Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Method for controlling gas metal arc welding  

DOE Patents (OSTI)

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

1987-08-10T23:59:59.000Z

2

Method for controlling gas metal arc welding  

DOE Patents (OSTI)

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

1989-01-01T23:59:59.000Z

3

Elements of arc welding  

SciTech Connect

This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

1993-07-01T23:59:59.000Z

4

Welding and Repair Technology Center: Gas Metal Arc Welding Lessons  

Science Conference Proceedings (OSTI)

Modern gas metal arc welding (GMAW) systems no longer operate with a symmetric, fixed pulse. The new systems have closed-loop feedback and are waveform-controlled systems that vary the arc characteristics hundreds of times per second to stabilize the arc. The main advantage of these systems is the ease of operation when manual applications are required or out-of-position welding is applied. The systems allow flexibility in the stand-off distance (contact tip to work distance) while maintaining an ...

2013-09-30T23:59:59.000Z

5

Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification  

SciTech Connect

Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW).

Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

1985-08-01T23:59:59.000Z

6

Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma  

Science Conference Proceedings (OSTI)

During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-04-15T23:59:59.000Z

7

Low Power Laser Hybrid Gas Metal Arc Welding on A36 Steel  

Science Conference Proceedings (OSTI)

Presentation Title, Low Power Laser Hybrid Gas Metal Arc Welding on A36 Steel. Author(s), Caleb Roepke, Stephen Liu, Shawn Kelly, Rich Martukanitz. On-Site ...

8

Visual-based Intelligent Control System for Robotic Gas Metal Arc Welding  

Science Conference Proceedings (OSTI)

Sensing and control the weld pool is a crucial problem for robotic gas-metal arc welding (GMAW) process. In present research, a special vision sensing system, assisted by a narrow-band filter which could overcome the influence of the strong arc light ...

Shi Yu; Xue Cheng; Fan Ding; Chen Jianhong

2009-05-01T23:59:59.000Z

9

A model-based approach to intelligent control of gas metal arc welding  

SciTech Connect

This paper discusses work on a model-based intelligent process controller for gas metal arc welding. Four sensors input to a neural network, which communicates to a reference model-based adaptive controller that controls process parameters. Reference model derivation and validation are discussed. The state of an arch weld is determined by the composition of the weld and base metal and the weld's thermomechanical history. The composition of the deposited weld metal depends primarily on the amount of filler metal dilution; heat input to the weld, comprising pre-heat and process heat, is the controlling factor in the thermal cycle. Thus, control of the arc welding process should focus on rational specification and in-process control of the heat and mass input to the weld. A control model has been developed in which the governing equations are solved for the process parameters as functions of the desired heat input (in terms of heat input unit weld length) and mass input (in terms of transverse reinforcement area) to the weld. The model includes resistive and arc heating of the electrode wire, characteristics of the welding power supply, and a volumetric heat balance on the electrode material, as well as latent and superheat of the electrode material. Extension of the model to include dynamics of individual droplet transfer events, based on incorporating a nonlinear, lumped parameter droplet analysis, is discussed. A major emphasis has been placed on computational simplicity; model solutions are required at the rate of about 10 Hz during welding. Finally, a process control scheme has been developed for the gas metal arc welding process using the above nonlinear model with a proportional-integral controller with adaptive coefficients to control the weld heat input and reinforcement area independently. Performance of the resulting control method is discussed. 10 refs., 5 figs.

Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

1990-01-01T23:59:59.000Z

10

Arc Welding  

Science Conference Proceedings (OSTI)

...work surface Radiation from the arc Thermal conduction from the arc plasma to the workpiece The first two mechanisms constitute the major source of energy to the

11

Electric arc welding gun  

DOE Patents (OSTI)

This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

Luttrell, Edward (Clinton, TN); Turner, Paul W. (Idaho Falls, ID)

1978-01-01T23:59:59.000Z

12

Dc arc weld starter  

DOE Patents (OSTI)

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, R.H.; Hopwood, J.E.

1989-02-17T23:59:59.000Z

13

DC arc weld starter  

SciTech Connect

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

1990-01-01T23:59:59.000Z

14

Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)  

SciTech Connect

A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Moore, K.L. (Idaho State Univ., Pocatello, ID (United States))

1992-01-01T23:59:59.000Z

15

APPARATUS FOR ARC WELDING  

DOE Patents (OSTI)

An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

Lingafelter, J.W.

1960-04-01T23:59:59.000Z

16

APPARATUS AND METHOD FOR ARC WELDING  

DOE Patents (OSTI)

An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

Noland, R.A.; Stone, C.C.

1960-05-10T23:59:59.000Z

17

WELDING UNUSUAL METALS  

SciTech Connect

Methods of welding including electron beam welding, diffusion bonding, motor-arc welding, and combination methods are discussed. The successful welding and soldering of uranium in different shapes are discussed. (C.J.G.)

Grobecker, D.W.

1959-07-01T23:59:59.000Z

18

Percussive arc welding apparatus  

DOE Patents (OSTI)

A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

Hollar, Jr., Donald L. (Overland Park, KS)

2002-01-01T23:59:59.000Z

19

Weld arc simulator  

DOE Patents (OSTI)

An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

Burr, M.J.

1989-03-01T23:59:59.000Z

20

Welding arc initiator  

DOE Patents (OSTI)

An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

Correy, T.B.

1989-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Welding arc initiator  

SciTech Connect

An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

Correy, Thomas B. (Richland, WA)

1989-01-01T23:59:59.000Z

22

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Conference Proceedings (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

23

Derivation of Forces Acting on the Liquid Weld Metal Based on Arc ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

24

ELECTRON WELDING OF METALS  

SciTech Connect

The advantages and disadvantages of the electron welding of metals are briefly reviewed. Typical apparatuses used for electron welding are described. (J.S.R)

Stohr, J.-A.

1958-03-01T23:59:59.000Z

25

METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING  

DOE Patents (OSTI)

A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

Correy, T.B.

1962-12-11T23:59:59.000Z

26

Explosion metal welding  

SciTech Connect

Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community.

Popoff, A.A.

1976-01-01T23:59:59.000Z

27

Failure Origins in Arc Welds  

Science Conference Proceedings (OSTI)

...tungsten inclusions, oxide inclusions Lack of fusion (LOF) and lack of penetration (LOP) Geometric discontinuities, such as poor weld contours, undercut,

28

What makes an electric welding arc perform its required function  

SciTech Connect

The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

Correy, T.B.

1982-09-01T23:59:59.000Z

29

Welding arc gap ionization device  

SciTech Connect

An alpha emitting isotope is positioned near the tip of a TIG welding electrode so that the alpha radiation can provide an ionized path between the electrode and the workpiece.

Schweikhardt, George M. (Richland, WA)

1976-01-01T23:59:59.000Z

30

Weld Metal Metallurgical Handbook  

Science Conference Proceedings (OSTI)

This report is part of an ongoing series of metallurgical handbooks that are being developed for utility engineers to use in assessing metallurgical characteristics of any given alloy. This report focuses specifically on the weld metal metallurgical characteristics of carbon, low-alloy martensitic, and austenitic stainless steel welds.

2009-03-31T23:59:59.000Z

31

SOME EXPERIENCES IN THE WELD FABRICATION OF REFRACTORY METALS  

SciTech Connect

Discussion is given on the welding fabrication of tungsten, molybdenum, niobium, and tantalum. Properties which make the four refractory metals important are tabulatcd along with titanium which is given for comparison. Extensive evaluation was conducted using the gas, tungsten arc welding process employing both manual and machine welding. Design data were obtained exclusively from machine welded sheet materials. Flash welding, resistance spot welding and brazing, electron beam welding, and high frequency resistance welding processes were also applied to molybdenum alloys. The oxidation of molybdenum, tantalum, and niobium in flowing air at 2000 deg F is also given. (P.C.H.)

Thompson, E.G.

1961-02-10T23:59:59.000Z

32

Laser assisted non-consumable arc welding process development  

SciTech Connect

The employment of Laser Beam Welding (LBW) for many traditional arc welding applications is often limited by the inability of LBW to compensate for variations in the weld joint gap. This limitation is associated with fluctuations in the energy transfer efficiency along the weld joint. Since coupling of the laser beam to the workpiece is dependent on the maintenance of a stable absorption keyhole, perturbations to the weld pool can lead to decreased energy transfer and resultant weld defects. Because energy transfer in arc welding does not similarly depend on weld pool geometry, it is expected that combining these two processes together will lead to an enhanced fusion welding process that exhibits the advantages of both arc welding and LBW. Laser assisted non-consumable arc welds have been made on thin section aluminum. The welds combine the advantages of arc welding and laser welding, with enhanced penetration and fusion zone size. The use of a pulsed Nd:YAG laser with the combined process appears to be advantageous since this laser is effective in removing the aluminum oxide and thereby allowing operation with the tungsten electrode negative. The arc appears to increase the size of the weld and also to mitigate hot cracking tendencies that are common with the pulsed Nd:YAG laser.

Fuerschach, P.W.; Hooper, F.M.

1997-09-01T23:59:59.000Z

33

Gas-tungsten arc welding of aluminum alloys  

SciTech Connect

A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, Lowell D. (Kingston, TN)

1984-01-01T23:59:59.000Z

34

Gas-tungsten arc welding of aluminum alloys  

DOE Patents (OSTI)

The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, L.D.

1982-03-25T23:59:59.000Z

35

Effects of Arc Welding Process on Microstructure and Morphology of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Effects of Arc Welding Process on Microstructure and Morphology of Flake Graphite in Grey Cast Iron. Author(s), Arash Elhami Khorasani, ...

36

High-power laser and arc welding of thorium-doped iridium alloys  

SciTech Connect

The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO/sub 2/ laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed.

David, S.A.; Liu, C.T.

1980-05-01T23:59:59.000Z

37

High-power laser and arc welding of thorium-doped iridium alloys  

DOE Green Energy (OSTI)

The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO/sub 2/ laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed.

David, S.A.; Liu, C.T.

1980-05-01T23:59:59.000Z

38

Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels  

SciTech Connect

In the present investigation, the individual and interactive effects of the main welding parameters on weld quality of plasma arc keyhole welding of conventional structural steel, high strength microalloyed steel and strong formable microalloyed steel have been examined using welding of butt joints with a square groove in various welding positions, and welding of joint roots with a single-V-groove and the root face in the flat position. The most important welding parameters are welding current, welding speed and welding gases, especially plasma gas flow rate. Welding parameter combinations producing the best quality welds are presented. It is shown that it is possible to achieve defect-free high-quality welds with good strength and toughness properties, but the allowable range of variation of welding parameters, especially for the highest weld quality, is narrow. An argonhydrogen mixture for the plasma gas together with argon as shielding and backing gases give the best results with respect to weld quality.

Martikainen, J.K.; Moisio, T.J.I. (Lappeenranta Univ. of Technology, Lappeenranta (Finland). Welding Technology Lab.)

1993-07-01T23:59:59.000Z

39

Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool  

DOE Patents (OSTI)

An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

Heiple, C.R.; Burgardt, P.

1984-03-13T23:59:59.000Z

40

A Glove Box Enclosed Gas-Tungsten Arc Welding System  

SciTech Connect

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

Reevr, E, M; Robino, C.V.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)  

SciTech Connect

The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

Nunes, A.C. Jr.

1985-08-01T23:59:59.000Z

42

Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties  

Science Conference Proceedings (OSTI)

Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.

Penik, M.A. Jr. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1997-04-01T23:59:59.000Z

43

Development of a Coating Formulation Procedure for Ni-base Shielded Metal Arc Electrodes with Varying Core Wire Composition.  

E-Print Network (OSTI)

??In order for manufacturers of shielded metal arc welding (SMAW) electrodes to stay competitive, they must be able to have flexibility in the performance of… (more)

Gaal, Brian

2012-01-01T23:59:59.000Z

44

Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy  

Science Conference Proceedings (OSTI)

At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

Benoit, A. [Univ Paris-Sud, Laboratoire de Physico-Chimie de l'Etat Solide, UMR 8182, 91405 Orsay, F-91405 (France); Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l'Universite de Nantes, Nantes Atlantique Universites, rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Paillard, P. [Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l'Universite de Nantes, Nantes Atlantique Universites, rue Christian Pauc, BP 50609, 44306 Nantes Cedex 3 (France); Baudin, T. [Univ Paris-Sud, Laboratoire de Physico-Chimie de l'Etat Solide, UMR 8182, 91405 Orsay, F-91405 (France); CNRS, Orsay, F-91405 (France); Jobez, S.; Castagne, J.-F. [SNECMA-Usine d'Evry-Corbeil Snecma Evry-Corbeil-Route Henri Auguste Desbrueres-91000 Evry (France)

2011-01-17T23:59:59.000Z

45

Stainless steel submerged arc weld fusion line toughness  

SciTech Connect

This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

1995-04-01T23:59:59.000Z

46

A dimensionless parameter model for arc welding processes  

SciTech Connect

A dimensionless parameter model previously developed for C0{sub 2} laser beam welding has been shown to be applicable to GTAW and PAW autogenous arc welding processes. The model facilitates estimates of weld size, power, and speed based on knowledge of the material`s thermal properties. The dimensionless parameters can also be used to estimate the melting efficiency, which eases development of weld schedules with lower heat input to the weldment. The mathematical relationship between the dimensionless parameters in the model has been shown to be dependent on the heat flow geometry in the weldment.

Fuerschbach, P.W.

1994-12-31T23:59:59.000Z

47

Underwater cladding with laser beam and plasma arc welding  

SciTech Connect

Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses.

White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D. [General Electric Corporate Research and Development Center, Schenectady, NY (United States); Milian-Rodriguez, R.R. [GE Nuclear Energy, San Jose, CA (United States)

1997-01-01T23:59:59.000Z

48

Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel  

Science Conference Proceedings (OSTI)

Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

2011-01-17T23:59:59.000Z

49

Welding of NOREM Iron-Base Hardfacing Alloy Wire Products: Procedures for Gas Tungsten Arc Welding  

Science Conference Proceedings (OSTI)

New wire products have been successfully fabricated and procedures developed for automatic gas tungsten arc welding of wear-resistant NOREM iron-base alloys. Research demonstrated that sound multi-layer welds on carbon and stainless steel substrates can be obtained without the use of preheating. These developments point to the advantages of NOREM alloys for field applications, such as valve refurbishing.

1992-09-01T23:59:59.000Z

50

Towards the Prediction of Weld Metal Properties  

E-Print Network (OSTI)

assumed to be negligible compared to other contri- 2 Transfer of melted coating to weld pool Metal droplet covered with molten slag Parent metal Figure 1.1: Schematic diagram of the MMA welding process. (After B. Lundqvist (1977), "Sandvik Welding Handbook... ., SVENSSON, L.-E., and GRETOFT, B. (1986), "'Weld- ing and Performance of Pipe Welds", [Proc. Conj.], Welding Institute, Abington, U.K., paper 17. BHADESHIA, H. K. D. H., SVENSSON, L.-E., and GRETOFT, B. (1987), "Weld- ing Metallurgy of Structural Steels...

Sugden, Alastair Allen Brockbank

1989-01-31T23:59:59.000Z

51

M-25, BUTT WELDS IN PROCESS PIPING  

SciTech Connect

Metal-arc and inert-gas shielded tungsten-arc processes were compared for circumferential butt welding of austenitic stainless steel process pipe. Inert-gas tungsten-arc welding was superior to other techniques. (C.J.G.)

Litman, A.P.

1958-07-10T23:59:59.000Z

52

Automatic welding comes of age. [Offshore  

SciTech Connect

Automatic pipe welding systems today fall into three main categories: gas metal arc welding, gas-tungsten arc welding, and flash-butt welding. The first automatic welding devices used offshore were the CRC and H.C. Price systems. Both use gas metal arc welding with a consumable steel filler wire. The recently developed McDermott flash-butt welding system is described. (DLC)

Turner, D.L. Jr.

1981-07-01T23:59:59.000Z

53

Apparatus for gas-metal arc deposition  

DOE Patents (OSTI)

Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

Buhrmaster, Carol L. (Corning, NY); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

54

Method for gas-metal arc deposition  

DOE Patents (OSTI)

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

Buhrmaster, Carol L. (Corning, NY); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1990-01-01T23:59:59.000Z

55

Method for gas-metal arc deposition  

DOE Patents (OSTI)

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

1990-11-13T23:59:59.000Z

56

Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys  

Science Conference Proceedings (OSTI)

ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

2013-01-01T23:59:59.000Z

57

The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr Steel Weldments  

E-Print Network (OSTI)

In this work, three joints of a X11CrMoWVNb9-1-1 (P911) pipe were welded with three filler metals by conventional arc welding. The filler metals varied in creep strength level, so that one overmatched, one undermatched, ...

Mayr, Peter

58

Preventing Dissimilar Metal Weld Failures: Application of New ...  

Science Conference Proceedings (OSTI)

... and properties of DMWs would be extended over the component length, reducing ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

59

Manual Plasma Welding (PTAW) Evaluation with Powder Hardfacing Alloys  

Science Conference Proceedings (OSTI)

Repair practices for hardfacing alloys using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) have been evaluated in the past on hardfacing applied with various automated welding processes. Accessibility often limits the use of these welding processes in manual repair applications. Recent developments in plasma transfer arc welding (PTAW) powder welding systems have prompted evaluations of manual repair practices for hardfacing materials. The PTAW powder welding process feeds the fil...

2001-12-18T23:59:59.000Z

60

WeldingFabr&MetalForm  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Welding, Fabrication, and Metal Forming Manufacturing Technologies The department consists of three trades: weld- ing; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles proto- type hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified weld- ing, and assembly. The staff has experience managing a variety of activities: design modifi- cation assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Laser Welding of Metals [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals Laser Welding of Metals Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Project description: High-speed laser welding of metals. Category: Project with industrial partner (Delphi Energy and Engine Management Systems) Bookmark and Share

62

73rd American Welding Society annual meeting  

SciTech Connect

The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference was also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.

1992-01-01T23:59:59.000Z

63

Technology for the Examination of Boiler Tubing Dissimilar Metal Welds  

Science Conference Proceedings (OSTI)

In an effort to determine the optimum method for examination of fossil power plant dissimilar metal boiler tube welds, researchers obtained several samples removed from service, and applied various ultrasonic examination technology to these samples. The welds in these samples were made with either austenitic stainless steel weld metal or by the induction pressure method. The welds were then subjected to conventional and advanced ultrasonic examination in the laboratory. For all examination methods, there...

2011-12-07T23:59:59.000Z

64

Metals Welded and Thickness Parameters  

Science Conference Proceedings (OSTI)

...more sheet metal stampings that do not require gas-tight or liquid-tight joints can be more economically joined by high-speed RSW than by

65

Virtual Training for Welding  

Science Conference Proceedings (OSTI)

A mixed reality system has been created for simulating gas metal arc welding (GMAW) welding. This simulation system is intended for use in training human welders. The system is comprised of a real welding torch attached to a force feedback device, a ...

Kenneth Fast; Timothy Gifford; Robert Yancey

2004-11-01T23:59:59.000Z

66

NOREM Applications Guidelines: Procedures for Gas Tungsten Arc and Plasma Transferred Arc Welding of NOREM Cobalt-Free Hardfacing Al loys  

Science Conference Proceedings (OSTI)

Wire products have been successfully fabricated and new procedures developed for machine and manual gas tungsten arc welding (GTAW) of the iron-base NOREM hardfacing alloys. These developments enhance the attractiveness of NOREM alloys both in replacement valves and in field repairs of installed valves. This report describes the GTAW procedures and summarizes plasma transferred arc welding (PTAW) parameters for shop applications of NOREM alloys.

1996-01-03T23:59:59.000Z

67

Constitution Diagram for Dissimilar Metal Welds in Alloy Steels and ...  

Science Conference Proceedings (OSTI)

Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of Dissimilar Metal Welds During High Temperature Service.

68

Method and apparatus for gas-metal arc deposition  

DOE Patents (OSTI)

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are presented. The apparatus contains an arc chamber for confining a DC electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig., 2 tabs.

Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

1989-10-18T23:59:59.000Z

69

Video Game Device Haptic Interface for Robotic Arc Welding  

Science Conference Proceedings (OSTI)

Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

Corrie I. Nichol; Milos Manic

2009-05-01T23:59:59.000Z

70

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

71

Stress Corrosion Cracking Resistance of Weld Metals 182, 72, and 308L  

Science Conference Proceedings (OSTI)

Intergranular stress corrosion cracking (IGSCC) has occurred in alloy 182 weld metal in operating BWRs. This study compares the propagation behavior of IGSCC for nickel-base weld metal, alloy 182, with two other weld metals: type 308L stainless steel and a high-chromium nickel-base BWR candidate, alloy 72. Results indicate that weld metal 72 is more stress corrosion crack (SCC) resistant than either weld metals 182 or type 308L.

1992-08-01T23:59:59.000Z

72

Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at ...  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Ivan Mendoza-Bravo. Abstract Scope, The fusion boundary region (FBR) in Dissimilar Metal Welds (DMW) is where base and weld

73

Materials Reliability Program: Validation of Welding Residual Stress Models for PWR Piping Dissimilar Metal Welds (MRP-271)  

Science Conference Proceedings (OSTI)

The residual stresses imparted by the welding process are a principal factor in primary water stress corrosion cracking (PWSCC) of Dissimilar Metal (DM) piping butt welds in PWRs. Analytical models are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations have demonstrated a high sensitivity to the welding residual stress distribution inputs. As part of the ...

2009-12-22T23:59:59.000Z

74

Ultrasonic Welding  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Ultrasonic Welding II: Ultrasonic Welding: Metallic and Non-metallic ... Comparison of Ultrasonic Spot and Torsion Welding for Al/Ti-joints by ...

75

P2-28: Characterization of Pores and Cracks in Underwater Welds ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Underwater shielded metal arc wet welding with coated electrodes is a common procedure for in situ repair of structural parts of offshore oil ...

76

OXIDATION BEHAVIOR OF WELDED AND BASE METAL UNS N06025  

Science Conference Proceedings (OSTI)

The oxidation behavior of specimens containing tungsten inert gas welds of UNS N06025 (NiCrFeAlY) was investigated in air for up to 5,000h at 900 -1000 C and 1,000h at 1100 -1200 C. In general, the microstructure was very homogeneous in the weld with smaller carbides and the Al2O3 penetrations were similar or smaller compared to those formed in the base metal. Above 1000 C, significant spallation was observed and Al and Cr depletion in the metal was observed to a similar extent in the weld and base metal. The maximum internal oxidation depth of the base metal at 900 and 1100 C was lower than several other commercial Ni-base alloys.

Pint, Bruce A [ORNL; Paul, Larry D. [Thyssen-Krupp VDM

2007-01-01T23:59:59.000Z

77

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

Dixon, Raymond D. (Los Alamos, NM); Smith, Frank M. (Espanola, NM); O' Leary, Richard F. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

78

Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal  

Science Conference Proceedings (OSTI)

Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium conditions. However, the effect of heating and cooling rates on the phase transformation path due to non-equilibrium partitioning of alloying elements cannot be predicted by equilibrium phase diagrams. Also, it is unclear if there is retention of delta ferrite to room temperature due to compositional or thermal effects. This would dramatically affect the austenite to ferrite transformation due to carbon and nitrogen enrichment in the austenite.

Narayana, B [Ohio State University, The, Columbus; Mills, Michael J. [Ohio State University, The, Columbus; Specht, Eliot D [ORNL; Santella, Michael L [ORNL; Babu, Sudarsanam Suresh [Ohio State University, The, Columbus

2010-12-01T23:59:59.000Z

79

Welding tritium aged stainless steel  

SciTech Connect

Stainless steels exposed to tritium become unweldable by conventional methods due to He buildup within the metal matrix. With longer service lives expected for new weapon systems, and service life extensions of older systems, methods for welding/repair on tritium-exposed material will become important. Results are reported that indicate that both solid-state resistance welding and low-heat gas metal arc overlay welding are promising methods for repair or modification of tritium-aged stainless steel.

Kanne, W.R. Jr.

1993-04-01T23:59:59.000Z

80

Materials Reliability Program: Welding Residual Stress Dissimilar Metal Butt-Weld Finite Element Modeling Handbook (MRP-317)  

Science Conference Proceedings (OSTI)

The residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy (i.e., dissimilar metal) piping butt welds in pressurized water reactors (PWRs). Numerical methods by finite element analyses are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in ...

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manual Plasma Welding (PTAW) Evaluation with Powder Hardfacing Alloys: Revision 1 to 1003164  

Science Conference Proceedings (OSTI)

Repair practices for hardfacing alloys using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) have been evaluated in the past on hardfacing applied with various automated welding processes. Accessibility often limits the use of these welding processes in typical manual repair applications. Recent developments in PTAW powder welding systems by Deloro-Stellite have prompted evaluations of an alternative repair technique for hardfacing materials. This document reports on the tests and f...

2002-12-13T23:59:59.000Z

82

double-sided arc welding of az31b magnesium alloy sheet  

Science Conference Proceedings (OSTI)

Jul 20, 2012... tailor-welded blanks for forming automotive structural components. ... initial investigations suggest that visually acceptable symmetrical welds ...

83

The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process  

Science Conference Proceedings (OSTI)

The objective of this paper is to present an integrated approach using the Taguchi method (TM), grey relational analysis (GRA) and a neural network (NN) to optimize the weld bead geometry in a novel gas metal arc (GMA) welding process. The TM is first ... Keywords: Gas metal arc welding, Grey relational analysis, Neural networks, Taguchi method

Hsuan-Liang Lin

2012-10-01T23:59:59.000Z

84

Program on Technology Innovation: Weld Metals and Welding Processes for Fabrication of Advanced Light Water Reactor Pressure Vessels  

Science Conference Proceedings (OSTI)

Light water reactors have traditionally been constructed using roll-formed plates for the reactor pressure vessel (RPV) shells, which were assembled via horizontal and vertical seam welds. Weld filler metals often contained significant quantities of copper, other residual elements such as vanadium, and nonmetallic elements such as phosphorous and sulfur. Low-alloy steel weld filler metals of this chemical composition contributed to the degree of neutron radiation-induced embrittlement of vessel ...

2013-06-26T23:59:59.000Z

85

Formation of metal oxides by cathodic arc deposition  

DOE Green Energy (OSTI)

Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

1995-03-01T23:59:59.000Z

86

Weld Simulation in X100 Pipeline Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, The effect of gas metal arc weld (GMAW) parameters on the coarse-grain heat-affect zone (CGHAZ) of X100 pipeline steel has been studied by ...

87

Welding of cast A359/SiC/10p metal matrix composites  

E-Print Network (OSTI)

Welding of metal matrix composites (MMCs) is an alternative to their mechanical joining, since they are difficult to machine. Published literature in fusion welding of similar composites shows metallurgical problems. This study investigates the weldability of A359/SiC/10p aluminum SiC MMC. Statistical experiments were performed to identify the significant variables and their effects on the hardness, tensile and bending strengths, ductility, and microstructure of the weld. Finite Element Analysis (FEA) was used to predict the preheat temperature field across the weld and the weld pool temperature. Welding current, welding speed, and the preheat temperature (300-350??C) affected the weld quality significantly. It was seen that the fracture of the welded specimens was either in the base MMC or in the weld indicating a stronger interface between the weld and the base MMC. Oxides formation was controlled along the weld joint. Low heat inputs provided higher weld strengths and better weld integrity. It was found that the weld strengths were approximately 85% of the parent material strength. The weld region had higher extent of uniform mixing of base and filler metal when welded at low currents and high welding speeds. These adequate thermal conditions helped the SiC particles to stay in the central weld region. The interface reaction between the matrix and SiC particles was hindered due to controlled heat inputs and formation of harmful Al4C3 flakes was suppressed. The hardness values were found to be slightly higher in the base metal rich region. There was no significant loss in the hardness of the heat affected zone. The ductility of the weld was considerably increased to 6.0-7.0% due to the addition of Al-Si filler metal.

Kothari, Mitul Arvind

2005-08-01T23:59:59.000Z

88

Filler metal alloy for welding cast nickel aluminide alloys  

SciTech Connect

A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

89

WELDING THIN-WALLED URANIUM CYLINDERS  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The development of a satisfactory process for the fusion welding of thin-walled uranium cylinders is discussed. Optimum results were obtained using the inert-gas shielded-arc method without the use of filler metal. The ductility of the welded joints, however, was lower than that of cast metal. Surface conditions and and the purity of the inert gas used affected the weld soundness. Straight polarity direct current was used for welding to achieve maximum penetration and to provide are stability. Welding must be done in the flat position. (auth)

Brundige, E.L.; Taub, J.M.; Hanks, G.S.; Doll, D.T.

1957-01-01T23:59:59.000Z

90

Technology for the Examination of Boiler Tubing Dissimilar Metal Welds, Revision 1  

Science Conference Proceedings (OSTI)

Until recently, the typical nondestructive evaluation (NDE) detection methods for evaluating dissimilar metal tubing joined by austenitic filler metal welding, induction pressure welding, or nickel-based filler metal welding were the use of liquid penetrant examinations to detect surface cracking and the use of conventional fixed-angle pulse-echo or linear phased array ultrasonic examination to detect subsurface cracking. Radiographic techniques (both conventional and digital) have also been used to ...

2012-10-18T23:59:59.000Z

91

Influence of Metal Ions on the Synthesis of Silver Nanoparticles  

Science Conference Proceedings (OSTI)

Adsorption of Lead and Cadmium onto Natural and Modified Diatomite ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic Pulsed Gas Metal Arc Welding Using ... Tool Failure Criteria while Drilling Titanium Alloys.

92

EPRI P87, A New Filler Material for Dissimilar Metal Welds  

Science Conference Proceedings (OSTI)

Development of Screening Test for Hydrogen Assisted Cracking in Dissimilar Metal Welds · Direct Colloidal Joining and Co-firing for Anode-Supported SOFCs.

93

Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds (MRP-316)  

Science Conference Proceedings (OSTI)

Residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy dissimilar metal (DM) piping butt welds in pressurized water reactors (PWRs). Analytical models are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in turn, have demonstrated a high sen...

2011-12-20T23:59:59.000Z

94

INERT GAS SHIELD FOR WELDING  

DOE Patents (OSTI)

S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

Jones, S.O.; Daly, F.V.

1958-10-14T23:59:59.000Z

95

Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.  

SciTech Connect

Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

Xu, Z. (Nuclear Engineering Division)

2012-04-03T23:59:59.000Z

96

The science and practice of welding. Volume 2: The practice of welding, 10th edition  

SciTech Connect

The book is comprised of 8 chapters that treat the various welding practices, and 11 appendices. Chapter 1 is a good introduction to basic welding (shielded metal arc), and US readers will be able to use this section as a rough guide to British and EN terms. The next three chapters cover MIG, TIG, and resistance welding, while Chapter 5 is titled ''Additional Processes of Welding.'' In that chapter, submerged arc welding is given the most extensive treatment. Chapter 6 and 7 deal with oxyacetylene welding and cutting processes, respectively, and Chapter 8 contains a wonderful introductory treatise on the welding of plastics. Among the 11 appendices, some appear to be little more than advertising. In general, this book is not a college level text for a welding engineer. At best it is a good occasional reference manual for shop owners so that they can appear knowledgeable to the engineers in the employ.

Davies, A.C.

1993-01-01T23:59:59.000Z

97

Effects of weld metal profile on the fatigue life of integrally reinforced weld-on fittings  

SciTech Connect

The cyclic fatigue life of fabricated tee intersections, including integrally reinforced weld-on fittings, has been a topic of discussion in the recent past. The discussion has centered around questions concerning the accuracy of the ASME B31.3 Code equations in calculating the stress intensification factors, (SIFs), for these types of intersection geometries. The SIF of an intersection is an indicator of the fatigue life of the intersection when it is subjected to bending moments caused by thermal, flow, or mechanically induced cyclical displacements. Schneider, Rodabaugh, and Woods concur that inaccuracies in the Code SIF equations do exist and that these equations should be revised. This report presents new Markl type SIF data on the B.W.Pipet (BWP), an integrally reinforced weld-on branch fitting, manufactured by WFI International, Inc., in Houston, Texas. The scope of this research project was to determine the influence of the installation weld metal profile of the Pipet to the run pipe on the SIF. The SIF data were then compared to calculated SIF values using equations from the American Society of Mechanical engineers (ASME) B31.1, ASME B31.3, and ASME Section 3, Subsection NC, for the purpose of determining which Code equation may be the most appropriate for calculating the SIF for these particular fittings.

Woods, G.E. (M.W. Kellogg Co., Houston, TX (United States)); Rodabaugh, E.C. (Rodabaugh (E.C.), Dublin, OH (United States))

1994-06-01T23:59:59.000Z

98

Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents (OSTI)

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

Byrne, Stephen C. (Monroeville, PA); Vasudevan, Asuri K. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

99

FUSION WELDING METHOD AND APPARATUS  

DOE Patents (OSTI)

An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

Wyman, W.L.; Steinkamp, W.I.

1961-01-17T23:59:59.000Z

100

Structure/property relationships in multipass GMA welding of beryllium.  

SciTech Connect

Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

102

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

1995-12-31T23:59:59.000Z

103

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

1997-04-01T23:59:59.000Z

104

High-bandwidth continuous-flow arc furnace  

DOE Patents (OSTI)

A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

Hardt, D.E.; Lee, S.G.

1996-08-06T23:59:59.000Z

105

Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation  

Science Conference Proceedings (OSTI)

The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

2012-06-28T23:59:59.000Z

106

High power X-ray welding of metal-matrix composites  

DOE Patents (OSTI)

A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

1997-12-01T23:59:59.000Z

107

High power x-ray welding of metal-matrix composites  

DOE Patents (OSTI)

A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

Rosenberg, Richard A. (Naperville, IL); Goeppner, George A. (Orland Park, IL); Noonan, John R. (Naperville, IL); Farrell, William J. (Flossmoor, IL); Ma, Qing (Westmont, IL)

1999-01-01T23:59:59.000Z

108

Characterization of Defocused Electron Beams and Welds in Stainless Steel and Refractory Metals using the Enhanced Modified Faraday Cup Diagnostic  

Science Conference Proceedings (OSTI)

As the first part of a project to compare new generation, continuous wave, laser welding technology to traditional electron beam welding technology, electron beam welds were made on commercially pure vanadium refractory metal and 21-6-9 austenitic stainless steel. The electron beam welds were made while employing EB diagnostics to fully characterize the beams so that direct comparisons could be made between electron beam and laser beams and the welds that each process produces.

Elmer, J W

2009-01-23T23:59:59.000Z

109

Exploiting welding in production technology. International conference held at London, 22--24 April, 1975. Volume 1. Papers  

SciTech Connect

Twenty-eight papers are included, grouped into sessions dealing with arc welding, inspection, weld preparation, positional welding, measurement and removal of welding fume, electron-beam welding, vacuum brazing, arc plasma process, and resistance and microfriction welding. (DLC)

1975-01-01T23:59:59.000Z

110

Weld Overlay Claddings by Gas-metal-arc Welding Process for ...  

Science Conference Proceedings (OSTI)

... Process for Extending Plant Lives in Power Generation, Refinery & Petrochemical, ... and coal-fired boilers, and on vessels in refinery and pulp & paper plants.

111

Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references  

SciTech Connect

Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

Grotke, G.E.

1980-04-01T23:59:59.000Z

112

Welding  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Return to RoboCrane Home. RoboCrane. Welding Application. (click on the photo to enlarge the image). ...

2011-08-10T23:59:59.000Z

113

Multi-cathode metal vapor arc ion source  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

1988-01-01T23:59:59.000Z

114

Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach  

Science Conference Proceedings (OSTI)

The present study highlights application of Taguchi's robust design coupled with fuzzy based desirability function approach for optimizing multiple bead geometry parameters of submerged arc weldment. Fuzzy inference system has been adapted to avoid uncertainly, ... Keywords: Desirability function, Fuzzy logic, SAW, Taguchi's robust design

Ankita Singh; Saurav Datta; Siba Sankar Mahapatra; Tapan Singha; Gautam Majumdar

2013-02-01T23:59:59.000Z

115

Application of Cold Metal Transfer Process for Structural Weld ...  

Science Conference Proceedings (OSTI)

... heat treatment of closure welds in oil and gas, and petrochemical applications. ... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, ...

116

Ductile filler metal alloys for welding nickel aluminide alloys  

DOE Patents (OSTI)

Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

2003-04-08T23:59:59.000Z

117

Improvement of Mechanical Property in Weld Metal Formed with F ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

118

Fatique Resistant, Energy Efficient Welding Program, Final Technical Report  

SciTech Connect

The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

Egland, Keith; Ludewig, Howard

2006-05-25T23:59:59.000Z

119

Pressure Resistance Welding of High Temperature Metallic Materials  

Science Conference Proceedings (OSTI)

Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

2010-10-01T23:59:59.000Z

120

Pressure Resistance Welding of High Temperature Metallic Materials  

SciTech Connect

Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

Larry Zirker; Craig Tyler

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Refractory metal welding using a 3.3 kW diode pumped Nd:YAG laser.  

SciTech Connect

Recent developments in multi-kilowatt continuous wave lasers allow fiber optic delivery to high-purity controlled atmosphere chambers and challenge electron beam welding with improvements in cost, complexity, beam quality and flexibility. Questions remain with respect to the performance of these lasers for refractory alloy welding regarding damaging back reflections, laser-plume interactions, and sufficiency of beam intensity and coupled energy. System performance for the welding of various refractory metal alloys and comparisons to electron beam welds will be presented.

Carpenter, R. W. (Robert W.); Piltch, M. S. (Martin S.); Nemec, R. B. (Ronald B.); Milewski, J. O. (John O.)

2001-01-01T23:59:59.000Z

122

Method for laser welding ultra-thin metal foils  

SciTech Connect

A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1996-01-01T23:59:59.000Z

123

Upgraded HFIR Fuel Element Welding System  

Science Conference Proceedings (OSTI)

The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

Sease, John D [ORNL

2010-02-01T23:59:59.000Z

124

Method of beam welding metallic parts together and apparatus for doing same  

DOE Patents (OSTI)

The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

Lewandowski, Edward F. (Westmont, IL); Cassidy, Dale A. (Valparaiso, IN); Sommer, Robert G. (Lemont, IL)

1987-01-01T23:59:59.000Z

125

Method of beam welding metallic parts together and apparatus for doing same  

DOE Patents (OSTI)

This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

1985-11-29T23:59:59.000Z

126

Implementation of an Outer Can Welding System for Savannah River Site FB-Line  

Science Conference Proceedings (OSTI)

This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.

Howard, S.R.

2003-03-27T23:59:59.000Z

127

Repair Methods for Dissimilar Metal Welds: Development, Weldability, and Properties of EPRI P87 Solid Wire Filler Metal  

Science Conference Proceedings (OSTI)

Dissimilar metal welds (DMWs) between ferritic and austenitic materials have concerned boiler manufacturers and operators for decades because of the proven potential for premature failure. The industry has desired an improved filler metal that would minimize or eliminate DMW failures and, with the current trend toward higher boiler steam pressures and temperatures, have suitable creep strength for joining higher strength materials such as Grade 91 steels. After years of research, the Electric Power Resea...

2011-12-23T23:59:59.000Z

128

Laser Welding of Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

welding is particularly suited to the high-production rate requirements in the automobile industry. Some automotive exhaust components use 409 stainless steel and are currently arc...

129

A Manufacturing Strategy for the Assembly of Bi-Metallic ...  

Science Conference Proceedings (OSTI)

The Effect of Flux Coating Modification of ENiCrMo-4 and ENiMo-10 Shielded Metal Arc Welding Consumables · Use of Scrap Tire Derived Geomaterials in the  ...

130

Materials Reliability Program: Primary Water Stress Corrosion Testing of Alloys 690 and Weld Metals -- An Update (MRP-309)  

Science Conference Proceedings (OSTI)

Primary water stress corrosion cracking (PWSCC) continues to cause increased costs for operation, maintenance, assessment, and repair of thick-walled, pressurized water reactor (PWR) components made of Alloy 600 and its weld metals Alloys 182 and 82. Thick-section Alloy 690 and its weld metals (Alloys 52, or 52M, and 152) are now being widely used, particularly for nozzle penetrations during replacement of RPV heads and for repairs to other components in the primary system. Three reports have already bee...

2011-12-13T23:59:59.000Z

131

Electron and laser beam welding  

SciTech Connect

This book contains 22 selections. Some of the titles are: Laser welding of chandelles to the plates of the sommier employed in the nuclear power plant core; Electron beam welding of hobbing cutters; Sealing welds in electron beam welding of thick metals; Development and application of high power electron beam welding; Electron beam welding of dissimilar metals (niobium, molybdenum, porous tungsten-molybdenum); Status of electron beam welding in the United States of America; and Electron and laser beam welding in Japan.

1986-01-01T23:59:59.000Z

132

Nondestructive Evaluation: Procedure for Manual Phased Array Ultrasonic Testing (UT) of Dissimilar Metal Welds (DMW)  

Science Conference Proceedings (OSTI)

Dissimilar metal weld (DMW) piping joints in nuclear power plants must be examined periodically using ultrasonic examination technology. Phased array ultrasonic technology has recently become available in a handheld, portable configuration. This technology could increase the speed of the examinations, save costs, reduce radiation exposure, and decrease the cost and difficulty of qualifying personnel to perform the examination. The Electric Power Research Institute (EPRI) recently developed an ultrasonic ...

2008-09-16T23:59:59.000Z

133

Stress corrosion cracking of type 304L stainless steel core shroud welds.  

SciTech Connect

Microstructural analyses by advanced metallographic techniques were conducted on mockup welds and a cracked BWR core shroud weld fabricated from Type 304L stainless steel. heat-affected zones of the shroud weld and mockup shielded-metal-arc welds were free of grain-boundary carbide, martensite, delta ferrite, or Cr depletion near grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the welds were significantly contaminated by fluorine and oxygen which migrate to grain boundaries. Significant oxygen contamination promotes fluorine contamination and suppresses classical thermal sensitization, even in Type 304 steels. Results of slow-strain-rate tensile tests indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of Type 304L stainless steel core shroud welds.

Chung, H. M.; Park, J.-H.; Sanecki, J. E.; Zaluzec, N. J.; Yu, M. S.; Yang, T. T.

1999-10-26T23:59:59.000Z

134

Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute  

SciTech Connect

Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of {approx}99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed.

MJ Lambert

2005-11-18T23:59:59.000Z

135

Plasma arc torch with coaxial wire feed  

SciTech Connect

A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

Hooper, Frederick M (Albuquerque, NM)

2002-01-01T23:59:59.000Z

136

WELDING METHOD  

DOE Patents (OSTI)

A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

1959-09-29T23:59:59.000Z

137

Argonne Transportation - Weld Monitor at DaimlerChrysler  

NLE Websites -- All DOE Office Websites (Extended Search)

Evanecky, area technical manager at ITP. Throughout the automotive industry, laser welding has been rapidly overtaking traditional arc welding technology as the state of the...

138

Electrospark Welding of Nanostructured Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Nanomaterials possess a microstructural length scale in at least ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

139

TUNGSTEN-ARC WELDING OF THE TANTALUM IS FOUND TO BE THE MOST VERSATILE WELDING METHOD FOR JOINING THIS MATERIAL: BUT GREATER PREPARATION IS REQUIRED TO PROVIDE GOOD PROTECTION AND QUICK CHILLING  

SciTech Connect

The mechanical and welding properties of tantalum are given and welding processes are reviewed. Various types of shielding, machine welding equipment, and closed chambers for welding in an inert gas are compared. A variety of operating conditions under which tantalum can be welded is discussed. (C.J.G.)

Haslip, L.R.; Payne, B.S.

1959-12-01T23:59:59.000Z

140

Method of automatically welding with a non-consumable electrode  

DOE Patents (OSTI)

A method for maintaining a constant arc gap between the electrode and the weld puddle by controlling the addition of filler wire based on the arc voltage.

Kiefer, Joseph H. (Tampa, FL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Experiments on automatic seam detection for a MIG welding robot  

Science Conference Proceedings (OSTI)

To make robotic welding more flexible, vision systems are used to detect the weld seam and plan a path for the robot to follow. In this paper an image processing technique is introduced that can automatically detect the weld seam in a "butt-weld" configuration. ... Keywords: arc welding robot, stereo vision, weld seam detection

Mitchell Dinham; Gu Fang; Jia Ju Zou

2011-09-01T23:59:59.000Z

142

CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS  

Science Conference Proceedings (OSTI)

Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions, defect characteristics and weld residual strains were examined by optical metallography, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Industry-supplied mock-up welds were characterized including alloy 52 and 152 weldments, alloy 52M overlay and inlay welds, and an alloy 52 overlay. II. WELDMENTS II.A. Alloy 52 and 152 Weld Mockups The alloy 52 and 152 weld mockups were fabricated by MHI for the Kewaunee reactor and were obtained from the EPRI NDE Center. The mockups were U-groove welds joining two plates of 304SS as shown in Figure 1. Alloy 152 butter (heat 307380) was placed on the U-groove surface for both mockups by shielded metal arc welding (SMAW). For the alloy 152 weld mockup, the alloy 152 fill (heat 307380) was also applied using SMAW while for the alloy 52 weld mockup, the alloy 52 fill (heat NX2686JK) was applied using gas tungsten arc welding (GTAW). Welding parameters for the fill materials were substantially different with the alloy 152 SMAW having a deposition speed of 4-25 cm/min with a current of 95-145 A and the alloy 52 GTAW having a deposition speed of 4-10 cm/min with a current of 150-300 A. One prominent feature in these mockup welds is the presence of a crack starting at the 304SS butt joint at the bottom of the U-groove and extending up into the weld. It appears that the 304SS plate on either side of the butt joint acted as an anchor for the weld resulting in a stress rise across the slit that drove crack formation and extension up into the fill weld. As will be shown in the next section, the extent of the cracking around this stress riser was much greater in the MHI 52 weld mockup.

Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

2009-08-27T23:59:59.000Z

143

Exploiting welding in production technology. International conference held at London, 22--24 April, 1975. Volume 2. Discussions  

SciTech Connect

This volume contains the discussions which follow the papers that appear in Volume 1 (CONF-7504106-P1). Arc welding, inspection, positional welding, fumes, electron beam, vacuum brazing, arc plasma, resistance and microfriction welding are discussed. (DLC)

1975-01-01T23:59:59.000Z

144

WELDED JACKETED URANIUM BODY  

DOE Patents (OSTI)

A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

Gurinsky, D.H.

1958-08-26T23:59:59.000Z

145

Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station  

SciTech Connect

During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

2012-06-01T23:59:59.000Z

146

ELEMENTS OF JOINT DESIGN FOR WELDING  

SciTech Connect

The design of joints which are to be fusion welded by any of the arc or gas processes is discussed. The designs are applicable to either manual or machine welding. (A.C.)

Koopman, K.H.

1958-06-01T23:59:59.000Z

147

Welding of Al- and Mg-alloys  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Joining of Advanced and Specialty Materials (JASM XIV): Welding of Al- and ... Do and Don't for Arc Welding of Aluminum: Israel Stol1; 1Alcoa

148

Materials Reliability Program: Loading Effects on the Low-Temperature Crack Propagation Phenomenon in 182 Weld Metal in a Pressurize d Water Reactor Environment (MRP-285)  

Science Conference Proceedings (OSTI)

This report summarizes results of a study of loading effects on the low-temperature crack propagation (LTCP) phenomenon in 182 weld metal in a pressurized water reactor (PWR) environment.

2010-12-20T23:59:59.000Z

149

Intelligent Control of Modular Robotic Welding Cell  

SciTech Connect

Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

2002-04-01T23:59:59.000Z

150

Nondestructive Evaluation Improvement Focus Group Extent of Condition Actions in Response to North Anna Dissimilar Metal Weld Operating Experience  

Science Conference Proceedings (OSTI)

The Nondestructive Evaluation (NDE) Improvement Focus Group (NIFG) was formed to address NDE improvement and extent of condition actions in response to North Anna dissimilar metal weld operating experience. The operating experience occurred early in 2012 and involved the missed detection of significant flaws during ultrasonic examinations performed according to the ASME Boiler and Pressure Vessel Code, Section XI, Appendix VIII, Supplement 10. As appropriate, the NIFG products are to be ...

2013-02-15T23:59:59.000Z

151

Short-Crack Response of Alloy 182 Weld Metal Undergoing Stress Corrosion Cracking in High-Temperature PWR Primary Water  

Science Conference Proceedings (OSTI)

Mechanistic investigations of environmentally assisted cracking (EAC), to date, have focused more on propagation relative to initiation. At the same time, components spend most of their life in the initiation and "short-crack" growth regimes. Prior exploratory work conducted at General Electric Global Research Center (GE GRC) showed that stainless steels, Alloy 600, and Alloy 182 weld metal exhibit lower average growth rates when the cracks are very short or small (1050 m). In those tests, the transition...

2008-10-31T23:59:59.000Z

152

Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750  

Science Conference Proceedings (OSTI)

The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H{sub 2}SO{sub 4} media.

Tavares, S.S.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)]. E-mail: ssmtavares@terra.com.br; Pardal, J.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Lima, L.D. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Bastos, I.N. [Universidade do Estado do Rio de Janeiro (UERJ), Instituto Politecnico (IPRJ), Nova Friburgo/RJ (Brazil); Nascimento, A.M. [Universidade Estadual de Campinas (UNICAMP), Departamento de Engenharia Mecanica, Campinas/SP (Brazil); Souza, J.A. de [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)

2007-07-15T23:59:59.000Z

153

WELDING PROCESS  

DOE Patents (OSTI)

A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

Zambrow, J.; Hausner, H.

1957-09-24T23:59:59.000Z

154

Improvement of reliability of welding by in-process sensing and control (development of smart welding machines for girth welding of pipes). Final report  

SciTech Connect

Closed-loop control of the welding variables represents a promising, cost-effective approach to improving weld quality and therefore reducing the total cost of producing welded structures. The ultimate goal is to place all significant weld variables under direct closed-loop control; this contrasts with preprogrammed machines which place the welding equipment under control. As the first step, an overall strategy has been formulated and an investigation of weld pool geometry control for gas tungsten arc process has been completed. The research activities were divided into the areas of arc phenomena, weld pool phenomena, sensing techniques and control activities.

Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

1983-04-01T23:59:59.000Z

155

Materials Reliability Program: Testing the Resistance to Stress Corrosion Cracking of Alloy 690 and its Weld Metal in Supercritical Boron/Lithium/H2 Solutions (MRP-225)  

Science Conference Proceedings (OSTI)

Although alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in PWRs due to their resistance to general corrosion in a number of aggressive environments, stress corrosion cracking in PWR primary water (PWSCC) has been observed over the last thirty years in numerous Alloy 600 components and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. Component repairs and repla...

2007-11-19T23:59:59.000Z

156

Stress corrosion cracking of austenitic stainless steel core internal welds.  

SciTech Connect

Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

1999-04-14T23:59:59.000Z

157

Effects of thermal aging on Stress Corrosion Cracking and mechanical properties of stainless steel weld metals  

E-Print Network (OSTI)

Stress Corrosion Cracking (SCC) in and around primary loop piping welds in Boiling Water Reactors has been observed worldwide as plants continue to operate at temperatures and pressures near 2880C (5500F) and 6.9 MPa (1000 ...

Hixon, Jeff

2006-01-01T23:59:59.000Z

158

Simultaneous laser cutting and welding of metal foil to edge of a plate  

DOE Patents (OSTI)

A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1996-01-01T23:59:59.000Z

159

Welding industry. Potential for energy conservation  

SciTech Connect

An estimate is presented of the annual primary energy consumption by welding processes in the US, as 3.2 to 8.8 x 10/sup 16/J (3.0 to 8.4 x 10/sup 13/ Btu), and energy conservation opportunities are discussed. The estimate has been confined to the primary energy required to actually produce coalescence. Indirect energy consumption - such as that for joint preparation, preheat, postweld heat treatment, fume removal, or other operations required by welding - has been discussed but not included in the total. The heat content of fuels used in most US power plants is termed primary energy, and it is the amount of primary energy required for welding that is estimated in this work. Welding processes have been categorized as follows: those for which energy consumption may be related to use of consumable materials, those for which it may be related to quantity of manufactured product, those for which it may be related to the number of welding machines, and those for which only limited data are available. Methodologies have been developed to estimate the energy consumption for the first three categories. The major consumers of welding energy are oxyfuel gas welding, arc welding, and resistance welding. It is significant that arc welding accounts for over 90% of electrode and filler wire consumption, yet oxyfuel gas welding accounts for about 47% of energy consumption. Arc welding consumes about 39%, and resistance welding less than 15% of the total welding energy.

Smartt, H.B.; Hood, D.W.; Jensen, W.P.

1980-04-01T23:59:59.000Z

160

Novel Optimization Methodology for Welding Process/Consumable Integration  

Science Conference Proceedings (OSTI)

Advanced materials are being developed to improve the energy efficiency of many industries of future including steel, mining, and chemical, as well as, US infrastructures including bridges, pipelines and buildings. Effective deployment of these materials is highly dependent upon the development of arc welding technology. Traditional welding technology development is slow and often involves expensive and time-consuming trial and error experimentation. The reason for this is the lack of useful predictive tools that enable welding technology development to keep pace with the deployment of new materials in various industrial sectors. Literature reviews showed two kinds of modeling activities. Academic and national laboratory efforts focus on developing integrated weld process models by employing the detailed scientific methodologies. However, these models are cumbersome and not easy to use. Therefore, these scientific models have limited application in real-world industrial conditions. On the other hand, industrial users have relied on simple predictive models based on analytical and empirical equations to drive their product development. The scopes of these simple models are limited. In this research, attempts were made to bridge this gap and provide the industry with a computational tool that combines the advantages of both approaches. This research resulted in the development of predictive tools which facilitate the development of optimized welding processes and consumables. The work demonstrated that it is possible to develop hybrid integrated models for relating the weld metal composition and process parameters to the performance of welds. In addition, these tools can be deployed for industrial users through user friendly graphical interface. In principle, the welding industry users can use these modular tools to guide their welding process parameter and consumable composition selection. It is hypothesized that by expanding these tools throughout welding industry, substantial energy savings can be made. Savings are expected to be even greater in the case of new steels, which will require extensive mapping over large experimental ranges of parameters such as voltage, current, speed, heat input and pre-heat.

Quintana, Marie A; DebRoy, Tarasankar; Vitek, John; Babu, Suresh

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fusion Welding of AerMet 100 Alloy  

SciTech Connect

A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

1999-08-01T23:59:59.000Z

162

Effect of multiple repairs in girth welds of pipelines on the mechanical properties  

Science Conference Proceedings (OSTI)

This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases.

Vega, O.E.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, Laboratorios Pesados de Metalurgia, UPALM, Zacatenco, C.P. 07738, Mexico D.F. (Mexico); Villagomez, A. [Construcciones Maritimas Mexicanas, CMM-PROTEXA, Av. Periferica s/n, Fracc. Lomas de Holche, C.P. 24120, Cd. del Carmen, Campeche (Mexico); Contreras, A. [Instituto Mexicano del Petroleo, Investigacion en Ductos, Corrosion y Materiales, Eje Central Lazaro Cardenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730, Mexico D.F. (Mexico)], E-mail: acontrer@imp.mx

2008-10-15T23:59:59.000Z

163

Mechanized welding in a glove box  

SciTech Connect

An orbital-tungsten-arc welding gun was installed in a helium glove box to automatically weld final end closures to capsules that were to contain an atmosphere of required composition and quality. A fixture, tooling, and procedures were developed to automatically position the tungsten electrode repetitively with respect to the end of the tube to be welded closed. (auth)

Pugacz, M.A.; Walker, D.E.

1975-10-01T23:59:59.000Z

164

TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS  

DOE Green Energy (OSTI)

Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high-energy-rate forged are needed for designing and establishing longer tritium-reservoir lifetimes, ranking materials, and, potentially, for qualifying new forging vendors or processes. Measurements on the effects of tritium and decay helium on the fracture toughness properties of CF stainless steels having similar composition, grain size, and mechanical properties to previously studied HERF steels are needed and have not been conducted until now. The compatibility of stainless steel welds with tritium represents another concern for long-term reservoir performance. Weldments have not been well-characterized with respect to tritium embrittlement, although a recent study was completed on the effect of tritium and decay helium on the fracture toughness properties of Type 304L weldments. This study expands the characterization of weldments through measurements of tritium and decay helium effects on the fracture toughness properties of Type 21-6-9 stainless steel. The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for conventional forgings and weldments in the non-charged, hydrogen-charged and tritium-charged-and-aged conditions.

Morgan, M.

2009-07-30T23:59:59.000Z

165

Crack growth rates of nickel alloy welds in a PWR environment.  

Science Conference Proceedings (OSTI)

In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

2006-05-31T23:59:59.000Z

166

GTAW Flux-Cored Wires for Open Root SS Welding  

Science Conference Proceedings (OSTI)

Gas tungsten arc welding (GTAW) procedures for stainless steel open root welding applications typically require purging or shielding with an inert gas (i.e. argon), during the root and subsequent hot passes, to assist with wetting and to prevent atmospheric contamination of the exposed surface. Lack of adequate purging, or welding without a purge, typically results in weld defects both on the surface and within the weld deposit, such as porosity and poor bead profile. Poor root weld profile such as lack-...

2004-06-11T23:59:59.000Z

167

Welding and Repair Technology Center: High Chromium Ni-base Filler Metal Evaluation using the Strain-to-Fracture Test Method  

Science Conference Proceedings (OSTI)

Higher chromium, nickel-base alloys (2830% Cr) have been promoted for weld overlay applications, new construction, and applications to replace 82/182 filler material. New alloys developed to meet the required Cr levelincluding filler metal 52 (ERNiCrFe-7) and later heats of filler metal 52M (ERNiCrFe-7a)did not have the same weldability as its predecessor 82 (ERNiCrFe-3). A key welding issue was ductility dip cracking (DDC), which is the result of low grain boundary strength at high temperatures. DDC res...

2008-12-19T23:59:59.000Z

168

Materials Reliability Program: Effects of Dissolved Hydrogen, Temperature, and Hydrogen Peroxide on Low Temperature Crack Propagation (LTCP) Fracture Resistance of Weld Metals 182, 52, and 152 (MRP-209)  

Science Conference Proceedings (OSTI)

Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 600 nozzles and its weld metals 182 and 82 was first experienced domestically in control rod drive mechanisms at Oconee units and in reactor vessel hot leg nozzles at V.C. Summer station. Publications by Bettis Laboratory have shown nickel-base alloys X-750 and 690 and weld metals 82 and 52 to be susceptible to a reduction in fracture resistance thought to be due to a hydrogen cracking mechanism called low temperature crack propagation (LTCP). Thes...

2007-12-13T23:59:59.000Z

169

Addition of Electric Arc Furnace Dust in Hot Metal at a Temperature ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

170

Experimental Study on Friction Welding of 6063 Aluminium Alloy ...  

Science Conference Proceedings (OSTI)

Friction pressure, upset pressure, burn-off length is varied and rotational speed and ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

171

WELDABILITY AND WELDING TECHNOLOGY OF MAGNESIUM ALLOYS  

SciTech Connect

The peculiarities of welding of Mg alloys, protection of Mg during the welding, reduction of the metal weld seam, difficulties during welding, general characteristic of the weldability of alloys of various systems (Mg-Mn, Mg-AlZn, Mg- Zn- Zr, Mn- Zr-rare earth metals), the tendency of the alloys for crack formation during welding, mechanical properties and structure of weld joints, the effect of some technological factors on the strength of the weld joint of deformable alloys, fluxes and coatings for welding, the welding technology for deformable Mg alloys, and casts in removal of defects (protective gases used and sources of current supply, preparation of the details for the welding, selection of the addition material and welding conditions, technique and technology of welding parts and casts, control, and correction of defects) are discussed. (Referativnyy zhurnal, Metallurgiya, No. 6, 1962)

Shpagin. B.V.

1961-01-01T23:59:59.000Z

172

Welding and Repair Technology Center: Development of Improved Weld Heat Input and Dilution Equations for Consumable Welding Processes  

Science Conference Proceedings (OSTI)

Predicting heat input into the substrate and weld dilution for consumable welding processes is a challenge due to the number of variables associated with these processes. Proper heat input and power ratio controls are critical to control weld dilution, particularly in dissimilar metal welds where low weld dilution is necessary to prevent solidification cracking or for cladding where weld dilution is minimized to maintain corrosion resistance of the clad material. This report discusses the ...

2013-11-27T23:59:59.000Z

173

Gas tungsten arc welder with electrode grinder  

DOE Patents (OSTI)

A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA)

1984-01-01T23:59:59.000Z

174

Prediction of ? Phase Embrittlement in 316FR Stainless Steel Welds ...  

Science Conference Proceedings (OSTI)

... fast breeder reactors was examined for 316FR stainless steel welds with different ... Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at Low ...

175

Certain aspects of the melting, casting and welding of Ni{sub 3}Al alloys  

Science Conference Proceedings (OSTI)

Two alloys under development for castings are IC221M, (nominal composition Ni-8Al-7.7Cr-1.4Mo-1.7Zr wt %), and IC396M (nominal composition Ni-8Al-7.7Cr-3Mo-0.85Zr wt %). These alloys can be melted and cast using the techniques normally used for Ni-based materials. Oxidation of the liquid alloys can be controlled by vacuum processing or inert gas cover during processing. The liquid alloys can react with silica and zircon sands during casting, but this can be controlled through the use of appropriate mold washes like carbon-based materials. Welding studies showed that these alloys are susceptible to solidification cracking in weld fusion zones; the cracks are generally associated with occurrence of Ni-Ni{sub 5}Zr eutectic in interdendritic regions of the weld. Amount of eutectic in the weld microstructures increases with Zr concentration in weld filler metal. Weld filler metal Zr concentrations of 3 wt % and higher prevented solidification cracking of weld deposits on the base casting alloys; This is consistent with accepted phenomonological theory of this process. A weld filler metal with a composition of Ni-8Al-7.7Cr-1.5Mo-3.0Zr wt % was prepared and used to gas tungsten arc weld together 15-mm-thick plates of the IC221M alloy. This weldment was free of cracks. Weldment tensile specimens were machined from the plate and tested at 21, 800, and 900 C. Weldment yield strength at elevated temperatures was higher than room temperature and nearly comparable with that of the base IC221M alloy. Evaluation of the cast Ni{sub 3}Al alloys for furnace furniture, turbocharger rotors, and manufacturing tooling is also briefly discussed.

Santella, M.L.; Sikka, V.K.

1994-06-01T23:59:59.000Z

176

Intermediate temperature grain boundary embrittlement in nickel-base weld metals.  

E-Print Network (OSTI)

??The ductility-dip cracking (DDC) susceptibility of NiCrFe filler metals was evaluated using the strain-to-fracture (STF) Gleeble(R)-based testing technique. These high chromium Ni-base filler metals are… (more)

Nissley, Nathan E

2006-01-01T23:59:59.000Z

177

Static and Fatigue Strength of Dissimilar Al/Steel Spot Welds by ...  

Science Conference Proceedings (OSTI)

Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at Low Dilution · Application of Cold Metal Transfer Process for Structural Weld Overlays and ...

178

Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II  

Science Conference Proceedings (OSTI)

The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

2010-12-22T23:59:59.000Z

179

Welding and Repair Technology Center: Evaluation of Magnetic Stir Welding for Improved Weldability of 52M  

Science Conference Proceedings (OSTI)

Nickel-base weld metals with high chromium content, such as 52M, provide optimum resistance to stress corrosion cracking in nuclear power primary water systems. Unfortunately, these nickel-base weld metals present many challenges such as less than ideal weldability and susceptibility to hot cracking or solid-state cracking depending on welding conditions and dilution effects with dissimilar metals. Moreover, the presence of large solidification grains, typical of nickel-base weld metal, makes ...

2012-10-30T23:59:59.000Z

180

Spot Welding of Automotive Steels and Light Metals by Friction Bit ...  

Science Conference Proceedings (OSTI)

... and light metals in automotive manufacturing is difficult, because of incompatibility of these alloys during fusion. ... Recent Trends in Cold Spray Technology.

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feature based cost and carbon emission modelling for wire and arc additive manufacturing.  

E-Print Network (OSTI)

??The wire and arc additive manufacturing (WAAM) is a CNC and welding deposition based additive manufacturing method. This novel manufacturing technique has potential cost and… (more)

Guo, Jianing

2012-01-01T23:59:59.000Z

182

Materials Reliability Program: Primary Water Stress Corrosion Cracking of Cold-Worked Alloy 690 Control Rod Drive Mechanism Tube Mat erial and Weld Metals Alloy 52 and 152 (MRP-340)  

Science Conference Proceedings (OSTI)

Primary water stress corrosion cracking (PWSCC) continues to cause increased costs for operation, maintenance, assessment, and repair of thick-walled pressurized water reactor (PWR) components made of Alloy 600 and its weld metals Alloys 182 and 82. Thick-section Alloy 690 and its weld metals (Alloys 52 [(or 52M] and 152) are now being widely used, particularly for nozzle penetrations during the replacement of reactor pressure vessel (RPV) heads and for repairs to other components in the primary ...

2012-10-17T23:59:59.000Z

183

Applications of explosion-welded transition joints  

SciTech Connect

Explosion welding is presented as an alternate process of joining dissimilar metals. The process is compared with brazing, the most appropriate process for comparison, and the bond zone obtained through explosion welding is characterized. Several applications are described where transition joints were made from explosion-bonded dissimilar-metal combinations for subsequent assembly through fusion welding.

Popoff, A.A.; Casey, H.

1977-01-01T23:59:59.000Z

184

Materials Reliability Program: Advanced FEA Evaluation of Growth of Postulated Circumferential PWSCC Flaws in Pressurizer Nozzle Dis similar Metal Welds (MRP-216, Rev. 1)  

Science Conference Proceedings (OSTI)

Indications of circumferential flaws in the pressurizer nozzles at Wolf Creek raised questions about the need to accelerate refueling outages or take mid-cycle outages at other plants. This study demonstrates the viability of leak detection as a means to preclude the potential for rupture for the pressurizer nozzle dissimilar metal (DM) welds in a group of nine PWRs originally scheduled to perform performance demonstration initiative (PDI) inspection or mitigation during the spring 2008 outage season. Mo...

2007-08-10T23:59:59.000Z

185

Materials Reliability Program: Advanced FEA Evaluation of Growth of Postulated Circumferential PWSCC Flaws in Pressurizer Nozzle Dis similar Metal Welds (MRP-216)  

Science Conference Proceedings (OSTI)

Indications of circumferential flaws in the pressurizer nozzles at Wolf Creek raised questions about the need to accelerate refueling outages or take mid-cycle outages at other plants. This study demonstrates the viability of leak detection as a means to preclude the potential for rupture for the pressurizer nozzle dissimilar metal (DM) welds in a group of nine PWRs originally scheduled to perform performance demonstration initiative (PDI) inspection or mitigation during the spring 2008 outage season. Mo...

2007-08-02T23:59:59.000Z

186

Repair welding of fusion reactor components  

SciTech Connect

Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

Chin, B.A.

1993-05-15T23:59:59.000Z

187

Method for enhanced control of welding processes  

DOE Patents (OSTI)

Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

Sheaffer, Donald A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA); Tung, David M. (Livermore, CA); Schroder, Kevin (Pleasanton, CA)

2000-01-01T23:59:59.000Z

188

Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel [Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals > Laser Welding of Metals > Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Zhiyue Xu Nuclear Engineering Division of Argonne National Laboratory

189

Narrow groove welding gas diffuser assembly and welding torch  

DOE Patents (OSTI)

A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

Rooney, Stephen J.

2000-02-04T23:59:59.000Z

190

Narrow groove welding gas diffuser assembly and welding torch  

DOE Patents (OSTI)

A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

Rooney, Stephen J. (East Berne, NY)

2001-01-01T23:59:59.000Z

191

Filtered cathodic arc source  

DOE Patents (OSTI)

Disclosed is a continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45{degrees} to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

Falabella, S.; Sanders, D.M.

1992-12-31T23:59:59.000Z

192

Filtered cathodic arc source  

DOE Patents (OSTI)

A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

Falabella, S.; Sanders, D.M.

1994-01-18T23:59:59.000Z

193

Influence of Thermal Aging on the Mechanical and Corrosion Properties of C-22 Alloy Welds  

DOE Green Energy (OSTI)

The phase stability of C-22 alloy (UNS No. N06022) gas tungsten arc welds was studied by aging samples at 427, 482, 538, 593, 649, 704, and 760 C for times up to 40,000 hours. The tensile properties and the Charpy impact toughness of these samples were measured in the as-welded condition as well as after aging. The corrosion resistance was measured using standard immersion tests in acidic ferric sulfate (ASTM G 28 A) and 2.5% hydrochloric acid solutions at the boiling point. The microstructures of weld samples were examined using scanning electron microscopy (SEM). One weld sample (aged 40,000 hours at 427 C) was examined using transmission electron microscopy (TEM). The structure of the unaged welds was dendritic with tetrahedrally close-packed (TCP) phase particles in the interdendritic regions. Long-range order was seen in the weld aged at 427 C for 40,000 hours and was assumed to also occur in other welds aged below approximately 600 C. At temperatures above about 600 C, TCP phase nucleation and growth of existing particles occurred. This precipitation occurred near the original particles presumably in regions of the highest molybdenum (Mo) segregation. Lower temperatures had little or no effect on the morphology of TCP phases. The C-22 weld samples were approximately 25% stronger but 30-40% less ductile than the base metal. Strengthening of the weld during aging occurred significantly only at 593 C for the aging times investigated. Because strengthening was not seen at higher temperatures, it was assumed to be due to ordering which has been seen in C-22 base metal at this temperature. A small amount of strengthening was seen at 427 C after 40,000 hours where ordering was just beginning. The Charpy impact toughness was reduced dramatically with aging. The time at which this reduction occurred decreased as aging temperature increased suggesting that the reduced ductility is due to the presence and growth of the brittle TCP phases. The corrosion rate of weld samples tested in the standard ASTM G 28 A solution and in a 2.5% HCl solution was higher than was seen with C-22 base metal. After aging, however, the corrosion rate of weld and base metal samples became comparable.

Edgecumbe Summers, T.S.; Rebak, R.B.; Seeley, R.R.

2000-06-15T23:59:59.000Z

194

Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs  

SciTech Connect

This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

1995-05-01T23:59:59.000Z

195

Transient Model for Keyhole During Laser Welding  

SciTech Connect

A novel approach to simulating the dominant dynamic processes present during concentrated energy beam welding of metals is presented. A model for transient behavior of the front keyhole wall is developed. It is assumed that keyhole propagation is dominated by evaporation recoil-driven melt expulsion from the beam interaction zone. Results from the model show keyhole instabilities consistent with experimental observations of metal welding, metal cutting and ice welding.

Bragg, W.D.; Damkroger, B.; Kempka, S.; Semak, V.V.

1999-03-05T23:59:59.000Z

196

Weld failure detection  

DOE Patents (OSTI)

Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

Pennell, William E. (Unity Township, Westmoreland County, PA); Sutton, Jr., Harry G. (Mt. Lebanon, PA)

1981-01-01T23:59:59.000Z

197

Weld Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring of Laser Beam Welding Monitoring of Laser Beam Welding Using Infrared Weld Emissions P. G. Sanders, J. S. Keske, G. Kornecki, and K. H. Leong Technology Development Division Argonne National Laboratory Argonne, IL 60439 USA The submitted manuscript has been authorized by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. Abstract A non-obtrusive, pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld

198

Welding of Lightweigh Metals  

Science Conference Proceedings (OSTI)

Oct 31, 2013 ... The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing ceramic heat blankets as well as ...

199

Interstitial embrittlement in vanadium laser welds  

DOE Green Energy (OSTI)

Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at {minus}55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

Strum, M.J.; Wagner, L.M.

1992-02-24T23:59:59.000Z

200

Interstitial embrittlement in vanadium laser welds  

DOE Green Energy (OSTI)

Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at [minus]55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

Strum, M.J.; Wagner, L.M.

1992-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Refractory Alloy Welding [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Refractory Alloy Welding Refractory Alloy Welding Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Refractory Alloy Welding Project description: Welding of refractory metals such as vanadium alloys. Category: internal R&D project Bookmark and Share Butt weld of two 4 mm thick V-4Cr-4Ti plates made by a pulsed Nd:YAG laser

202

Automated welding of nuclear piping systems  

SciTech Connect

Automated welding, or more broadly, automatic and mechanized welding processes, has found a role in nuclear power plant fabrication. This role has expanded from a rare or isolated application to relatively frequent usage in the last five years. More importantly, it is envisioned that use of automated welding will be increasing at an accelerated rate as broader exposure to this technology is achieved. Among the various pipe welding processes, the only one which has been developed for mechanized and automated nuclear piping welding is the gas tungsten arc welding (GTAW) process. This development has occurred in the past 10 to 15 years through the steady improvement and commmercialization of orbiting welding heads. Improvements in GTAW power supplies, control systems, etc., have aided this commercialization but the main element and pacing item has been the welding head itself. In order to review the status of mechanized and automated nuclear pipe welding, the topics of basic process equipment, joint design, fit-up requirements, welding parameters, and producibility will be addressed. In addition, anticipated future developments in automated systems will be discussed.

Hood, D.W.

1979-01-01T23:59:59.000Z

203

Development of fully automated and integrated (''Instamatic'') welding systems for marine applications  

SciTech Connect

A two-year research program was conducted at M.I.T. to develop fully automated and integrated welding systems. These systems package many actions involved in welding so that certain prescribed welding jobs can be performed by a person with no welding skill. They have been nicknamed ''instamatic'' welding systems, since they are similar to the easy-to-operate cameras. Following a general discussion on the development of the concept of the ''instamatic'' welding system, discussions are given on two types of systems which have been built and tested: underwater stud welding systems, and those using arc welding processes.

Masubuchi, K.; Gustin, H.L.; Schloerb, D.W.

1983-05-01T23:59:59.000Z

204

Phase transformations in welded supermartensitic stainless steels  

E-Print Network (OSTI)

the project. ii Abstract Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding... T the temperature Tp and T0 peak and preheat temperatures of a weld thermal cycle Tq quenching temperature t time V? and V?? volume fraction of austenite and martensite v arc velocity wij weight attributed to the input i in a model of j hidden units y general...

Carrouge, Dominique

205

Repair welding of fusion reactor components. Second year technical report  

SciTech Connect

Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

Chin, B.A.

1993-05-15T23:59:59.000Z

206

Method for laser welding a fin and a tube  

SciTech Connect

A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

Fuerschbach, Phillip W. (Tijeras, NM); Mahoney, A. Roderick (Albuquerque, NM); Milewski, John O (Santa Fe, NM)

2001-01-01T23:59:59.000Z

207

WELDING TORCH  

DOE Patents (OSTI)

A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

Correy, T.B.

1961-10-01T23:59:59.000Z

208

Welding Consumables  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Emerging Materials Joining Challenges and Technology Needs: An Industry Perspective: Henry J. Cialone1; 1Edison Welding Institute

209

WELDING STANDARDS  

SciTech Connect

Hanford Atomic Production Operation specification guides and standards for welding and brazing are presented. Details of this manual are given in TID- 4100 (Suppl.). (N.W.R.)

1963-01-01T23:59:59.000Z

210

Roll Welding  

Science Conference Proceedings (OSTI)

Table 1   Typical properties of common roll-welded clad laminates...31(a) 40(a) Typically used for commutators in electric

211

Welding and Weldability of Thorium-Doped Iridium Alloys  

SciTech Connect

Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

David, S.A.; Ohriner, E.K.; King, J.F.

2000-03-12T23:59:59.000Z

212

Distribution Arc Flash  

Science Conference Proceedings (OSTI)

Arc flash from faults on 480-V circuits is a safety issue that can impact utility work. This report covers results from tests of arc flash and fabric performance from faults in 480-V network protectors and padmounted transformers. It supplements EPRI report 1018694, Distribution Arc Flash: Industry Practices and EPRI report 1018693, Distribution Arc Flash: Analysis Methods and Arc Characteristics.

2009-08-31T23:59:59.000Z

213

Introduction to Projection Welding  

Science Conference Proceedings (OSTI)

...W. Peterson, Projection Welding, Welding Fundamentals and Processes, Vol 6A, ASM Handbook, ASM International, 2011, p 423â??437...

214

Microstructural Evolution During Friction Welding of Mill-annealed Ti ...  

Science Conference Proceedings (OSTI)

... deform by slip and rotate towards orientations that are the most stable with respect to the simple ... EPRI P87, A New Filler Material for Dissimilar Metal Welds.

215

Materials Reliability Program: Evaluation of Potential for Low Temperature Crack Propagation in Reactor Pressure Vessel Outlet Nozzl e Dissimilar Metal Butt Welds by Stress and Fracture Mechanics Analyses (MRP-247)  

Science Conference Proceedings (OSTI)

Low Temperature Crack Propagation is a form of hydrogen embrittlement that can cause, under specific environmental conditions in laboratory tests, severe degradation of the fracture resistance of nickel-base alloys X-750 and 690, and weld metals 82/182 and 52/152. While no operating plant has exhibited evidence of LTCP, the hydrogen levels and temperature conditions necessary for LTCP to occur are present during some PWR shutdowns. This report evaluates the potential for the thermal stresses generated du...

2008-12-22T23:59:59.000Z

216

Welding method combining laser welding and MIG welding  

SciTech Connect

Welding of deep penetration is obtained in a sustrate by a method which comprises first melting the joint portion of the substrates by MIG welding and then focusing a laser beam in the bottom surface of a crater formed in consequence of the MIG welding thereby effecting laser welding of the crater.

Hamasaki, M.

1985-03-26T23:59:59.000Z

217

Friction stir welding of Kanthal APMT  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

218

WELDED SEAL-RING VACUUM CLOSURES  

SciTech Connect

The development of bakeable high-vacuum flanges for the ORNL PIG Facility is reported. The general design approach for this type flange is to obtain a bakeable vacuum seal by first welding thin metal rings to a set of heavy metal flanges, and then edge-welding the rings together. This design sllows the option of O-ring sealing for nonbaked operation. A number of flange designs are discussed together with fabrication inspection, testing, and installation and maintenance information. (auth)

Michelson, C.

1959-08-21T23:59:59.000Z

219

The Development of Microstructure in Duplex Stainless Steel Welds  

E-Print Network (OSTI)

--+ , Transformation in Stainless Steel Weld Metals 58 3.4 Duplex Stainless Steel \\Veld Metals 59 9.401 Weld microstructure 59 9.4.2 Cooling rate 61 9.409 Effects of nitrogen and carbon on weld microstructure 61 9.404 Properties of weld metal and the heat affected zone... -8Ni-0.08C-2Mn-1Si wt. %) is only around 215 MPa. The ultimate tensile strength at room temperature rises to a maximum at about 70 to 80 vol% 0 and then decreases as the alloy tends towards a fully ferritic structure [6]. A law of mixtures does...

Haddad, Naseem Issa Abdallah

1990-05-08T23:59:59.000Z

220

S&TR | March/April 2008: Standardizing the Art of Electron-Beam Welding  

NLE Websites -- All DOE Office Websites (Extended Search)

Standardizing the Art of Electron-Beam Welding. Standardizing the Art of Electron-Beam Welding. WELDED materials are an integral part of everyday life. Appliances, cars, and bridges are all made by welding materials together. But not all welds are created equal. Welding methods vary in complexity, time, and cost, depending on a product's requirements and purpose. In electron-beam (EBeam) welding, an electron beam generated in a vacuum creates a fusing heat source that can unite almost any metals. This method produces deep welds without adding excessive heat that can adversely affect the properties of the surrounding metal. In the nuclear energy and aerospace industries, electron-beam welding is preferred for manufacturing high-value welds-those in which defects cannot be tolerated. The Department of Energy's (DOE's) nuclear weapons

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Narrow gap laser welding  

SciTech Connect

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

1998-01-01T23:59:59.000Z

222

Narrow gap laser welding  

DOE Patents (OSTI)

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

Milewski, J.O.; Sklar, E.

1998-06-02T23:59:59.000Z

223

Onsite Plasma Welding Technology and Equipment Development: RRAC Task 88  

Science Conference Proceedings (OSTI)

Automated plasma transfer arc welding (PTAW) with powder feed capabilities is commonly used for applying hardfacing alloys for new installations and for replacement valves. With a variety of hardfacing and corrosion resistant alloys readily available in the powder form, the PTAW process is an effective and economical process for applying hardfacing materials. The process can obtain high quality deposits with a very low dilution rate and excellent material properties with a minimum number of weld layers. ...

2001-03-30T23:59:59.000Z

224

APPARATUS AND METHOD FOR WELDING END CLOSURE TO CONTAINER  

DOE Patents (OSTI)

A semi-automatic apparatus is described for welding a closure to the open end of a can containing a nuclear fuel slug. An arc is struck at the center of the closure and is shifted to a region near its periphery. Then the assembly of closure, can, and fuel slug is rotated so that the peripheral region of the closure is preheated. Next the arc is shifted to the periphery itself of the closure, and the assembly is rotated so that the closure is welded to the can.

Frantz, C.E.; Correy, T.B.

1959-08-01T23:59:59.000Z

225

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

226

An integrated model for optimizing weld quality  

SciTech Connect

Welding has evolved in the last few decades from almost an empirical art to an activity embodying the most advanced tools of, various basic and applied sciences. Significant progress has been made in understanding the welding process and welded materials. The improved knowledge base has been useful in automation and process control. In view of the large number of variables involved, creating an adequately large database to understand and control the welding process is expensive and time consuming, if not impractical. A recourse is to simulate welding processes through a set of mathematical equations representing the essential physical processes of welding. Results obtained from the phenomenological models depend crucially on the quality of the physical relations in the models and the trustworthiness of input data. In this paper, recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State of the art mathematical models, advances in computational techniques, emerging high performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. Current status and scientific issues in heat and fluid flow in welds, heat source metal interaction, and solidification microstructure are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

Zacharia, T.; Radhakrishnan, B. [Oak Ridge National Lab., TN (United States); Paul, A.J.; Cheng, C. [Concurrent Technologies Corp., Johnstown, PA (United States)

1995-06-01T23:59:59.000Z

227

Novel concepts in weld science: Role of gradients and composite structure. Final report  

SciTech Connect

The effects of compositional and microstructural gradients on weld metal and simulated weld metal properties were evaluated in this multi-part study. The results obtained on single phase solid solution systems were used as a basis for a fundamental study of the effects of compositional gradients on crack growth, both at low temperatures, in fatigue and at high temperatures during creep. Methods to physically simulate gradients in weld metals with roll bonded laminate composites were applied to analyses of ferrite-austenite and ferrite-sigma-austenite multiphase systems. Finally, results of the physical simulation analyses were utilized to predict the effects of weld process parameters on weld metal properties.

Matlock, D.K.; Olson, D.L.

1994-03-01T23:59:59.000Z

228

Initial Development in Joining of ODS Alloys Using Friction Stir Welding  

Science Conference Proceedings (OSTI)

Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

Ren, Weiju [ORNL; Feng, Zhili [ORNL

2007-08-01T23:59:59.000Z

229

WELDING APPARATUS  

DOE Patents (OSTI)

This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

1963-04-23T23:59:59.000Z

230

weld data handbook  

Science Conference Proceedings (OSTI)

... steel structures), has collected critical data on the welding of high-alloy steels for the 2009 American Welding Society Handbook: Materials and ...

2012-10-01T23:59:59.000Z

231

VRML2 Car Welding  

Science Conference Proceedings (OSTI)

VRML2 Car Welding. by Qiming Wang. Click on the base of the robot to start spot welding the car. This file follows VRML97 conventions. ...

232

PDC IC WELD FAILURE EVALUATION AND RESOLUTION  

Science Conference Proceedings (OSTI)

During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements for the actual can welding process, however, did not result in an improved weld geometry. Several possibilities for the lack of positive response exist, some of which are that (1) an insufficient number of test articles were welded under prototypic conditions, (2) the process was not optimized so that significant improvements were observable over the 'noise', and (3) the in-situ arc anneal closed the gap down too much so the can was unable to exhaust pressure ahead of the weld. Several operational and mechanical improvements were identified. The weld clamps were changed to a design consistent with those used in the legacy operations. A helium puff operation was eliminated; it is believed that this operation was the cause of the original weld defect. Also, timing of plug mast movement was found to correspond with weld irregularities. The timing of the movement was changed to occur during weld head travel between tacks. In the end a three sequential tack weld process followed by a pulse weld at the same current and travel speed as was used for the legacy processes was suggested for use during the IC qualification effort. Relative to legacy welds, the PDC IC weld demonstrates greater fluctuation in the region of the weld located between tack welds. However, canister weld response (canister to canister) is consistent and with the aid of the optical mapping system (for targeting the cut position) is considered adequate. DR measurements and METs show the PDC IC welds to have sufficient ligament length to ensure adequate canister pressure/impact capacity and to ensure adequate stub function. The PDC welding process has not been optimized as a result of this effort. Differences remain between the legacy BTC welds and the PDC IC weld, but these differences are not sufficient to prevent resumption of the current PDC IC qualification effort. During the PDC IC qualification effort, a total of 17 cans will be welded and a variety of tests/inspections will be performed. The extensive data collected during that qualification effort should be of a sufficient population to determ

Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

2012-04-16T23:59:59.000Z

233

Developing and Qualifying Parameters for Closure Welding Overpacks Containing Research Reactor Spent Nuclear Fuel at Hanford  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality, and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leak-tight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leak-tight for the duration of the storage term. (author)

Cannell, G.R.; Goldmann, L.H.; McCormack, R.L. [Hanford Site, Richland, WA (United States)

2008-07-01T23:59:59.000Z

234

DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term.

CANNELL GR

2007-11-07T23:59:59.000Z

235

Seal welded cast iron nuclear waste container  

SciTech Connect

This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

1987-01-01T23:59:59.000Z

236

Modeling of fundamental phenomena in welds  

Science Conference Proceedings (OSTI)

Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

Zacharia, T.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Goldak, J.A. [Carleton Univ., Ottawa, Ontario (Canada); DebRoy, T.A. [Pennsylvania State Univ., University Park, PA (United States); Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland); Bhadeshia, H.K.D.H. [Cambridge Univ. (United Kingdom)

1993-12-31T23:59:59.000Z

237

Weld solidification cracking in 304 to 204L stainless steel  

Science Conference Proceedings (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-09-15T23:59:59.000Z

238

Weld solidification cracking in 304 to 304L stainless steel  

Science Conference Proceedings (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

239

Intermetallic alloy welding wires and method for fabricating the same  

DOE Patents (OSTI)

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

Santella, M.L.; Sikka, V.K.

1996-06-11T23:59:59.000Z

240

Intermetallic alloy welding wires and method for fabricating the same  

SciTech Connect

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laser weld jig  

SciTech Connect

A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

Van Blarigan, Peter (Livermore, CA); Haupt, David L. (Livermore, CA)

1982-01-01T23:59:59.000Z

242

Surface Plasmon of welded Ag/Au nanoparticles: a theoretical study  

Science Conference Proceedings (OSTI)

Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of Dissimilar Metal Welds During High Temperature Service.

243

High Strain Rate Shear Zone Properties in an Inertia Friction Weld  

Science Conference Proceedings (OSTI)

Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of Dissimilar Metal Welds During High Temperature Service.

244

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

245

Distribution Arc Flash  

Science Conference Proceedings (OSTI)

Arc flash from faults on distribution circuits is a safety issue that can impact work practices, protection requirements for line and substation workers, and relay and other overcurrent protection settings and practices. This report describes analysis methods and test results for EPRI-sponsored research on arc flash conducted in 2008.

2009-03-18T23:59:59.000Z

246

Cathodic Arc Plasma Deposition  

Office of Scientific and Technical Information (OSTI)

Cathodic Arc Plasma Deposition Cathodic Arc Plasma Deposition André Anders Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 53, Berkeley, California 94720 aanders@lbl.gov Abstract Cathodic arc plasma deposition is one of oldest coatings technologies. Over the last two decades it has become the technology of choice for hard, wear resistant coatings on cutting and forming tools, corrosion resistant and decorative coatings on door knobs, shower heads, jewelry, and many other substrates. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions are reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. The

247

PRESSURE WELDING--BIBLIOGRAPHY  

SciTech Connect

A bibliography containing 117 references from the years 1944 to 1961 on pressure welding is presented. (N.W.R.)

1960-01-01T23:59:59.000Z

248

Friction Stir Welding of Magnesium Alloys to Steel  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

249

Publications Portal  

Science Conference Proceedings (OSTI)

... AR Marder Abstract: Dissimilar metal welds were prepared ... 6XN alloy, and two Ni-base filler metals ... the Gas Tungsten Arc Welding (GTAW) process. ...

2012-09-17T23:59:59.000Z

250

Welding and Repair Technology Center: Evaluation of High-Chromium Nickel-Base Welding Alloys, Resistance to Solidification Cracking - Update  

Science Conference Proceedings (OSTI)

One of the challenges faced by nuclear power industry engineers and managers responsible for making welding and repair decisions is selection of weld metals that have adequate resistance to stress corrosion cracking (SCC) with acceptable resistance to other forms of cracking. Continued testing and evaluation of new and enhanced high-chromium nickel-base filler metals is important to understanding the influence of slight composition changes on sensitivity to known cracking mechanisms and general ...

2013-08-14T23:59:59.000Z

251

Qualification of Welding Alloy IN-52M for Alloy 600 and 690 Repairs: Welding Procedures and Process Development  

Science Conference Proceedings (OSTI)

Occurrences of primary water stress corrosion cracking (PWSCC) in pressurized water reactor (PWR) vessel heads and components have led to the use of corrosion-resistant nickel welding alloys for repair and mitigation activities. For these welds, the most common filler materials have been IN-52 and IN-152; however, during some applications of filler metal IN-52, microfissuring, lack of fusion (LOF), and lack of bond (LOB) have been observed. To address this issue, INCO Alloys (now Special Metals Incorpora...

2002-12-17T23:59:59.000Z

252

Electric arc saw apparatus  

DOE Patents (OSTI)

A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

Deichelbohrer, Paul R. (Richland, WA)

1986-01-01T23:59:59.000Z

253

Review of Weld Repair Options for Grade 91, Part 2: Damage Development and Distribution  

Science Conference Proceedings (OSTI)

This report reviews the likely creep damage distributions in weld repairs in Grade 91 steel. Information is provided in terms of the various weld metals that may be used, including nickel-based, matching P91 (B9), and standard P9 (B8) weld metals. The different damage distributions for each type, with associated implications for nondestructive evaluation, are discussed. In particular, the limitations of using surface ...

2013-06-20T23:59:59.000Z

254

Electric arc saw apparatus  

DOE Patents (OSTI)

A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

Deichelbohrer, P.R.

1983-08-08T23:59:59.000Z

255

Distribution Arc Flash  

Science Conference Proceedings (OSTI)

Arc flash from faults on distribution circuits is a safety issue that can impact work practices, protection requirements for line and substation workers, and relay and other overcurrent protection settings and practices. Highlights of the research results are the following: Arcs did not sustain in any of the tests at 120/208 V in network protectors or meters. Because of low incident energies, only single-layer flame-retardant clothing is needed. Testing on medium-voltage equipment showed wide variability...

2011-03-08T23:59:59.000Z

256

Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages  

SciTech Connect

The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

2003-09-11T23:59:59.000Z

257

Discontinuities Associated With Specialized Welding Processes  

Science Conference Proceedings (OSTI)

...R. Gordon, Overview of Weld Discontinuities, Welding, Brazing, and Soldering, Vol 6, ASM Handbook,

258

Miniaturized cathodic arc plasma source  

DOE Patents (OSTI)

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

259

Laser welding of electrical interconnections  

SciTech Connect

Processes and equipment have been developed for welding thin aluminum and copper foils using a Nd : YAG laser. Laser welding provides an alternate technique with improved quality for welding these types of electrical terminations.

Bauer, F.R.

1978-12-01T23:59:59.000Z

260

The Effects of Submerged Arc Welding (SAW) Waveform Variables ...  

Science Conference Proceedings (OSTI)

New inverter power sources address both issues through the use of square-wave alternating currents, which provide maximum duration at peak current and ...

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

WEB RESOURCE: Gas Welding Magnesium  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This webpage offers advice on gas welding of magnesium. Launch Site SOURCE: "Gas Welding Magnesium". Weldwell Corporate Website.

262

Materials and Welding  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants: Joung Soo ...

263

Welding Technologies and Applications  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Joining of Advanced and Specialty Materials (JASM XIII): Welding Technologies and Applications Sponsored by: MS&T Organization Program ...

264

Welding - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... High Brightness Nd:YAG Laser Welding of Aluminum 5754: Jyotirmoy Mazumder 1; Leslie Pipe1; Yi Liu1; David Roessler1; 1University of ...

265

Modeling of thermal plasma arc technology FY 1994 report  

Science Conference Proceedings (OSTI)

The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

1995-03-01T23:59:59.000Z

266

CRAD, Welding, Cutting and Brazing Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Welding, Cutting and Brazing Assessment Plan Welding, Cutting and Brazing Assessment Plan CRAD, Welding, Cutting and Brazing Assessment Plan Performance Objective: This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. Criteria: Establish designated area in which routine and repetitive welding, cutting, and other spark- or flame producing operations are conducted [1910.252(a)(2)(iv),1910.252(a)(2)(vi)(A), 1910.252(a)(2)(xv), General Requirements].

267

Dual wire welding torch and method  

SciTech Connect

A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

Diez, Fernando Martinez (Peoria, IL); Stump, Kevin S. (Sherman, IL); Ludewig, Howard W. (Groveland, IL); Kilty, Alan L. (Peoria, IL); Robinson, Matthew M. (Peoria, IL); Egland, Keith M. (Peoria, IL)

2009-04-28T23:59:59.000Z

268

Basic study of heat flow in fusion welding. Progress report, March 1, 1980-February 28, 1981  

SciTech Connect

During the past year the study of electroslag welding was essentially completed with good agreement between the experimental and the theoretical results. It is concluded that the ESW process has certain inherent limitations which were not appreciated previously. The study has expanded into a more complete analysis of heat and fluid flow in arc welding. It has been shown that the heat affected zone and fusion zone sizes are not simple functions of the net heat input as predicted by all current theories. This will affect the choice of welding parameters. For example, in single pass arc welds, the smallest HAZ is usually desirable, while in multipass welding large HAZ's may be desirable to provide tempering of the previous weld beads. It may be possible to achieve both these goals at equivalent heat input by proper adjustment of the welding parameters (such as voltage, current and travel speed). Goal of the current study is to predict which combinations of parameters maximize or minimize the size of the heat affected zone and fusion zone at equal heat input.

Szekely, J.; Eagar, T.W.

1981-01-01T23:59:59.000Z

269

Application of a Plasma Powder Welding to engine valves  

SciTech Connect

In hardfacing of automobile engine valves made of heat resisting steel such as 21-4N, conventional oxy-acetylene gase welding has been currently conducted manually by well trained operators because of using cast Stellite rods as the filler. In accordance with the strong demands of automatic welding, the authors newly developed an automatically controlled Plasma Powder Welding (PPW) system. This system is characterized by the application of a high thermal density plasma arc as heat source and by using power filler which melts more easily than bar cast rods. Moreover, this PPW system has been applied to the automotive engine valve production line and resulted in the great contribution to manpower saving.

Takeuchi, Y.; Nagata, M.

1985-01-01T23:59:59.000Z

270

Solid-state resistance upset welding: A process with unique advantages for advanced materials  

SciTech Connect

Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded.

Kanne, W.R. Jr.

1993-12-31T23:59:59.000Z

271

Welding electric terminals ultrasonically  

SciTech Connect

Ultrasonic welding has been investigated for use on foil conductor terminations. Equipment and tooling have been improved; material considerations and combinations have been evaluated to determine their effects on the process; and special configurations and techniques have been studied to extend the applicability of the ultrasonic welding process.

Darner, G.S.

1976-09-01T23:59:59.000Z

272

Soft arc consistency revisited  

Science Conference Proceedings (OSTI)

The Valued Constraint Satisfaction Problem (VCSP) is a generic optimization problem defined by a network of local cost functions defined over discrete variables. It has applications in Artificial Intelligence, Operations Research, Bioinformatics and ... Keywords: Constraint optimization, Graphical model, Local consistency, Soft arc consistency, Soft constraints, Submodularity, Valued constraint satisfaction problem, Weighted constraint satisfaction problem

M. C. Cooper; S. de Givry; M. Sanchez; T. Schiex; M. Zytnicki; T. Werner

2010-05-01T23:59:59.000Z

273

Creep Strength–Enhanced Ferritic (CSEF) Steel Welding Guide  

Science Conference Proceedings (OSTI)

Implementation of advanced alloys for construction of new nuclear units or in the retrofit of existing units has demonstrated the need to treat them differently at elevated temperatures than mainstay power generation alloys such as Grades 11, 12, or 22. This report presents recommendations for welding creep strength enhanced ferritic (CSEF) steels, with emphasis on Grades 91, 92, 23, and 24 in tubing, piping, and dissimilar metal weld applications. Subjects covered in detail include guidelines for ...

2013-08-27T23:59:59.000Z

274

Capacitor discharge process for welding braided cable  

SciTech Connect

A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

Wilson, Rick D. (Corvallis, OR)

1995-01-01T23:59:59.000Z

275

VP-6 electrodes for welding of cold-resistant low-alloy steels  

SciTech Connect

This article examines VP-6 electrodes based on the standard Sv-10NMA welding rod. The calcium fluoride (with increased CaF/sub 2/ content) coating of the electrodes also contains feldspar and rutile, which reduce the porosity of the weld metal, improve the technological welding properties of the electrodes, and ensure good weld formation throughout. The average surfacing coefficient of the VP-6 electrodes is 9.5 g/A X h. It is concluded that the VP-6 electrodes, intended for the welding of low-alloy 09G2S-type steels, used at temperatures down to -70/sup 0/C, make it possible to eliminate the normalizing of welded joints after welding.

Lositskii, N.T.; Berezhnitskii, S.N.; Geimur, V.V.

1984-03-01T23:59:59.000Z

276

Welding Methods for Tailored Blanks  

Science Conference Proceedings (OSTI)

...methods both with and without filler wire by Toyota since 1986. Filler wire is used for applications that have an exposed weld in the finished product, such as body side frames. Filler wire welds are ground flush to improve surface appearance after welding. Welds that do not require a flush surface...

277

Ultrasonic seam welding. Final report  

SciTech Connect

Ultrasonic seam welding has been evaluated for making continuous seam welds on aluminum and copper-foil conductors. A seam welding system has been designed and fabricated, weldable material combinations have been identified, and the process parameters for welding materials applicable to flat cable production have been established.

Darner, G.S.

1980-06-01T23:59:59.000Z

278

Materials Reliability Program: Technical Basis for Preemptive Weld Overlays for Alloy 82/182 Butt Welds in PWRs (MRP-169)  

Science Conference Proceedings (OSTI)

Dissimilar metal Alloy 82/182 bimetallic pipe-to-nozzle butt welds (DMWs) have experienced cracking in recent years due to primary water stress corrosion cracking (PWSCC). Although weld overlays have been used primarily as a repair for flawed piping, they also can be applied at locations that have not yet exhibited any cracking but are considered susceptible to PWSCC. An overlay used in this manner is termed a preemptive weld overlay (PWOL). This report provides the technical basis for PWOL overlays for ...

2005-10-25T23:59:59.000Z

279

Application of the pulsed magnetic welding process to nuclear breeder reactor fuel pin end closures  

SciTech Connect

The pulsed magnetic welding process is a solid state welding process in which metallurgical bonding is effected by impacting metal or alloy parts against each other at high velocity by use of controlled high frequency, high intensity pulsed magnetic fields. This process is similar to the explosive welding process except that magnetic energy is used for impacting the parts together instead of using explosive energy. The pulsed magnetic welding (PMW) process is readily applied to the welding of cylindrical plugs to small diameter tubes. Although breeder reactor fuel pin design may vary in size, the application described here consisted of cladding tubes approximately 6.4 mm in diameter by 244 cm long with a wall thickness of 0.38 mm. After the cladding tubes are filled with fuel pellets and associated metal hardware, tapered end plugs are inserted into the end of the tubes and welded. A typical setup for PMW is described.

Brown, W.F.

1984-01-01T23:59:59.000Z

280

Power Supply Design for Resistance Spot Welding  

Science Conference Proceedings (OSTI)

According to a study of Edison Welding Institute, 20% of the welding quality issues are the weld schedule or power supply related. Therefore, the study of ...

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Welding and Repair Technology Center: Evaluation of Hardness Requirements for Temper Bead Welding Applications--Preliminary Review  

Science Conference Proceedings (OSTI)

Qualification of welding procedures for structural members and pressure boundary components in accordance with American Society of Mechanical Engineers (ASME) codes frequently requires impact testing. Specifically, the Charpy V-notch test is often used to assess base material, heat-affected zone, and weld metal impact properties. Impact testing is specified in the ASME codes to ensure that materials will have adequate fracture toughness and behave in a ductile manner under service conditions. ...

2013-10-14T23:59:59.000Z

282

Hall-effect arc protector  

DOE Patents (OSTI)

The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.

Rankin, R.A.; Kotter, D.K.

1997-05-13T23:59:59.000Z

283

Hall-effect arc protector  

DOE Patents (OSTI)

The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.

Rankin, Richard A. (Ammon, ID); Kotter, Dale K. (Shelley, ID)

1997-01-01T23:59:59.000Z

284

Development of Laser Weld Repair, Cladding, and Heat Treatment Technology for Alloy 600 RPV Penetrations  

Science Conference Proceedings (OSTI)

EPRI has developed innovative laser weld repair technology for Alloy 600 reactor pressure vessel (RPV) head penetrations in pressure water reactors (PWRs). The repair technology consists of an Nd:YAG laser, fiber optic delivery system, optical assembly (weld head), welding filler metal feed system, and manipulator. The laser system will be used to address the repair of axially oriented cracks, stress relief, and cladding operations.

1998-06-29T23:59:59.000Z

285

12. MICROSTRUCTURAL STABILITY OF CO-BASED ALLOYS 12.1 Introduction  

E-Print Network (OSTI)

carried out in Stellite 6 Co-based hardfacing alloys deposited by manual metal arc welding, tungsten inert temperature microstructural stability of Co-based Stellite 6 alloys deposited by manual metal arc welding

Cambridge, University of

286

OREGON STATE UNIVERSITY (OSU) TRAINING RESEARCH ISOTOPE GENERAL ATOMICS (TRIGA) OVERPACK CLOSURE WELDING PROCESS PARAMETER DEVELOPMENT & QUALIFICATION  

SciTech Connect

Spent Nuclear Fuel (SNF) from the Oregon State University (OSU) TRIGA{reg_sign} Reactor is currently being stored in thirteen 55-gallon drums at the Hanford Site's low-level burial grounds. This fuel is soon to be retrieved from buried storage and packaged into new containers (overpacks) for interim storage at the Hanford Interim Storage Area (ISA). One of the key activities associated with this effort is final closure of the overpack by welding. The OSU fuel is placed into an overpack, a head inserted into the overpack top, and welded closed. Weld quality, for typical welded fabrication, is established through post-weld testing and nondestructive examination (NDE); however, in this case, once the SNF is placed into the overpack, routine testing and NDE are not feasible. An alternate approach is to develop and qualify the welding process/parameters, demonstrate beforehand that they produce the desired weld quality, and then verify parameter compliance during production welding. Fluor engineers have developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrating that weld quality requirements for closure of packaged SNF overpacks are met, using this alternate approach. The following reviews the activities performed for this development and qualification effort.

CANNELL, G.R.

2006-09-11T23:59:59.000Z

287

Automated Weld Characterization Using The Thermoelectric Method  

E-Print Network (OSTI)

this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis[1-6]. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research. INTRODUCTION TO THERMOELECTRICITY The thermoelectric technique is based on an effect first discovered by Seebeck in 1822. Seebeck found that when two dissimilar conductors A and B make a circuit a current will flow when the junctions of the two conductors are at different temperatures (Fig. 1). The Seebeck effect occurs because at the hot end, electrons are excited ...

J. P. Fulton; B. Wincheski; M. Namkung

1993-01-01T23:59:59.000Z

288

Environmentally Assisted Cracking of Materials  

Science Conference Proceedings (OSTI)

In-Situ Repairs of Oil Industry Pipelines, Tanks and Vessels by Welding Using Metal Arc Welding Under Oil (MAW-UO) · Interpretation of Crack Initiation and ...

289

Selected References  

Science Conference Proceedings (OSTI)

...S. Knostman, Shielded Metal Arc Welding, Welding Fundamentals and Processes, Vol 6A, ASM Handbook, ASM International, 2011, p 302â??308...

290

Tensile Properties of Fine Grain MA956 Oxide Dispersion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Tensile Properties of Fine Grain MA956 Oxide Dispersion ... Weld Overlay Claddings by Gas-metal-arc Welding Process for Extending Plant ...

291

Specs add confidence in use of wet welding. [Underwater welding  

SciTech Connect

Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

1984-02-01T23:59:59.000Z

292

Microstructure and Strength Characteristics of Alloy 617 Welds  

Science Conference Proceedings (OSTI)

Three types of high-temperature joints were created from alloy 617 base metal: fusion welds, braze joints, and diffusion bonds. The microstructures of all joint types and tensile properties of fusion welds and braze joints were characterized. Sound fusion welds were created by the GTAW process with alloy 617 filler wire. Cross-weld tensile strengths were equal to the parent metal at temperatures of 25, 800, and 1000°C; ductilities of the joints were only slightly lower than that of the parent metal. Failure occurred in the weld fusion zone at room temperature and in the parent metal at elevated temperatures. Incomplete wetting occurred in joints produced by vacuum brazing using AWS BNi-1 braze alloy, believed to be due to tenacious Al and Ti oxide formation. Incompletely bonded butt joints showed relatively poor tensile properties. A second set of braze joints has been created with faying surfaces electroplated with pure Ni prior to brazing; characterization of these joints is in progress. Conditions resulting in good diffusion bonds characterized by grain growth across the bondline and no porosity were determined: vacuum bonding at 1150°C for 3 hours with an initial uniaxial stress of 20 MPa (constant ram displacement). A 15 µm thick pure Ni interlayer was needed to achieve grain growth across the bondline. Tensile testing of diffusion bonds is in progress

T.C. Totemeier; H. Tian; D.E. Clark; J.A. Simpson

2005-06-01T23:59:59.000Z

293

Laser weld jig. [Patent application  

DOE Patents (OSTI)

A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

Van Blarigan, P.; Haupt, D.L.

1980-12-05T23:59:59.000Z

294

WELDED TRANSITION JOINT BETWEEN 2-1/4% Cr 1% Mo STEEL AND TYPE 316 STAINLESS STEEL. SODIUM COMPONENTS DESIGN PROJECT RESEARCH AND DEVELOPMENT PROGRAM-FINAL REPORT  

SciTech Connect

A steam generator, wherein the boiler, steam drum, and superheater are integrated into one single unit, requires the welding of a transition joint between the 2 1/4% Cr-1% Mo steel of the steam drum and the type 316 stainless steel of the superheater. A practicable procedure was developed for the welding of this transition joint and the properties of the weld were evaluated by mechanical testing and metallurgical evaluation. After evaluating the technical aspects of the project and their relation to the fabrication of the generator, it was considered desirable to overlay the welding edge of the 2 1/4% Cr-1% Mo steel with a suitable austenitic weld metul which would subsequently be welded to the type 316 stainless steel of the superheater. Austenitic stainless steel and high-nickel alloy weld metals were evaluated for the overlay; whereas only austenitic stainless steel weld metals were evaluated for the final weld joining the components. It was concluded that type 309 stainless steel weld metal deposited automatically by the submergedarc process is completely satisfactory for cladding the 2 1/4% Cr-1% Mo base metal and for making the final transition weld joining the steam drum and superheater sections of the generator. Supplementary mechanical tests, metallographic examinations, and hardness surveys further attested to the adequacy of the quality of the transition joint resulting from the procedures developed by this program. A detailed fabrication and thermal treatment specification is included for the welding of a transition joint between

1960-08-15T23:59:59.000Z

295

Resistance Spot Welding  

Science Conference Proceedings (OSTI)

...or more sheetmetal stampings that do not require gas-tight or liquid-tight joints can be more economically joined by high-speed RSW than by mechanical methods. Containers frequently are spot welded. The attachment of

296

Resistance Seam Welding  

Science Conference Proceedings (OSTI)

...a series of overlapping spot welds, is normally gas-tight or liquid-tight. Two rotating, circular electrodes (electrode wheels), or one circular and one bar-type electrode,

297

Investigation of electromagnetic welding  

E-Print Network (OSTI)

We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

Pressl, Daniel G. (Daniel Gerd)

2009-01-01T23:59:59.000Z

298

Friction stir welding tool  

DOE Patents (OSTI)

A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

Tolle; Charles R. (Idaho Falls, ID), Clark; Denis E. (Idaho Falls, ID), Barnes; Timothy A. (Ammon, ID)

2008-04-15T23:59:59.000Z

299

Dissimilar Metal Welds and Welding of CSEF Steels in Power ...  

Science Conference Proceedings (OSTI)

Program Organizers: Judith Schneider, Mississippi State University; Norman Zhou, Univ. of Waterloo; Leijun Li, ... October 18, 2010 ... This presentation will provide a overview of the behavior of DMWs at high temperatures based on a recent ...

300

Dissimilar Metal Welds and Welding in Oil and Petrochemical Industry  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Fabrication of large capital Liquefied Natural Gas (LNG) and long distance gas transmission pipeline projects is key to meeting this demand.

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Concurrent ultrasonic weld evaluation system  

DOE Patents (OSTI)

A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

Hood, Donald W. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

302

Concurrent ultrasonic weld evaluation system  

DOE Patents (OSTI)

A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

Hood, D.W.; Johnson, J.A.; Smartt, H.B.

1985-09-04T23:59:59.000Z

303

Topical Report: Application of the Excavate and Weld Repair Process for Repair and Mitigation of Alloy 182 and 82 in PWRs  

Science Conference Proceedings (OSTI)

Weld overlay is a mature technology for the repair of PWR nozzle dissimilar metal butt welds that are susceptible to primary water stress corrosion cracking (PWSCC). While weld-overlay technology continues to serve the industry well, a viable alternative is desirable for large-bore nozzle welds (>24 inches outside diameter) to minimize the time required to perform the repair and to serve in cases in which significant physical interferences near the Alloy 82/182 dissimilar metal weld would make it difficu...

2010-12-20T23:59:59.000Z

304

VIDEO: Vacuum Arc Remelting - TMS  

Science Conference Proceedings (OSTI)

Apr 27, 2007 ... Video excerpts from Superalloys: Melting and Conversion showing the vacuum arc remelting process. SOURCE: TMS. Last Update: February ...

305

Certification of a weld produced by friction stir welding  

DOE Patents (OSTI)

Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

Obaditch, Chris; Grant, Glenn J

2013-10-01T23:59:59.000Z

306

TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING  

DOE Green Energy (OSTI)

While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

Hovanski, Yuri

2009-05-06T23:59:59.000Z

307

Assessment of the feasibility of developing a Hanford Site weld modeling program  

Science Conference Proceedings (OSTI)

Welding on the Hanford Site is an everyday occurrence, and most of the weldments made on site are relatively straightforward. Groove geometries, fillers, and wleding techniques and parameters are normally decided by experience or handbook advice. However, there are other weldments that might employ new materials, as well as one-of-a-kind welding situations. Implementation of a verified analytical weld assessment method would allow optimization of weld metal and heat-affected zone microstructure, and of variables that affect structural deformation and residual stresses. Realistic prediction of weldment thermal and strain history will require the use of a finite element model. Microstructure and resultant properties can be predicted using complex computer-based microstructure evolution models, literature-based empirical equations, or experimentally established behaviors. This report examines the feasibility of developing analytical methods for establishing weld parameter envelopes in new, complex welded configurations.

Atteridge, D.G.; Anderson, W.E.; Klein, R.F.

1986-11-01T23:59:59.000Z

308

Welding and Repair Technology Center: Measures to Minimize 52M Hot Cracking on Stainless Steel Base Materials  

Science Conference Proceedings (OSTI)

Operating experience in the nuclear power industry has shown that dissimilar metal weld joints with Inconel 82/182 (ERNiCr-3/ENiCrFe-3) weld metal in the primary loop of pressurized water reactor (PWR) plants are susceptible to primary water stress corrosion cracking (PWSCC). Alloy 690 is a 30 wt% chromium nickel-base metal with excellent resistance to PWSCC. Alloy 52M (ERNiCr-7A) is weld filler metal that closely matches the composition of Alloy 690 and ...

2012-12-12T23:59:59.000Z

309

Resistance Micro-seam Welding of Zr Based Glassy Alloy Foils  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

310

Robotic Welding and Inspection System  

SciTech Connect

This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

2008-06-01T23:59:59.000Z

311

Friction stir welding tool and process for welding dissimilar materials  

SciTech Connect

A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

2013-05-07T23:59:59.000Z

312

Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters  

Science Conference Proceedings (OSTI)

An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

Mote, M.W.

1981-12-01T23:59:59.000Z

313

TUBE-TO-TUBESHEET WELDING DEVELOPMENT PROGRAMS FOR 30 MEGAWATT PROTOTYPE SODIUM INTERMEDIATE HEAT EXCHANGER AND STEAM GENERATOR  

SciTech Connect

Special welding techniques for joining Inconel weld overlays on type 316 stainless steel tubesheets and channels are described. The program for the development of the required welding procadures are divided into three specific progranns: overlaying Inconel filler Metal 82 on type 316 stainless steel, welding type 316 stainless steel tubes to a type 316 stainless steel tubesheet, and welding Inconel-type 316 stainless steel composite tubes to Inconel weld overlaid type 316 tubesheets. Shock tests are described which attempt to assimulate the most drastic thermal transient that could occur in both units and to evaluate the effect of the resulting stresses on the Inconel overlay and the tube-totubesheet welds. (N.W.R.)

1963-10-31T23:59:59.000Z

314

Nondestructive Evaluation: Ultrasonic Equivalency Testing of Weld Inlaid and Weld Onlaid Components  

Science Conference Proceedings (OSTI)

This report describes Electric Power Research Institute (EPRI) investigations in which ultrasonic data were acquired using American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix VIII qualified procedures on Performance Demonstration Initiative (PDI) 600 Series nozzle mockups containing crack-like flaws. These mockups were representative of dissimilar metal weld (DMW) safe-end-to-nozzle configurations found in the U.S. pressurized water reactor (PWR) fleet. T...

2008-12-22T23:59:59.000Z

315

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

316

Arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

Jha, K.N.

1999-05-18T23:59:59.000Z

317

Heavy metals hazardous components of Eaf dust  

Science Conference Proceedings (OSTI)

Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the ... Keywords: electric arc furnace (EAF), furnace additives, hazard components, heavy metals, scrap composition, x-ray fluorescence spectroscopy

Cristiana-Zizi Rizescu; Zorica Bacinschi; Elena Valentina Stoian; Aurora Poinescu; Dan Nicolae Ungureanu

2011-02-01T23:59:59.000Z

318

The science and practice of welding. 8th ed. Vol. 2: The practice of welding  

SciTech Connect

This book includes sections on underwater welding and cutting, cold pressure welding, the application of mixed gases to various welding processes, and robot welding. The author uses photographs, tables, figures, and illustrations to explain the text and provides examination questions.

Davies, A.C.

1984-01-01T23:59:59.000Z

319

Weld penetration and defect control  

SciTech Connect

Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

Chin, B.A.

1992-05-15T23:59:59.000Z

320

Robotic weld overlay coatings for erosion control. Quarterly technical progress report, April 1993--June 1993  

SciTech Connect

Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based upon a literature review. Four of the selected coatings were deposited on a 1018 steel substrate using plasma arc welding process. During the past quarter, the remaining eight coatings were deposited in the same manner. Ten samples from each coatings were prepared for erosion testing. Microstructural characterization of each coating is in progress. This progress report describes coating deposition and sample preparation procedures. Relation between coatings hardness and formation of cracks in coatings is discussed.

Levin, B.F.; Dupont, J.N.; Marder, A.R.

1993-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method and apparatus for assessing weld quality  

DOE Patents (OSTI)

Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

Smartt, Herschel B. (Idaho Falls, ID); Kenney, Kevin L. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Carlson, Nancy M. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Taylor, Paul L. (Boise, ID); Reutzel, Edward W. (State College, PA)

2001-01-01T23:59:59.000Z

322

Welding – Friction Stir  

Friction welding that uses a contact rotating tool creates frictional heating of an adjacent work piece. The process employs a mixer where the two pieces touch, an area called the plastic zone, to avoid the undesirable joining (e.g. alloying) of the ...

323

Method for welding chromium molybdenum steels  

SciTech Connect

Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

Sikka, Vinod K. (Clinton, TN)

1986-01-01T23:59:59.000Z

324

Method for welding chromium molybdenum steels  

DOE Patents (OSTI)

Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

Sikka, V.K.

1985-11-06T23:59:59.000Z

325

Advances in stainless steel welding for elevated temperature service  

SciTech Connect

An extensive program to characterize the microstructures and determine the mechanical properties of stainless steel welds is described. The amount, size, shape, and general distribution of ferrite in the weld metal was studied. The effects of electrode coatings on creep-rupture properties were determined as were the influences of slight differences in analyzed contents of carbon, silicon, phosphorus, sulfur, and boron. Using the above information, a superior commercially produced electrode was formulated which took advantage of chemical control over boron, titanium, and phosphorus. This electrode produced deposits exhibiting superior mechanical properties and it was successfully utilized to fabricate a large nuclear reactor vessel. (auth)

Goodwin, G.M.; Cole, N.C.; King, R.T.; Slaughter, G.M.

1975-10-01T23:59:59.000Z

326

The High-Temperature Properties of Welded Cast Co-Base Alloys  

Science Conference Proceedings (OSTI)

lOYS, FSX-414 and MM-509, using the Gas-Tungsten-Arc. (GTA) and .... and be free of liquid-metal embrittling .... owing to the combustion of natural gas, and (ii).

327

Friction Stir Welding: High Temperature Materials I  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Friction Stir Welding of Pipeline Steels: Murray Mahoney1; Samuel .... Over 135 feet of weld length was achieved with a single W-based tool ...

328

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Stories November Lienert Named American Welding Society Fellow Lienert named American Welding Society Fellow Lienert was inducted...

329

Edison Welding Institute | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Edison Welding Institute Jump to: navigation, search Name Edison Welding Institute Address 1250...

330

friction stir welding iv table of contents  

Science Conference Proceedings (OSTI)

Friction Stir Welding—After a Decade of Development [pp. 3-18] William Arbegast . Friction Stir Welding of an Aluminum Coal Hopper Railcar [pp. 19-28

331

WEB RESOURCE: Magnesium Welding - Information Sources for ...  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This web-based, magnesium welding resource is a compilation of: ... SOURCE: “ Magnesium Welding – Information Sources for Magnesium ...

332

Development of Tatsumaki Friction Stir Welding  

Science Conference Proceedings (OSTI)

The main advantage of this process is the application of a wide range of weld thicknesses and high speed welding by controlling the motor power consumption .

333

Welding and PWHT of P91 Steel  

Science Conference Proceedings (OSTI)

There are various sources for base materials, welding consumables and fabrication or components. The art is such that few welding problems are encountered.

334

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 - Lienert named American Welding Society Fellow November 29, 2012 Thomas J. Lienert of the Lab's Metallurgy group was inducted into the American Welding Society's 2012 Class of...

335

Friction Stir Welding and Processing VI  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Friction Stir Welding and Processing of Advanced Materials for Coal and Nuclear Power Applications · Friction Stir Welding of 25 mm Thick Al ...

336

Friction Stir Welding and Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Material flow is a key phenomenon to obtain sound joints by friction stir welding ( FSW). In this study, the material flow during FSW was ...

337

Alloy 740 Weld Strength Optimization  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, Alloy 740 Weld ...

338

Laser welding of aluminum alloys  

DOE Green Energy (OSTI)

Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

Leong, K.H.; Sabo, K.R.; Sanders, P.G. [Argonne National Lab., IL (United States). Technology Development Div.; Spawr, W.J.

1997-03-01T23:59:59.000Z

339

Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization  

Science Conference Proceedings (OSTI)

Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

2012-07-15T23:59:59.000Z

340

72nd AWS annual meeting  

SciTech Connect

Detailed summaries are given for papers on resistance welding of coated steels, weldability of materials, computer predictions systems, laser welding, consumables, weld pool modeling, gas tungsten arc welding, welding of aluminium and titanium, computer control systems for welding machines, friction welding, finite element modeling, electron beam welding, structural welding, surfacing, pipeline welding, aerospace and aircraft welding, gas metal arc welding, nickel alloys, submerged arc welding, stainless steels, thermal phenomena, real-time radioscopy, advanced systems control, and weld metal investigations. The International Brazing and Soldering conference papers included developments in solders and soldering, high temperature brazing, and ceramic brazing. The Thermal Spray Symposium papers discussed thermal spraying and transferred arc, industry application and economics, current and emerging thermal spray materials and equipment, and training methods.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Physics of arcing, and implications to sputter deposition  

E-Print Network (OSTI)

Series II. Mathematics, Physics and Chemistry vol. 88, I.Physics of arcing, and implications to sputter depositionleading to arcs and the physics of the arcing events

Anders, Andre

2005-01-01T23:59:59.000Z

342

Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin  

E-Print Network (OSTI)

Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back-arc basin ...

Craddock, Paul R

2009-01-01T23:59:59.000Z

343

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

344

Hot Cracking Study of High Chromium Nickel-Base Filler Metals ...  

Science Conference Proceedings (OSTI)

Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of Dissimilar Metal Welds During High Temperature Service.

345

Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds  

DOE Green Energy (OSTI)

Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

2001-03-18T23:59:59.000Z

346

Joining Uranium to Aluminum using Electron Beam Welding and an Explosively Clad Niobium Interlayer  

SciTech Connect

A uranium alloy was joined to a high strength aluminum alloy using a commercially pure niobium interlayer. Joining of the Nb interlayer to the aluminum alloy was performed using an explosive welding process, while joining the Nb interlayer to the uranium alloy was performed using an electron beam welding process. Explosive welding was selected to bond the Nb to the aluminum alloy in order to minimize the formation of brittle intermetallic phases. Electron beam welding was selected to join the Nb to the uranium alloy in order to precisely control melting so as to minimize mixing of the two metals. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines. Optical microscopy, scanning electron microscopy, microhardness, and tensile testing of the welds were used to characterize the resulting joints. This paper presents the welding techniques and processing parameters that were developed to produce high integrity ductile joints between these materials.

Elmer, J W; Terrill, P; Brasher, D; Butler, D

2001-06-12T23:59:59.000Z

347

Displaced electrode process for welding  

DOE Patents (OSTI)

A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

Heichel, L.J.

1975-08-26T23:59:59.000Z

348

Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers  

Science Conference Proceedings (OSTI)

The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

2011-04-01T23:59:59.000Z

349

Ultrasonic Welding for Lightweight Components - Programmaster.org  

Science Conference Proceedings (OSTI)

welding. This concerns progress of hard- and software for ultrasonic welding ... as topics to the mechanical properties (monotonic, cyclic) of ultrasonically welded

350

Welding and Repair Technology Center: Nuclear Weld Overlay Training  

Science Conference Proceedings (OSTI)

A major goal for nuclear utilities is to reduce overall operations and maintenance costs. The Nuclear Weld Overlay Training provided in this report supports this goal by informing member utilities that are preparing for a weld overlay campaign. This technical report reflects EPRI’s commitment to serving its members by developing practical tools and guidance in response to specific needs of the industry.ObjectivesThis document is intended to be used by ...

2013-11-27T23:59:59.000Z

351

Welding and Repair Technology Center: Underwater Laser Welding Studies  

Science Conference Proceedings (OSTI)

Repair of internal reactor components has been a continuing challenge for the nuclear industry. High radiation levels, underwater environment, and altered material weldability have made traditional repair methods more difficult to use for internal component repair. One of the key issues is to make seal-weld repairs on cracks that might exist due to stress corrosion or fatigue. Sealing of these cracks by welding might be necessary to maintain pressure boundary or flow requirements. During this research pr...

2009-12-21T23:59:59.000Z

352

Robotic Welding, Intelligence and Automation, 1st edition  

Science Conference Proceedings (OSTI)

Thisresearch reportbrings together presenttrends in advanced welding robots, robotic welding, artificial intelligent and automatic welding. It includes important technical subjects on welding robots such as intelligent technologies and systems, and design ...

Tzyh-Jong Tarn; Tzyh-Jong Tarn; Shan-Ben Chen; Changjiu Zhou

2007-09-01T23:59:59.000Z

353

SIGMA PLUG WELDING OF SPUN-OVER FUEL CANS  

SciTech Connect

Efforts made to employ the sigma welding process for plug welding Closures in spun-over fuel cans were unsuccessful. No combination of welding conditions was found which would produce satisfactory, leak-tight, plug welds in aluminum. (auth)

Winsor, F.J.

1952-12-01T23:59:59.000Z

354

Residual Stress Tensor in a Compact Tension Weld Specimen  

Science Conference Proceedings (OSTI)

Presentation Title, Residual Stress Tensor in a Compact Tension Weld Specimen ... austenitic stainless steel (Esshete 1250) compact tension weld specimen.

355

Filters for cathodic arc plasmas  

DOE Patents (OSTI)

Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

2002-01-01T23:59:59.000Z

356

The evolution of ion charge states in cathodic vacuum arc plasmas: a review  

Science Conference Proceedings (OSTI)

Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

Anders, Andre

2011-12-18T23:59:59.000Z

357

Pipe weld crown removal device  

DOE Patents (OSTI)

This invention is comprised of a device that provides for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

Sword, C.K.; Sette, P.J.

1991-12-31T23:59:59.000Z

358

Inspection of Nickel Alloy Welds: Results from Five Year International Program  

SciTech Connect

The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

2011-06-23T23:59:59.000Z

359

Guideline for Underwater Welding to Achieve Acceptable Ferrite Number (FN) for Stainless Steel  

Science Conference Proceedings (OSTI)

The ferrite number (FN) of stainless steel weld metal is critical in maintaining resistance to IGSCC (Intergranular Stress Corrosion Cracking) in a BWR environment. In addition the carbon level of the stainless steel weld metal directly affects the level of ferrite necessary to assure IGSCC resistance. NUREG-0313 and Code Case N-503-1 recommends a maximum carbon content not to exceed 0.035 wt. percent and a minimum FN of 7.5. The regulations also require that the first layer FN meets the minimum requirem...

1997-12-17T23:59:59.000Z

360

Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates  

Science Conference Proceedings (OSTI)

The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

Mousavi, S. A. A. Akbari; Zareie, H. R. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

2011-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

362

Resistance Welding: Fundamentals and Applications - TMS  

Science Conference Proceedings (OSTI)

Apr 5, 2006 ... If you are seeking welding basics, then this is the book for you. It covers the fundamentals of resistance spot welding (RSW) and applies them in ...

363

Advances in welding science and technology  

SciTech Connect

Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

David, S.A.; Babu, S.S.; Vitek, J.M.

1995-12-31T23:59:59.000Z

364

Prototype arc saw design and cutting trials  

SciTech Connect

A program was initiated to develop the arc saw as a tool capable of removing the end fittings from spent nuclear fuel bundles. A special arc saw for this purpose was designed, installed at the Pacific Northwest Laboratory and satisfactorily operated to remove end fittings from simulated, nonradioactive fuel bundles. The design of the arc saw included consideration of the cutting environment, power supply size, control equipment, and work piece size. Several simulated fuel bundles were cut to demonstrate that the arc saw met design specifications. Although the arc saw development program was curtailed before significant performance data could be collected, tests indicate that the arc saw is a good means of cropping spent fuel bundles and is well suited to remote operation and maintenance.

Allison, G.S.

1980-09-01T23:59:59.000Z

365

Friction Stir Welding of Pipeline Steels  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Friction Stir Welding and Processing VII. Presentation Title, Friction Stir ...

366

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

367

Welding and Repair Technology Center: Overlay Handbook  

Science Conference Proceedings (OSTI)

The discovery of primary water stress corrosion cracking (PWSCC) in pressurized water reactor (PWR) vessel heads and components has led to the use of corrosion-resistant high-nickel welding alloys for repair and mitigation activities. To date, more than 30 PWR units have applied weld overlays to pressurizer welds with detected indications or have applied them as a mitigation method. Although the application of weld overlays appears to be a viable solution to managing this difficult issue, the utility ind...

2012-06-29T23:59:59.000Z

368

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, D.E.; Stompro, D.A.

1989-06-08T23:59:59.000Z

369

Welding representation for training under VR environments  

Science Conference Proceedings (OSTI)

In this paper, we present a virtual training system which realistically represents the situation of real welding. First of all, we built a database about welding outputs such as the shape of bead which is the deposit outcome resulting from inputs of ... Keywords: simulation, training, virtual reality, visualization, welding

Dongsik Jo; Yongwan Kim; Ungyeon Yang; Jinsung Choi; Ki-Hong Kim; Gun A. Lee; Yeong-Do Park; Young Whan Park

2011-12-01T23:59:59.000Z

370

NEW DEVELOPMENTS IN THE WELDING INDUSTRY  

SciTech Connect

A brief review is given of some of the developments and problems in the welding industry. These developments and problems are discussed in terms of new and improved welding processes, welding processes for new materials, improved design principles, and the technical education and training programs in this field. (N.W.R.)

Burt, R.G.

1961-10-01T23:59:59.000Z

371

An overview of the welding of Ni{sub 3}Al and Fe{sub 3}Al alloys  

Science Conference Proceedings (OSTI)

Weldability (degree to which defect formation is resisted when an alloy is welded) is an issue in fabrication of Ni{sub 3}Al and Fe{sub 3}Al. Work to define and improve welding of Ni{sub 3}Al and Fe{sub 3}Al alloys is reviewed and progress illustrated by examples of current activities. The cast Ni{sub 3}Al alloys currently under development, IC221M and IC396M, have low resistance to solidification cracking and hence difficult to weld. Modifications to the composition of both base alloys and weld deposits,however, increase their resistance to cracking. Crack-free, full-penetration welds were made in centrifugally cast tubes of IC221M. Tensile and stress- rupture properties of the weldments compare favorably with base metal properties. Weldability issues have limited the use of Fe{sub 3}Al alloys to weld overlay applications. Filler metal compositions suitable for weld overlay cladding were developed, and the preheat and postweld heat treatment needed to avoid cracking, were determined experimentally.

Santella, M.L.

1996-12-31T23:59:59.000Z

372

Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6  

SciTech Connect

A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.

Chenoweth, Terrence E. (Monroeville, PA); Yeoman, Frederick A. (Murrysville, PA)

1978-01-01T23:59:59.000Z

373

The Effect of Temperature on the Breakdown and Repassivation Potentials of Welded Alloy 22 In 5 M CACI2  

Science Conference Proceedings (OSTI)

The study of the electrochemical behavior of wrought and welded Alloy 22 was carried out in 5 M CaCl{sub 2} as a function of temperatures between 45 and 120 C with Multiple Crevice Assembly (MCA) specimens. The susceptibility to corrosion was found to increase with increase in electrolyte temperature in both the wrought (in the mill annealed condition) and the welded forms of the alloy. The weld metal was found to be less susceptible to localized corrosion under the conditions tested.

G.O. IIevbare

2006-07-05T23:59:59.000Z

374

Intraluminal tissue welding for anastomosis  

DOE Patents (OSTI)

A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Zimmerman, George (Lafayette, CA); Jacques, Steven (Portland, OR)

1998-10-27T23:59:59.000Z

375

Development of a Dissimilar Metal Foil-to-Substrate Resistance ...  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

376

Shimmed electron beam welding process  

DOE Patents (OSTI)

A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

2002-01-01T23:59:59.000Z

377

Advances in welding science - a perspective  

SciTech Connect

The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.

David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Babu, S.S.; DebRoy, T. [Pennsylvania State Univ., University Park, PA (United States)

1995-02-01T23:59:59.000Z

378

Optical penetration sensor for pulsed laser welding  

SciTech Connect

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

379

Robotic weld overlay coatings for erosion control. [Quarterly report, July--September 1993  

SciTech Connect

In the previous period of work, twelve overlay hardfacing alloys were selected for erosion testing based upon a literature review. All twelve coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. The coating deposition and sample preparation procedures were described in the previous quarterly report. During the past quarter, all the coatings were erosion tested at 400 C. The erosion resistance of each coating was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. This progress report describes the erosion test results and coating microstructures. Also, a preliminary analysis on the relationships, between weld overlay coating hardness, microstructure, and erosion resistance will be discussed.

Levin, B.F.; DuPont, J.N.; Marder, A.R.

1993-10-20T23:59:59.000Z

380

Improvement of reliability of welding by in-process sensing and control: development of smart welding machines for girth welding of pipes. First progress report  

SciTech Connect

Progress is reported in a research program to improve the reliability of welding by developing smart welding machine which will be equipped with sensors, artificial intelligence, and actuators for reducing welding errors by one or two orders of magnitude. (FS)

Converti, J.; Dror, Y.; Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

1979-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Purification of tantalum by plasma arc melting  

DOE Green Energy (OSTI)

Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

382

Resistance upset welding for vessel fabrication  

SciTech Connect

Solid-state resistance upset welding has been successfully applied to fabrication of small vessels. The process has advantages compared with the fusion welding processes currently used to join the two halves of such vessels. These advantages result from the improved metallurgical properties of the weld zone and the simplicity of the welding process. Spherical and cylindrical shapes have been fabricated using the upset welding process. Nondestructive and destructive tests have shown excellent weld strength. Storage tests have demonstrated long term compatibility of the welds for cylindrical parts made from 304L stainless steel that have been in storage for eight years. Spherical vessels and reinforced desip vessels made from forged 21-6-9 stainless steel have been prepared for storage.

Kanne, W.R. Jr.

1992-01-01T23:59:59.000Z

383

Resistance upset welding for vessel fabrication  

SciTech Connect

Solid-state resistance upset welding has been successfully applied to fabrication of small vessels. The process has advantages compared with the fusion welding processes currently used to join the two halves of such vessels. These advantages result from the improved metallurgical properties of the weld zone and the simplicity of the welding process. Spherical and cylindrical shapes have been fabricated using the upset welding process. Nondestructive and destructive tests have shown excellent weld strength. Storage tests have demonstrated long term compatibility of the welds for cylindrical parts made from 304L stainless steel that have been in storage for eight years. Spherical vessels and reinforced desip vessels made from forged 21-6-9 stainless steel have been prepared for storage.

Kanne, W.R. Jr.

1992-10-01T23:59:59.000Z

384

Low voltage arc formation in railguns  

DOE Patents (OSTI)

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

Hawke, R.S.

1985-08-05T23:59:59.000Z

385

Low voltage arc formation in railguns  

DOE Patents (OSTI)

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

Hawke, Ronald S. (Livermore, CA)

1987-01-01T23:59:59.000Z

386

Low voltage arc formation in railguns  

DOE Patents (OSTI)

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

Hawke, R.S.

1987-11-17T23:59:59.000Z

387

Surface plasma-arc cutting of stainless steel  

Science Conference Proceedings (OSTI)

This danger does not exist when plasma-arc cutting is used. Plasma-arc cutting also increases productivity and produces better quality gouged surfaces [2].

388

PARALLEL OPERATION OF WELDING GENERATORS  

SciTech Connect

Eight 900-amp, 36-kw direct current welding generators driven by eight 60-hp induction motors were operated in parallel to supply up to 7200 amp to resistance loads for heat transfer studies. A description and circuit designs of this installation, which provides safety interlocks and permits sectionalized operation for separate leads, are given. (auth)

Butler, B.H.

1960-06-01T23:59:59.000Z

389

An arc fault detection system  

DOE Patents (OSTI)

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N.

1997-12-01T23:59:59.000Z

390

Filtered cathodic arc deposition with ion-species-selectivebias  

SciTech Connect

A dual-cathode arc plasma source was combined with acomputer-controlled bias amplifier such as to synchronize substrate biaswith the pulsed production of plasma. In this way, bias can be applied ina material-selective way. The principle has been applied to the synthesismetal-doped diamond-like carbon films, where the bias was applied andadjusted when the carbon plasma was condensing, and the substrate was atground when the metal was incorporated. In doing so, excessive sputteringby too-energetic metal ions can be avoided while the sp3/sp2 ratio can beadjusted. It is shown that the resistivity of the film can be tuned bythis species-selective bias. The principle can be extended tomultiple-material plasma sources and complex materials

Anders, Andre; Pasaja, Nitisak; Sansongsiri, Sakon; Lim, SunnieH.N.

2006-10-05T23:59:59.000Z

391

Theoretical analysis of ARC constriction  

DOE Green Energy (OSTI)

The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

1980-12-01T23:59:59.000Z

392

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

393

Microsoft Word - DOE-ID-12-041 INL EC B3-6.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

SECTION A. Project Title: Monitoring and Control of the Hybrid Laser-Gas Metal Arc Welding Process - Idaho National Laboratory SECTION B. Project Description This project will...

394

Brief summary of reactor core component welding for the Fast Flux Test Facility (FFTF)  

SciTech Connect

Included are descriptions of welding methods and joint design, welding equipment, and qualification tests. (DG)

Brown, W.F.

1974-04-15T23:59:59.000Z

395

Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding  

Energy.gov (U.S. Department of Energy (DOE))

Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld...

396

ELECTRON BEAM WELDING OF NUCLEAR FUEL CLADDING COMPONENTS  

SciTech Connect

The rapid technological development of the nuclear and space industries has placed a great demand on metal joining processes. One of the most promising processes is electron beam welding. Welding with the electron beam ofiers high integrity in addition to the ability to fabricate unusual configurations. Advanced nuclear fuels require both reliability and unusual designs for satisfactory operation under extreme conditions of temperature and stress. To investigate the problems and techniques involved in fabricating large, advanced nuclear fuel components from Zircaloy-2 material, several cladding pieces were designed and built using the electron beam process. These designs included five basic joint types for assembling the cladding. Destructive and nondestructive examinations were employed including corrosion testing and extensive metallographic examination. Weldment size, fit-up'' of the parts to be joined, fixturing and work carriage mechanisms, as they pertain to electron beam welding, are also discussed. The electron beam process has been demonstrated as a very satisfactory method for fabricating unusual fuel cladding. Fuel cladding components with lengths up to 8 ft have been fabricated for in-reactor irradiation. (auth)

Klein, R.F.

1963-10-01T23:59:59.000Z

397

HIGH-VACUUM ELECTRON-BEAM FUSION WELDING  

SciTech Connect

A newly developed welding process is described for welding in a high vacuum without introducing contaminating material into the system as a part of the welding operation. (J.E.D.)

Wyman, W.L.

1958-02-01T23:59:59.000Z

398

Hexavalent Chromium Air Sampling Data from Welding and Steel Cutting  

Science Conference Proceedings (OSTI)

Welding and cutting chromium-containing metals may give rise to hexavalent chromium (Cr[VI]) exposure of workers. Since the passage in 2006 of a new OSHA regulation governing Cr(VI) exposure levels, electric utilities have been conducting air monitoring studies to evaluate worker's exposures to Cr(VI). The 2006 OSHA regulation permits the use of objective and robust data in lieu of exposure monitoring. Given this regulation and the fact that these data could be gathered from many electric utilities, EPRI...

2008-12-08T23:59:59.000Z

399

Welding and Repair Technology Center: Repair Welding Handbook  

Science Conference Proceedings (OSTI)

During the life of a power plant, it often becomes necessary to perform weld repairs of various materials in order to continue safe operation. Much work has been completed in this area to assist utilities with choosing appropriate repair techniques based on the materials involved and the damage mechanism that makes the repair necessary. This report captures in one resource a variety of repair methods that have been proven to be effective.

2012-05-14T23:59:59.000Z

400

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds  

SciTech Connect

The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

DebRoy, T.

2000-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Passively damped vibration welding system and method  

DOE Patents (OSTI)

A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

2013-04-02T23:59:59.000Z

402

Method and device for frictional welding  

DOE Patents (OSTI)

A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

Peacock, H.B.

1991-01-01T23:59:59.000Z

403

Method and device for frictional welding  

SciTech Connect

A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

Peacock, Harold B. (867 N. Belair Rd., Evans, GA 30809)

1992-01-01T23:59:59.000Z

404

Method and device for frictional welding  

DOE Patents (OSTI)

A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

Peacock, H.B.

1992-10-13T23:59:59.000Z

405

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-01-01T23:59:59.000Z

406

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-03-01T23:59:59.000Z

407

Unique applications of personal computers in the welding environment  

SciTech Connect

The personal computer was found to be useful in supporting a variety of welding applications: 3-D representation of crack propagation using CADD software, storage and retrieval of photographic data using an image capture board, automated positioning of the welding electrode for GTA welding, interactive computer based voice communication for welding operations, surface temperature measurements of welded structures, and inventory control of weld material through use of bar codes.

Glickstein, S.S.

1990-12-31T23:59:59.000Z

408

Robotic weld overlay coatings for erosion control. Quarterly technical progress report, October 1994--December 1994  

SciTech Connect

Research is presently being conducted to develop a criteria for selecting weld overlay coatings for erosion mitigation in Circulated Fluidized Beds. Initially, eleven weld overlay alloys were selected for erosion testing based upon a literature review. All eleven coatings were deposited on 1018 steel substrates using the plasma arc welding process. Ten samples from each coating were prepared for erosion testing. The coating deposition and sample preparation procedures were described in the second quarterly report. All selected coatings were erosion tested at 400{degree}C and their erosion resistance was evaluated by determining the steady state erosion rate. In addition, the microstructure of each coating was characterized before and after the erosion tests. The results of the tests are discussed in the third quarterly report. No correlations were found between room temperature hardness of the weld overlay coatings and their erosion resistance at elevated temperature. During the last quarter tensile tests were performed at 400{degree}C for the Ultimet, Inconel-625, 316L SS, C-22, and Stellite-6 wrought alloys. The erosion tests for these materials at 400{degree}C are in progress. The results of mechanical and erosion tests will be used to correlate mechanical properties of selected wrought alloys such as tensile toughness, ductility, strain hardening coefficient and yield strength to their erosion resistance at 400{degree}C. Also, the erosion behavior of the wrought alloys compared with similar weld alloys will be analyzed. The experimental procedure and results of the tensile tests are presented in this progress report.

Levin, B.F.; Dupont, J.N.; Marder, A.R.

1995-01-25T23:59:59.000Z

409

Arc Flash Issues in Transmission and Substation Environments: Modeling of Incident Thermal Energy of Long Arcs  

Science Conference Proceedings (OSTI)

Arc flashes are a serious hazard that may put people in life-threatening situations and cause great damage to existing assets. The National Electrical Safety Code (NESC) and the Occupational Safety and Health Administration (OSHA) introduced requirements for electric utilities to perform arc flash hazard assessment of their facilities operating at and above 1000 V. Most methods available at this time for analyzing the incident thermal energy of arc flash were developed for low and medium-voltage industri...

2011-12-20T23:59:59.000Z

410

Controlling Residual Stresses by Heat Sink Welding  

Science Conference Proceedings (OSTI)

Results are described of a combined finite element and pipe welding study in which the welding and heat sink parameters required to optimize fast pass heat sink welding (LPHSW) were identified and evaluated in analytic and experimental tasks. Also discussed is the application of an elastic-plastic finite element computer code model to evaluate and optimize the LPHSW process and to verify the results through residual stress measurements on LPHSW pipes.

1981-12-01T23:59:59.000Z

411

AdaptiveARC | Open Energy Information  

Open Energy Info (EERE)

AdaptiveARC AdaptiveARC Jump to: navigation, search Name AdaptiveARC Address 7683 Sitio Manana Place Carlsbad, California Zip 92009 Sector Biomass Product Waste-to-clean-energy startup is developing an arc-plasma reactor Website http://www.adaptivearc.com/ Coordinates 33.07959°, -117.22539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.07959,"lon":-117.22539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Detection of arcs in automotive electrical systems  

E-Print Network (OSTI)

At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

Mishrikey, Matthew David

2005-01-01T23:59:59.000Z

413

Welding Cutting and Brazing Assessment Plan Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WELDING, CUTTING AND BRAZING WELDING, CUTTING AND BRAZING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. Criteria: Establish designated area in which routine and repetitive welding, cutting, and other spark- or flame producing operations are conducted [1910.252(a)(2)(iv),1910.252(a)(2)(vi)(A), 1910.252(a)(2)(xv), General Requirements].

414

Welding shield for coupling heaters  

DOE Patents (OSTI)

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

415

Computational Weld Mechanics of Hot Crack Nucleation in Nickel ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Computational weld mechanics (CWM) is used to estimate the likelihood of hot crack nucleation in a welded joint. A hot crack nucleates when ...

416

Pages that link to "Apparent Welding Textures In Altered Pumice...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Apparent Welding Textures In Altered Pumice-Rich Rocks" Apparent Welding Textures In Altered...

417

Friction Stir Welding and Processing III TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

Friction Stir Welding of Dissimilar Aluminum Alloys [pp. 35] R. Cook ... Fatigue of Pre-Corroded 2024-T3 Friction Stir Welds: Experiment and Prediction [pp. 43

418

Experimental and Numerical Investigations on Laser welding of ...  

Science Conference Proceedings (OSTI)

Through the numerical simulation, the weld penetration, the geometry of the ... A high-speed CCD camera is used to real-time monitor the laser welding process.

419

Changes related to "Apparent Welding Textures In Altered Pumice...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Apparent Welding Textures In Altered Pumice-Rich Rocks" Apparent Welding Textures In Altered...

420

SELECTED RESOURCES: Fusion Welding of Superalloys - TMS  

Science Conference Proceedings (OSTI)

May 31, 2007 ... This listing provides links to resources on fusion welding of superalloys. Two formats of the information are presented for your convenience: pdf ...

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laser Welding for Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants · Evaluation of Nanofeature ...

422

Across Inertia Friction Welded Alloy 720Li  

Science Conference Proceedings (OSTI)

kinetic energy stored in the rotating flywheel is dissipated as heat through friction/ shearing at the weld interface. In this way, it is possible to join advanced ...

423

Friction Stir Welding: High Temperature Materials II  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Enhanced Friction Stir Welding of Titanium Using Elemental Foils: Richard Fonda 1; Keith Knipling1; 1Naval Research Laboratory

424

Welding the AT-400A Containment Vessel  

SciTech Connect

Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

Brandon, E.

1998-11-01T23:59:59.000Z

425

Ultrasonic Welding II - Programmaster.org  

Science Conference Proceedings (OSTI)

This concerns progress of hard- and software for ultrasonic welding systems, new joints and especially their mechanical and physical properties. Apart from ...

426

Welding the AT-400A Containment Vessel  

SciTech Connect

Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

Brandon, E.

1998-11-01T23:59:59.000Z

427

RADIATION HAZARDS ENCOUNTERED IN ARC MELTING THORIUM  

SciTech Connect

A project to provide information on the hazards associated wlth arc melting of Th is described. A general airsampling analysis was made to determine the separation, concentration, and distribution of Th daughter (decay) products throughout arc melting, machining, and forging processes found in a handling facility. The value of well coordinated health physics program is stressed in connection with potential health hazards and personnel protection. Building, equipment, and exhaust ventilation requirements for such a facility are discussed, along wlth special handling methods. (auth)

Lowery, R.R.

1960-11-01T23:59:59.000Z

428

Plasma torch with liquid metal electrodes  

Science Conference Proceedings (OSTI)

In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

Predtechenskii, M.R.; Tukhto, O.M. [Russian Academy of Science, Novosibirsk (Russian Federation)

2006-03-15T23:59:59.000Z

429

In-Situ Repairs of Oil Industry Pipelines, Tanks and Vessels by ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Metal arc welding under oil (MAW-UO) is a new, revolutionary process to repair a pipeline, tank or vessel by welding in case of flaws and ...

430

Preparation of Highly Crystalline Mesoporous TiO 2 by Using ...  

Science Conference Proceedings (OSTI)

Adsorption of Lead and Cadmium onto Natural and Modified Diatomite ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic Pulsed Gas Metal Arc Welding Using ... Tool Failure Criteria while Drilling Titanium Alloys.

431

Studies on Estimating Methods of Polarization Performance for  

Science Conference Proceedings (OSTI)

Adsorption of Lead and Cadmium onto Natural and Modified Diatomite ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic Pulsed Gas Metal Arc Welding Using ... Tool Failure Criteria while Drilling Titanium Alloys.

432

Structural Changes Produced by Low Number of ECAP Passes in ...  

Science Conference Proceedings (OSTI)

Adsorption of Lead and Cadmium onto Natural and Modified Diatomite ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic Pulsed Gas Metal Arc Welding Using ... Tool Failure Criteria while Drilling Titanium Alloys.

433

Characterization of Cyclic-Loading Effects on Superalloys Using  

Science Conference Proceedings (OSTI)

Adsorption of Lead and Cadmium onto Natural and Modified Diatomite ... Mechanical Properties of 5083 Aluminium Welds after Manual and Automatic Pulsed Gas Metal Arc Welding Using ... Tool Failure Criteria while Drilling Titanium Alloys.

434

Groundwater Data Modeling for Arc Hydro  

E-Print Network (OSTI)

During the years 1999–2002, a consortium for geographic information systems (GIS) in water resources, led by the Center for Research in Water Resources (CRWR) and the Environmental Systems Research Institute (ESRI), developed a data model, named Arc Hydro, for the presentation of surface water data in ArcGIS. This model was published in the summer of 2002 (Maidment, 2002) and has since been adopted as a common framework by data producing agencies, such as the USGS, and by creators of hydrologic models requiring GIS data such as the Hydrologic Engineering Center and the Danish Hydraulic Institute. The Design of Arc Hydro revealed that it is possible to define a “hydrologic information system ” which is a synthesis of geospatial and temporal data supporting hydrologic analysis and modeling (Maidment, 2002). This is an exciting new concept because rather than simply applying GIS in water resources, it provides a new way of thinking about how information technology can be used to support water resources planning, modeling and management. While the first Arc Hydro data model focused on describing surface water behavior, it has become apparent that a similar effort is needed to define an ArcGIS data model for groundwater, as part of Arc Hydro. This need is emphasized by the lack of a well understood and generally agreed

unknown authors

2003-01-01T23:59:59.000Z

435

Hybrid Laser Arc Welding of Structural Steels Used in the Marine ...  

Science Conference Proceedings (OSTI)

The HLAW process is being considered for the joining of typical marine steels, including ASTM A131, HSLA ... Laser Drilling with Gated High Power Fiber Lasers.

436

Creep rupture testing of alloy 617 and A508/533 base metals and weldments.  

DOE Green Energy (OSTI)

The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep after 50-60% of the rupture life, irrespective of test temperature in the range of 750-950 C. The results showed that the stress dependence of the creep rate followed a power law for both base alloy and weldments. The data also showed that the stress exponent for creep is the same and one can infer that the same mechanism is operative in both base metal and weldments in the temperature range of the current study. SEM fractography analysis indicated that both base metal and weldment showed combined fracture modes consisting of dimple rupture and intergranular cracking. Intergranular cracking was more evident in the weldment specimens, which is consistent with the observation of lower creep ductility in the weldment than in the base metal.

Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

2012-01-17T23:59:59.000Z

437

Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers  

DOE Green Energy (OSTI)

The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

2011-12-01T23:59:59.000Z

438

Microsoft Word - DOE-ID-12-041 INL EC B3-6.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 SECTION A. Project Title: Monitoring and Control of the Hybrid Laser-Gas Metal Arc Welding Process - Idaho National Laboratory SECTION B. Project Description This project will investigate a promising welding process that combines gas metal-arc welding and laser beam welding into Hybrid Las - Gas Metal-Arc Welding. The objectives of this project are to: ď‚· Develop and demonstrate a prototype system base on a number of sensing and diagnostic tools to monitor and provide real- time weld process control information, including ultrasonics to monitor subsurface weld pool geometry and defect formation ď‚· Record and analyze welding and defect formation ď‚· Develop other potential sensors for laser/weld interaction ď‚· Develop real-time post weld examination capabilities

439

Multi-mode ultrasonic welding control and optimization  

DOE Patents (OSTI)

A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

Tang, Jason C.H.; Cai, Wayne W

2013-05-28T23:59:59.000Z

440

Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds  

SciTech Connect

A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: penetration, width, width at half-penetration, and cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, the best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A. [Oak Ridge National Lab., TN (United States); Fuerschbach, P.W. [Sandia National Labs., Albuquerque, NM (United States); Smartt, H.B.; Pace, D.P. Tolle, C.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SmartWeld working session for the GTS4  

SciTech Connect

Results from SmartWeld`s first working session involving in-progress designs is presented. The Welding Advisor component of SmartWeld was thoroughly exercised, evaluated all eleven welds of the selected part. The Welding Advisor is an expert system implemented with object-oriented techniques for knowledge representation. With two welding engineers in attendance, the recommendations of the Welding Advisor were thoroughly examined and critiqued for accuracy and for areas of improvement throughout the working session. The Weld Schedule Database component of SmartWeld was also exercised. It is a historical archive of proven, successful weld schedules that can be intelligently searched using the current context of SmartWeld`s problem solving state. On all eleven welds, the experts agreed that Welding Advisor recommended the most risk free options. As a result of the Advisor`s recommendation, six welds agreed completely with the experts, two welds had their joint geometry modified for production, and three welds were not modified but extra care was exercised during welding. 25 figs., 3 tabs.

Kleban, S. [Sandia National Labs., Albuquerque, NM (United States); Hicken, K.; Ng, R. [Sandia National Labs., Livermore, CA (United States); Fricke, B. [Allied Signal Kansas City Division, MO (United States)

1997-08-01T23:59:59.000Z

442

Technologic Papers 1920  

Science Conference Proceedings (OSTI)

... Physical tests of motor-truck wheels, T 150, Hoffmann, CP http://dx.doi.org ... Electric-arc welding of steel: I. Properties of the arc-fused metal, T 179 ...

2013-03-21T23:59:59.000Z

443

Manual tube-to-tubesheet welding torch  

DOE Patents (OSTI)

A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.

Kiefer, Joseph H. (Tampa, FL); Smith, Danny J. (Tampa, FL)

1982-01-01T23:59:59.000Z

444

Temperbead Qualification: Joint P3 Weld Qualification  

Science Conference Proceedings (OSTI)

This report outlines the procedure qualification for a new temperbead weld repair. After an initial failed qualification, the EPRI Repair and Replacement Applications Center (RRAC) teamed with Calvert Cliffs Nuclear Power Plant to perform a joint procedure qualification and, in doing so, assisted the industry by enabling general use of the new weld procedure.

2002-12-29T23:59:59.000Z

445

Magnetic Method to Characterize the Current Densities in Breaker Arc  

Science Conference Proceedings (OSTI)

The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing.

Machkour, Nadia [National Institute of Standards and Technology (United States)

2005-04-15T23:59:59.000Z

446

Automated Spot Weld Inspection using Infrared Thermography  

Science Conference Proceedings (OSTI)

An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

447

Ion source with improved primary arc collimation  

DOE Patents (OSTI)

An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

Dagenhart, W.K.

1983-12-16T23:59:59.000Z

448

Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc  

E-Print Network (OSTI)

of the subducted slab on Aleutian Island Arc magma sources:2006. Revised age of Aleutian Island arc formation impliesCrustal recycling and the Aleutian arc. Geochim Cosmochim.

Yogodzinski, Gene

2011-01-01T23:59:59.000Z

449

Numerical simulation of the electron beam welding process  

Science Conference Proceedings (OSTI)

Electron beam welding is a highly efficient and precise welding method that is being increasingly used in industrial manufacturing and is of growing importance in industry. Compared to other welding processes it offers the advantage of very low heat ... Keywords: 3D conical heat source, Electron beam welding (EBW), Heat-affected zone, Numerical simulation, Thermomechanical coupling analysis

Piotr Lacki; Konrad Adamus

2011-06-01T23:59:59.000Z

450

Adaptive feed-forward digital control of GTA welding  

SciTech Connect

Three control functions are performed - seam tracking, weld pattern selection, and pattern scaling. The controller uses a computer program specifically written for welding. Its use with a welding unit is sufficiently simple that it may be mastered by a person having conventional welding skills. 27 refs.

Scott, J.J.; Brandt, H.

1982-03-01T23:59:59.000Z

451

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

DOE Green Energy (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

452

Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology  

Science Conference Proceedings (OSTI)

Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

2005-06-30T23:59:59.000Z

453

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

SciTech Connect

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia

2012-05-01T23:59:59.000Z

454

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

Science Conference Proceedings (OSTI)

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 °C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia; Piyush Sabharwall

2012-09-01T23:59:59.000Z

455

arcControlTower: the System for Atlas Production and Analysis on ARC  

E-Print Network (OSTI)

PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControl...

Filipcic, A; The ATLAS collaboration

2011-01-01T23:59:59.000Z

456

Corrosion and arc erosion in MHD channels  

DOE Green Energy (OSTI)

The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

Rosa, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering); Pollina, R.J. (Montana State Univ., Bozeman, MT (United States). Dept. of Mechanical Engineering Avco-Everett Research Lab., Everett, MA (United States))

1991-10-01T23:59:59.000Z

457

Ion source based on the cathodic arc  

DOE Patents (OSTI)

A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

Sanders, D.M.; Falabella, S.

1994-02-01T23:59:59.000Z

458

American Ref Fuel Corporation ARC | Open Energy Information  

Open Energy Info (EERE)

Ref Fuel Corporation ARC Jump to: navigation, search Name American Ref-Fuel Corporation (ARC) Place Montvale, NJ, New Jersey Zip 76450 Product Focused on waste-to-energy facilities...

459

DOE Solar Decathlon: News Blog » SCI-Arc/Caltech  

NLE Websites -- All DOE Office Websites (Extended Search)

SCI-ArcCaltech Below you will find Solar Decathlon news from the SCI-ArcCaltech archive, sorted by date. New Zealand Takes First in Engineering Contest Thursday, September 29,...

460

LITTLEWOOD TYPE PROBLEMS ON SUB ARCS Peter ... - CECM  

E-Print Network (OSTI)

LITTLEWOOD TYPE. PROBLEMS ON SUB ARCS. Peter Borwein. Simon Fraser University Centre for. Constructive and Experimental. Mathematics.

Note: This page contains sample records for the topic "metal arc welding" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Toughened Graphite Electrode for High Heat Electric Arc ...  

Energy Innovation Portal Technologies. ... To reduce the failure rate, ... Applications and Industries. Electric arc furnace steel manufacturing;

462

Synthesis of Elementary Net Systems with Context Arcs and Localities  

Science Conference Proceedings (OSTI)

We investigate the synthesis problem for ENCL-systems, defined as Elementary Net Systems extended with context (inhibitor and activator) arcs and explicit event localities. Since colocated events are meant to be executed synchronously, the behaviour ... Keywords: Petri nets, activator arcs, context arcs, elementary net systems, inhibitor arcs, localities, net synthesis, step sequence semantics, structure and behaviour of nets, theory of concurrency, theory of regions, transition systems

Maciej Koutny; Marta Pietkiewicz-Koutny

2008-08-01T23:59:59.000Z

463

Out-arc pancyclicity of vertices in tournaments  

Science Conference Proceedings (OSTI)

Yao, Guo and Zhang [T. Yao, Y. Guo, K. Zhang, Pancyclic out-arcs of a vertex in a tournament, Discrete Appl. Math. 99 (2000) 245-249.] proved that every strong tournament contains a vertex u such that every out-arc of u is pancyclic. In this paper, we ... Keywords: Cycles, Out-arcs, Pancyclicity, Tournaments

Qiaoping Guo; Shengjia Li; Yubao Guo; Hongwei Li

2010-05-01T23:59:59.000Z

464

CO/sub 2/ welding used to attach inspection manway to NASA hydrogen pressure vessel  

SciTech Connect

Welding of inspection manway for internal survey of a gaseous hydrogen storage vessel is described. Pre-welding activities are reviewed, along with welding operations, and in-process welding control. (JRD)

Palmer, G.; Conklin, D.

1976-09-01T23:59:59.000Z

465

arcControlTower, the System for Atlas Production and Analysis on ARC  

E-Print Network (OSTI)

Abstract content Panda, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the resources known in advance. All the pilot communication with the panda server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with t...

Filipcic, A; The ATLAS collaboration

2010-01-01T23:59:59.000Z

466

Metallurgical Characteristics and Field Performances of Weld ...  

Science Conference Proceedings (OSTI)

Current talk highlights the weld overlays of a number of corrosion-resistant alloys that have been used successfully in waste-to-energy boilers, coal-fired boilers, ...

467

Friction Stir Welding: Light Materials II  

Science Conference Proceedings (OSTI)

Mar 6, 2013... interests to automotive industry due to fuel economy and emission regulation. .... a mixture solution of ice and water to freeze the microstructure. ... for the friction stir weld tool, have produced joints of adequate performance, ...

468

Friction Stir Welding and Processing II  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... Friction Stir Welding and Processing II by K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, editors ...

469

The 'world's largest' Inconel waterwall weld overlay  

SciTech Connect

An 11,000 square foot Inconel 655 weld repaired severe wastage caused by low NOx firing with coal/petcoke at the Belledune generating station in New Brunswick, Canada. 1 ref., 1 fig., 3 photos.

MacLean, K.; Fournier, E.; Gomez-Grande, J.; Scandroli, T. [New Brunswick Power Generation (United States)

2009-11-15T23:59:59.000Z

470

Welding  

Science Conference Proceedings (OSTI)

...due to required skills and labor intensity Possible high cost for capital equipment, especially for some

471

Friction Stir Spot Welding of Advanced High Strength Steels  

Science Conference Proceedings (OSTI)

Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

2009-11-13T23:59:59.000Z

472

Optimization of different welding processes using statistical and numerical approaches - A reference guide  

Science Conference Proceedings (OSTI)

Welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld-bead geometry, mechanical properties, and distortion. Generally, all welding processes ... Keywords: Ann, Optimization, Quality of weld, RSM, Taguchi, Welding

K. Y. Benyounis; A. G. Olabi

2008-06-01T23:59:59.000Z

473

Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics  

Science Conference Proceedings (OSTI)

The present work establishes a correlation between the laser transmission welding parameters and output variables though a nonlinear model, developed by applying artificial neural network (ANN). The process parameters of the model include laser power, ... Keywords: Artificial neural networks, Laser transmission welding, Regression analysis, Sensitivity analysis, Thermoplastics

Bappa Acherjee; Subrata Mondal; Bipan Tudu; Dipten Misra

2011-03-01T23:59:59.000Z

474

Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation  

DOE Patents (OSTI)

The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

Trent, J.B.; Murphy, J.L.

1980-01-03T23:59:59.000Z

475

Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation  

SciTech Connect

The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.