidation pathway of EOR, involving scission of the C-C bond and CO oxidation.

  18. New hydroprocessing catalysts prepared from molecular complexes

    SciTech Connect (OSTI)

    Ho, T.C.

    1994-12-31

    Current commercial hydroprocessing catalysts are transition metal sulfides (TMS) based on Group 8 and 11 metals. They are prepared by dispersing MoO{sub 3} and a promoter metal oxide, either CoO or NiO, on {gamma}-Al{sub 2}O{sub 3} or SiO{sub 2}-modified Al{sub 2}O{sub 3}. This is followed by sulfiding with a sulfur-bearing stream such as H{sub 2}S at high temperatures. The thus formed MoS{sub 2} crystallites are the backbone of the working catalysts. A potentially fruitful approach to new catalysts would be to molecularly incorporate promoter metals into the structure of MoS{sub 2} edge planes. As a first step, it would seem reasonable to exploit the use of heterometallic metal sulfur complexes as hydroprocessing catalyst precursors. The authors have developed several families of new catalysts along this line. In this paper the authors restrict themselves to the metal amine thiomolybdate-derived catalysts. Specifically, they give an overview of the performance of the bulk (unsupported) FeMo sulfide prepared from MAT. This low-surface-area catalyst shows a high HDN-to-HDS volumetric activity ratio and is also active for HDA. While most of the results are taken from their previous publications, some new results are reported here.

  19. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  20. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enabling highly efficient NOx removal requirements of the future A low precious metal loading ammonia-slip catalyst was developed that is able to oxidize the ammonia that...

  1. Method of making chalcogen catalysts for polymer electrolyte fuel cells

    DOE Patents [OSTI]

    Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Harabin, CN)

    2010-12-14

    A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.

  2. Effect of modifier Pd metal on hydrocracking of polyaromatic compounds over Ni-loaded Y-type zeolite and its application as hydrocracking of polyaromatic compounds over Ni-loaded Y-type zeolite and its application as hydrodesulfurization catalysts

    SciTech Connect (OSTI)

    Wada, T.; Murata, S.; Nomura, M. [Osaka Univ. (Japan)

    1995-12-31

    We have been studying the hydrocracking of polyaromatic compounds over Ni-loaded zeolite catalysts (ZSM-5, mordenite, and Y-type) and found the fact that pore size of zeolite exerts an interesting effect on product distribution. In this study, we have conducted the hydrocracking of pyrene using Pd-modified Ni-loaded Y-type zeolite as catalyst. Addition of Pd-metal activated Ni-loaded Y-type zeolite at a great extent. 100% conversion of pyrene was attained under milder conditions like at 325{degrees}C for 1 h (H{sub 2} 70 kg/cm{sup 2}) while Ni-loaded Y-type zeolite can attain 100% conversion at 350{degrees}C for 1 h. Detailed analysis of product distribution suggested us to apply this catalyst for the hydrodesulfurization of dibenzothiophene. We have conducted hydrocracking of dibenzothiophene at 300{degrees}C for 1 h and found that almost all of dibenzothiophene was hydrocracked while both Ni-loaded Y-type zeolite and Pd-loaded Y-type zeolite show about 10-15% of starting materials remained. This result clearly indicates that modifier Pd-metal shows a kind of synergy for hydrodesulfurization of dibenzothiophene.

  3. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    SciTech Connect (OSTI)

    Chisholm, Malcolm H.

    2015-12-15

    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a ?-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexes for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.

  4. Improved catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  5. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  6. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish (Thornton, CO); Bai, Chuansheng (Baton Rouge, LA)

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  7. Catalyst deactivation in residue hydrocracking

    SciTech Connect (OSTI)

    Oballa, M.C.; Wong, C.; Krzywicki, A. [Novacor Research and Technology Corp., Calgary, Alberta (Canada)

    1994-12-31

    The existence of a computer-controlled bench scale hydrocracking units at the authors site has made cheaper the non-stop running of experiments for long periods of time. It was, therefore possible to show, at minimal costs, when three hydrocracking catalysts in service reach their maximum lifetime. Different parameters which are helpful for catalyst life and activity predictions were calculated, e.g., relative catalyst age and the effectiveness factor. Experimental results compared well with model, giving them the minimum and maximum catalyst lifetime, as well as the deactivation profile with regard to sulfur and metals removal. Reaction rate constants for demetallization and desulfurization were also determined. Six commercial catalysts were evaluated at short term runs and the three most active were used for long term runs. Out of three catalysts tested for deactivation at long term runs, it was possible to choose one whose useful life was higher than the others. All runs were carried out in a Robinson-Mahoney continuous flow stirred tank reactor, using 50/50 volumetric mixture of Cold Lake/Lloydminster atmospheric residue and NiMo/Al{sub 2}O{sub 3} catalyst.

  8. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  9. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOE Patents [OSTI]

    Singleton, Alan H. (Marshall Township, Allegheny County, PA); Oukaci, Rachid (Allison Park, PA); Goodwin, James G. (Cranberry Township, PA)

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  10. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    based Monolithic Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  11. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  12. Catalyst structure and method of fischer-tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  13. Catalyst structure and method of Fischer-Tropsch synthesis

    DOE Patents [OSTI]

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee Y.; Gao, Yufei; Baker, Eddie G.

    2004-06-15

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  14. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  15. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D. (Charleston, WV)

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  16. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  17. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  18. Catalyst suppliers consolidate further, offer more catalysts

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1995-10-02

    The list of suppliers of catalysts to the petroleum refining industry has decreased by five since Oil and Gas Journal`s survey of refining catalysts and catalytic additives was last published. Despite the consolidation, the list of catalyst designations has grown to about 950 in this latest survey, compared to 820 listed in 1993. The table divides the catalysts by use and gives data on their primary differentiating characteristics, feedstock, products, form, bulk density,catalyst support, active agents, availability, and manufactures.

  19. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  20. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W. (Murrysville, PA); Bloom, Ira D. (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Wilkenhoener, Rolf (Oakbrook Terrace, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  1. Novel Intermetallic Catalysts to Enhance PEM Membrane Durability

    SciTech Connect (OSTI)

    Francis J. DiSalvo

    2009-01-06

    The research examined possible sources of degradation of platinum based anode catalysts under long term use. Scientists at the United Technologies Research Center had shown that the anode as well as the cathode catalysts degrade in hydrogen fuel cells. This goal of this research was to see if mechanisms of anode degradation could be understood using forefront electrochemical techniques in an aqueous system. We found that this method is limited by the very low levels of impurities (perhaps less than a part per trillion) in the electrolyte. This limitation comes from the relatively small catalyst surface area (a few sq cm or less) compared to the electrolyte volume of 10 to 25 ml. In real fuel cells this ratio is completelyreversed: high catalyst surface area and low electrolyte violume, making the system much less sensitive to impurities in the electrolyte. We conclude that degradation mechanisms should be studied in real fuel cell systems, rather than in ex-situ, large electrolyte volume experiments.

  2. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Energy Savers [EERE]

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  3. Science Magazine Highlight: Moving Towards Near Zero Platinum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Science Magazine Highlight: Moving Towards Near Zero Platinum Fuel Cells Presentation slides and speaker...

  4. Hydroprocessing of solvent-refined coal: catalyst-screening results

    SciTech Connect (OSTI)

    Stiegel, G.J.; Tischer, R.E.; Polinski, L.M.

    1982-03-01

    This report presents the results of screening four catalysts for hydroprocessing a 50 wt% mixture of SRC-I in a prehydrogenated creosote oil using a continuous flow unit. All catalysts employed were nickel-molybdates with varying properties. Reaction conditions were 2000 psi, 8 SCFH of hydrogen, volume hourly space velocity of 0.6 to 1.0 cc of SRC-I/hr/cc of catalyst, and 48 hours at 750/sup 0/F followed by 72 hours at 780/sup 0/F. The results indicate that the Shell 324 catalyst is best for hydrogenation of the feedstock but only marginally better than CB 81-44 for denitrogenation. The CB 81-44 catalyst may be slightly better than Shell 324 for the conversion of the +850/sup 0/F fraction of the feedstock. Desulfurization was uniformly high for all catalysts. Catalysts with a bimodal pore size distribution (i.e., SMR7-6137(1)) appear to be better for denitrogenation than unimodal catalysts (i.e., SMR7-6137(4)) containing the same metals loading. Unimodal catalysts (i.e., Shell 324) with higher metals loadings are comparable to bimodal catalysts (i.e., CB 81-44) containing less metals. The results indicate that pore size distribution and metals loading are important parameters for high activity. Catalysts with a unimodal pore volume distribution are capable of being restored to their original state, while bimodal ones experience a loss in surface area and pore volume and an increase in pellet density. This is attributed to the more efficient use of the interior surface area of the catalyst, which results in higher accumulation of coke and metals. Since coke can be removed via controlled oxidation, the irreversible loss is due to the higher concentrations of metals in the catalyst.

  5. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Industrial Catalysts Catalysts-substances that speed up the rates of chemical reactions without themselves being chemically changed-are used to initiate...

  6. Process for alkane group dehydrogenation with organometallic catalyst

    DOE Patents [OSTI]

    Kaska, W.C.; Jensen, C.M.

    1998-07-14

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  7. Process for alkane group dehydrogenation with organometallic catalyst

    DOE Patents [OSTI]

    Kaska, William C. (Goleta, CA); Jensen, Craig M. (Kailua, HI)

    1998-01-01

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  8. Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Lu, Zheng

    2015-06-02

    The disclosure provides methods for the use of open metal frameworks to catalyze coupling reactions.

  9. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  10. Platinum(II) complexes as spectroscopic probes for biomolecules

    SciTech Connect (OSTI)

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  11. PLATINUM--GROUP METALS--1998 58.1 PLATINUM-GROUP METALS

    E-Print Network [OSTI]

    . This act required a 40% reduction in hydrocarbon and a 60% reduction in nitrogen oxides (NOx) emissions

  12. Sub-Lithographic Patterning Technology for Nanowire Model Catalysts and DNA Label-Free Hybridization Detection

    E-Print Network [OSTI]

    Bokor, Jeffrey

    Sub-Lithographic Patterning Technology for Nanowire Model Catalysts and DNA Label were used as a mold in nanoimprint lithography and lift-off patterning of sub-30nm platinum nanowires a label-free tool for DNA hybridization detection based on measuring capacitance changes in the gap

  13. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2010 Progress Report

    SciTech Connect (OSTI)

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; White, J. F.; Rummel, Becky L.; Stevens, Don J.

    2010-10-01

    Pacific Northwest National Laboratory has been conducting research for the U.S. Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas. In recent years this research has primarily involved the further development of a silica-supported catalyst containing rhodium and manganese that was selected from earlier catalyst screening tests. A major effort during 2010 was to examine alternative catalyst supports to determine whether other supports, besides the Davisil 645 silica, would improve performance. Optimization of the Davisil 645 silica-supported catalyst also was continued with respect to candidate promoters iridium, platinum, and gallium, and examination of selected catalyst preparation and activation alternatives for the baseline RhMn/SiO2 catalyst.

  14. Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys Tuesday, July 31, 2012 The ability to design and control the activities of...

  15. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  16. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  17. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  18. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  19. Process for magnetic beneficiating petroleum cracking catalyst

    DOE Patents [OSTI]

    Doctor, Richard D. (Lisle, IL)

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  20. Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source

    E-Print Network [OSTI]

    of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover J. Chem. Phys. 131

  1. Hydrocracking catalyst of improved activity

    SciTech Connect (OSTI)

    Clark, D.E.

    1987-08-25

    A process is described for refining a hydrocarbon feedstock containing organonitrogen components, organosulfur components or a mixture thereof comprising: (a) contacting the feedstock with a hydrogen-containing gas in a hydrotreating zone under hydrotreating conditions in the presence of a hydrotreating catalyst comprising a Group VIB metal component and a Group VIII metal component such that a substantial proportion of the organonitrogen components, organosulfur components or mixture thereof is converted to ammonia, hydrogen sulfide or a mixture thereof; (b) contacting substantially all of the effluent from the hydrotreating zone with molecular hydrogen in a first hydrocracking zone in the presence of a first hydrocracking catalyst comprising a zeolite and a hydrogenation component to produce a hydrocracking product of substantially lower boiling point; (c) separating the hydrocracking product into a higher boiling fraction and a lower boiling fraction; (d) contacting the higher boiling fraction with molecular hydrogen in a second hydrocracking zone under hydrocracking conditions in the presence of a second hydrocracking catalyst to convert the higher boiling fraction into lower boiling products, wherein the second hydrocracking catalyst comprises: (1) a crystalline aluminosilicate Y zeolite having a silica-to-alumina mode ratio of about 6.2 or above, the zeolite having been ion-exchanged with rare earth-containing cations and Group VIII noble metal-containing cations; (2) a porous, inorganic refractory oxide intimately mixed with the zeolite; and (3) between about 4.5 weight percent and about 6.0 weight percent water based on the total weight of the second hydrocracking catalyst.

  2. Multi-stage catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  3. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946)

    1990-01-01

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  4. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  5. Synthesis and Understanding of Novel Catalysts

    SciTech Connect (OSTI)

    Stair, Peter C. [Northwestern University] [Northwestern University

    2013-07-09

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supported metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.

  6. Improved hydrous oxide ion-exchange compound catalysts

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  7. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; et al

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (more »The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.« less

  8. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  9. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  10. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  11. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  12. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  13. Investigation of mixed metal sorbent/catalysts for the simultaneous removal of sulfur and nitrogen oxides. Semiannual report, Apr 1, 1998--Oct 31, 1998

    SciTech Connect (OSTI)

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    1998-10-31

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. The work done at PETC and the DOE-funded investigation of the investigators on the sulfation and regeneration of alumina-supported cerium oxide sorbents have shown that they can perform well at relatively high temperatures (823--900 K) as regenerable desulfurization sorbents. Survey of the recent literature shows that addition of copper oxide to ceria lowers the sulfation temperature of ceria down to 773 K, sulfated ceria-based sorbents can function as selective SCR catalysts even at elevated temperatures, SO{sub 2} can be directly reduced to sulfur by CO on CuO-ceria catalysts, and ceria-based catalysts may have a potential for selective catalytic reduction of NO{sub x} by methane. These observations indicate a possibility of developing a ceria-based sorbent/catalyst which can remove both SO{sub 2} and NO{sub x} from flue gases within a relatively wide temperature window, produce significant amounts of elemental sulfur during regeneration, and use methane for the selective catalytic reduction of NO{sub x}. The objective of this research is to conduct kinetic and parametric studies of the selective catalytic reduction of NO{sub x} with NH{sub 3} and CH{sub 4} over alumina-supported cerium oxide and copper oxide-cerium oxide sorbent/catalysts; investigate SO{sub 2} removal at lower temperatures by supported copper oxide-cerium oxide sorbents; and investigate the possibility of elemental sulfur production during regeneration with CO or with CH{sub 4} air mixtures. The sorbents consisting of cerium oxide and copper oxide impregnated on alumina have been prepared and characterized. Their sulfation performance has been investigated in a TGA setup, studying mainly the effects of temperature and sorbent composition. The results of the sulfation experiments have been evaluated and presented in this report. A study to model the sulfation selectivity of the two constituents of the sorbents is also underway.

  14. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore »support effect is the ability of ceria to stabilize oxidized Ni²? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  15. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO? catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carrasco, Javier [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain); CIC Energigune, Minana, Alava (Spain); Rodriguez, Jose A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Lopez-Duran, David [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain); CIC Energigune, Minana, Alava (Spain); Liu, Zongyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Duchon, Tomas [Charles Univ., Praha (Czech Republic); Evans, Jaime [Univ. Central de Venezuela, Caracas (Venezuela); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crumlin, Ethan J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Matolin, Vladimir [Charles Univ., Praha (Czech Republic); Ganduglia-Pirovano, M. Veronica [Inst. de Catalisis y Petroleoquimica, CSIC, Madrid (Spain)

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO?(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO?(111) compared with pyramidal Ni? particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²? species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO? has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  16. Increasing the hydrogenation activity of commercial catalysts for selective hydrocracking

    SciTech Connect (OSTI)

    Khashagul`gova, N.S.; Freiman, L.L.; Zelentsov, Yu.N. [and others

    1994-07-01

    The catalysts generally used in hydrodewaxing or selective hydrocracking of n-paraffins are zeolites with the pentasil structure: TsVK, TsVM, TsVN, and Ultrasil. For use in the production of high-quality transformer oils from paraffinic feedstocks, these catalysts have not only a high cracking activity but also an adequate hydrogenating activity. Catalysts containing a nickel-molybdenum complex (or nickel molybdate synthesized by a specific method) are higher in hydrogenating activity in comparison with catalysts in which the metals are introduced by coextrusion or impregnation. Precipitation of a nickel-molybdenum complex on a solid support (aluminosilicate or zeolite) tends to increase its hydrogenating activity, so that the content of the hydrogenating metals in the catalyst can be reduced. This report describes studies on catalysts based on TsVM and TsVN high-silica zeolites.

  17. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  18. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOE Patents [OSTI]

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  19. Platinum-aluminide coating enhances durability

    SciTech Connect (OSTI)

    Punola, D.; Sikkenga, D.; Sutton, M. [Howmet Corp., Whitehall, MI (United States)

    1995-12-01

    Severe demands on coatings for gas turbine engines that must operate at significantly higher temperatures than previously required have led to the development of an advanced two-step platinum-modified-aluminide diffusion coating. The conventional system consists of platinum electroplating followed by a traditional pack cementation aluminizing process. This coating greatly extends the durability of hot-section components in environments characterized by high-temperature oxidation and corrosion. Conventionally deposited platinum aluminides, such as Howmet`s LDC2E, demonstrated that a change in material could deliver higher levels of durability. However, the next challenge was to develop a more controllable, faster, cleaner process with improved yield and quality levels. The challenge was met by chemical vapor deposition (CVD). This method is now used to apply aluminum to the part after platinum electroplating. It replaces the traditional pack cementation or above-the-pack techniques, and bypasses all the shortcomings associated with those processes.

  20. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material presents major challenges for the future wide-scale use of platinum in fuel cells. Berkeley Lab research suggests that one possible way to meet these challenges is to...

  1. Less platinum means lower prices for autos

    Office of Energy Efficiency and Renewable Energy (EERE)

    How technology developed by researchers at 3M is reducing the amount of platinum necessary for a fuel cell system, helping to make the technology more practical for consumer vehicles.

  2. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; Senanayake, Sanjaya D.

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  3. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A. [Brookhaven National Lab. (BNL), Upton, NY (United States); State Univ. of New York Stony Brook, Stony Brook, NY (United States); Liu, Zongyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); State Univ. of New York Stony Brook, Stony Brook, NY (United States); Xu, Wenqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Yao, Siyu [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson-Peck, Aaron C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhao, Fuzhen [Brookhaven National Lab. (BNL), Upton, NY (United States); Michorczyk, Piotr [Inst. de Catalisis y Petroleoquimica, Madrid (Spain); Kubacka, Anna [Inst. de Catalisis y Petroleoquimica, Madrid (Spain); Stach, Eric A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fernandez-Garica, Marcos [State Univ. of New York Stony Brook, Stony Brook, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  4. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernández-García, Marcos; Senanayake, Sanjaya D.; et al

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (more »under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.« less

  5. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  6. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E. (Pasadena, CA); Herzog, Timothy A. (Pasadena, CA)

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  7. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01

    metal catalysts on CO 2 gasification reactivity of biomassfeasibility of biomass gasification for power generation,et al. , Biomass gasification in a circulating fluidized

  8. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    SciTech Connect (OSTI)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and wealth of literature on the formation of mesoporous silica materials motivated investigations of nanocomposite silica catalysts. High surface area silicas are synthesized via sol-gel methods, and the addition of metal-salts lead to the formation of stable nanocomposite Ni- and Fe- silicates. The results of these investigations have increased the fundamental understanding and improved the applicability of nanocatalysts for clean energy applications.

  9. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. An effective FT catalyst consisting of ALD-deposited Co and Pt on a silica support has been prepared and demonstrated. This catalyst was more effective than a similar catalyst deposited upon a support of ALD-deposited Al{sub 2}O{sub 3} on silica. This result implies that the deposition of Al{sub 2}O{sub 3} to form a support is not as effective as desired. The addition of Pt as a Co-containing catalyst promoter has been demonstrated; it appears to primarily affect the catalyst pre-conditioning step. Co on Al{sub 2}O{sub 3} catalyst prepared by the Center for Applied Energy Research (CAER) is more effective than Argonne-prepared ALD-deposited Co on ALD-deposited Al{sub 2}O{sub 3} catalyst. The FT activity of ALD-coated Co catalyst on Al{sub 2}O{sub 3} is about linear with Co level from about 9 to 25%. A cooperative research effort was undertaken to test the deposition of platinum on Co FT catalysts; this Pt influences the effectiveness of catalyst conditioning and its continuing activity. In summary, the ALD Pt at a low concentration (0.1 wt %) was as effective as that of the wet chemical deposition technique of CAER (specifically incipient deposition on a Co catalyst that had been prepared and calcined before the Pt deposition.) The ALD technique appeared to be nominally better than the incipient wetness technique that involved co-deposition of

  10. Engineering for Sustainability http://engineering.tufts.edu/ Nanoscale Gold Catalysts for the Upgrade of Hydrogen used in Fuel Cells

    E-Print Network [OSTI]

    Tufts University

    for the Upgrade of Hydrogen used in Fuel Cells What is the problem? Fuel processing by steam reforming or partial to protect the Pt- based electrocatalyst on the fuel cell anode. New catalysts must be developed by the current generation fuel cells and their operating conditions. Why is it an important problem? The platinum

  11. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning a l a b s t r a c t STXM is used to analyze polymer membrane fuel cell cathodes. Carbon corrosion Keywords: Polymer electrolyte membrane fuel cells X-ray microscopy Ionomer Carbon corrosion Platinum

  12. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    DOE Patents [OSTI]

    Afanasiev, Vladimir Vasilievich (Moscow, RU); Zefirov, Nikolai Serafimovich (Moscow, RU); Zalepugin, Dmitry Yurievich (Moscow, RU); Polyakov, Victor Stanislavovich (Moscow, RU); Tilkunova,Nataliya Alexandrovna (Moscow, RU); Tomilova, Larisa Godvigovna (Moscow, RU)

    2009-09-08

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  13. Sol immobilization technique: a delicate balance between activity, selectivity and stability for gold catalyst

    SciTech Connect (OSTI)

    Villa, Alberto [Universita di Milano, Italy] [Universita di Milano, Italy; Wang, Di [Fritz Haber Institute of the Max Planck Society, Berlin, Germany] [Fritz Haber Institute of the Max Planck Society, Berlin, Germany; Veith, Gabriel M [ORNL] [ORNL; Prati, Laura [Universita di Milano, Italy] [Universita di Milano, Italy

    2013-01-01

    Sol immobilization is a widely used method to prepare gold catalysts. The presence of the protective layer can have a significant influence on catalyst properties by mediating metal-support and reactantmetal interactions. This paper details the effect of a polyvinyl alcohol (PVA) protecting groups on the activity of a supported gold catalysts as well as its selectivity towards glycerol oxidation.

  14. Development of the 2011MY Ford Super Duty Catalyst System

    Broader source: Energy.gov [DOE]

    Efforts leading to medium-duty truck aftertreatment system development, issues addressed, including catalyst layout to maximize NOx conversion and balance of precious metals for oxidation function during cold-start and filter regeneration

  15. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    #12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer;#12;Vent 1 Vent 2 Product outHydrocarbon in Steam in Catalyst in light Warning Computer controller Tank

  16. Hydrocarbon in Catalyst in

    E-Print Network [OSTI]

    Ladkin, Peter B.

    Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure #12;#12;#12;#12;#12;#12;#12;#12;Hydrocarbon in Steam in Catalyst in Vent 1 Vent 2 Product out Tank Pressure controller Computer operator

  17. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  18. Synthetic strategies for the design of platinum anticancer drug candidates

    E-Print Network [OSTI]

    Wilson, Justin Jeff

    2013-01-01

    Chapter 1. The Synthetic Chemistry of Platinum Anticancer Agents Since the inception of cisplatin as a clinically approved anticancer agent, a large number of platinum compounds have been synthesized with the aim of finding ...

  19. Damage threshold of platinum coating used for optics for self...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Damage threshold of platinum coating used for optics for self-seeding of soft x-ray free electron laser Title: Damage threshold of platinum coating used for...

  20. Developments in the chemistry and nanodelivery of platinum anticancer agents

    E-Print Network [OSTI]

    Johnstone, Timothy Charles

    2014-01-01

    Approximately half of all patients receiving cancer chemotherapy are treated with a platinum-containing drug. Despite this intense clinical use, only three platinum complexes, cisplatin, carboplatin, and oxaliplatin, are ...

  1. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  2. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect (OSTI)

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  3. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  4. Multifunctional Catalysts for Singlewall Carbon Nanotube

    E-Print Network [OSTI]

    Guo, Ting

    because the two metals in the bi- MNPs can enhance certain functions by playing complementary catalytic.1,2 For example, bi-MNPs are preferred heterogeneous catalysts in petroleum reforming processes.3 Bi, cleanness, and lengths. Previous studies on bi-MNPs have revealed that their superior catalytic abilities

  5. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect (OSTI)

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  6. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  7. Origin of fast electrons in catalytic hydrogen oxidation over platinum

    E-Print Network [OSTI]

    Maximoff, Sergey N

    2014-01-01

    Adsorption of small molecules and chemical reactions at metal surfaces always excite low energy electron-hole pairs since the electron-hole pair excitations are gapless. In an example catalytic process, $\\mathrm{H_2}$ oxidation by $\\mathrm{O_2}$ into $\\mathrm{H_2O}$ over a platinum surface $\\mathrm{Pt(111)}$, this report explains that a different mechanism must also excite a non-equilibrium population of fast electrons, which arise as charged surface intermediates develop and then discharge during rapid electron transfer events. The empirical evidence and quantum chemistry calculations further reveal that the transition states in the $\\mathrm{H_2}$ oxidation are the lowest threshold configurations for changing the charge of the negatively charged surface intermediates as in, e.g., $``\\mathrm{O^-+H^-}"\\rightleftarrows [``\\mathrm{O^-+H+e}"]^{\

  8. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum Nanoclusters Out-PerformPlatinum

  9. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum NanoclustersPlatinum Nanoclusters

  10. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum NanoclustersPlatinum

  11. Surface Oxidation and Dissolution of Metal Nanocatalysts in Acid Medium 

    E-Print Network [OSTI]

    Callejas-Tovar, Juan

    2012-10-19

    , Burke and Ernzerhof PEMFC Proton exchange membrane fuel cell RDF Radial distribution function SPC/E Single point charge model for water STM Scanning tunneling microscope VASP Vienna ab-initio simulation package XPS X-ray photoelectron spectroscopy... of material that is able of maximizing the catalytic activity and stability. Pt-based alloy catalysts reduce the required amount of platinum and some of them have shown enhanced ORR activity compared to pure Pt catalysts, specifically the Pt3Co alloy 2...

  12. Effect of Fuel Cell System Contaminants on the Pt Catalyst

    SciTech Connect (OSTI)

    Wang, H.; Christ, J.; Macomber, C. S.; O'Neill, K.; Neyerlin, K. C.; O'Leary, K. A.; Reid, R.; Lakshmanan, B.; Das, M.; Ohashi, M.; Van Zee, J. W.; Dinh, H. N.

    2012-01-01

    The cost of the balance of plant (BOP) fuel cell system has increased in importance with recent decreases in fuel cell stack cost. In order to lower the cost of the BOP system, low cost but relatively clean components must be used. Selection of these materials requires an understanding of potential materials and the contaminants that evolve from them, which have been shown to affect the performance and durability of fuel cells. The present work evaluates the influence of leachable constituents from prospective materials and model compounds on the electrochemical performance of a platinum catalyst.

  13. New iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1988-03-31

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  14. Iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY)

    1990-01-01

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a cabon monoxide containing gas to a product which could substitute for high density polyethylene.

  15. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char

    E-Print Network [OSTI]

    Lam, Su Shiung; Liew, Rock Keey; Cheng, Chin Kui; Chase, Howard A.

    2015-04-09

    Microwave pyrolysis was performed on waste engine oil pre-mixed with different amounts of metallic-char catalyst produced previously from a similar microwave pyrolysis process. The metallic-char catalyst was first prepared by pretreatment...

  16. Scanning tunneling microscopic studies of SiO2 thin film supported metal nano-clusters 

    E-Print Network [OSTI]

    Min, Byoung Koun

    2005-11-01

    This dissertation is focused on understanding heterogeneous metal catalysts supported on oxides using a model catalyst system of SiO2 thin film supported metal nano-clusters. The primary technique applied to this study is scanning tunneling...

  17. Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells

    SciTech Connect (OSTI)

    Papandrew, Alexander B; Chisholm, Calum R; Zecevic, strahinja; Veith, Gabriel M; Zawodzinski, Thomas A

    2013-01-01

    The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

  18. The Dynamics of Platinum Precipitation in an Ion Exchange Membrane

    E-Print Network [OSTI]

    Burlatsky, S F; Atrazhev, V V; Dmitriev, D V; Kuzminyh, N Y; Erikhman, N S

    2013-01-01

    Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper...

  19. TRANSITION METAL ACTIVATION AND FUNCTIONALIZATION OF CARBON-HYDROGEN BONDS

    E-Print Network [OSTI]

    Jones, William D.

    . The success includes not only several new nickel, palladium, and platinum based metal systems of the type [M vs. dissociation vs. migration down the alkyl chain. By using deuterium labeling, we have been able

  20. Catalysts for lean burn engine exhaust abatement

    DOE Patents [OSTI]

    Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  1. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1995-02-01

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  2. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOE Patents [OSTI]

    Balmer-Millar, Mari Lou (Chillicothe, IL); Park, Paul W. (Peoria, IL); Panov, Alexander G. (Peoria, IL)

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  3. Molecularly engineering homogenous catalysts 

    E-Print Network [OSTI]

    Hughes, Reagan Rebekah

    2013-02-22

    quickly. To attempt to 1G overcome this problem, Bergbreiter's group began work on synthesis of palladacycles in an attempt to find a more robust catalyst. The group was spurred to do this by the success of Denmark using chiral bis (oxazoline) palladium... useful in a Heck-type vinylation of aryl halides. As Bergbreiter and coworkers discovered, new tridentate SCS-type palladium (II) complexes are effective catalysts for Heck reactions between aryl iodides and alkene acceptors. The catalyst...

  4. Catalyst for producing lower alcohols

    DOE Patents [OSTI]

    Rathke, Jerome W. (Bolingbrook, IL); Klingler, Robert J. (Woodridge, IL); Heiberger, John J. (Glen Ellyn, IL)

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  5. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    SciTech Connect (OSTI)

    Adeyinka Adeyiga

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  6. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1991-02-12

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  7. Homogeneous catalyst formulations for methanol production

    DOE Patents [OSTI]

    Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

    1990-01-01

    There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

  8. Method for dispersing catalyst onto particulate material

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  9. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  10. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  11. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  12. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  13. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect (OSTI)

    Venkatesh, Koppampatti R. (Pittsburgh, PA); Hu, Jianli (Cranbury, NJ); Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA)

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  14. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect (OSTI)

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  15. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  16. Method of making maximally dispersed heterogeneous catalysts

    DOE Patents [OSTI]

    Jennison, Dwight R. (Albuquerque, NM)

    2005-11-15

    A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface. Thus the negatively-charged species serve as anchors for the metal. In the second method, a chemical reaction that occurs when most metals are deposited on a fully hydroxylated oxide surface is used to create cationic metal species that bind strongly both to the substrate and to metallic metal atoms. These are incorporated into the top layer of the substrate and bind strongly both to the substrate and to metallic metal atoms. In this case, these oxidized metal atoms serve as the anchors. Here, as in the previous method, nanoislands of catalytic metal can be achieved to increase catalytic activity, or monolayers or bilayers of reactive metal can also be made.

  17. Chemistry of Cobalt-Platinum Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the gas-solid interface. Depending on the system, surface oxidation can either lead to an active or inactive phase of the catalyst. It is relevant to investigate the...

  18. Catalyst for selective NO.sub.x reduction using hydrocarbons

    DOE Patents [OSTI]

    Marshall, Christopher L. (Naperville, IL); Neylon, Michael K. (Naperville, IL)

    2007-05-22

    A two phase catalyst is disclosed with one or more transition metals such as Cu, Co, Fe, Ag and Mo supported on a molecular sieve having a pore size not greater than 8 .ANG. along with a stabilizing oxide of one or more of the oxides of Zr, Mo, V, Nb or the rare earths coating the molecular sieve. A method of preparing the two phase catalyst and using same to remediate NO.sub.x in combustion gases is also described.

  19. Energy Department's New Laboratory at NREL Earns LEED Platinum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Golden, Colorado has received a LEED (Leadership in Energy and Environmental Design) Platinum designation for new construction by the U.S. Green Building Council. |...

  20. Novel Platinum/Chromium Alloy for the Manufacture of Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Return to Search Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents National Energy Technology Laboratory Success Story...

  1. A Heart of Gold? Try Platinum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    collaboration with researchers at Boston Scientific Corporation. The alloy is the first stainless steel formulation for stents with a significant concentration of platinum,...

  2. The Use of Catalysts in Near-Critical Water Processing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2005-06-26

    The use of heterogeneous catalysts in near-critical water processing provides many challenges of material stability in addition to the normal questions of chemical activity. Conventional catalyst materials developed in traditional organic chemistry or petroleum chemistry applications provide a source of information of materials with the required activities but often without the required stability when used in hot liquid water. The importance of the use of catalysts in near-critical water processing plays a particularly crucial role for the development of renewable fuels and chemicals based on biomass feedstocks. Stability issues include both those related to the catalytic metal and also to the catalyst support material. In fact, the stability of the support is the most likely concern when using conventional catalyst formulations in near-critical water processing. Processing test results are used to show important design parameters for catalyst formulations for use in wet biomass gasification in high-pressure water and in catalytic hydrogenations in water for production of value-added chemical products from biomass in the biorefinery concept. Analytical methods including powder x-ray diffraction for crystallite size and composition determination, surface area and porosity measurements, and elemental analysis have all been used to quantify differences in catalyst materials before and after use. By these methods both the chemical and physical stability of heterogeneous catalysts can be verified.

  3. Technology development for cobalt F-T catalysts. Topical report No.2, Comparison of patented F-T cobalt catalysts

    SciTech Connect (OSTI)

    Oukaci, R.; Marcelin, G.; Goodwin, J.G. Jr.

    1995-01-17

    Based on the information provided in patents assigned to Gulf, Shell, Exxon, and Statoil, a series of catalysts has been prepared consisting of 12--20 wt. % cobalt, a second metal promoter (Ru or Re), and an oxide promoter such as lanthana, zirconia, or alkali oxide, the support being alumina, silica, or titania. All catalysts have been extensively characterized by different methods. The catalysts have been evaluated in terms of their activity, selectivity both in a fixed bed reactor and in a slurry bubble column reactor, and the results correlated with their physico-chemical properties.

  4. THE OXIDIZING BEHAVIOR OF SOME PLATINUM METAL FLUORIDES

    E-Print Network [OSTI]

    Graham, Lionell

    2011-01-01

    XePd 2F 10 ) . . . (d) Pyrolysis of XeF2·2PdF4 with the·PtF 5 . (b) (c) XeF 2 ·PtF 5 Pyrolysis of XeF ·PtF and theTables Figures . References Pyrolysis of XeF2·PdF4 and the

  5. Sandia Energy - ECIS and Compass Metals: Platinum Nanostructures for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNot ChemistryEC HomeEnhanced

  6. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  7. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  8. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  9. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Hydrocracking catalysts and processes

    SciTech Connect (OSTI)

    Dolbear, G.E. [G.E. Dolbear and Associates, Diamond Bar, CA (United States)

    1995-12-31

    Hydrocracking processes convert aromatic gas oils into high quality gasoline, diesel, and turbine stocks. They operate at high hydrogen pressures, typically greater than 1500 psig. Operating temperatures range from 600-700{degrees}F (315-382{degrees}C). Commercial catalysts vary in activity and selectivity, allowing process designers to emphasize middle distillates, naphtha, or both. Catalysts are quite stable in use, with two year unit run lengths typical. A pretreatment step to remove nitrogen compounds is usually part of the same process unit. These HDN units operate integrally with the hydrocracking. The hydrogenation reactions are strongly exothermic, while the cracking is roughly thermal neutral. This combination can lead to temperature runaways. To avoid this, cold hydrogen is injected at several points in hydrocracking reactors. The mechanics of mixing this hydrogen with the oil and redistributing the mixture over the catalyst bed are very important in controlling process operation and ensuring long catalyst life.

  11. Haloporphyrins and their preparation and use as catalysts

    DOE Patents [OSTI]

    Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

    1997-01-01

    The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.

  12. Haloporphyrins and their preparation and use as catalysts

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1997-09-02

    The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.

  13. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU)

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  14. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Treatment Catalyst Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Poster presented at the 16th Directions in...

  15. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission...

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most...

  17. Energy Department Announces Topics and New Approaches for Grants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Systems Novel Membranes and Non-Platinum Group Metal Catalysts for Direct Methanol Fuel Cells. The SBIRSTTR application process starts with a Letter of Intent, which...

  18. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOE Patents [OSTI]

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  19. Superconductivity observed in platinum-silicon interface

    SciTech Connect (OSTI)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ?0.6?K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ?2.5?eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a???7?nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  20. Chemistry of Cobalt-Platinum Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattanChemistry of Cobalt-Platinum

  1. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUpSmallHydrocarbonPlasticsPlatinum

  2. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum Nanoclusters Out-Perform Single

  3. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum Nanoclusters Out-Perform

  4. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum Nanoclusters

  5. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasma technology forPlatinum

  6. Platinum Nanoclusters Out-Perform Single Crystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasma technologyPlatinum

  7. Advanced Metal-Oxide based SCR Catalysts

    Broader source: Energy.gov [DOE]

    SCR with ammonia as reductant is an effective strategy being utilized to reduce NOx emissions to meet regulated levels.

  8. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland View school Highland ViewSeptemberHydrogen

  9. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOE Patents [OSTI]

    Kinkade, N.E.

    1992-04-07

    A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  10. Single-walled carbon nanotube growth from ion implanted Fe catalyst Yongho Choi

    E-Print Network [OSTI]

    Ural, Ant

    the growth of carbon nanotubes. Typically, transition metal nanoparticles, such as nickel Ni , iron FeSingle-walled carbon nanotube growth from ion implanted Fe catalyst Yongho Choi Department-walled carbon nanotubes can be grown by chemical vapor deposition from ion implanted iron catalyst

  11. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect (OSTI)

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  12. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect (OSTI)

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  13. Catalysis Without Precious Metals

    SciTech Connect (OSTI)

    Bullock, R. Morris

    2010-11-01

    Written for chemists in industry and academia, this ready reference and handbook summarizes recent progress in the development of new catalysts that do not require precious metals. The research thus presented points the way to how new catalysts may ultimately supplant the use of precious metals in some types of reactions, while highlighting the remaining challenges. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  14. Supported organoiridium catalysts for alkane dehydrogenation

    DOE Patents [OSTI]

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  15. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect (OSTI)

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  16. Reforming using erionite catalysts

    SciTech Connect (OSTI)

    Liers, J.; Meusinger, J.; Moesch, A. (Univ. of Leipzig (Germany)); Reschetilowski, W. (Karl Winnacker Inst. of DECHEMA, Frankfurt (Germany))

    1993-08-01

    The advantage of reforming on erionite catalysts is a product with high octane numbers and low amounts of aromatics. This advantage seems to be slight at reaction pressures lower than 25 bar. But it is possible to compensate for the influence of pressure by varying the erionite content within the catalyst and the reaction temperature. When reforming on Pt/Al[sub 2]O[sub 3] catalysts, the following reactions take place: dehydrocyclization of paraffins to naphthenes, dehydrogenation of naphthenes to aromatics, isomerication of normal paraffins remains in the product, lowering its octane number. By using a Ni/H-erionite catalyst, the octane rating can be increased by 3 to 7 numbers through selective hydrocracking of n-alkanes in the reformate. Erionite catalysts favor shape-selective hydrocracking of normal paraffins and the formation of cyclopentane derivatives lowering the content of aromatics during reforming reactions. Reducing the reaction pressure decreases hydrocracking activity and cyclopentane formation. These results can be interpreted in terms of thermodynamic restrictions and deactivation.

  17. Thermodynamic stability and activity volcano for perovskite-based oxide as OER catalyst

    E-Print Network [OSTI]

    Rong, Xi, S.M. Massachusetts Institute of Technology

    2014-01-01

    Design of efficient and cost-effective catalysts for the oxygen evolution reaction (OER) is crucial for the development of electrochemical conversion technologies. Recent experiments show that perovskite transition-metal ...

  18. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOE Patents [OSTI]

    Kinkade, Nancy E. (Charleston, WV)

    1992-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  19. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOE Patents [OSTI]

    Kinkade, Nancy E. (Charleston, WV)

    1991-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  20. Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode

    E-Print Network [OSTI]

    Suntivich, Jin

    Transition-metal oxides can exhibit high electrocatalytic activity for reactions such as the oxygen reduction reaction (ORR) in alkaline media. It is often difficult to measure and compare the activities of oxide catalysts ...

  1. Catalysts available from East Germany

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This paper reports that a company in East Germany manufactures catalytic reforming, hydrocracking, mild hydrocracking, hydrotreating, and hydrorefining catalysts, among others. The company offers almost 50 catalysts for these processing categories.

  2. Hydroprocessing catalyst and process

    SciTech Connect (OSTI)

    Chen, N.Y.; Huang, T.J.

    1988-07-12

    In a hydrocracking process for converting a hydrocarbon feed, at least 70% of which boils within the range of 650/sup 0/ to about 1050/sup 0/F, to liquid products boiling in the rane of C/sub 5/+ to 700/sup 0/F. This patent describes a process which comprises contacting the feed and gaseous hydrogen at elevated pressure with a hydrocracking catalyst under hydrocracking conditions. The improvement comprises: contacting the feed with a hydrocracking catalyst composition comprising a hydrogenation component, a crystalline aluminosilicate cracking component having the essential X-ray diffraction pattern of Zeolite Beta, the crystalline aluminosilicate being further characterized by the presence of 0.5 wt % to about 4.0 wt % of framework boron and a silica to alumina ratio of at least about 35, and a solid source of alumina, whereby the catalyst life is extended.

  3. Elimination of platinum inclusions in phosphate laser glasses

    SciTech Connect (OSTI)

    Campbell, J.H.; Wallerstein, E.P. ); Hayden, J.S.; Sapak, D.L.; Warrington, D.E.; Marker, A.J. III ); Toratani, H.; Meissner, H.; Nakajima, S.; Izumitani, T. )

    1989-05-26

    Results from small-scale glass melting experiments aimed at reducing the density of platinum particles in phosphate laser glasses are discussed. The platinum particles originate from the crucibles used to melt the laser glass and can cause optical damage in glasses used in high-peak-power lasers; this problem was particularly acute in the LLNL 120 kJ, 100 TW Nova laser. The melting experiments examine the effects of (i) N{sub 2}, O{sub 2}, and Cl{sub 2} gas atmospheres; (ii) temperature and temperature gradients; (iii) processing time; and (iv) platinum alloys on the formation and dissolution of platinum inclusions in LHG-8 and LG-750 phosphate laser glasses. Results show that most platinum inclusions originate early in the melt cycle, with thermal gradients within the melter being one of the major causes. By using oxidizing gas conditions (O{sub 2}, Cl{sub 2}, or O{sub 2} + Cl{sub 2}), the platinum inclusions can be dissolved into the glass during the course of the melt cycle. The dissolution rate of platinum under oxidizing conditions has been measured, and a model is used to quantify the description of the dissolution process. The effect of ionic platinum on the transmission spectra of the laser glasses produced under various oxidizing conditions has also been measured. Results from the above laboratory-scale melting experiments have been incorporated into proprietary laser-glass melting processes. The laser glasses prepared under these conditions have an average of less than 0.1 platinum inclusions/liter, which represents a 1000-fold reduction over the previously available phosphate laser glasses. 52 refs., 56 figs., 15 tabs.

  4. The design of new ligands and transition metal compounds for the oxidation of organic compounds 

    E-Print Network [OSTI]

    Grill, Joseph Michael

    2009-06-02

    A review of metal-mediated epoxidation is given. Jacobsen's catalyst and the Sharpless asymmetric epoxidation catalyst are discussed. The origins of enantioselectivity are explained using stereochemical models. Several new ...

  5. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  6. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  7. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  8. Model hydrocracking reactions over monometallic and bimetallic dispersed catalysts

    SciTech Connect (OSTI)

    Schmidt, E.; Song, C. [Penn State Univ., University Park, PA (United States)

    1994-12-31

    Coal liquefaction involves the cleavage of methylene and dimethylene bridges connecting polycyclic aromatic units. The selected compound for model reactions is 4-(1-naphthylmethyl)bibenzyl (NMBB). This work describes the synthesis and screening of several metallic complex precursors as dispersed catalysts for hydrocracking of NMBB.

  9. Los Alamos catalyst could jumpstart e-cars, green energy

    E-Print Network [OSTI]

    that is 10 times greater than a state-of- the-art lithium-ion battery. Consequently, the new catalyst makes and alkaline fuel cells, metal-air batteries and certain electrolyzers," said Zelenay. "A lithium-air secondary possible the creation of economical lithium-air batteries that could power electric vehicles, or provide

  10. Zinc sulfide liquefaction catalyst

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  11. Catalysts get concentrated attention

    SciTech Connect (OSTI)

    Bruch, H.W.

    1989-02-27

    At the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology, refiners concentrated heavily on questions pertaining to modern catalyst technology and its applications and operating experiences, including: fluid catalytic cracking, hydrocracking, hydrotreating, and catalytic reforming.

  12. Mechanically interlocked architectures via active-metal template strategies 

    E-Print Network [OSTI]

    Hänni, Kevin D.

    2009-01-01

    In contrast to the classic ‘passive template’ approach, an ‘active-metal’ template strategy involves a metal centre which acts as both a template and the catalyst for covalent bond formation in the construction of ...

  13. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect (OSTI)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T.

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective.

  14. Controllable Deposition of Alloy Clusters or Nanoparticles Catalysts on Carbon Surfaces

    SciTech Connect (OSTI)

    Sasaki, K.; Ando, Y.; Su, D.; Adzic, R.

    2011-08-15

    We describe a simple method for controllably depositing Pt-Ru alloy nanoparticles on carbon surfaces that is mediated by Pb or Cu adlayers undergoing underpotential deposition and stripping during Pt and Ru codeposition at diffusion-limiting currents. The amount of surface Pt atoms deposited largely reflects the number of potential cycles causing the deposition and stripping of the metal adlayer at underpotentials, the metal species used as a mediator, and the scan rate of the potential cycles. We employed electrochemical methanol oxidation to gain information on the catalyst's activities. The catalysts with large amounts of surface Pt atoms have relatively high methanol-oxidation activity. Catalysts prepared using this method enhance methanol-oxidation activity per electrode surface area, while maintaining catalytic activity per surface Pt atom; thus, the amount of Pt is reduced in comparison with conventional methanol-oxidation catalysts. The method is suitable for efficient synthesizing various bimetallic catalysts.

  15. Molybdenum sulfide/carbide catalysts

    DOE Patents [OSTI]

    Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  16. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOE Patents [OSTI]

    Singleton, Alan H. (Baden, PA); Oukaci, Rachid (Gibsonia, PA); Goodwin, James G. (Gibsonia, PA)

    2001-01-01

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  17. Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2011 Progress Report

    SciTech Connect (OSTI)

    Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Rummel, Becky L.

    2011-10-01

    Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Research during FY 2011 continued to examine the performance of RhMn catalysts on alternative supports including selected zeolite, silica, and carbon supports. Catalyst optimization continued using both the Davisil 645 and Merck Grade 7734 silica supports. Research also was initiated in FY 2011, using the both Davisil 645 silica and Hyperion CS-02C-063 carbon supports, to evaluate the potential for further improving catalyst performance, through the addition of one or two additional metals as promoters to the catalysts containing Rh, Mn, and Ir.

  18. Autocatalytic and cooperatively-stabilized dissociation of water on a stepped platinum surface

    E-Print Network [OSTI]

    Donadio, Davide; Site, Luigi Delle; 10.1021/ja308899g

    2012-01-01

    Water-metal interfaces are ubiquitous and play a key role in many chemical processes, from catalysis to corrosion. Whereas water adlayers on atomically flat transition metal surfaces have been investigated in depth, little is known about the chemistry of water on stepped surfaces, commonly occurring in realistic situations. Using first-principles simulations we study the adsorption of water on a stepped platinum surface. We find that water adsorbs preferentially at the step edge, forming linear clusters or chains, stabilized by the cooperative effect of chemical bonds with the substrate and hydrogen bonds. In contrast with flat Pt, at steps water molecules dissociate forming mixed hydroxyl/water structures, through an autocatalytic mechanism promoted by hydrogen bonding. Nuclear quantum effects contribute to stabilize partially dissociated cluster and chains. Together with the recently demonstrated attitude of water chains adsorbed on stepped Pt surfaces to transfer protons via thermally activated hopping, th...

  19. Cellular responses against DNA damaged by platinum anticancer drugs

    E-Print Network [OSTI]

    Jung, Yongwon, 1977-

    2005-01-01

    The anticancer activity of platinum-based drugs such as cisplatin, carboplatin, and oxaliplatin is mediated by their ability to attack DNA such that generated adducts trigger numerous cellular responses. A better understanding ...

  20. Acetate-Bridged Platinum(III) Complexes Derived from Cisplatin

    E-Print Network [OSTI]

    Wilson, Justin J.

    Oxidation of the acetate-bridged half-lantern platinum(II) complex cis-[Pt[superscript II](NH[subscript 3])[subscript 2](?-OAc)[subscript 2]Pt[superscript II](NH[subscript 3])[subscript 2

  1. Tomographic study of atomic-scale redistribution of platinum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tomographic study of atomic-scale redistribution of platinum during the silicidation of Ni0.95Pt0.05Si(100) thin films Home Author: P. Adusumilli, L. J. Lauhon, D. N. Seidman, C....

  2. Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems

    E-Print Network [OSTI]

    Contreras, A.M.

    2006-01-01

    activity during the catalytic oxidation of carbon monoxide.activity during the catalytic oxidation of carbon monoxide.oxide support on the catalytic oxidation of CO is reported

  3. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    E-Print Network [OSTI]

    Grunes, Jeffrey Benjamin

    2004-01-01

    press, showing the hydraulic cylinder, vacuum, heater, andvacuum pump. The pressure was applied through a hydraulic

  4. Solid-state NMR studies of the adsorption of acetylene on platinum/alumina catalysts 

    E-Print Network [OSTI]

    Lambregts, Marsha Jo Lupher

    1991-01-01

    /y-alumina and subsequently evacuated. 25 "C Bloch Decay/MAS NMR spectra of cyclohexane adsorbed onto 10%Pt/y-alumina. 27 FT mass spectra taken at a field strength of 3-Tesla. 28 CAVERN uC CP/MAS NMR spectra of an overpressure of acetylene on 10%Pt/y-alumina adsorbed... pumped two-section ion cell, an Extrel 2001 data system, and a 3-Tesla Oxford superconducting magnet. ~~ Samples were introduced into the cell by a variable leak valve (at sample pressure of 4 x 10' torr). Ionization was performed by electron impact...

  5. Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems

    E-Print Network [OSTI]

    Contreras, A.M.

    2006-01-01

    2.25 Schematic of the hydraulic press built for nanoimprint52 Picture of the hydraulic press used for nanoimprintis then put into a hydraulic press which was built in our

  6. Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems

    E-Print Network [OSTI]

    Contreras, A.M.

    2006-01-01

    on the surface, N A is Avogadro’s number, P is the pressure,molecular radius, and N is Avogadro’s number. For molecular

  7. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    E-Print Network [OSTI]

    Yoon, Wonseok

    2013-01-01

    of the CL for enhancing PEMFC performance is of greatparameters in determining PEMFC performance. To account forpotential range relevant to PEMFC operation. However, it has

  8. Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems

    E-Print Network [OSTI]

    Contreras, A.M.

    2006-01-01

    of silica, alumina, zirconia, and ceria. These nanowirea) alumina support; (b) zirconia-support; (c) ceria-are silica, alumina, zirconia and ceria…………………109 Table 5.1

  9. Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE Hydrogen and Fuel Cells0|

  10. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOE Patents [OSTI]

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  11. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    SciTech Connect (OSTI)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  12. Mild hydrotreating of heavy oils with modified alumina based catalysts

    SciTech Connect (OSTI)

    Dai, E.P.; Campbell, C.N. [Texaco Research and Development, Port Arthur, TX (United States)

    1994-12-31

    The decreasing demand for heavy fuels oils requires that refiners find ways for converting heavy hydrocarbon feedstocks to higher value mid-distillate products. To increase mid-distillate production, the refiner can choose from several processing options such as hydrocracking, fluid catalytic cracking, and coking. All of these options, however, require heavy capital investments. Because of these high investment costs, refiners are continually searching for conversion processes which may be utilized in existing units. One such process is mild hydrocracking (MHC). The general objective of this work is to identify an MHC catalyst which gives a higher conversion level for heavy hydrocarbon feedstocks, especially that fraction of the feedstock that boils above 1,000 F (538 C), while maintaining the same amount of sediment production. The conventional hydrocracking catalysts that consist of acidic cracking components such as Y zeolite, though exhibiting conversion improvements over alumina based catalysts, were not suitable for processing of heavy oils in the mild hydrocracking mode because of high sediment formation. In contrast, alumina catalysts containing basic oxides (alkali metal and alkaline earth metal) not only improve heavy oil conversion but, also maintain the sediment make at the same level as alumina based catalysts. The sediment make generally decreased with increasing macroporosity.

  13. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  14. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  15. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gummalla, Mallika; Ball, Sarah; Condit, David; Rasouli, Somaye; Yu, Kang; Ferreira, Paulo; Myers, Deborah; Yang, Zhiwei

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with themore »smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  16. Synthesis of Metal-Metal Oxide Catalysts and Electrocatalysts - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable Land Lab TourSwitchSynopticHydrogen and

  17. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect (OSTI)

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  18. New coal-derived catalyst for transfer hydrocracking of vacuum residue

    SciTech Connect (OSTI)

    Nakamura, Ikusei; Fujimoto, Kaoru [Univ. of Tokyo (Japan)

    1995-12-31

    Liquid phase hydrocracking of Arabian Heavy vacuum residue conducted in the presence of metal supported active carbon catalyst gave large amount of distillates (70%) with small hydrogen consumption. Especially the Yallourn coal derived active carbon catalyst showed high activity for the cracking of Arabian Heavy vacuum residue. The yield of asphaltene in the product oil was very low, whereas the coke yield was relatively high (about 4 wt%). In the metal-free active carbon system, the coke yield and the content of olefins, sulfur compounds, and asphaltene in the product oil were higher than those of the metal-supported active carbon system. These results suggest that asphaltene in feed oil was adsorbed on the metal supported active carbon catalyst and was decomposed or dehydrogenated on it to form coke and hydrogen atoms. The hydrogen atoms formed migrated on the carbon surface to reach the metal site and transferred to free radicals, olefins, or organo sulfur compounds.

  19. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C. (Aiken, SC); Saturday, Kathy A. (Aiken, SC)

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  20. Fluorination process using catalysts

    DOE Patents [OSTI]

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  1. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  2. Platinum- and platinum alloy-coated palladium and palladium alloy particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinum NanoclustersPlatinumand uses thereof

  3. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  4. Hydrocracking process utilizing a catalyst having a reduced zeolite content

    SciTech Connect (OSTI)

    Abdo, S.F.

    1989-08-15

    This patent describes a process for refining hydrocarbon feedback containing organonitrogen components, organosulfur components or a mixture thereof. The process comprises: contacting the feedback with molecular hydrogen under hydrotreating conditions in the presence of a hydrotreating catalyst comprising a Group VIB metal component and a Group VIII metal component such that a subtantial proportion of the organonitrogen components, organosulfur components or mixture thereof is converted to ammonia, hydrogen sulfide or a mixture thereof; contacting substantially all of the effluent from the first step with molecular hydrogen in a first hydrocracking zone in the presence of a first hydrocracking catalyst comprising a zeolite and a hydrogeneration component to produce a hydrocracking product of substantially lower boiling point; separating the hydrocracking product into a higher boiling fraction and a lower boiling fraction; contacting the higher boiling fraction with molecular hydrogen in a second hydrocracking zone under hydrocracking conditions in an atmosphere which contains no more than about 200 ppmv ammonia and in the presence of a second hydrocracking catalyst to convert the higher boiling fraction into lower boiling products. The second hydrocracking catalysts comprises; a porous, inorganic refractory oxide component; and between about 40 weight percent and about 70 weight percent of a crystalline aluminosilicate Y zeolite having a silica-to-alumina mole ratio above about 6.0 intimately mixed with the refractory oxide component. The crystalline aluminosilicate Y zeolite having been ion-exchanged with Group VIII noble metal cations.

  5. Value recovery from spent alumina-base catalyst

    DOE Patents [OSTI]

    Hyatt, David E. (Northglenn, CO)

    1987-01-01

    A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.

  6. Metal loading and reactivity of Zeolite Y 

    E-Print Network [OSTI]

    Sa?enz, Marc Gerard

    1988-01-01

    V) are transi- tion metal oxides or sulfides on an alumina support. These catalysts were not specifically developed for hydrodenitrogenaiion but were adopted from hydrocracking or hydrodesul- furization (HDS) processes. HDN is more difficult than HDS; thus... No. ;&778365, "Hydrocracking and Hydrodenitrogenation of Shale Oil" (7). The patent disclosed a class of catalysi. s based on large pore zeolites loaded v;ith transition metals. The zeolite based catalysts were preferred over the traditional alumina...

  7. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ ?-Al2O3, and Pt/ ?-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  8. Catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  9. High Impact Technology (HIT) Catalyst

    Energy Savers [EERE]

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial...

  10. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  11. Non-traditional platinum compounds for improved cellular accumulation and tumor targeting

    E-Print Network [OSTI]

    Lovejoy, Katherine Summer, 1981-

    2009-01-01

    Chapter 1. Introduction to Non-Traditional Platinum Compounds for Improved Uptake, Oral Bioavailability, and Tumor Targeting The path to more potent platinum anticancer drugs with fewer side effects lies in the exploration ...

  12. Recognition of Platinum?DNA Damage by Poly(ADP-ribose) Polymerase-1

    E-Print Network [OSTI]

    Zhu, Guangyu

    Poly(ADP-ribose) polymerase-1 (PARP-1) was recently identified as a platinum?DNA damage response protein. To investigate the properties of binding of PARP-1 to different platinum?DNA adducts in greater detail, biotinylated ...

  13. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes

    E-Print Network [OSTI]

    Sheng, Wenchao

    The kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) on polycrystalline platinum [Pt(pc)] and high surface area carbon-supported platinum nanoparticles (Pt/C) were studied in 0.1 M ...

  14. Schneider Electric Goes Platinum-and Silver-in Superior Energy...

    Energy Savers [EERE]

    Schneider Electric Goes Platinum-and Silver-in Superior Energy Performance Schneider Electric Goes Platinum-and Silver-in Superior Energy Performance October 1, 2014 - 11:33am...

  15. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  16. Method for dispersing catalyst onto particulate material and product thereof

    DOE Patents [OSTI]

    Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  17. Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Quarterly progress report, June 20, 1993--September 20, 1993

    SciTech Connect (OSTI)

    Guin, J.A.; Tarrer, A.R.

    1993-12-01

    This quarter, we measured the surface areas and effective diffusivities for fresh, spent and regenerated unimodal Criterion 324 and bimodal EXP-AO-60 catalysts. The results showed that the surface areas for spent catalysts decreased greatly due to coke formation and metal deposition during coal liquefaction process. After regeneration, the catalyst surface areas were partially or completely restored. Adsorption equilibrium experiments showed that the adsorption isotherms for quinoline in cyclohexane with these six sample of catalysts could be well represented by Freundlich isotherms. The effective diffusivities with these catalysts were obtained by fitting experimental data with the diffusional model. The results indicated that the effective diffusivity for fresh bimodal catalyst with larger pore size was greater than that for fresh unimodal catalyst with a smaller pore size. After the catalysts were used in a coal liquefaction process, the effective diffusivities decreased to less than 1% of those for fresh catalysts. When the spent catalysts were regenerated in air, the effective diffusivites were recovered to 35--50% of those for fresh catalysts.

  18. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  19. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    Open Energy Info (EERE)

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  20. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of chemical processes. Watching Catalysts at Work Catalysts-substances that speed up chemical reactions without themselves being consumed-are essential to the production of...

  2. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  3. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for...

  4. Hydroprocessing catalysts see tough service

    SciTech Connect (OSTI)

    Not Available

    1985-03-25

    Hydrotreating catalysts are the refining industry's major weapon in making good products from marginal oils. The employment and regeneration of these catalysts are the primary topics of this second abstract taken from the transcript of the National Petroleum Refiners Association's most recent question and answer session.

  5. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOE Patents [OSTI]

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  6. Bifunctional Nanostructured Base Catalysts: Opportunities for BioFuels

    SciTech Connect (OSTI)

    Connor, William

    2010-12-30

    ABSTRACT This research studied and develop novel basic catalysts for production of renewable chemicals and fuels from biomass. We will focus on the development of unique porous structural-base catalysts formed by two techniques: from (mixed) metal-oxide bases and by nitrogen substitution for oxygen in zeolites. These catalysts will be compared to conventional solid base materials for aldol condensation, catalytic fast pyrolysis, and transesterification reactions. These reactions are important in processes that are currently being commercialized for production of fuels from biomass and will be pivotal in future biomass conversion to fuels and chemicals. Specifically, we have studied the aldol-condensation of acetone with furfural over oxides and zeolites, the conversion of sugars by rapid pyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our previous research has indicated that the base strength of framework nitrogen in nitrogen-substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  7. Hydrocracking catalysts from coals

    SciTech Connect (OSTI)

    Farcasiu, M.; Petrosius, S.C.; Pladner, E. [USDOE Pittsburgh Energy Technology Center, PA (United States); Derbyshire, F.; Jagtoyen, M. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31

    In previous work at PETC it was shown that carbon blacks and carbonized polymers could be active and selective catalysts in hydrocracking reactions of interest for fossil fuels processing. Work at CAER for the production of various activated carbons from coals have shown that the properties of the materials could be varied if they are produced under different conditions. The authors will report work to optimize the catalytic properties of some coal based carbon materials prepared at CAER. One of the most promising materials for this purpose is obtained from an Illinois bituminous coal. The procedure hydroxide solution with coal and reacting in two stages; (1) heat treatment of the solution at 75 C under nitrogen for one hour followed by drying and (2) heat treatment at 400--1,100 C followed by leaching to remove KOH. The product was extensively characterized and its catalytic activity was measured. The catalytic activity of some of the materials is comparable with other, more expensive carbon materials. The catalysts have potential use in upgrading petroleum heavy ends and coal liquefaction.

  8. A general method for multimetallic platinum alloy nanowires as...

    Office of Scientific and Technical Information (OSTI)

    catalysts The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because...

  9. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP)

    E-Print Network [OSTI]

    and PTFE) in Single Chamber Microbial Fuel Cells S H A O A N C H E N G , H O N G L I U , A N D B R U C E performed better as a Pt binder thanpoly(tetrafluoroethylene)(PTFE).Replacingtheprecious- metal Pt catalyst that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm-2) with PTFE reduced

  10. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOE Patents [OSTI]

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  11. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOE Patents [OSTI]

    Ramprasad, Dorai (Allentown, PA); Waller, Francis Joseph (Allentown, PA)

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  12. Effect of Surface Modification by Chelating Agents on Fischer- Tropsch Performance of Co/SiO{sub 2} Catalysts

    SciTech Connect (OSTI)

    Bambal, Ashish S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2013-11-27

    The silica support of a Co-based catalyst for Fischer-Tropsch (FT) synthesis was modified by the chelating agents (CAs) nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA). After the modification, characterization of the fresh and spent catalysts show reduced crystallite sizes, a better-dispersed Co{sub 3}O{sub 4} phase on the calcined samples, and increased metal dispersions for the reduced samples. The CA-modified catalysts display higher CO conversions, product yields, reaction rates and rate constants. The improved FT performance of CA-modified catalysts is attributed to the formation of stable complexes with Co. The superior performance of the EDTA-modified catalyst in comparison to the NTA-modified catalyst is due to the higher affinity of the former for complex formation with Co ions.

  13. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y. (Houston, TX); Clavenna, Le Roy R. (Baytown, TX); Eakman, James M. (Houston, TX); Kalina, Theodore (Morris Plains, NJ)

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  14. Platinum-monolayer Electrocatalysts: Palladium Interlayer on IrCo Alloy Core Improves Activity in Oxygen-reduction Reaction

    SciTech Connect (OSTI)

    Gong, K.; Chen, W.-F.; Sasaki, K.; Su, D.; Vukmirovic, M.B.; Zhou, W.; Izzo, E.L.; Perez-Acosta, C.; Hirunsit, P.; Balbuena, P.B.; Adzic, R.R.

    2010-11-15

    We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core, a Pd interlayer, and a surface Pt monolayer, emphasizing the interlayer's role in improving electrocatalytic activity for the oxygen-reduction reaction on Pt in HClO{sub 4} solution. We prepared the IrCo alloys by decomposing, at 800 C, hexacyanometalate, KCoIr(CN){sub 6}, adsorbed on the carbon surfaces. The synthesis of Ir{sub 3}Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 C. Thereafter, we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer. The electrocatalysts were characterized using structural- and electrochemical-techniques. For PtML/PdML/IrCo/C, we observed a Pt mass activity of 1.18 A/mg{sub (Pt)} and the platinum-group-metals mass of 0.16 A/mg{sub (Pt, Pd, Ir)}. In comparison, without a Pd interlayer, i.e., Pt{sub ML}/IrCo/C, the activities of 0.15 A/mg{sub (Pt)} and 0.036 A/mg{sub (Pt, Pd, Ir)} were considerably lower. We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core, so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction. A similar trend was observed for Pt{sub ML}/Pd{sub ML} and Pt{sub ML} deposited on Ir{sub 3}Co/C alloy core. We used density functional theory to interpret the observed phenomena.

  15. Hydrodechlorination of 1,2-Dichloroethane Catalyzedby Dendrimer-Derived Pt-Cu/SiO2 Catalysts

    SciTech Connect (OSTI)

    Xie, Hong; Howe, Jane Y; Schwartz, Viviane; Monnier, J. R.; Williams, Christopher T.; Ploehn, Harry J.

    2008-01-01

    Dendrimer-metal-nanocomposites (DMNs) were used as precursors to prepare SiO2 supported monometallic Pt, Cu and bimetallic Pt-Cu catalysts with Pt/Cu atomic ratios of 1:1 (Pt50Cu50) and 1:3 (Pt25Cu75). After impregnation of these DMNs onto the support, the catalysts were thermally treated and activated following an optimized protocol. Scanning transmission electron microscopy (STEM) shows that the metal nanoparticles in dendrimer-derived SiO2-supported catalysts are smaller and have a more narrow size distribution than those in conventional catalysts prepared using corresponding metal salts via the wet impregnation method. Slow deactivation was observed for hydrodechlorination of 1,2-dichloroethane over monometallic Cu catalysts, which showed an activity about one to two orders of magnitude lower than that of the Pt-containing catalysts. Hydrodechlorination of 1,2-dichloroethane over Pt and Pt50Cu50 catalysts mainly produces ethane and the selectivity towards ethane increases with temperature. For Pt25Cu75 catalyst, the selectivity towards ethane decreases in favor of ethylene. The overall activity decreases with increasing Cu loading in the catalysts. Activity based on surface Pt sites suggests the formation of bi-functional surfaces in Pt25Cu75 catalyst favoring C-Cl bond scission on Cu sites and hydrogenation of intermediate .CH2CH2. on Pt sites. Furthermore, kinetic analyses suggest different reaction mechanisms for hydrodechlorination of 1,2-dichloroethane over Pt and Cu-enriched surfaces in the Pt-Cu bimetallic catalysts.

  16. Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.

    SciTech Connect (OSTI)

    Cronauer, D.; Chemical Engineering

    2006-05-12

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry--specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It is desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The goal is to produce shape-selective catalysts that have the potential to limit the formation of longchain products and yet retain the active metal sites in a protected 'cage'. This cage also restricts their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. This activity report centers upon this first stage of experimentation with particulate FT catalysts. (For reference, a second experimental stage is under way to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes.) To date, experimentation has centered upon the evaluation of a sample of iron-based, spray-dried catalyst prepared by B.H. Davis of the Center of Applied Energy Research (CAER) and samples of his catalyst onto which inorganic 'shells' were deposited. The reference CAER catalyst contained a high level of dispersed fine particles, a portion of which was removed by differential settling. Reaction conditions have been established using a FT laboratory unit such that reasonable levels of CO conversion can be achieved, where therefore a valid catalyst comparison can be made. A wide range of catalytic activities was observed with SiO{sub 2}-coated FT catalysts. Two techniques were used for SiO{sub 2}coating. The first involved a caustic precipitation of SiO{sub 2} from an organo-silicate onto the CAER catalyst. The second was the acidic precipitation of an organo-silicate with aging to form fractal particles that were then deposited onto the CAER catalyst. Several resulting FT catalysts were as active as the coarse catalyst on which they were prepared. The most active ones were those with the least amount of coating, namely about 2.2 wt% SiO{sub 2}. In the case of the latter acid technique, the use of HCl and HNO{sub 3} was much more effective than that of H{sub 2}SO{sub 4}. Scanning electron microscopy (SEM) was used to observe and analyze as-received and treated FT catalysts. It was observed that (1) spherical particles of CAER FT catalyst were made up of agglomerates of particles that were, in turn, also agglomerates; (2) the spray drying process of CAER apparently concentrated the Si precursor at the surface during drying; (3) while SEM pointed out broad differences in the appearance of the prepared catalyst particles, there was little indication that the catalysts were being uniformly coated with a cage-like protective surface, with perhaps the exception of HNO{sub 3}-precipitated catalyst; and (4) there was only a limited penetration of carbon (i.e., CO) into the FT catalyst during the conditioning and FT reaction steps.

  17. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  18. Technology development for iron F-T catalysts. Final report

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  19. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect (OSTI)

    Peter Zalupski; Rocklan McDowell; Guy Dutech

    2014-10-01

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  20. Catalyst-free carbon nanotubes from coal-based material

    SciTech Connect (OSTI)

    Mathur, R.B.; Lal, C.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India)

    2007-01-01

    DC-Arc Discharge technique has been used to synthesize carbon nanotubes from super clean coal samples instead of graphite electrodes filled with metal catalysts. The adverse effect of the mineral matter present in coal may be, thus, avoided. The cathode deposits showed the presence of single walled carbon nanotubes as well, which are generally known to be formed only in presence of transition metal catalysts and lanthanides. The process also avoids the tedious purification treatments of carbon nanotubes by strong acids to get rid of metal catalysts produced as impurities along with nanotubes. Thus, coal may be refined and demineralized by an organorefining technique to obtain super clean coal, an ultra low ash coal which may be used for the production of carbon nanotubes. The residual coal obtained after the organorefining may be used as an energy source for raising steam for power generation. Thus, coal may afford its use as an inexpensive feedstock for the production of carbon nanotubes besides its conventional role as a fuel for power generation.