Sample records for metal arc welding

  1. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

    1989-01-01T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  2. Method for controlling gas metal arc welding

    DOE Patents [OSTI]

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10T23:59:59.000Z

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  3. Characterization of Gas Metal Arc Welding welds obtained with new high Cr-Mo ferritic stainless steel filler wires

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Characterization of Gas Metal Arc Welding welds obtained with new high Cr-Mo ferritic stainless Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel

  4. ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) ) ~DELING OF METAL TRANSFKR IN GAS METAL ARC WELDING Yong -Seog Kim and T. W. Eagar theory and the pinch i ns t a bility theor y as a function of welding cur rent . Experimental of the gas metal arc process in the late 1940s, it has become one of the most important welding processes

  5. Specification and qualification of welding procedures for metallic materials : Welding procedure test : Part 2: Arc welding of aluminium and its alloys

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2005-01-01T23:59:59.000Z

    Specification and qualification of welding procedures for metallic materials : Welding procedure test : Part 2: Arc welding of aluminium and its alloys

  6. Specification and qualification of welding procedures for metallic materials : Welding procedure test : Part 2: Arc welding of aluminium and its alloys : technical corrigendum 1

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2005-01-01T23:59:59.000Z

    Specification and qualification of welding procedures for metallic materials : Welding procedure test : Part 2: Arc welding of aluminium and its alloys : technical corrigendum 1

  7. Modelling of the bead formation during multi pass hybrid laser/gas metal arc welding

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Modelling of the bead formation during multi pass hybrid laser/gas metal arc welding Olivier dimensional finite element model has been developed to simulate weld bead formation in multi pass hybrid laser/gas metal arc welding. The model considers both a gas metal arc welding (GMAW) electrode and a laser beam

  8. Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Heat and Metal Transfer in Gas Metal Arc Welding Using Argon and Helium P.G. JONSSON, T.W. EAGAR transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major dif properties. Various findings from the study include that an arc cannot be stru~k in a pure helium atmosphere

  9. ~.,Slag-Metal Equilibrium During Submerged e-~~ Arc Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ~~ . ~.·,Slag-Metal Equilibrium During Submerged ·e-~~ Arc Welding C. S. CHAI AND T. W. EAGAR A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding over forty years ago, submerged arc welding has developed into one of the most efficient, most reliable

  10. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade

    E-Print Network [OSTI]

    Grujicic, Mica

    Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature

  11. Direct Modeling of Material Deposit and Identification of Energy Transfer in Gas Metal Arc Welding

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct Modeling of Material Deposit and Identification of Energy Transfer in Gas Metal Arc Welding sources for finite element simulation of gas metal arc welding (GMAW). Design for the modeling of metal deposition results in a direct calculation of the formation of the weld bead, without any

  12. METAL TRANSFER CONTROL IN GAS METAL ARC WELDING L.A. Jones, T.W. Eagar, J.H. Lang

    E-Print Network [OSTI]

    Eagar, Thomas W.

    METAL TRANSFER CONTROL IN GAS METAL ARC WELDING L.A. Jones, T.W. Eagar, J.H. Lang Massachusetts Institute of Technology Cambridge, MA 02139 USA Abstract Power input to the arc in gas metal arc welding to decouple these processes. Methods to achieve this decoupling are discussed. Pulsed-power welding is widely

  13. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect (OSTI)

    Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-04-15T23:59:59.000Z

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  14. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  15. Numerical Analysis of Metal Transfer in Gas Metal Arc Welding under Modified Pulsed Current Conditions

    E-Print Network [OSTI]

    Zhang, YuMing

    causes a thermal load too high to apply to thin sectioned or heat-sensitive materials. In an effort was assumed as the boundary condition for the calculation of the electromagnetic force. The calculations were agreement between calculation and experimental results. I. INTRODUCTION IN gas metal arc welding (GMAW

  16. Oxygen and Nitrogen Contamination During Arc Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) : ,- Oxygen and Nitrogen Contamination During Arc Welding T. W. Eagar Department of }faterials, shielded metal arc, self-shielded metal arc, and submerged arc welding are reviewed. Calcu- lations upon heating is also discussed. Introduction Oxygen and nitrogen ~ontamination of weld metal

  17. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding Process M. Grujicic, S. Ramaswami, J.S. Snipes, C.-F. Yen, B.A. Cheeseman, and J.S. Montgomery developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior

  18. DC arc weld starter

    DOE Patents [OSTI]

    Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

    1990-01-01T23:59:59.000Z

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  19. A two-dimensional thermomechanical simulation of a gas metal arc welding process

    SciTech Connect (OSTI)

    Ortega, A.R.

    1990-08-01T23:59:59.000Z

    A low heat input gas metal arc (GMA) weld overlay process is being investigated as a possible means to repair Savannah River nuclear reactor tanks in the event cracks are detected in the reactor walls. Two-dimensional thermomechanical simulations of a GMA welding process were performed using the finite element code ABAQUS to assist in the design of the upcoming weld experiments on helium-charged specimens. The thermal model correlated well with existing test data, i.e., fusion zone depth and thermocouple data. In addition, numerical results revealed that after cool-down the final deformation of the workpiece was qualitatively similar to the shape observed experimentally. Based on these analyses, conservative recommendations were made for the workpiece dimensions, weld pass spacing, and thermomechanical boundary conditions to ensure the experiments would be as representative as possible of welding on the reactor walls. 12 refs., 13 figs.

  20. Heat and mass transfer in the gas tungsten and gas metal arc welding processes

    SciTech Connect (OSTI)

    Watkins, A.D; Smartt, H.B.; Einerson, C.J.; Watkins, J.A.

    1990-01-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode was measured for a wide range of conditions suitable for mechanized welding. The results are given as (1) the arc efficiency and (2) the anode heat and current input distributions for various anode materials over a range of current and voltage. The nominal arc is Gaussian, {approximately}4 mm in diameter, with {approximately}75{percent}heat transfer efficiency. Variations from these values are discussed in terms of the electrical and thermal energy transport mechanisms. Heat transferred to the workpiece (cathode) during direct current, electrode positive gas metal arc welding (GMAW) was measured for various parameters applicable to machine welding. The results are presented as a function of electrode speed for changing voltages and contact tip to workpiece distances. The total heat transfer efficiency was nominally 85{percent} for a 0.89 mm diameter steel electrode using an argon-2{percent} oxygen shielding gas; the nominal heat transfer efficiency of the droplet component was 40{percent}. The average droplet temperatures ranged from 2400 to 3100 K, depending on the process parameters. A new method of measuring the heat transferred from the arc to the workpiece, using a boiling liquid nitrogen calorimeter, has been developed that gives rapid, accurate values. 20 refs., 8 figs., 2 tabs.

  1. Laser Assisted Plasma Arc Welding

    SciTech Connect (OSTI)

    FUERSCHBACH,PHILLIP W.

    1999-10-05T23:59:59.000Z

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  2. Contrib. Plasma Phys. 51, No. 2-3, 293 296 (2011) / DOI 10.1002/ctpp.201000061 LTE Experimental Validation in a Gas Metal Arc Welding Plasma

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Validation in a Gas Metal Arc Welding Plasma Column F. Valensi1,2 , S. Pellerin1 , A. Boutaghane3 , K, France 7 CTAS-Air Liquide Welding, Saint Ouen l'Aum^one, 95315 Cergy-Pontoise cedex, France Received 12 Spectroscopy, Boltzmann Plot, Sola method, LTE. During gas metal arc welding (GMAW), the plasma obtained has

  3. The dynamics of droplet formation and detachment in gas metal arc welding

    SciTech Connect (OSTI)

    Johnson, J.A.; Smartt, H.B.; Clark, D.E.; Carlson, N.M.; Watkins, A.D.; Lethcoe, B.J.

    1990-01-01T23:59:59.000Z

    Experimental measurements of gas metal arc welding are required for the development and confirmation of models of the process. This paper reports on two experiments that provide information for models of the arc physics and of the weld pool dynamics. The heat transfer efficiency of the spray transfer mode in gas metal arc welding was measured using a calorimetry technique. The efficiency varied from 75 to 85%. A special fixture was used to measure the droplet contribution, which is determined to be between 35 and 45% of the total input energy. A series of experiments was performed at a variety of conditions ranging from globular to spray to streaming transfer. The transfer was observed by taking high-speed movies at 500 to 5000 frames per second of the backlighted droplets. An automatic image analysis system was used to obtain information about the droplets including time between detachments, droplet size, and droplet acceleration. At the boundary between the globular and spray modes, the droplet size varies between small droplets that melt off faster than average, resulting in a smaller electrode extension, and large droplets that melt off slower than average, resulting in an increase in the electrode extension. 5 refs., 4 figs., 2 tabs.

  4. Gas metal arc welding of duplex stainless steel using flux cored wire

    SciTech Connect (OSTI)

    Maruyama, T.; Ogawa, T.; Nishiyama, S.; Ushijima, A.; Yamashita, K. [Kobe Steel, Ltd., Fujisawa (Japan)

    1994-12-31T23:59:59.000Z

    The effect of chemical compositions and welding parameters on pitting corrosion resistance and notch toughness of duplex stainless steel weld metals by FCAW was investigated. And the effect of welding parameters on hot cracking susceptibility of the FCAW weld metals was also studied. Pitting corrosion resistance was improved with the increase of Cr, Mo and N content in the weld metal, and it was also proved that the corrosion resistance was greatly affected by welding heat input. Hot cracking susceptibility of the weld metal was increased with the increase of welding current and welding speed.

  5. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15T23:59:59.000Z

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  6. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Plasma diagnostics in gas metal arc welding by optical emission spectroscopy This article has been welding by optical emission spectroscopy F Valensi1,2 , S Pellerin1 , A Boutaghane3 , K Dzierzega4 de Bourges), BP 4043, 18028 Bourges cedex, France 7 CTAS-Air Liquide Welding, Saint Ouen l

  7. Laser assisted arc welding for aluminum alloys

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    2000-01-01T23:59:59.000Z

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  8. THE PHYSICS OF ARC WELDING PROCESSES Department of Materials Science and Engineering,

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) THE PHYSICS OF ARC WELDING PROCESSES T.W.EAGAR Department of Materials Science and Engineering, Massachusetts Institute of Technology Abstract Welding is an extremely complex proce ss; however, due to its Wor ds: Arc Welding, Arc Physics, Shielding Gases, Gas Metal Arc Welding. 1. Introduction Langmuir

  9. Percussive arc welding apparatus

    DOE Patents [OSTI]

    Hollar, Jr., Donald L. (Overland Park, KS)

    2002-01-01T23:59:59.000Z

    A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

  10. Three-dimensional modeling of the plasma arc in arc welding

    SciTech Connect (OSTI)

    Xu, G.; Tsai, H. L. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 1870 Miner Circle, Rolla, Missouri 65409 (United States); Hu, J. [Department of Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut 06604 (United States)

    2008-11-15T23:59:59.000Z

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.

  11. Welding arc initiator

    DOE Patents [OSTI]

    Correy, T.B.

    1989-05-09T23:59:59.000Z

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  12. Welding arc initiator

    DOE Patents [OSTI]

    Correy, Thomas B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  13. ABSTRACT. Keyhole plasma arc welding is a unique arc welding process for deep

    E-Print Network [OSTI]

    Zhang, YuMing

    ABSTRACT. Keyhole plasma arc welding is a unique arc welding process for deep penetration. To ensure the quality of the welds, the presence of the keyhole is crit- ical. Understanding of the keyhole will certainly benefit the improvement of the process and weld quality. Currently, the size of the keyhole

  14. A COUPLED APPROACH FOR THE MODELLING OF ARC WELDING Christel Pequet1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A COUPLED APPROACH FOR THE MODELLING OF ARC WELDING PROCESSES Christel Pequet1 , Patrice Lasne1 ; email : michel.bellet@ensmp.fr Keywords: welding, finite elements, thermal arising in arc welding as well as their interaction: heat input, metal deposit, solidification, phase

  15. NEW NUMERICAL TECHNOLOGIES FOR THE SIMULATION OF ARC WELDING PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NEW NUMERICAL TECHNOLOGIES FOR THE SIMULATION OF ARC WELDING PROCESSES Michel Bellet 1 , Makhlouf Antipolis, France; soudage@transvalor.com Keywords: welding, finite elements, material deposit, adaptive for arc welding simulation and analysis. The new numerical technologies essentially consist first

  16. Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Slag Metal Reactions in Binary CaF2-Metal Oxide Welding Fluxes Some otherwise chemically stable fluxes may decompose into suboxides in the presence of welding arcs, thereby providing higher levels of 0 2 in weld metal than those oxides which do not form suboxides ABSTRACT. The stability of metal

  17. What makes an electric welding arc perform its required function

    SciTech Connect (OSTI)

    Correy, T.B.

    1982-09-01T23:59:59.000Z

    The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

  18. WELDING RESEARCH -s229WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -s229WELDING JOURNAL ABSTRACT. Dual-bypass gas metal arc welding (DB agrees with experimental data. Introduction Gas metal arc welding (GMAW) is an arc welding process- minum alloy welded structures have been widely applied. The use of aluminum as an alternative material

  19. Plutonium metal and oxide container weld development and qualification

    SciTech Connect (OSTI)

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01T23:59:59.000Z

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  20. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;OverviewOverview · Cost components · Estimation of costsEstimation of costs · Examples ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 2 #12;Cost

  1. Welding : arc-welded joints in aluminium and its alloys : quality levels for imperfections : technical corrigendum 1

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2006-01-01T23:59:59.000Z

    Welding : arc-welded joints in aluminium and its alloys : quality levels for imperfections : technical corrigendum 1

  2. Heat transfer in gas tungsten arc welding

    SciTech Connect (OSTI)

    Smartt, H.B.; Stewart, J.A.; Einerson, C.J.

    1986-05-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode has been measured for a wide range of conditions suitable for mechanized welding applications. The results are given as (1) the arc efficiency; and (2) the anode heat and current input distribution functional shapes and radii for various anode materials and groove shapes over a wide range of current and voltage, using different electrode geometries, as well as both He and Ar-He shielding gases. The nominal arc is Gaussian with a diameter of about 4 mm and a heat transfer efficiency to the anode of about 75%. Variations from these values are discussed in terms of current knowledge of the electrical and thermal energy transport mechanisms. A new method of measuring the heat transferred from the arc to the anode, using a boiling liquid nitrogen calorimeter, has been developed which gives rapid, accurate values.

  3. WELDING RESEARCH -s231WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -s231WELDING JOURNAL ABSTRACT. Double-electrode gas metal arc welding (DE the welding wire and the bypass torch. To control the base metal current at the desired level, a group. Introduction Gas metal arc welding (GMAW) is a major process for metals joining. Conventional GMAW is normally

  4. automatic arc welding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control computer, has been accomplished. n.n. 2 Double-Sided Arc Welding Increases Weld Joint Penetration CiteSeer Summary: this paper proposes increasing the penetration by...

  5. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, Lowell D. (Kingston, TN)

    1984-01-01T23:59:59.000Z

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  6. Gas-tungsten arc welding of aluminum alloys

    DOE Patents [OSTI]

    Frye, L.D.

    1982-03-25T23:59:59.000Z

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  7. Gas-tungsten arc welding of aluminum alloys

    SciTech Connect (OSTI)

    Frye, L.D.

    1984-11-20T23:59:59.000Z

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one micro-inch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  8. Thermocapillary and arc phenomena in stainless steel welds

    SciTech Connect (OSTI)

    Pierce, S.W.

    1993-10-01T23:59:59.000Z

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  9. High-power laser and arc welding of thorium-doped iridium alloys

    SciTech Connect (OSTI)

    David, S.A.; Liu, C.T.

    1980-05-01T23:59:59.000Z

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO/sub 2/ laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed.

  10. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOE Patents [OSTI]

    Heiple, C.R.; Burgardt, P.

    1984-03-13T23:59:59.000Z

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  11. arc welding automation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc welding automation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Double-Sided Arc Welding...

  12. A Glove Box Enclosed Gas-Tungsten Arc Welding System

    SciTech Connect (OSTI)

    Reevr, E, M; Robino, C.V.

    1999-07-01T23:59:59.000Z

    This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

  13. Narrow groove gas tungsten arc welding of ASTM A508 Class 4 steel for improved toughness properties

    SciTech Connect (OSTI)

    Penik, M.A. Jr. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1997-04-01T23:59:59.000Z

    Welding of heavy section steel has traditionally used the automatic submerged arc welding (ASAW) process because of the high deposition rates achievable. However, the properties, particularly fracture toughness, of the weld are often inferior when compared to base material. This project evaluated the use of narrow groove gas tungsten arc welding (GTAW) to improve weld material properties. The welding procedures were developed for ASTM A508 Class 4 base material using a 1% Ni filler material complying to AWS Specification A.23-90-EF3-F3-N. A narrow groove joint preparation was used in conjunction with the GTAW process so competitive fabrication rates could be achieved when compared to the ASAW process. Weld procedures were developed to refine weld substructure to achieve better mechanical properties. Two heaters of weld wire were used to examine the effects of minor filler metal chemistry differences on weld mechanical properties. Extensive metallographic evaluations showed excellent weld quality with a refined microstructure. Chemical analysis of the weld metal showed minimal weld dilution by the base metal. Mechanical testing included bend and tensile tests to ensure weld quality and strength. A Charpy impact energy curve versus temperature and fracture toughness curve versus temperature were developed for each weld wire heat. Results of fracture toughness and Charpy impact testing indicated an improved transition temperature closer to that of the base material properties.

  14. Effect of Microstructure on Mechanical Properties of High Strength Steel Weld Metals

    E-Print Network [OSTI]

    Keehan, Enda

    2004-01-01T23:59:59.000Z

    using for example gas tungsten arc welding (GTAW). However as strength levels increase it becomes more difficult to fulfil impact toughness requirements with flexible and productive welding methods such as shielded metal arc welding (SMAW), flux cored... . Little effects are seen on the cross sectional area of each weld bead deposited with increase in interpass temperature but the proportion of recrystallised area increases [12]. By eliminating the columnar microstructure, hardness becomes more uniform...

  15. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  16. Numerical modelling of hybrid arc/laser welding: a Level Set approach for weld bead formation and residual stresses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Numerical modelling of hybrid arc/laser welding: a Level Set approach for weld bead formation.Bellet@mines-paristech.fr ABSTRACT The joining of high thickness steel sheets by means of hybrid Laser/GMAW welding processes of the workpiece borders. Two finite elements models are presented to illustrate: (i) A hybrid arc/laser welding

  17. Stainless steel submerged arc weld fusion line toughness

    SciTech Connect (OSTI)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1995-04-01T23:59:59.000Z

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  18. A dimensionless parameter model for arc welding processes

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    1994-12-31T23:59:59.000Z

    A dimensionless parameter model previously developed for C0{sub 2} laser beam welding has been shown to be applicable to GTAW and PAW autogenous arc welding processes. The model facilitates estimates of weld size, power, and speed based on knowledge of the material`s thermal properties. The dimensionless parameters can also be used to estimate the melting efficiency, which eases development of weld schedules with lower heat input to the weldment. The mathematical relationship between the dimensionless parameters in the model has been shown to be dependent on the heat flow geometry in the weldment.

  19. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect (OSTI)

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

    2011-01-17T23:59:59.000Z

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  20. Visible Light Emissions during Gas Tungsten Arc Welding and Its Application to Weld

    E-Print Network [OSTI]

    Eagar, Thomas W.

    emission, were also determined. An improved image of the weld pool can be obtained by operating within will require development of new sensor systems. As the "Yelding arc is a harsh environment, noncontacting to control joint tracking and weld E. W. KIM, C. ALLEMAND and T. W. EAGAR are with the Massachusetts

  1. Control Engineering Practice 11 (2003) 14011411 Modeling and control of quasi-keyhole arc welding process

    E-Print Network [OSTI]

    Zhang, YuMing

    Control Engineering Practice 11 (2003) 1401­1411 Modeling and control of quasi-keyhole arc welding to operate the keyhole arc welding process. Because the method's effectiveness depends on the amperage reserved. Keywords: Modeling; Predictive control; Manufacturing; Welding 1. Introduction Keyhole arc

  2. WELDING RESEARCH -s11WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -s11WELDING JOURNAL ABSTRACT. Double-electrode gas metal arc welding (DE-GMAW) is a novel weld- ing process recently developed to increase welding productivity while maintaining the base its non- consumable tungsten electrode with a consumable welding wire electrode result- ing in a new

  3. CHANGES IN SOLIDIFICATION MODE, AND THE MEASUREMENT OF COOLING RATES FOLLOWING SOLIDIFICATION DURING ARC WELDING

    E-Print Network [OSTI]

    Cambridge, University of

    SOLIDIFICATION DURING ARC WELDING 2.1 INTRODUCTION The solidification process in a weld pool has been shown to have a considerable in- fluence upon the properties of the resultant weld. It influences elements, and hence the homogeneity of the weld. Previous work on the cooling behaviour of welds (Garland

  4. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    SciTech Connect (OSTI)

    Shen Jun [College of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)], E-mail: shenjun2626@163.com; You Guoqiang; Long Siyuan [College of Mechanical Engineering, Chongqing University, Chongqing 400044 (China); Pan Fusheng [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2008-08-15T23:59:59.000Z

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in the initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.

  5. arc welding material: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remeshing. The heat for the modeling of metal deposition results in a direct calculation of the formation of the weld bead, without any Paris-Sud XI, Universit de 2...

  6. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect (OSTI)

    Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

    2013-01-01T23:59:59.000Z

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  7. Theoretical analysis of weld pool behavior in the pulsed current Gas Tungsten Arc Welding (GTAW) process

    SciTech Connect (OSTI)

    Tsai, C.L. (Ohio State Univ., Columbus (United States)); Hou, C.A. (Howard Univ., Washington, DC (United States))

    1988-02-01T23:59:59.000Z

    A general three-dimensional, closed-form welding heat-flow solution, which is capable of analyzing thermal behavior of the weldment in its transient state and/or under time-dependent power change during welding, is presented. The analytical model utilizes the finite heat source theory with a Gaussian distribution and also considers the effects of finite plate thickness. The numerical values of the solution are calculated using the computational schemes on a minicomputer. In this paper the welding parameters of the pulsed current Gas Tungsten Arc Welding (GTAW) were studied using the solution. Two sets of pulsation parameters were analyzed and their sensitivity to the heat input control were evaluated.

  8. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 50, NO. 3, JUNE 2001 697 Robust Sensing of Arc Length

    E-Print Network [OSTI]

    Zhang, YuMing

    the distribution of the arc energy and thus the heat input and width of the weld. This work aims at improving research and equipment development. The gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW tungsten arc welding (GTAW) with argon shield. To this end, effects of welding parame- ters on spectral

  9. The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr Steel Weldments

    E-Print Network [OSTI]

    Mayr, Peter

    In this work, three joints of a X11CrMoWVNb9-1-1 (P911) pipe were welded with three filler metals by conventional arc welding. The filler metals varied in creep strength level, so that one overmatched, one undermatched, ...

  10. Metals purification by improved vacuum arc remelting

    DOE Patents [OSTI]

    Zanner, Frank J. (Sandia Park, NM); Williamson, Rodney L. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

    1994-12-13T23:59:59.000Z

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  11. Method and device for reducing overpenetration at the start of plasma arc welds

    DOE Patents [OSTI]

    Sanders, John M. (Jackson Township, Stark County, OH); Lehmann, John M. (Bedford County, VA); Ryan, Patrick M. (Washington Township, Stark County, OH)

    1998-01-01T23:59:59.000Z

    A shim for improving plasma arc weld quality has ends tapered at about 25.degree. and notches at each end roughly centered over the corner between the tapered ends and main body of the shim. The improved shim allows lower starting plasma arc heat input and reduces the occurrence of sagging, or overpenetration, of the weld.

  12. Improved Microstructure and Properties of 6061 Aluminum Alloy Weldments Using a Double-Sided Arc Welding

    E-Print Network [OSTI]

    Zhang, YuMing

    Welding Process Y.M. ZHANG, C. PAN, and A.T. MALE Due to its popularity and high crack sensitivity, 6061 aluminum alloy was selected as a test material for the newly developed double-sided arc welding (DSAW systematically. The percentage of fine equiaxed grains in the fully penetrated welds is greatly increased

  13. GTAW penetration based on electrode tip location versus weld joint center line. [Gas Tungsten Arc Welding (GTAW)

    SciTech Connect (OSTI)

    Daumeyer, G.J. III.

    1992-11-01T23:59:59.000Z

    Gas Tungsten Arc Welding (GTAW) is often the chosen process for final enclosure welds of heat sensitive electrical and electronic product. GTAW is used to produce welds that satisfy design requirements (usually a penetration requirement) and not expose the product to such high heat that would cause unwanted damage. An important variable in the GTAW process is the location of the Electrode tip over the weld joint center line. This study shows the tolerance of positional location over a narrow scope. Using coupons which represent the W88 container weld joint geometry, penetration vs. electrode tip positional location (offset) is investigated. Results indicate a positional location tolerance of [plus minus] 0.008 in. is acceptable. Several different major components (MCS) supporting various weapons programs require low heat input GTA welds. The electrode tip positional location tolerance is determined by each MC's weld joint tolerances and heat sensitivity. For this short study, the weld joint geometry of a container weld was used. These coupons were welded with the specified weld schedule and one additional weld schedule in order to show the relationship based on both travel speed and gap. Multiple coupon welds were made to eliminate error in the results. Within the scope of this research, a positional tolerance of [plus minus] 0.008 in. of the electrode center over the weld joint center is required. For other MCs this tolerance may be tighter or more relaxed depending upon the specific considerations.

  14. Computer modeling of arc welds to predict effects of critical variables on weld penetration

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.

    1991-01-01T23:59:59.000Z

    In recent years, there have been several attempts to study the effect of critical variables on welding by computational modeling. It is widely recognized that temperature distributions and weld pool shapes are keys to quality weldments. It would be very useful to obtain relevant information about the thermal cycle experienced by the weld metal, the size and shape of the weld pool, and the local solidification rates, temperature distributions in the heat-affected zone (HAZ), and associated phase transformations. The solution of moving boundary problems, such as weld pool fluid flow and heat transfer, that involve melting and/or solidification is inherently difficult because the location of the solid-liquid interface is not known a priori and must be obtained as a part of the solution. Because of non-linearity of the governing equations, exact analytical solutions can be obtained only for a limited number of idealized cases. Therefore, considerable interest has been directed toward the use of numerical methods to obtain time-dependant solutions for theoretical models that describe the welding process. Numerical methods can be employed to predict the transient development of the weld pool as an integral part of the overall heat transfer conditions. The structure of the model allows each phenomenon to be addressed individually, thereby gaining more insight into their competing interactions. 19 refs., 6 figs., 1 tab.

  15. A calorimetric-based comparison of gas tungsten and plasma arc welding processes

    SciTech Connect (OSTI)

    Knorovsky, G.A.; Fuerschbach, P.W.

    1988-01-01T23:59:59.000Z

    Measurements of arc and melting efficiencies have been made for pulsed and continuous mode Gas Tungsten Arc Welding (GTAW) and Plasma Arc Welding (PAW) processes. Welds were made on 2.5 mm total thickness pure Ni and 304 Stainless Steel in a standing edge weld geometry at constant nominal machine output settings which varied average current with travel speed. Under continuous current conditions, the measured heat input remained approximately constant for the conditions examined (250-1250 mm/min), while melting efficiency increased dramatically (0-/approximately/0.4). Arc efficiencies were relatively constant, remaining in the range of /approximately/0.75-0.85 for GTAW and somewhat less for PAW. Values of melting efficiency for Ni were slightly less than those for 304 when compared at similar travel speeds, though both tended toward the same limit (/approximately/0.4). The PAW results were not appreciably higher than the GTAW. In addition to melting efficiency the centerline depth of penetration was also measured. In contrast to the GTAW results, which increased with speed at lower travel speeds and then plateaued at 0.8 mm, the PAW results increased monotonically with speed to a maximum of 1.0 mm. In conclusion, calorimetric measurements of nonconsumable arc welding processes have been found helpful in understanding conditions under which efficient arc welds with minimal heat inputs for a desired weld penetration can be made. 10 figs.

  16. The modelling of irradiation embrittlement in submerged-arc welds

    SciTech Connect (OSTI)

    Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H. [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31T23:59:59.000Z

    Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database.

  17. Metal vapor arc ion plating

    DOE Patents [OSTI]

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09T23:59:59.000Z

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  18. Plasma transferred arc repair welding of the nickel-base superalloy IN-738LC

    SciTech Connect (OSTI)

    Su, C.Y.; Chou, C.P. [National Chiao Tung Univ., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering; Wu, B.C.; Lih, W.C. [Industrial Technology Research Inst., Hsinchu (Taiwan, Province of China). Materials Research Labs.

    1997-10-01T23:59:59.000Z

    Plasma transferred arc welding (PTA) has been considered a promising process to restore worn areas of land-based gas turbine blades and vanes. The objective of this investigation was to study the effect of PTA welding on the repairing of IN-738LC superalloy components. Tensile tests were conducted on specimens welded with various combinations of parameters. Room temperature, 760 C, and 980 C were selected as tensile test temperatures. High-temperature phase transformed, during solidification, were identified by differential thermal analysis (DTA). The weld-pool shapes and microstructures of welded specimens prepared by various welding parameters were evaluated by optical metallography (OM), a scanning electron microscope (SEM) equipped with energy dispersive x-ray spectrometer (EDS), and microhardness testing. Results of this study showed that PTA welded specimens exhibited 96% nominal tensile strength of IN-738LC base materials. Specimen failure was observed predominantly in the base materials instead of in the heat-affected zone (HAZ) for gas tungsten arc weld (GTAW) repair weldments. IN-738LC is considered susceptible to weld cracking during fusion welding; however, using a low-input repair welding process (PTA), cracking susceptibility could be minimized by the optimized welding parameters.

  19. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect (OSTI)

    Zhang, Z.D. [State Key Laboratory of Material Surface Modification by Laser, Ion, and Beams, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, L.M. [State Key Laboratory of Material Surface Modification by Laser, Ion, and Beams, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)], E-mail: liulm@dlut.edu.cn; Shen, Y.; Wang, L. [State Key Laboratory of Material Surface Modification by Laser, Ion, and Beams, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2008-01-15T23:59:59.000Z

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  20. Convection in Arc Weld Pools Electromagnetic and surface tension forces are shown to

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Convection in Arc Weld Pools Electromagnetic and surface tension forces are shown to dominate flow tension forces. It is shown that the electromag- netic and surface tension forces domi- nate the flow by experimental measurements of segrega- tion in the weld pool. It is also shown that the surface tension driven

  1. On-line weld penetration detection and control in automated gas tungsten arc welding. Ph.D. Thesis

    SciTech Connect (OSTI)

    Banerjee, P.

    1994-01-01T23:59:59.000Z

    The present work was undertaken to study the feasibility of monitoring and controlling weld penetration variations in real-time using an infrared detector. Weld penetration variations induced on mild steel plates were examined with an infrared detector and the acquired data analyzed to detect weld penetration variations using a mathematical analysis. Selected weld penetration indicators were developed and used to demonstrate on-line weld penetration control. A three-dimensional solid-state, transient heat transfer model was also developed to help identify key changes in thermal distributions which could be used as weld penetration indicators. A transient three-dimensional heat transfer model was used to solve the differential energy balance for the GTA welding process. The computed temperatures obtained from the model were used to determine the variation of the isothermal map, surface temperature profile and temperature gradient with weld penetration. Good agreement between experimental and computed indicators was obtained. Gas tungsten arc welds were performed on steel plates with intentionally introduced defects such as sudden thickness changes and minor element content changes. Extensive mathematical analysis helped correlate weld penetration variations to parameters such as the peak infrared intensity, intensity gradient over a fixed distance, intensity gradient at the inflection points in the first differential of the intensity profile (linescan), computed width of the weld pool, intensity gradient at a point in the weld pool, area enclosed by the linescan and area enclosed by the linescan after compensating for background illumination. The shape of the weld pool front was also determined from a differential analysis of the infrared data. Inconsistent behavior of some weld penetration indicators led to their elimination from the selection process for the best error signal.

  2. WELDING RESEARCH FEBRUARY 2008, VOL. 87-s44

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH FEBRUARY 2008, VOL. 87-s44 ABSTRACT. Consumable double- electrode gas metal arc welding (DE- GMAW) is an innovative welding process that can significantly increase the deposi- tion rate arc welding(GMAW)gunandconstantcurrent (CC) power supply to a conventional GMAW setup -- Fig. 1

  3. Vaccum Gas Tungsten Arc Welding, phase 1. Technical report, October 1993-March 1995

    SciTech Connect (OSTI)

    Weeks, J.L.; Krotz, P.D.; Todd, D.T.; Liaw, Y.K.

    1995-03-01T23:59:59.000Z

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process`s ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  4. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.

    1990-01-01T23:59:59.000Z

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate that consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.

  5. arc welding dynamic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Websites Summary: diffusivity specific heat thermal conductivity 2 operating parameter (n qv 4a p Tc - T0 net heat i nput- CHANGES OF WELD POOL SHAPE BY...

  6. arc welding electrodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S 2010-01-01 99 Resistance Spot Welding Characteristic of Ferrite-Martensite DP600 Dual Phase Advanced High Strength Steel-Part III: Mechanical Properties CiteSeer Summary:...

  7. Laser-ultrasonic inspection of hybrid laser-arc welded HSLA-65 steel

    SciTech Connect (OSTI)

    Lévesque, D.; Rousseau, G.; Monchalin, J.-P. [National Research Council Canada, Boucherville, QC (Canada); Wanjara, P.; Cao, X. [National Research Council Canada, Montreal, QC (Canada)

    2014-02-18T23:59:59.000Z

    The hybrid laser-arc welding (HLAW) process is a relatively low heat input joining technology that combines the synergistic qualities of both the high energy density laser beam for deep penetration and the arc for wide fit-up gap tolerance. This process is especially suitable for the shipbuilding industry where thick-gauge section, long steel plates have been widely used in a butt joint configuration. In this study, preliminary exploration was carried out to detect and visualize the welding defects using laser ultrasonics combined with the synthetic aperture focusing technique (SAFT). Results obtained on 9.3 mm thick butt-welded HSLA-65 steel plates indicated that the laser-ultrasonic SAFT inspection technique can successfully detect and visualize the presence of porosity, lack of fusion and internal crack defects. This was further confirmed by X-ray digital radiography and metallography. The results obtained clearly show the potential of using the laser-ultrasonic technology for the automated inspection of hybrid laser-arc welds.

  8. A Level Set Approach for the Simulation of the Multipass Hybrid Laser / GMA Welding Process

    E-Print Network [OSTI]

    1 A Level Set Approach for the Simulation of the Multipass Hybrid Laser / GMA Welding Process model, developed in a level set approach, is proposed to model hybrid gas metal arc / laser welding equation, the momentum and mass conservation equations and the weld bead development. The arc welding total

  9. Remote reactor repair: GTA (gas tungsten Arc) weld cracking caused by entrapped helium

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1988-01-01T23:59:59.000Z

    A repair patch was welded to the wall of a nuclear reactor tank using remotely controlled thirty-foot long robot arms. Further repair was halted when gas tungsten arc (GTA) welds joining type 304L stainless steel patches to the 304 stainless steel wall developed toe cracks in the heat-affected zone (HAZ). The role of helium in cracking was investigated using material with entrapped helium from tritium decay. As a result of this investigation, and of an extensive array of diagnostic tests performed on reactor tank wall material, helium embrittlement was shown to be the cause of the toe cracks.

  10. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect (OSTI)

    Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

    2012-06-28T23:59:59.000Z

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  11. Video Game Device Haptic Interface for Robotic Arc Welding

    SciTech Connect (OSTI)

    Corrie I. Nichol; Milos Manic

    2009-05-01T23:59:59.000Z

    Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

  12. Fusion-bonded epoxy coating defects on weld center line of submerged-arc welded pipe

    SciTech Connect (OSTI)

    Sokol, D.R.; Herndon, C.M. (Tenneco Oil Co., Houston, TX (USA))

    1990-08-01T23:59:59.000Z

    The problem of weld center line coating defects in fusion-bonded epoxy coatings has occurred on pipe produced in Europe, North America, and Asia. At various times, the defects have been attributed to coating application practices, powder manufacturing, pipe manufacturing, welding methods, and overly critical inspectors. This article details plant experience and experimental trails that led to the identification of the cause and proof of the solution. The ultimate effect of initial coating defects on cathodic protection requirements is a matter of concern also.

  13. Weld Surfacing Edited by Dr I.A. Bucklow

    E-Print Network [OSTI]

    Cambridge, University of

    becomesconfigurationally frozen at a temperature of about 1150°Cduring deposition by the manual-metal-arc welding techniqueV01.II Weld Surfacing Edited by Dr I.A. Bucklow ConferenceTechnicalDirector Organised by The Welding Institute in associationwith The Surface Engineering Society THE WELDING INSTITUTE #12;L

  14. ~ WELDING RESEARCH ~Jlj~~~-------------!ID~ SUPPLEMENT TO THE tVELOING JOURNAL. IULY 1993

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ~ WELDING RESEARCH ~Jlj~~~-------------!ID~ SUPPLEMENT TO THE t·VELOING JOURNAL. IULY 1993 Sponsored by the American Welding Society and the Welding Research Council Metal Transfer in Pulsed Current Gas Metal Arc Welding A static force balance analysis was used to estimate the melting rates

  15. Method for welding beryllium

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Smith, Frank M. (Espanola, NM); O'Leary, Richard F. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  16. Evaluation of a portable x-ray fluorescence survey meter for the quantitative determination of trace metals in welding fumes

    E-Print Network [OSTI]

    Fehrenbacher, Mary Catherine

    1984-01-01T23:59:59.000Z

    Spectrometry Sensitivity Excitation Sources 12 16 Spectrometers and Detectors SHIELDED METAL ARC WELDING Health Effects of Welding THE PORTABLE X ? RAY FLUORESCENCE SURVEY METER METHODOLOGY RESULTS DISCUSSION OF RESULTS CAELUS I QblS RECQvfvt... Appendix C Basic Principle of AAS VITA Page 65 66 67 68 76 84 V1 11 LIST OF FIGURES Page 1. Transitions giving x-radiation 2. Fluorescent yield 3. Interaction of x-rays with matter 4. Particle size effects on x-ray intensity. . . 15 5...

  17. Progress report on a fully automatic Gas Tungsten Arc Welding (GTAW) system development

    SciTech Connect (OSTI)

    Daumeyer, G.J. III

    1994-12-01T23:59:59.000Z

    A plan to develop a fully automatic gas tungsten arc welding (GTAW) system that will utilize a vision-sensing computer (which will provide in-process feedback control) is presently in work. Evaluations of different technological aspects and system design requirements continue. This report summaries major activities in the plan`s successful progress. The technological feasibility of producing the fully automated GTAW system has been proven. The goal of this process development project is to provide a production-ready system within the shortest reasonable time frame.

  18. Welding tritium aged stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1993-04-01T23:59:59.000Z

    Stainless steels exposed to tritium become unweldable by conventional methods due to He buildup within the metal matrix. With longer service lives expected for new weapon systems, and service life extensions of older systems, methods for welding/repair on tritium-exposed material will become important. Results are reported that indicate that both solid-state resistance welding and low-heat gas metal arc overlay welding are promising methods for repair or modification of tritium-aged stainless steel.

  19. Environmental embrittlement of iron-aluminide alloy FA-129 during gas tungsten arc welding

    SciTech Connect (OSTI)

    Fasching, A.A.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States); David, S.A. [Oak Ridge National Lab, Oak Ridge, TN (United States)

    1994-12-31T23:59:59.000Z

    Iron aluminides are susceptible to hydrogen cold cracking during gastungsten arc welding (GTAW). Cracking occurs by brittle fracture in the fusion zone, which has been attributed to excessive grain growth during solidification. To further investigate hydrogen cold cracking in iron aluminides and, specifically, to study the effect of base material grain size on fusion zone cracking susceptibility, base materials of varying grain size were GTAW. The specimens for this investigation came from a production-sized vacuum arc remelt (VAR) ingot. The results of this investigation showed that changes in either the base material thermomechanical processing or the common welding parameters could not easily be used to refine the fusion zone grain size. This investigation showed that conventional GTAW produced coarse fusion zone grain structures even in fine-grained base material. The results also revealed that fracture strength decreased only slightly with a decrease in heat input, but exhibited a dramatic decrease as the water vapor content increased. in addition, the unrecrystallized base material showed the greatest susceptibility toward hydrogen cold cracking. Fracture stress versus grain size plots at different levels of water vapor were produced for iron-aluminide alloy FA-129.

  20. Slag-Metal Reactions during Welding: Part Ill. Verification of the Theory

    E-Print Network [OSTI]

    Eagar, Thomas W.

    , Slag-Metal Reactions during Welding: Part Ill. Verification of the Theory U. MITRA and T.W. EAGAR. The transfer of carbon and oxygen is also discussed. It is shown that the transfer of oxygen into the weld of inclusions in the solidifying weld pool. Methods of applying this analysis to multipass welds and active

  1. RESONANT TRANSITION SWITCHING WELDING POWER SUPPLY N. Frohleke, H. Mundinger, S. Beineke, P. Wallmeier, H. Grotstollen

    E-Print Network [OSTI]

    Paderborn, Universität

    RESONANT TRANSITION SWITCHING WELDING POWER SUPPLY N. Frohleke, H. Mundinger, S. Beineke, P-bridge topology used in a welding power supply. A new driving scheme adapts the resulting power circuitry for both the droplet and the short-circuiting transfer welding modes occurring in the gas metal arc welding process

  2. Welding of cast A359/SiC/10p metal matrix composites 

    E-Print Network [OSTI]

    Kothari, Mitul Arvind

    2005-11-01T23:59:59.000Z

    Welding of metal matrix composites (MMCs) is an alternative to their mechanical joining, since they are difficult to machine. Published literature in fusion welding of similar composites shows metallurgical problems. This study investigates...

  3. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect (OSTI)

    Xu Nan [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Shen Jun, E-mail: shenjun2626@163.com [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Xie Weidong; Wang Linzhi; Wang Dan; Min Dong [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2010-07-15T23:59:59.000Z

    In this study, the effects of heat input on the distribution of microhardness of tungsten inert gas (TIG) arc welded hot-extruded AZ61 magnesium alloy joints were investigated. The results show that with an increase of heat input, the distributions of microhardness at the top and bottom of the welded joints are different because they are determined by both the effect of grain coarsening and the effect of dispersion strengthening. With an increase of the heat input, the microhardness of the heat-affected zone (HAZ) at the top and bottom of welded joints and the fusion zone (FZ) at the bottom of welded joints decreased gradually, while the microhardness of the FZ at the top of welded joints decreased initially and then increased sharply. The reason for the abnormal distribution of microhardness of the FZ at the top of the welded joints is that this area is close to the heat source during welding and then large numbers of hard {beta}-Mg{sub 17}(Al,Zn){sub 12} particles are precipitated. Hence, in this case, the effect of dispersion strengthening dominated the microhardness.

  4. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  5. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1998-03-10T23:59:59.000Z

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  6. Department of Industrial Engineering Spring 2013 Corle Building Systems Submerged Arc Welding Machine

    E-Print Network [OSTI]

    Demirel, Melik C.

    Welding Machine Overview Due to the location of the two weld heads with respect to the ground shoes, the machine is unable to weld approximately the first 16 inches and final 12 inches of the I-beam. These sections must be hand welded later in the fabrication process. This hand welding process is inefficient

  7. Irradiation embrittlement modelling of Linde 80 weld metals

    SciTech Connect (OSTI)

    McElroy, R.J. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Lowe, A.L. Jr. [Lowe Associates, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    Linde 80 weld metals are characterized by a narrow range of chemical compositions, except for copper content, which varies from 0.2--0.42 wt%. The surveillance database for Linde 80 weld metals constitutes a unique and large database on a single class of material for evaluating embrittlement models and property correlations used in the assessment of RPV embrittlement. The main purpose of the present study has been to obtain a simple two component barrier hardening model form which best describes the behavior of Linde 80 weld metal. To this end, the UK Magnox Embrittlement Model, often referred to as the Fisher Model, has been used and the key parameters, such as activation energies, dislocation densities and damage cross sections, were used as fitting parameters. Good agreement was found between model predictions and the surveillance yield strength data following optimization of model parameters. Applying the latter optimized form produced equally good prediction of HSSI results at a significantly higher damage rate demonstrating the rate effect inherent in the irradiation enhanced copper precipitation process. The best agreement was obtained assuming a matrix copper content of about 0.23 wt% which is consistent with recent solubility data for Linde 80 welds. For these materials an insensitivity to bulk copper content was demonstrated even though this varied from 0.21--0.42 wt%. Additionally, the parameters optimized for high copper welds provided a good prediction for low-copper materials indicating that the matrix hardening component was correctly specified. The low matrix hardening and predicted completion of copper precipitation by doses of about 1 {times} 10{sup 19} ncm{sup {minus}2} support the notion of embrittlement saturation at high doses.

  8. Microstructural analysis of a single pass 2.25% Cr-1.0% Mo steel weld metal with different manganese contents

    SciTech Connect (OSTI)

    Guimares de Souza, Luis Felipe [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Av. Maracana, 229, Rio de Janeiro, RJ, 20271-110 (Brazil); Souza Bott, Ivani de [Pontificia Universidade Catolica (PUC-RIO), R. Marques de SaoVicente, 225, Rio de Janeiro, RJ, 22453-900 (Brazil); Ferreira Jorge, Jorge Carlos [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Av. Maracana, 229, Rio de Janeiro, RJ, 20271-110 (Brazil); Sauer Guimaraes, Ari [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Caixa Postal 68.505, Cidade Universitaria, Ilha do Fundao, RJ, 21945-970 (Brazil); Pinheiro Rocha Paranhos, Ronaldo [Universidade Estadual do Norte Fluminense (UENF), Av. Alberto Lamego, 2000, Campos, RJ, 28013-602 (Brazil)]. E-mail: paranhos@uenf.br

    2005-07-15T23:59:59.000Z

    Weld metals of the 2.25% Cr-1.0% Mo type with 0.84%, 1.21% and 2.3% Mn produced by submerged-arc welding were analyzed in the as-welded (AW), post weld heat treatment (PWHT) and PWHT followed by step-cooling (SC) heat treatment conditions. Fracture surface analysis revealed an evolution in the mode of fracture due to Mn content variations and heat treatment conditions, the occurrence of intergranular fracture being observed in welds with 2.30% Mn that were step-cooled. Transmission electron microscopy revealed that the microstructure was predominantly composed of bainite, although martensite was also observed for high Mn contents. A marked carbide precipitation was observed, preferentially at grain boundaries. This could be attributed to the SC heat treatment and associated with the embrittlement. However, the application of a de-embrittlement heat treatment to this step cooled weld metal has proved efficient, because the impact energy levels after this heat treatment surpassed those obtained in the stress relieved condition. This indicates that segregation of impurities to grain boundaries was responsible for the low impact energy levels observed after SC of weld metal containing > 0.84% Mn.

  9. Formation of metal oxides by cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01T23:59:59.000Z

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  10. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOE Patents [OSTI]

    Byrne, Stephen C. (Monroeville, PA); Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

    1984-01-01T23:59:59.000Z

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  11. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    SciTech Connect (OSTI)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03T23:59:59.000Z

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  12. Slag-Metal Reactions during Welding: Part II. Theory ) U. MITRA and T.W. EAGAR

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Slag-Metal Reactions during Welding: Part II. Theory ) U. MITRA and T.W. EAGAR A kinetic model-shielded welding. The model ac~o~nts .for changes i~ ~lloy r~covery based on the geometry of the resulting weld bead. It also dtstmgUJshes compos1t1onal dtfferences be- tween single-pass and multiple-pass weld beads

  13. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    E-Print Network [OSTI]

    Anders, Georgy, Yu. Yushkov, Andre

    2008-01-01T23:59:59.000Z

    emitted by dc arcs in a vacuum ambient," J. Appl. Phys. ,Plasma properties of a metal vacuum arc. II. ” Sov. Phys.1977. [4] I. G. Brown, “Vacuum arc ion sources”, Rev. Sci.

  14. The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds

    SciTech Connect (OSTI)

    Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31T23:59:59.000Z

    Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

  15. Method for welding beryllium

    DOE Patents [OSTI]

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01T23:59:59.000Z

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  16. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01T23:59:59.000Z

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  17. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect (OSTI)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18T23:59:59.000Z

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  18. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density 

    E-Print Network [OSTI]

    DeVore, Robin Kent

    1973-01-01T23:59:59.000Z

    fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT... DENSITY A Thesis by ROBIN KENT DEVORE Approved as to style and content by: C alarm n of o itte Hea o partment e er Member December 1973 ABSTRACT The Effective Spectral Irradiance of Ultraviolet Radiations from Inert-Gas-Shielded Welding...

  19. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density

    E-Print Network [OSTI]

    DeVore, Robin Kent

    1973-01-01T23:59:59.000Z

    THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED MELDING PROCESSES IN RELATION TO THE ARC CURRENT DENSITY A Thesis by ROBIN KENT DEVORE Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT...

  20. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    SciTech Connect (OSTI)

    Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

    2012-06-28T23:59:59.000Z

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  1. High power x-ray welding of metal-matrix composites

    DOE Patents [OSTI]

    Rosenberg, Richard A. (Naperville, IL); Goeppner, George A. (Orland Park, IL); Noonan, John R. (Naperville, IL); Farrell, William J. (Flossmoor, IL); Ma, Qing (Westmont, IL)

    1999-01-01T23:59:59.000Z

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    SciTech Connect (OSTI)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01T23:59:59.000Z

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

  3. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, D.E.; Lee, S.G.

    1996-08-06T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  4. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, David E. (Concord, MA); Lee, Steven G. (Ann Arbor, MI)

    1996-01-01T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  5. Overlay welding irradiated stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-08-01T23:59:59.000Z

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,{alpha} reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods.

  6. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    SciTech Connect (OSTI)

    Grotke, G.E.

    1980-04-01T23:59:59.000Z

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  7. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    SciTech Connect (OSTI)

    Koteswara Rao, S.R. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, Chennai-600 036 (India)]. E-mail: sajjarkr@yahoo.com; Madhusudhan Reddy, G. [Defense Metallurgical Research Laboratory, Hyderabad-500 058 (India); Srinivasa Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, Chennai-600 036 (India); Kamaraj, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, Chennai-600 036 (India); Prasad Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, Chennai-600 036 (India)

    2005-11-15T23:59:59.000Z

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds.

  8. Narrow gap welding with the hot wire GTA process

    SciTech Connect (OSTI)

    Cook, G.E.; Levick, P.C.

    1985-08-01T23:59:59.000Z

    Narrow gap welding offers the promise of dramatically improved weld completion rates and reduced heat input for welding of butt joints in materials of 10 mm (0.4 in.) section thickness and larger. Techniques for successful welding of narrow gap joint preparations have been discussed in the literature for approximately twenty years, with the majority of these based on the consumable electrode processes. Gas tungsten arc welding with cold wire filler addition has been shown to be capable of narrow gap welding although limited deposition rate capability has not made this a competitive alternative. The GTAW process offers the advantages of superior penetration control for one-sided welding of butt joints, as well as the potential for reducing incomplete fusion defects. The addition of hot wire filler metal to the gas tungsten arc provides an attractive alternative that combines high deposition rate capability and independent control of heat input.

  9. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    SciTech Connect (OSTI)

    Egland, Keith; Ludewig, Howard

    2006-05-25T23:59:59.000Z

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  10. Electron microscopy and small angle neutron scattering study of precipitation in low alloy steel submerged-arc welds

    SciTech Connect (OSTI)

    Williams, T.J. [Rolls-Royce and Associates Ltd., Raynesway (United Kingdom); Phythian, W.J. [AEA Reactors Services, Didcot (United Kingdom)

    1996-12-31T23:59:59.000Z

    In previous studies, submerged-arc welds with a range of compositions were irradiated in test reactors over a range of dose and dose-rates. The effect of irradiation was measured by Charpy V-notch and hardness tests, and an irradiation response model was developed. In this paper the authors report the results of a combined electron microscopy and small angle neutron scattering (SANS) study on material from some of the Charpy specimens. The results have been interpreted in terms of the Russell and Brown modulus hardening model. In general they have confirmed the predictions of the irradiation response model, and shown that the copper precipitation contribution to the observed macroscopic to the observed macroscopic hardening is strongly dependent on nickel, dose and dose-rate.

  11. Ductile filler metal alloys for welding nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2003-04-08T23:59:59.000Z

    Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

  12. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01T23:59:59.000Z

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  13. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    Larry Zirker; Craig Tyler

    2010-08-01T23:59:59.000Z

    Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

  14. Refractory metal welding using a 3.3 kW diode pumped Nd:YAG laser.

    SciTech Connect (OSTI)

    Carpenter, R. W. (Robert W.); Piltch, M. S. (Martin S.); Nemec, R. B. (Ronald B.); Milewski, J. O. (John O.)

    2001-01-01T23:59:59.000Z

    Recent developments in multi-kilowatt continuous wave lasers allow fiber optic delivery to high-purity controlled atmosphere chambers and challenge electron beam welding with improvements in cost, complexity, beam quality and flexibility. Questions remain with respect to the performance of these lasers for refractory alloy welding regarding damaging back reflections, laser-plume interactions, and sufficiency of beam intensity and coupled energy. System performance for the welding of various refractory metal alloys and comparisons to electron beam welds will be presented.

  15. Increasing Productivity of Welding

    E-Print Network [OSTI]

    Uhrig, J. J.

    1983-01-01T23:59:59.000Z

    It is universally recognized that welding is the most economical way to permanently join metals. Recent advances in welding, specifically, the continuous electrode wire processes make welding even more attractive for manufacturing. As welding...

  16. Increasing Productivity of Welding 

    E-Print Network [OSTI]

    Uhrig, J. J.

    1983-01-01T23:59:59.000Z

    It is universally recognized that welding is the most economical way to permanently join metals. Recent advances in welding, specifically, the continuous electrode wire processes make welding even more attractive for manufacturing. As welding...

  17. Irradiation effects on base metal and welds of 9Cr-1Mo (EM10) martensitic steel

    SciTech Connect (OSTI)

    Alamo, A.; Seran, J.L.; Rabouille, O.; Brachet, J.C.; Maillard, A.; Touron, H.; Royer, J. [CEA Saclay, Gif-sur-Yvette (France)

    1996-12-31T23:59:59.000Z

    9Cr martensitic steels are being developed for core components (wrapper tubes) of fast breeder reactors as well as for fusion reactor structures. Here, the effects of fast neutron irradiation on the mechanical behavior of base metal and welds of 9Cr-1Mo (EM10) martensitic steel have been studied. Two types of weldments have been produced by TIG and electron beam techniques. Half of samples have been post-weld heat treated to produce a stress-relieved structure. The irradiation has been conducted in the Phenix reactor to doses of 63--65 dpa in the temperature range 450--459 C. The characterization of the welds, before and after irradiation, includes metallographic observations, hardness measurements, tensile and Charpy tests. It is shown that the mechanical properties of the welds after irradiation are in general similar to the characteristics obtained on the base metal, which is little affected by neutron irradiation.

  18. WELDING RESEARCH -S249WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -S249WELDING JOURNAL ABSTRACT. Double-sided arcing uses two torches on the opposite sides of the workpiece to force the welding current to flow through the thickness. If a keyhole is established through the thickness, part of the welding current will flow through the keyhole and maintain

  19. Predicting the Failure of Ultrasonic Spot Welds by Pull-out from Sheet Metal

    E-Print Network [OSTI]

    Thouless, Michael

    -mode fracture of the base metal, the cohesive parameters for ductile fracture of an aluminum alloy were fracture in thin aluminum alloy coupons were determined by comparing experimental observations to numerical-welding has been recognized as a promising technology in joining automotive sheet metal. Compared

  20. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26T23:59:59.000Z

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  1. Method for laser welding ultra-thin metal foils

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01T23:59:59.000Z

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  2. Multi-cathode metal vapor arc ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

    1988-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  3. Residual stresses in weld overlay tubes: A finite element study

    SciTech Connect (OSTI)

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Jirinec, M.J. [Welding Services, Inc., Norcross, GA (United States)

    1997-01-03T23:59:59.000Z

    Residual stresses and strains in a tube with circumferential weld overlay were analyzed by the finite element (FE) method. The objective of this work was to develop and verify a FE model, to determine the magnitude and distribution of residual stresses in the weld overlay tube, and to evaluate the significance of two contributing factors to residual stress: (1) difference in material properties between tube and weld material, and (2) thermal gradients in the weld. An axisymmetric FE model was developed to simulate the circumferential two-layer welding process of alloy 625 overlay on SA210 tube. The first layer was modeled as a gas metal arc welding process with filler metal, whereas the autogenous gas tungsten arc welding process was modeled for the second layer. Neutron diffraction technique was used to experimentally determine residual elastic strains in the weld overlay tube. Comparison with the FE results shows overall good agreement. Both the experimental and FE results show high compressive stresses at the inside tube surface and high tensile stresses in the weld overlay. This suggests that weld overlay may be used to relieve tensile or produce compressive stresses at the inside tube surface, which is significant for applications where crack initiation is found at the root pass of the joining weld.

  4. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D [ORNL

    2010-02-01T23:59:59.000Z

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  5. Method of beam welding metallic parts together and apparatus for doing same

    DOE Patents [OSTI]

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29T23:59:59.000Z

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  6. Method of beam welding metallic parts together and apparatus for doing same

    DOE Patents [OSTI]

    Lewandowski, Edward F. (Westmont, IL); Cassidy, Dale A. (Valparaiso, IN); Sommer, Robert G. (Lemont, IL)

    1987-01-01T23:59:59.000Z

    The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  7. Precipitation of sigma and chi phases in ?-ferrite of Type 316FR weld metals

    SciTech Connect (OSTI)

    Chun, Eun Joon, E-mail: ejchun@mapse.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Baba, Hayato [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Nishimoto, Kazutoshi [Department of the Application of Nuclear Technology, Fukui University of Technology, Gakuen 3-6-1, Fukui-shi, Fukui 910-8505 (Japan); Saida, Kazuyoshi [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2013-12-15T23:59:59.000Z

    The decomposition behavior and kinetics of ?-ferrite are examined using aging treatments between 873 and 1073 K for Type 316FR stainless steel weld metals with different solidification modes (316FR AF, 316FR FA). The dominant precipitates are sigma, chi, and secondary austenite nucleated at ?-ferrite/austenite interfaces or in the interior of the ferrite grains. These precipitates consume all the ferrite during isothermal aging in both 316FR AF and FA weld metals. Differences in the precipitation behavior (precipitation initiation time and precipitation speed) between weld metals can be explained by i) the degree of Cr and Mo microsegregation within ?-ferrite or austenite near ferrite and ii) the nucleation sites induced due to the solidification mode (AF or FA), such as the ferrite amount. For both weld materials, a Johnson–Mehl-type equation can express the precipitation behavior of the sigma + chi phases and quantitatively predict the behavior at the service-exposure temperatures of a fast breed reactor. - Highlights: • Precipitation of ? and ? phase in Type 316FR welds (two solidification modes) • Different precipitation behaviors: precipitation initiation time and growth speed • Johnson-Mehl–type equation is the most applicable to the precipitation behaviors • Precipitation behaviors are predicted under service conditions of FBRs.

  8. Hybrid laser welding techniques for enhanced welding efficiency

    SciTech Connect (OSTI)

    Beyer, E.; Poprawe, R. [Fraunhofer-Institut fuer Lasertechnik (ILT), Aachen (Germany); Brenner, B. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany)

    1996-12-31T23:59:59.000Z

    One of the remarkable characteristics of the laser beam welding process is its thin deep welding seam. This thin seam is produced as a result of the high welding speed and the low heat input, leading to a low distortion. However, the overall electrical efficiency of a CO{sub 2}-laser is in the range of 5-7% and the efficiency of a Nd:YAG-laser is only approximately 2-3%. There are several applications in which the thin laser seam and the high welding speed, in particular, have technical advantages, making the whole process economical. However, there are also a lot of possible applications, for which laser welding is too expensive at the moment or, in which the thin seam leads to a lot of unsolved metallurgical problems. To avoid these problems, a welding technique is presently being developed at the ILT and IWS which combines laser keyhole welding with Tungsten inert gas and metal inert gas welding and introduces an inductor for a preheating and a controlled heat flow. The paper is divided into two sections. The first section describes recent investigations carried out by the ILT into the laser arc combination and the second section describes the combination of the laser and induction techniques, presenting also an application presently being used in production in the car industry. This work has been completed by the Fraunhofer-Institut fur Werkstoffphysik und Schichttechnologie IWS in Dresden.

  9. Evidence for neutron irradiation-induced metallic precipitates in model alloys and pressure-vessel weld steel

    E-Print Network [OSTI]

    Motta, Arthur T.

    -vessel weld steel Stephen E. Cumblidge a , Arthur T. Motta a,*, Gary L. Catchen a , Gerhard Brauer b , Juurgen-irradiated model alloys (1 · 1023 n/m2 , E > 0:5 MeV) and 73W-weld steel (to 1.8 · 1023 n/m2 , E > 1 Me the pressure-vessel weld steel) showed evidence for both irradiation-induced metallic precipitation

  10. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect (OSTI)

    Palmer, T A; Elmer, J W

    2005-03-16T23:59:59.000Z

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  11. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5. Volume 1, Main report and Appendices A, B, C, and D

    SciTech Connect (OSTI)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O. [Oak Ridge National Lab., TN (United States); Menke, B.H. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-10-01T23:59:59.000Z

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K{sub Ic} curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288{degree}C and an average fluence of 1.5 {times} 10{sup 19} neutrons/cm{sup 2} (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa{lg_bullet}{radical}m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K{sub min} parameter which affects the curve shape.

  12. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect (OSTI)

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20T23:59:59.000Z

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  13. Welding aluminum alloys 6061 with the opposing dual-torch GTAW process

    SciTech Connect (OSTI)

    Zhang, Y.M.; Zhang, S.B. [Univ. of Kentucky, Lexington, KY (United States)

    1999-06-01T23:59:59.000Z

    Cracking is a major concern in welding aluminum alloys. Although weld solidification cracks can be eliminated through the addition of filler metal, the additives modify the alloy or base metal constituents and may not always be desirable. High-energy beam processes, such as electron beam welding, that result in minimal heat input reduce crack sensitivity, but their high cost limits their applications. In this study, the conventional gas tungsten arc welding process is modified by disconnecting the workpiece form the power supply and placing a second torch on the opposite side of the workpiece. Such a modification changes the direction of the current flow, improves the weld penetration and reduces the heat input. Using this modified process, 6061-T651 alloy was welded without filler metals. Analysis suggested the reduced heat input, the changed direction of the current flow and the symmetric heating were responsible for the observed reduction of the cracking sensitivity.

  14. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect (OSTI)

    Min Dong [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Shen Jun, E-mail: shenjun2626@163.com [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Lai Shiqiang; Chen Jie [College of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2009-12-15T23:59:59.000Z

    In this paper, the effects of heat input on the microstructures and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that with an increase of the heat input, the grains both in the fusion zone and the heat-affected zone coarsen and the width of the heat-affected zone increased. Moreover, an increase of the heat input resulted in a decrease of the continuous {beta}-Mg{sub 17}Al{sub 12} phase and an increase of the granular {beta}-Mg{sub 17}Al{sub 12} phase in both the fusion zone and the heat-affected zone. The ultimate tensile strength of the welded joint increased with an increase of the heat input, while, too high a heat input resulted in a decrease of the ultimate tensile strength of the welded joint. In addition, the average microhardness of the heat-affected zone and fusion zone decreased sharply with an increase of the heat input and then decreased slowly at a relatively high heat input.

  15. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    SciTech Connect (OSTI)

    MJ Lambert

    2005-11-18T23:59:59.000Z

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of {approx}99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed.

  16. WELDING RESEARCH -S125WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    WELDING RESEARCH -S125WELDING JOURNAL ABSTRACT. Microstructural evolution and solidification cracking susceptibility of dissimilar metal welds between AL- 6XN super austenitic stainless steel and two, differential thermal analysis, and Varestraint testing tech- niques. Welds were prepared over the en- tire

  17. Heat-treatment with induction heating of pipes within the pipe welding mill

    SciTech Connect (OSTI)

    Zgura, A.A.; Krichevskii, E.M.; Rudenko, V.A.; Lysyak, A.V.; Kumanev, V.A.

    1988-01-01T23:59:59.000Z

    The parameters of induction heat-treatment were determined for pipes from steels 10Kh18N10T and 12Kh18N10T. Mechanical properties of the base metal and the weld were determined by metallography. Induction heat treatment of corrosion-resistant steel pipes in the line of an argon-arc welding mill was found to produce a fine-grain structure of the base metal and weld, ensured that the mechanical properties satisfied all specifications, reduced time and consumption of the etching solution during chemical processing, required no additional personnel, reduced oxidation of the metal and saved energy.

  18. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect (OSTI)

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Baksht, R. B. [Tel Aviv University, Electrical Discharge and Plasma Laboratory, Tel Aviv 69101 (Israel)

    2011-09-15T23:59:59.000Z

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  19. Preferential precipitation site of sigma phase in duplex stainless steel weld metal

    SciTech Connect (OSTI)

    Sato, Y.S.; Kokawa, Hiroyuki [Tohoku Univ., Sendai (Japan). Dept. of Materials Processing] [Tohoku Univ., Sendai (Japan). Dept. of Materials Processing

    1999-02-19T23:59:59.000Z

    Duplex stainless steels are characterized by favorable combination of mechanical and corrosion properties, consisting roughly of equal parts of austenite ({gamma}) and ferrite ({alpha}). But exposure to elevated temperatures brings partial decomposition of ferrite to austenite and sigma phase, which deteriorates their properties. Sigma phase forms often at ferrite/austenite ({alpha}/{gamma}) interfaces through nucleation process. The heterogeneous nucleation of sigma phase at an {alpha}/{gamma} interface depends on the chemical driving force and the interfacial energy. Many studies have examined the effect of chemical driving force on sigma phase formation in duplex and austenitic stainless steel weld metals with different chemical compositions, but no detailed report has described the influence of {alpha}/{gamma} interfacial energy on sigma phase nucleation. The Kurdjumov-Sachs (K-S) orientation relationship is accepted to bring a coherent and low energy {alpha}/{gamma} interface in duplex stainless steels. The coherency of {alpha}/{gamma} interface can affect the sigma phase formation. The present study has examined the effect of crystallographic orientation relationship at {alpha}/{gamma} interface on sigma phase formation in a duplex stainless steel weld metal where the chemical element distribution is relatively uniform because of rapid cooling during weld thermal cycle.

  20. Microstructural, mechanical and weldability assessments of the dissimilar welds between ??- and ??-strengthened nickel-base superalloys

    SciTech Connect (OSTI)

    Naffakh Moosavy, Homam, E-mail: homam_naffakh@iust.ac.ir [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Mapelli, Carlo [Dipartimento di Meccanica, Politecnico di Milano, Via La Massa 34, Milan 20156 (Italy)

    2013-08-15T23:59:59.000Z

    Dissimilar welding of ??- and ??-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. ??-Strengthened nickel-base Alloy 500 and ??-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of ??-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of ??- and ??-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of ??- and ??-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type, morphology and distribution of the phases are thoroughly investigated. • Dissimilar welding is successfully performed without occurrence of any hot cracks.

  1. In: O'Brien R L (ed.) Welding Handbook-Volume 3: Materials and Applications, 8th Edn. American Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    (fastening, adhesive bonding, soldering, brazing, arc welding, diffusion bonding, resistance welding, etc, such as diffusion bonding, come very close to this ideal; .·. ·.'· .. . . . : ' : \\. ·:-';..·. .: ... Joining

  2. Weld overlay cladding with iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.

    1996-11-01T23:59:59.000Z

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions limited their use to applications where good weldability was not required. Considerable progress has been made toward improving this situation. Using hot crack testing techniques developed at ORNL and a systematic study of alloy compositional effects, we have established a range of compositions within which hot cracking resistance is very good, essentially equivalent to stainless steel. Cold cracking, however, remains an issue, and extensive efforts are continuing to optimize composition and welding parameters, especially preheat and postweld heat treatment, to minimize its occurrence. In terms of filler metal and process development, we have progressed from sheared strip through aspiration cast rod and shielded metal arc electrodes to the point where we can now produce composite wire with a steel sheath and aluminum core in coil form, which permits the use of both the gas tungsten arc and gas metal arc processes. This is a significant advancement in that the gas metal arc process lends itself well to automated welding, and is the process of choice for commercial weld overlay applications. Using the newly developed filler metals, we have prepared clad specimens for testing in a variety of environments both in-house and outside ORNL, including laboratory and commercial organizations. As a means of assessing the field performance of this new type of material, we have modified several non-pressure boundary boiler components, including fuel nozzles and port shrouds, by introducing areas of weld overlay in strategic locations, and have placed these components in service in operating boilers for a side-by-side comparison with conventional corrosion-resistant materials.

  3. Plasma arc torch with coaxial wire feed

    DOE Patents [OSTI]

    Hooper, Frederick M (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  4. Welding for testability: An approach aimed at improving the ultrasonic testing of thick-walled austenitic and dissimilar metal welds

    SciTech Connect (OSTI)

    Wagner, Sabine; Dugan, Sandra [Materials Testing Institute University of Stuttgart (MPA), Pfaffenwaldring 32, 70569 Stuttgart (Germany); Barth, Martin; Schubert, Frank; Köhler, Bernd [Fraunhofer Institute for Nondestructive Testing, Dresden Branch (IZFP-D), Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-02-18T23:59:59.000Z

    Austenitic and dissimilar welds in thick walled components show a coarse grained, dendritic microstructure. Therefore, ultrasonic testing has to deal with beam refraction, scattering and mode conversion effects. As a result, the testing techniques typically applied for isotropic materials yield dissatisfying results. Most approaches for improvement of ultrasonic testing have been based on modeling and improved knowledge of the complex wave propagation phenomena. In this paper, we discuss an alternative approach: is it possible to use a modified welding technology which eliminates the cause of the UT complications, i.e. the large-grained structure of the weld seams? Various modification parameters were tested, including: TIG current pulsing, additional DC and AC magnetic fields, and also additional external vibrations during welding. For all welds produced under different conditions, the grain structure of the weld seam was characterized by optical and GIUM microstructure visualizations on cross sections, wave field propagation measurements, and ultrasonic tests of correct detectability of flaws. The mechanical properties of the welds were also tested.

  5. Evaluation of a portable x-ray fluorescence survey meter for the quantitative determination of trace metals in welding fumes 

    E-Print Network [OSTI]

    Fehrenbacher, Mary Catherine

    1984-01-01T23:59:59.000Z

    EVALUATION OF A PORTABLE X-RAY FLUORE~ SURVEY METER FOR TIIE QUANTITATIVE DEPERMINATI(gq OF TRACE METALS IN WELDING FIJvtES A THESIS by MARY CATHERINE FEHRENBACHER Submitted to the Graduate College of Texas A%M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE May, 1984 MAJOR SUBJECI': INDUSTRIAL HYGIENE EVALUATION OF A PORTABLE X-RAY FLUORES~ SURVEY METER FOR THE QUANTITATIVE DETERMINATIGN OF TRACE METALS IN WELDING FIJvtES A THESIS by h...

  6. Determination of welding fume size with time using E7018 electrodes and A131B base metal 

    E-Print Network [OSTI]

    Owen, Richard James

    1976-01-01T23:59:59.000Z

    DETERMINATION OF WELDING FUME SIZE WITH TIME USING E7018 ELECTRODES AND A131B BASE METAL A Thesis by RICHARD JAMES OWEN Submitted to the Graduate College of Texas AILM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1976 Major Subject: Industrial Hygiene DETERMINATION OF WELDING FUME SIZE WITH TIME USING E7018 ELECTRODES AND Al 318 BASE METAL A Thesis by RICHARD JAMES OWEN Approved as to style and content by: Cha&rman of Comm t ad...

  7. Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator

    SciTech Connect (OSTI)

    John N. DuPont

    2010-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel toward the austenitic alloy. This can lead to formation of a soft C denuded zone near the interface on the ferritic steel, and nucleation and growth of carbides on the austenitic side that are associated with very high hardness. These large differences in microstructure and hardness occur over very short distances across the fusion line (~ 50 100 ?m). A band of carbides also forms along the fusion line in the ferritic side of the joint. The difference in hardness across the fusion line increases with increasing aging time due to nucleation and growth of the interfacial carbides. Premature failure of DMWs is generally attributed to several primary factors, including: the sharp change in microstructure and mechanical properties across the fusion line, the large difference in coefficient of thermal expansion (CTE) between the ferritic and austenitic alloys, formation of interfacial carbides that lead to creep cavity formation, and preferential oxidation of the ferritic steel near the fusion line. In general, the large gradient in mechanical properties and CTE serve to significantly concentrate the stress along the fusion where a creep susceptible microstructure has evolved during aging. Presence of an oxide notch can concentrate the stress even further. Details of the failure mechanism and the relative importance of each factor varies.

  8. The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals

    SciTech Connect (OSTI)

    Wan, X.L.; Wang, H.H.; Cheng, L.; Wu, K.M., E-mail: wukaiming2000@yahoo.com

    2012-05-15T23:59:59.000Z

    Microstructural features and the formation mechanisms of interlocked microstructures of acicular ferrite in a low-carbon high-strength steel weld metal were investigated by means of computer-aided three-dimensional reconstruction technique and electron backscattered diffraction analysis. Multiple nucleation on inclusions, sympathetic nucleation or repeated nucleation, hard impingement, mutual intersection, and fixed orientation relationships of acicular ferrite grains were observed. They were all responsible for the formation of interlocked microstructures in the weld metal. During the process of isothermal transformation, the pre-formed acicular ferrite laths or plates partitioned austenite grains into many small and separate regions, and the growth of later formed acicular ferrite grains was confined in these small regions. Thus, the crystallographic grain size became smaller with the increasing holding time. Highlights: Black-Right-Pointing-Pointer Acicular ferrite is formed by multiple nucleation and sympathetic nucleation. Black-Right-Pointing-Pointer Hard impingement and intersection of ferrite grains occur at later stages. Black-Right-Pointing-Pointer The pre-formed ferrite laths partition austenite grains into smaller regions. Black-Right-Pointing-Pointer The growth of later formed ferrite grains is confined in the smaller regions.

  9. A MODEL FOR THE STRENGTH OF THE AS-DEPOSITED REGIONS OF LOW-ALLOY STEEL WELD METALS

    E-Print Network [OSTI]

    Cambridge, University of

    true average strain ~ true plastic strain in softer phase of a dual-phase steel ~I true plastic strain in harder phase of a dual-phase steel UTS true strain at ultimate tensile stress y true strain at yieldingCHAPTER 5 A MODEL FOR THE STRENGTH OF THE AS-DEPOSITED REGIONS OF LOW-ALLOY STEEL WELD METALS 5

  10. Modeling Arcs

    SciTech Connect (OSTI)

    Insepov, Z.; Norem, J. [Argonne National Lab, Argonne, IL 60439 (United States); Vetizer, S.; Mahalingam, S. [Tech-X Corp., Boulder, CO (United States)

    2011-12-23T23:59:59.000Z

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gradient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  11. Determination of welding fume size with time using E7018 electrodes and A131B base metal

    E-Print Network [OSTI]

    Owen, Richard James

    1976-01-01T23:59:59.000Z

    . 81 0. 14 0. 70 0. 06 0. 64 0. 25 0. 42 0. 83 mglottie velocity 150. Thermal agglomeration is enhanced by the turbulent conditions from the heat generated by the welding process. Not only are the fumes themselves hot, but the air in which...DETERMINATION OF WELDING FUME SIZE WITH TIME USING E7018 ELECTRODES AND A131B BASE METAL A Thesis by RICHARD JAMES OWEN Submitted to the Graduate College of Texas AILM University in partial fulfillment of the requirement for the degree...

  12. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01T23:59:59.000Z

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  13. Welding of cast A359/SiC/10p metal matrix composites

    E-Print Network [OSTI]

    Kothari, Mitul Arvind

    2005-11-01T23:59:59.000Z

    the weldability of the MMC in this study refers to analyzing the microstructure of the welded MMC and evaluating their properties as a function of the input variables. This necessarily did not mean to make a full penetration butt joint; it rather was intended... of experiments (DOE). Factorial experiments are to be conducted to screen the non-significant variables and to choose comparatively significant welding variables. 2. Welding, testing, and evaluation methods It is proposed to weld these MMCs by a...

  14. Microstructure, hardness profile and tensile strength in welds of AA6013 T6 extrusions

    SciTech Connect (OSTI)

    Guitterez, L.A. [Colorado School of Mines, Golden, CO (United States). Center for Welding and Joining Research; Neye, G.; Zschech, E. [Daimler-Benz Aerospace Airbus GmbH, Bremen (Germany)

    1996-04-01T23:59:59.000Z

    Alloy AA6013 is easily welded by conventional arc welding processes as well as by high-energy-density processes. However, some physical properties, which are inherent to all aluminum alloys, have to be considered during welding. In comparison to steel, the high thermal conductivity of aluminum alloys requires the use of higher heat input for welding. This is realized by a greater welding current during GTAW of aluminum alloys. One of the main problems associated with LBW of aluminum alloys is the high surface reflectivity. In particular, the threshold intensity for the development of a keyhole is much higher for aluminum than for steel. Finally, aluminum alloys, and particularly the heat-treatable alloys, are sensitive to weld cracking. This phenomenon can be avoided by proper filler and base metal alloy selection and adequate filler metal dilution. In order to improve the mechanical integrity of Al-Mg-Si weldments, it would be desirable to study the microstructure of the FZ and of the HAZ, as well as the residual stress distribution. The present study was performed in order to show differences in microstructure, hardness profile and tensile strength of gas tungsten arc (GTA) and laser beam (LB) welded AA6013-T6 extrusions. In addition, grain boundary liquations and hot tearing are discussed.

  15. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect (OSTI)

    Barnhouse, E.J. [Weirton Steel Corp., WV (United States); Lippold, J.C. [Ohio State Univ., Columbus, OH (United States)

    1998-12-01T23:59:59.000Z

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  16. Chapter 7 -Welding The dangers in welding, cutting, heating and grinding should never be underestimated.

    E-Print Network [OSTI]

    36 Chapter 7 - Welding The dangers in welding, cutting, heating and grinding should never and to understand the hazards involved. Spot the hazard Hazards associated with welding include: · The arc itself eyes can become extremely red and sore and in extreme cases suffer permanent damage. · Welding gases

  17. Arc Position Sensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arc remelting (VAR) furnaces for industries that use specialty metals such as nickel, titanium, and zirconium. The technology could be used to help produce materials with stronger...

  18. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    SciTech Connect (OSTI)

    Tavares, S.S.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)]. E-mail: ssmtavares@terra.com.br; Pardal, J.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Lima, L.D. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Bastos, I.N. [Universidade do Estado do Rio de Janeiro (UERJ), Instituto Politecnico (IPRJ), Nova Friburgo/RJ (Brazil); Nascimento, A.M. [Universidade Estadual de Campinas (UNICAMP), Departamento de Engenharia Mecanica, Campinas/SP (Brazil); Souza, J.A. de [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)

    2007-07-15T23:59:59.000Z

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H{sub 2}SO{sub 4} media.

  19. Developing a dissimilar metal foil-to-substrate resistance welding process.

    SciTech Connect (OSTI)

    Knorovsky, Gerald Albert

    2010-10-01T23:59:59.000Z

    Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

  20. Effect of hydrogen in an argon GTAW shielding gas: Arc characteristics and bead morphology

    SciTech Connect (OSTI)

    Onsoeien, M.; Olson, D.L.; Liu, S. (Colorado School of Mines, Golden, CO (United States). Center for Welding and Joining Research); Peters, R. (Delft Technological Univ. (Netherlands))

    1995-01-01T23:59:59.000Z

    The influence of hydrogen additions to an argon shielding gas on the heat input and weld bead morphology was investigated using the gas tungsten arc welding process. Variations in weld bead size and shape with hydrogen additions were related to changes in the ability of the arc to generate heat and not to generate perturbations in the weld pool caused by Marangoni fluid flow.

  1. Improvement of reliability of welding by in-process sensing and control (development of smart welding machines for girth welding of pipes). Final report

    SciTech Connect (OSTI)

    Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

    1983-04-01T23:59:59.000Z

    Closed-loop control of the welding variables represents a promising, cost-effective approach to improving weld quality and therefore reducing the total cost of producing welded structures. The ultimate goal is to place all significant weld variables under direct closed-loop control; this contrasts with preprogrammed machines which place the welding equipment under control. As the first step, an overall strategy has been formulated and an investigation of weld pool geometry control for gas tungsten arc process has been completed. The research activities were divided into the areas of arc phenomena, weld pool phenomena, sensing techniques and control activities.

  2. Welding Development W87 Baseline

    SciTech Connect (OSTI)

    A. Newman; G. Gibbs; G. K. Hicken

    1998-11-01T23:59:59.000Z

    This report covers the development activities used to qualify the Gas Tungsten Arc (FTA) girth weld and the resistance stem attachments on the W87 Base Line (W87BL). Design of experiments was used throughout the development activities.

  3. Novel Optimization Methodology for Welding Process/Consumable Integration

    SciTech Connect (OSTI)

    Quintana, Marie A; DebRoy, Tarasankar; Vitek, John; Babu, Suresh

    2006-01-15T23:59:59.000Z

    Advanced materials are being developed to improve the energy efficiency of many industries of future including steel, mining, and chemical, as well as, US infrastructures including bridges, pipelines and buildings. Effective deployment of these materials is highly dependent upon the development of arc welding technology. Traditional welding technology development is slow and often involves expensive and time-consuming trial and error experimentation. The reason for this is the lack of useful predictive tools that enable welding technology development to keep pace with the deployment of new materials in various industrial sectors. Literature reviews showed two kinds of modeling activities. Academic and national laboratory efforts focus on developing integrated weld process models by employing the detailed scientific methodologies. However, these models are cumbersome and not easy to use. Therefore, these scientific models have limited application in real-world industrial conditions. On the other hand, industrial users have relied on simple predictive models based on analytical and empirical equations to drive their product development. The scopes of these simple models are limited. In this research, attempts were made to bridge this gap and provide the industry with a computational tool that combines the advantages of both approaches. This research resulted in the development of predictive tools which facilitate the development of optimized welding processes and consumables. The work demonstrated that it is possible to develop hybrid integrated models for relating the weld metal composition and process parameters to the performance of welds. In addition, these tools can be deployed for industrial users through user friendly graphical interface. In principle, the welding industry users can use these modular tools to guide their welding process parameter and consumable composition selection. It is hypothesized that by expanding these tools throughout welding industry, substantial energy savings can be made. Savings are expected to be even greater in the case of new steels, which will require extensive mapping over large experimental ranges of parameters such as voltage, current, speed, heat input and pre-heat.

  4. Fusion Welding of AerMet 100 Alloy

    SciTech Connect (OSTI)

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01T23:59:59.000Z

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  5. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    SciTech Connect (OSTI)

    Vega, O.E.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, Laboratorios Pesados de Metalurgia, UPALM, Zacatenco, C.P. 07738, Mexico D.F. (Mexico); Villagomez, A. [Construcciones Maritimas Mexicanas, CMM-PROTEXA, Av. Periferica s/n, Fracc. Lomas de Holche, C.P. 24120, Cd. del Carmen, Campeche (Mexico); Contreras, A. [Instituto Mexicano del Petroleo, Investigacion en Ductos, Corrosion y Materiales, Eje Central Lazaro Cardenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730, Mexico D.F. (Mexico)], E-mail: acontrer@imp.mx

    2008-10-15T23:59:59.000Z

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases.

  6. Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel joint

    SciTech Connect (OSTI)

    Wang, Ting, E-mail: fgwangting@163.com [Key Laboratory of Special Welding in Shandong Province, Harbin Institute of Technology at Weihai, Weihai, 264209 (China)] [Key Laboratory of Special Welding in Shandong Province, Harbin Institute of Technology at Weihai, Weihai, 264209 (China); Zhang, Binggang, E-mail: zhang_bg@126.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China)] [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China); Feng, Jicai, E-mail: fengjc@hit.edu.cn [Key Laboratory of Special Welding in Shandong Province, Harbin Institute of Technology at Weihai, Weihai, 264209 (China) [Key Laboratory of Special Welding in Shandong Province, Harbin Institute of Technology at Weihai, Weihai, 264209 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China); Tang, Qi, E-mail: tangqi@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China)] [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-11-15T23:59:59.000Z

    Cracking in an electron beam weld of titanium to stainless steel occurred during the cooling process because of internal thermal stress. Using a copper filler metal, a crack free joint was obtained, which had a tensile strength of 310 MPa. To determine the reasons for cracking in the Ti/Fe joint and the function of the copper filler metal on the improvement of the cracking resistance of the Ti/Cu/Fe joint, the microstructures of the joints were studied by optical microscopy, scanning electron microscopy and X-ray diffraction. The cracking susceptibilities of the joints were evaluated with microhardness tests on the cross-sections. In addition, microindentation tests were used to compare the brittleness of the intermetallics in the welds. The results showed that the Ti/Fe joint was characterized by continuously distributed brittle intermetallics such as TiFe and TiFe(Cr){sub 2} with high hardness ({approx} 1200 HV). For the Ti/Cu/Fe joint, most of the weld consisted of a soft solid solution of copper with dispersed TiFe intermetallics. The transition region between the weld and the titanium alloy was made up of a relatively soft Ti-Cu intermetallic layer with a lower hardness ({approx} 500 HV). The formation of soft phases reduced the cracking susceptibility of the joint. - Highlights: Black-Right-Pointing-Pointer Electron beam welded Ti/Fe joint cracked for the brittleness and residual stress. Black-Right-Pointing-Pointer Electron beam welded Ti/Cu/Fe joint with tensile strength of 310 MPa was obtained. Black-Right-Pointing-Pointer Cu diluted Ti and Fe contents in weld and separated the TiFe{sub 2} into individual blocks. Black-Right-Pointing-Pointer Interfacial hard Ti-Fe compounds were replaced by soft Ti-Cu compounds in the weld. Black-Right-Pointing-Pointer A large amount of solid solution of copper formed in the weld.

  7. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1996-01-01T23:59:59.000Z

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  8. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOE Patents [OSTI]

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19T23:59:59.000Z

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  9. Effects of thermal aging on Stress Corrosion Cracking and mechanical properties of stainless steel weld metals

    E-Print Network [OSTI]

    Hixon, Jeff

    2006-01-01T23:59:59.000Z

    Stress Corrosion Cracking (SCC) in and around primary loop piping welds in Boiling Water Reactors has been observed worldwide as plants continue to operate at temperatures and pressures near 2880C (5500F) and 6.9 MPa (1000 ...

  10. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31T23:59:59.000Z

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  11. EFFECTS OF SURFACE DEPRESSION AND CONVECTION IN GTA WELDING

    E-Print Network [OSTI]

    Eagar, Thomas W.

    EFFECTS OF SURFACE DEPRESSION AND CONVECTION IN GTA WELDING M.L. Lin, T.W. Eagar Materials of the weld pool which are changed by these fact ors . It is shown that, at current s in excess of 300 amperes in a different heat distribution on the weld pool surface . ALTHOUGH THE GAS tungsten arc (GTA) welding process

  12. A comparison of LBW and GTAW processes in miniature closure welds

    SciTech Connect (OSTI)

    Knorovsky, G.A.; Fuerschbach, P.W.; Gianoulakis, S.E.; Burchett, S.N.

    1995-07-01T23:59:59.000Z

    When small electronic components with glass-to-metal seals are closure welded, residual stresses developed in the glass are of concern. If these stresses exceed allowable tensile levels` the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and that Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding. (GTAW); however, other concerns such as weld fit-up, part variability, and material weldability can modify the final choice of a welding process. In this paper we compare the characteristic levels of heat input and the residual stresses generated in the glass seals for the two processes (as calculated by 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made to choose a production process. The geometry chosen is a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated to result from continuous wave C0{sub 2} LBW are compared with those that result from GTAW. The total energy required by the laser weld is significantly less than for the equivalent size GTA weld. The energy input required for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/sec to 50 mm/sec were examined.

  13. The problem of intermixing of metals possessing no mutual solubility upon explosion welding (Cu-Ta, Fe-Ag, Al-Ta)

    SciTech Connect (OSTI)

    Greenberg, B.A., E-mail: bella@imp.uran.ru [Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, S. Kovalevskoi str. 18, Ekaterinburg, 620990 (Russian Federation); Ivanov, M.A. [Kurdyumov Institute of Metal Physics, National Academy of Sciences of Ukraine, Vernadskogo blvd. 36, Kiev, 03680 (Ukraine)] [Kurdyumov Institute of Metal Physics, National Academy of Sciences of Ukraine, Vernadskogo blvd. 36, Kiev, 03680 (Ukraine); Rybin, V.V. [State Polytechnical University, Politekhnicheskaya str. 29, St. Petersburg, 195251 (Russian Federation)] [State Polytechnical University, Politekhnicheskaya str. 29, St. Petersburg, 195251 (Russian Federation); Elkina, O.A.; Antonova, O.V.; Patselov, A.M.; Inozemtsev, A.V.; Plotnikov, A.V.; Volkova, A.Yu. [Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, S. Kovalevskoi str. 18, Ekaterinburg, 620990 (Russian Federation)] [Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, S. Kovalevskoi str. 18, Ekaterinburg, 620990 (Russian Federation); Besshaposhnikov, Yu.P. [OJSC Ural Chemical Machine Building Plant, Khibinogorskii Lane 33, Ekaterinburg, 620010 (Russian Federation)] [OJSC Ural Chemical Machine Building Plant, Khibinogorskii Lane 33, Ekaterinburg, 620010 (Russian Federation)

    2013-01-15T23:59:59.000Z

    On the basis of the results obtained for joints of dissimilar metals such as copper-tantalum and iron-silver, the reason of immiscible suspensions mixing upon explosion welding has been cleared out. It has been found that the interface (plain or wavy) is not smooth and contains inhomogeneities, namely, cusps and local melting zones. The role of granulating fragmentation providing partitioning of initial materials as a main channel of input energy dissipation has been revealed. It has been shown that in joints of metals possessing normal solubility the local melting zones are true solutions, but if metals possess no mutual solubility the local melting zones are colloidal solutions. Realization of either emulsion or suspension variant takes place. The results can be used in the development of new joints of metals possessing no mutual solubility. - Highlights: Black-Right-Pointing-Pointer Immiscible pairs Ta/Cu and Fe/Ag are welded successfully by explosive welding. Black-Right-Pointing-Pointer Fragmentation provides for partitioning as the main energy dissipation channel. Black-Right-Pointing-Pointer Immiscible metals form colloidal solid solutions during solidification. Black-Right-Pointing-Pointer Melting and boiling temperatures ratio determines the colloidal solution type. Black-Right-Pointing-Pointer Local melting zones being in suspension form enhance welds hardening.

  14. Qualification of large diameter duplex stainless steel girth welds intended for low temperature service

    SciTech Connect (OSTI)

    Prosser, K.; Robinson, A.G.; Rogers, P.F.

    1996-12-31T23:59:59.000Z

    British Gas recently had a requirement to fabricate some UNS31803 duplex stainless steel pipework for an offshore topsides process plant. The pipework had a maximum diameter of 600mm, with a corresponding wall thickness of 18mm, and it was designed to operate at a minimum temperature of {minus}40 C. There is a lack of published toughness data for girth welds in duplex stainless steel at this thickness and minimum design temperature. Additionally, toughness requirements for girth welds in current pipework and pressure vessel codes are based on experience with carbon steels. As a result, a program of work has been carried out to study the Charpy, CTOD and wide plate toughness of girth welds in 22%Cr duplex stainless steel pipework. The welds were produced using a typical gas tungsten arc/gas metal arc pipework fabrication procedure. In addition, non-destructive evaluation trials have been carried out on a deliberately defective weld using radiography and ultrasonics. It was demonstrated that double wall single image {gamma}-radiography, single wall single image and panoramic X-radiography, and conventional shear wave ultrasonics were all able to detect planar root defects varying from 3 to 7mm in depth. There was good agreement between the sizes recorded by ultrasonics and those measured from macrosections. Small scale mechanical tests demonstrated that welds with overmatching tensile properties, and low temperature toughness properties which were acceptable to specification, could be produced. Wide plate tests demonstrated that defect size calculations from BS PD7493 were conservative.

  15. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI series 5. Volume 2, Appendices E and F

    SciTech Connect (OSTI)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O. [Oak Ridge National Lab., TN (United States); Menke, B.H. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-10-01T23:59:59.000Z

    The Fifth Irradiation Series in the Heavy-Section Steel irradiation (HSSI) Program was aimed at obtaining a statistically significant fracture toughness data base on two weldments with high-copper contents to determine the shift and shape of the K{sub lc} curve as a consequence of irradiation. The program included irradiated Charpy V-notch impact, tensile, and drop-weight specimens in addition to compact fracture toughness specimens. Compact specimens with thicknesses of 25.4, 50.8, and 101.6 mm [1T C(T), 2T C(T), and 4T C(T), respectively] were irradiated. Additionally, unirradiated 6T C(T) and 8T C(T) specimens with the same K{sub lc} measuring capacity as the irradiated specimens were tested. The materials for this irradiation series were two weldments fabricated from special heats of weld wire with copper added to the melt. One lot of Linde 0124 flux was used for all the welds. Copper levels for the two welds are 0.23 and 0.31 wt %, while the nickel contents for both welds are 0.60 wt %. Twelve capsules of specimens were irradiated in the pool-side facility of the Oak Ridge Research Reactor at a nominal temperature of 288{degree}C and an average fluence of about 1.5 {times} 10{sup 19} neutrons/cm{sup 2} (> 1 MeV). This volume, Appendices E and F, contains the load-displacement curves and photographs of the fracture toughness specimens from the 72W weld (0.23 wt % Cu) and the 73 W weld (0.31 wt % Cu), respectively.

  16. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro 

    E-Print Network [OSTI]

    McNeilly, Jane D; Heal, Mathew R; Beverland, Iain J; Howe, Alan; Gibson, Mark D; Hibbs, Leon; MacNee, William; Donaldson, Ken

    2004-01-01T23:59:59.000Z

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched ...

  17. Gas tungsten arc welder with electrode grinder

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA)

    1984-01-01T23:59:59.000Z

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  18. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite

    SciTech Connect (OSTI)

    Wang, Huei-Sen, E-mail: huei@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Jang, Jason Shian-Ching [Institute of Materials Science and Engineering and Department of Mechanical Engineering, National Central University, Chung-Li 32001, Taiwan (China); Lin, Dong-Yih [Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Gu, Jhen-Wang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China)

    2013-12-15T23:59:59.000Z

    To study the interfacial reaction of the ex-situ reinforced phase (Ta) of a Zr-based ((Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8})Si{sub 0.75} + Ta{sub 5}) bulk metallic glass composite after laser spot welding, the interfacial regions of the reinforced phases located at specific zones in the welds including the parent material, weld fusion zone and heat affected zone were investigated. Specimen preparation from the specific zones for transmission electron microscopy analysis was performed using the focused ion beam technique. The test results showed that the reinforced phases in the parent material, weld fusion zone and heat affected zone were all covered by an interfacial layer. From microstructure analysis, and referring to the phase diagram, it was clear that the thin layers are an intermetallic compound ZrCu phase. However, due to their different formation processes, those layers show the different morphologies or thicknesses. - Highlights: • An ex-situ Zr-based BMG composite was laser spot welded. • The interfacial regions of the RPs located at PM, WFZ and HAZ were investigated. • The RPs in the PM, WFZ and HAZ were all covered by a ZrCu interfacial layer. • Due to different formation processes, those layers show the different morphology.

  19. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    DOE Patents [OSTI]

    Ren, Weiju

    2014-11-11T23:59:59.000Z

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  20. Development of weld closure stations for plutonium long-term storage containers

    SciTech Connect (OSTI)

    Fernandez, R.; Martinez, D.A.; Martinez, H.E.; Nelson, T.O.; Ortega, R.E.; Rofer, C.K.; Romero, W.; Stewart, J.; Trujillo, V.L.

    1998-12-31T23:59:59.000Z

    Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper.

  1. MATHEHATICAL NODELING OF THE TEHPERATURE PROFILES AND WELD DILUTION IN ELECTROSLAG WELDING OF STEEL PLATES

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) MATHEHATICAL NODELING OF THE TEHPERATURE PROFILES AND WELD DILUTION IN ELECTROSLAG WELDING describes a calculation procedure for the detailed predic- tion of temperature profiles and weld dilution in the electroslag welding of mild steel plates. The temperature profiles in the liquid slag and the liquid metal

  2. Repair welding of fusion reactor components

    SciTech Connect (OSTI)

    Chin, B.A.

    1993-05-15T23:59:59.000Z

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  3. Dr. Thomas A. Siewert IN-SPACE WELDING

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) Dr. Thomas A. Siewert IN-SPACE WELDING Visions & Realities presented to Thirtieth Space This paperestablishes the value of having an in-space welding capability and identifies its applications, both near, Plasma Arc, and Laser Beam, are examined against the criteria for an in-space welding system. Research

  4. Method for enhanced control of welding processes

    DOE Patents [OSTI]

    Sheaffer, Donald A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA); Tung, David M. (Livermore, CA); Schroder, Kevin (Pleasanton, CA)

    2000-01-01T23:59:59.000Z

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  5. High-pressure arcs as vacuum-atmosphere interface and plasma lens for nonvacuum electron beam welding machines, electron beam melting, and nonvacuum ion material modification

    SciTech Connect (OSTI)

    Hershcovitch, A. [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)] [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    1995-11-01T23:59:59.000Z

    Atmospheric pressure plasmas can be used to provide a vacuum-atmosphere interface as an alternative to differential pumping. Vacuum-atmosphere interface utilizing a cascade arc discharge was successfully demonstrated and a 175 keV electron beam was successfully propagated from vacuum through such a plasma interface and out into atmospheric pressure. Included in the article are a theoretical framework, experimental results, and possible applications for this novel interface. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  6. Narrow groove welding gas diffuser assembly and welding torch

    DOE Patents [OSTI]

    Rooney, Stephen J. (East Berne, NY)

    2001-01-01T23:59:59.000Z

    A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

  7. The Size of the Sensitization Zone in 304 Stainless Steel Welds

    E-Print Network [OSTI]

    Eagar, Thomas W.

    . Single-pass, bead-on-plate welds were made by gas tungsten arc welding on 30-cm/30-cm/ 1.3-cm 304 that the width of the sensitization zone is in proportion to the magnitude ofthe heat input, except when very heat distrihution. Under certain welding conditions, one can obwin welds which are free ofsensitization

  8. Materials and Design 50 (2013) 38-43 Regeneration Technique for Welding Nanostructured Bainite

    E-Print Network [OSTI]

    Cambridge, University of

    2013-01-01T23:59:59.000Z

    by spark wire cutting. Bead-on-plate welds with autogenous gas tungsten arc welding were perform by the heat input during welding, from transforming into brittle martensite. The microstructures of the fusion to the formation of brittle, untempered martensite. Hong et al. [6] attempted a rapid post-weld heat treatment

  9. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  10. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22T23:59:59.000Z

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  11. Data collection on the effect of irradiation on the mechanical properties of austenitic stainless steels and weld metals

    SciTech Connect (OSTI)

    Tavassoli, A.A. [Commissariat a l`Energie Atomique, Gif sur Yvette (France); Picker, C.; Wareing, J. [AEA Technology, Risley (United Kingdom)

    1996-12-31T23:59:59.000Z

    Data on the influence of low dose 400--550 C irradiation on the mechanical properties of structural steels (Types 304, 316, 316L, 316H and 316L(N) and associated weld metals) at temperatures from 20 C to 750 C, have been compiled from published literature and the results of British, Dutch, French and German laboratories. Properties evaluated include tensile, impact, creep, fatigue, and creep-fatigue. The preliminary results, which cover the dose range from 0 to 5 displacements per atom (and/or up to 9 appm helium) are presented as comparisons between irradiated and unirradiated control data, covering a range of strength and cyclic properties. The results show that low dose irradiation can have a significant influence on the properties, i.e.: (1) increases in tensile proof strength; (2) reductions in tensile ductility; (3) decreases in impact energy; (4) reductions in creep-rupture strength and ductility; and (5) reductions in creep-fatigue endurance. By considering the influence of irradiation temperature and dose level, the results are rationalized in terms of irradiation hardening and grain boundary embrittlement mechanisms.

  12. Metal Vaporization from Weld Pools A. BLOCK-BOLTEN and T. W. EAGAR

    E-Print Network [OSTI]

    Eagar, Thomas W.

    an upper limit on the tem- perature produced on the surface of the metal due to evapo- rative cooling.4 · 5 to a direct reading emission spectrometer. The chamber was supplied with a lens guiding the light and the electrode. The hearth was water cooled and the entire system was purged with argon flow. The rotating water-cooled

  13. Fracture toughness of Ti-6Al-4V after welding and postweld heat treatment

    SciTech Connect (OSTI)

    Murthy, K.K.; Sundaresan, S. [Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering

    1997-02-01T23:59:59.000Z

    The fracture toughness (J{sub IC}) of the fusion zone of Ti-6Al-4V alloy welds was studied in terms of microstructural changes in the as-welded condition and following postweld heat treatment. Gas tungsten arc and electron beam welds were produced in sheet material over a limited range of heat input and subsequently heat treated at 700 C and 900 C. In the as-welded condition, the weld microstructure was a mixture of diffusional and martensitic alpha phases, whose proportion varied wit heat input and cooling rate. The fusion zone exhibited low ductility resulting from the highly acicular microstructure and a large prior-beta grain size. Postweld heat treatment tempered the martensite and coarsened the microstructure, but a beneficial effect on ductility was realized only after treatment at 900 C. Fracture toughness in the as-welded condition was greater than for the base metal and was attributed to the lamellar microstructure of the fusion zone and absence of continuous alpha film along the grain boundaries. Postweld heat treatment at 700 C reduced the fracture toughness considerably and, as in the case of ductility, it was necessary to heat treat at 900 C to produce an improvement.

  14. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    SciTech Connect (OSTI)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki [Ishikawajima-Harima Heavy Industries Company Ltd., 1 Shin-Nakaharacho, Isogoku, Yokohama 235-8501 (Japan)

    2002-07-01T23:59:59.000Z

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater environment was carried out in the different welding position, horizontal, vertical upward and downward. The soundness of cladding layers (about 3 mm) is confirmed in visual and penetration test, and cross section observation. In the application to the actual plants, it is preferable to reduce the start and end point numbers of beads with which a defect is easy to cause. Therefore a special welding equipment for a YAG laser CRC that could weld continuously was developed. (authors)

  15. Investigation of arc length versus flange thickness while using an arc voltage controller

    SciTech Connect (OSTI)

    Daumeyer, G.J.

    1994-11-01T23:59:59.000Z

    An arc voltage controller (AVC) for gas tungsten arc welding will change arc length when flange thickness changes while all other variables, including AVC setting, are held constant. A procedure for calibrating an LVDT (linear variable displacement transducer) used for electrode assembly motion monitoring was proven for laboratory setups and special investigations. A partial characterization on the deadband and sensitivity control settings of the Cyclomatic AVC was completed.

  16. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24T23:59:59.000Z

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  17. Welding apparatus and methods for using ultrasonic sensing

    DOE Patents [OSTI]

    McJunkin, Timothy R.; Johnson, John A.; Larsen, Eric D.; Smartt, Herschel B.

    2006-08-22T23:59:59.000Z

    A welding apparatus using ultrasonic sensing is described and which includes a movable welder having a selectively adjustable welding head for forming a partially completed weld in a weld seam defined between adjoining metal substrates; an ultrasonic assembly borne by the moveable welder and which is operable to generate an ultrasonic signal which is directed toward the partially completed weld, and is further reflected from same; and a controller electrically coupled with the ultrasonic assembly and controllably coupled with the welding head, and wherein the controller receives information regarding the ultrasonic signal and in response to the information optimally positions the welding head relative to the weld seam.

  18. Oxygen and Nitroaen Contamination During Submerged Arc Wel ding of Titanium

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) ) ··- -~ Oxygen and Nitroaen Contamination During Submerged Arc Wel ding of Titanium T· \\v the costs of submerged arc welding of titanium. In general it i s found that the cost of titanium submerged welding of titani um. The advantages and disadvantages of flux shielded weldinq of titanium are outlined

  19. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A. [Auburn Univ., AL (United States). Dept. of Materials Engineering; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1992-12-31T23:59:59.000Z

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  20. Repair welding of fusion reactor components. Second year technical report

    SciTech Connect (OSTI)

    Chin, B.A.

    1993-05-15T23:59:59.000Z

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  1. Method for laser welding a fin and a tube

    DOE Patents [OSTI]

    Fuerschbach, Phillip W. (Tijeras, NM); Mahoney, A. Roderick (Albuquerque, NM); Milewski, John O (Santa Fe, NM)

    2001-01-01T23:59:59.000Z

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  2. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect (OSTI)

    Max Karasik

    1999-12-01T23:59:59.000Z

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  3. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D

    E-Print Network [OSTI]

    Zhou, Wei

    Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K of the plates were produced using tungsten inert gas (TIG) welding method. The TIG arc was also used to deposit welding beads on some of the thin plates. No cracking was found in the butt joints. However, hot cracking

  4. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

    2009-11-30T23:59:59.000Z

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  5. WELDING RESEARCH -s85WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -s85WELDING JOURNAL ABSTRACT. Measurement of weld pool surface is a difficult but urgent task in the welding community. It plays an important role not only in developing the next- generation intelligent welding machines but also for modeling complex welding processes. In recent years

  6. Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

    E-Print Network [OSTI]

    Laulainen, J; Koivisto, H; Komppula, J; Tarvainen, O

    2015-01-01T23:59:59.000Z

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  7. Crutcher introduces new automatic welding system

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    Designed for pipe over 16 in. but suitable for smaller diameters if modified slightly, a new automatic welding system uses the metal inert gas process to weld the root bead from the outside with a specially designed backup ring that adapts to a standard internal pipe clamp, making internal welding unnecessary. Individual welding machines travel on flexible tracks that are positioned by a track-locating device; two machines are required at each welding station. Particularly applicable to lay-barge operations, the system consists of (1) a pipe-facing machine, (2) a diesel-driven hydraulic power unit, (3) a carriage track, (4) an air-driven, air-operated, simplified pipe clamp, and (5) a welding bug assembly consisting of a carriage with drive unit, welding head, oscillator, and wire spool mount with drag-brake assembly.

  8. arc welding welding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phased arrays is inspection speed: linear travel speeds of up to 100 mmsec are possible. Sizing is typically performed using diffraction approaches (TOFD and back diffraction),...

  9. Welding and Weldability of Thorium-Doped Iridium Alloys

    SciTech Connect (OSTI)

    David, S.A.; Ohriner, E.K.; King, J.F.

    2000-03-12T23:59:59.000Z

    Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

  10. WELDING RESEARCH -s57WELDING JOURNAL

    E-Print Network [OSTI]

    Zhang, YuMing

    WELDING RESEARCH -s57WELDING JOURNAL ABSTRACT. Low heat input is typically desired for welding high welding. However, a high current, and thus a high heat input, is required to melt more wire to achieve the HAZ size, microstructure, and the hard- ness of high-strength steel ASTM A514 welded by DE

  11. WELDING RESEARCH -S237WELDING JOURNAL

    E-Print Network [OSTI]

    Cambridge, University of

    WELDING RESEARCH -S237WELDING JOURNAL We depend in our everyday life on the performance of vast the tallest building in the world -- Fig. 1. These are all made from steel and rely on welding for their assembly. Weld Design: Experiment or Model? A weld is a heterogeneity introduced into a carefully

  12. WELDING RESEARCH -s87WELDING JOURNAL

    E-Print Network [OSTI]

    Eagar, Thomas W.

    WELDING RESEARCH -s87WELDING JOURNAL ABSTRACT. Welding fume contains ele- ments that, in their pure of welding fume must be examined when considering fume toxicity. Various chemical analysis techniques are pre techniques to analyze the chemistry of mild steel welding fume. X-ray diffraction (XRD) shows that mild steel

  13. Heat flow during the autogenous GTA welding of pipes

    SciTech Connect (OSTI)

    Kou, S.; Le, Y.

    1984-06-01T23:59:59.000Z

    A theoretical and experimental study of heat flow during the welding of pipes was carried out. The theoretical part of the study involves the development of two finite difference computer models: one for describing steady state, 3-dimensional heat flow during seam welding, the other for describing unsteady state, 3-dimensional heat flow during girth welding. The experimental part of the study, on the other hand, includes: measurement of the thermal response of the pipe with a high speed data acquisition system, determination of the arc efficiency with a calorimeter, and examination of the fusion boundary of the resultant weld. The experimental results were compared with the calculated ones, and the agreement was excellent in the case of seam welding and reasonably good in the case of girth welding. Both the computer models and experiments confirmed that, under a constant heat input and welding speed, the size of the fusion zone remains unchanged in seam welding but continues to increase in girth welding of pipes of small diameters. It is expected that the unsteady state model developed can be used to provide optimum conditions for girth welding, so that uniform weld beads can be obtained and weld defects such as lack of fusion and sagging can be avoided.

  14. Calorimetric measurements of energy transfer efficiency and melting efficiency in CO sub 2 laser beam welding

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    1990-01-01T23:59:59.000Z

    Our previous calorimetric studies of weld melting efficiency and arc efficiency in the GTAW and PAW processes have naturally led us to speculate as to the magnitude of the efficiencies in the LBW process which to data have also not been adequately investigated. Most welding engineers that have had experience with the LBW process are acutely aware that the metals' absorptivity, the surface finish, and the laser wavelength, all play an important role in affecting the energy transfer efficiency, but the extent of their influence and our understanding of the influence of other process variables is not well understood. In addition, it is widely thought that only the LBW or EBW processes can be selected for applications where thermal damage and distortion from the welding process must be kept to a minimum. For these reasons, we have looked forward to performing these calorimetric experiments since they potentially can answer such important questions as: whether or not the melting efficiency of the LBW process is superior to that obtainable with conventional GTAW and PAW welding processes This study was prompted by poor production yields on switching device due to cracking of the ceramic header after final closure welding with the CO{sub 2} LBW process. This calorimetric study was begun in hopes of determining if allowed variations in production process control variables were responsible for increases in heat input and the resulting thermal stresses. By measuring the net heat input to the workpiece with the calorimeter and by measuring the laser output energy and the weld fusion zone size it was possible to determine the magnitudes of both the energy transfer efficiency and the melting efficiency as well as observe their dependence on the process variables. 3 refs.

  15. .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J in the slag and metal phases for an electroslag welding system. It is shown that the current is significantly larger for the electroslag welding process than that of the electroslao refinino process operating

  16. Friction Stir Welding John Hinch and John Rudge

    E-Print Network [OSTI]

    Rudge, John

    Friction Stir Welding John Hinch and John Rudge September 11, 2002 1 Introduction Friction Stir Welding is an innovative technique for joining two pieces of metal. A rapidly rotating tool is pushed that a good model of friction stir welding should be able to predict - the power, the force, the temperature

  17. Experimental validation of finite element codes for welding deformations

    E-Print Network [OSTI]

    Boyer, Edmond

    Experimental validation of finite element codes for welding deformations H. M. Aarbogha,b, , M Institute for Energy Technology, N-2027 Kjeller, Norway. Abstract A single pass Metal Inert Gas welding which numerical codes quantifying welding stresses can be validated. It includes a mov- ing heat source

  18. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    SciTech Connect (OSTI)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R. [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. H. [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  19. CLOSURE WELD DEVELOPMENT FOR 3013 OUTER CONTAINERS

    SciTech Connect (OSTI)

    Daugherty, W.; Howard, S.; Peterson, K.; Stokes, M.

    2009-11-10T23:59:59.000Z

    Excess plutonium materials in the DOE complex are packaged and stored in accordance with DOE-STD-3013. This standard specifies requirements for the stabilization of such materials and subsequent packaging in dual nested seal-welded containers. Austenitic stainless steels have been selected for container fabrication. The inner 3013 container provides contamination control while the outer 3013 container is the primary containment vessel and is the focus of this paper. Each packaging site chose a process for seal welding the outer 3013 containers in accordance with its needs and expertise. The two processes chosen for weld closure were laser beam welding (LBW) and gas tungsten arc welding (GTAW). Following development efforts, each system was qualified in accordance with DOE-STD-3013 prior to production use. The 3013 outer container closure weld joint was designed to accommodate the characteristics of a laser weld. This aspect of the joint design necessitated some innovative process and equipment considerations in the application of the GTAW process. Details of the weld requirements and the development processes are presented and several potential enhancements for the GTAW system are described.

  20. Development of models for welding applications

    SciTech Connect (OSTI)

    Roper, J.R.; Hayer, L.K.

    1990-01-01T23:59:59.000Z

    The modeling of welding processes offers considerable potential for help with manufacturing problems but a complete definition of any welding process offers many challenges. However, the modular structure of MARC, and the diverse range of capabilities offered, create a good opportunity for development in this area. This paper discusses these problems and describes techniques used to overcome some of them. Models have been developed to simulate gas tungsten arc (GTA) and electron beam (EB) welding with a moving heat source. Fortran routines for subroutines FLUX and FORCDT have been written to generate a moving heat source. Sequential element activation has permitted the simulation of GTA welding with cold wire feed (CWF), as in filling of a machined weld groove. A program which generates History Definition blocks necessary for this type of welding model is also described in this paper. Semi-infinite heat transfer elements were used to get accurate temperature histories while keeping the size of the model manageable. Time-temperature histories and isothermal contours compare well with experimental measurements, although many areas for improvement and refinement remain. Results have been used to anticipate the necessity for weld parameter changes after part redesign, and the electron beam model relates closely to situations in which information is needed for the minimization of peak temperatures on the underside of the welded part. 8 refs., 11 figs.

  1. WELDING RESEARCH ~----------------------~--~ SUPPLEMENT TO THE WELDING JOURNAL. FEBRUARY 1990

    E-Print Network [OSTI]

    Eagar, Thomas W.

    J ) WELDING RESEARCH ~----------------------~--~ SUPPLEMENT TO THE WELDING JOURNAL. FEBRUARY 1990 Sponsored by the American Welding Society and the Welding Research Council All papers published in the Welding Journal's Welding Research Supplement undergo Peer Review before publication for: I) originality

  2. Microstructure of Titanium Welds

    SciTech Connect (OSTI)

    Danielson, Paul; Wilson, Rick D.; Alman, David E.

    2003-02-01T23:59:59.000Z

    Plates of commercially pure titanium were welded and microscopically analyzed to understand the influence of joining variables on weld microstructure.

  3. Wonder Weld

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory are using the process shown here to create a super-strong weld for the upgrade of a key component of the Lab's experimental nuclear fusion reactor.

  4. Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding

    E-Print Network [OSTI]

    Dalang, Robert C.

    Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding.pichelin@b .ch Context: Wood can be welded using linear vibration welding tech- niques similar to the ones in plastic and metal industry[1] . Wood welding allows bonding strength similar to glued joints. However, due

  5. welding And MAteriAlS College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    welding And MAteriAlS technology College of Rural and Community Development Community and Technical College 907-455-2932 www.ctc.uaf.edu/programs/weld/ Welding is an important industrial skill from welding basics to advanced pipe and metal plate fabrication. Classes are small to offer hands

  6. DESIGN OF THE HANFORD MULTI CANISTER OVERPACK (MCO) & DEVELOPMENT & QUALIFICATION OF THE CLOSURE WELDING PROCESS

    SciTech Connect (OSTI)

    CANNELL, G. R.

    2004-04-30T23:59:59.000Z

    Processing more than 2,100 metric tons of metallic uranium spent nuclear fuel (SNF) into large stainless steel containers called Multi-Canister Overpacks (MCOs) is one of the top priorities for the Department of Energy (DOE) at the Hanford Site, located in southeastern Washington state. The MCOs will be temporarily stored on site and eventually shipped to the federal geologic repository for long-term storage. MCOs are constructed and ''N''stamped in accordance with the requirements of the American Society of Mechanical Engineers (ASME) Section III, Division 1, Class 1 Components. Final closure welding poses a challenge after the fuel is loaded. Performing required examination and testing activities (volumetric examination and hydrostatic leak testing) can be difficult, if not impractical. An ASME Code Case N-595-3, was written specifically to allow code stamping by addressing such closures and providing alternative rules. MCOs are the first SNF canisters within the DOE complex to successfully use this code case for receiving ASME stamps. This paper discusses the design of the MCO, application of the N-595-3 code case, and development and qualification of the final welded closure. The MCO design considers internal pressure and handling loads, as well as processing and interim storage activities. The MCO functions as the primary or innermost containment as part of an overall transportation package so the design also considered interface features with secondary and transport containers. The MCO, approximately 2 feet in diameter and nearly 14 feet tall, is constructed primarily of Type 304/304L stainless steel and the final pressure boundary is of all-welded construction. The closure-weld is made with the Gas Tungsten Arc Welding (GTAW) process, using an automatic, machine-welding mode. Examination and testing of the closure includes the N-595-3 specified requirements-progressive Liquid Penetrant testing (PT) and final helium leak testing. At completion of the closure, the MCO is ''N'' stamped as a 450 pounds per square inch (design pressure) vessel. To ensure the process consistently achieves the required weld penetration, a series of developmental tests was performed to identify an optimum and robust set of welding parameters. Testing included test welds made on plate mockups and then actual MCO mockups. With the primary welding parameters (welding current and travel speed) established, a simple two-factor, two-level, factorial experiment with replication at high and low heat input conditions was conducted. Evaluation of the results included weld photomicrographs, which helped establish process range limits for these parameters broad enough to cover typical equipment and measurement variations and provide additional operating margin. To date, over 316 MCOs have been loaded, dried, and transported to the Canister Storage Building (CSB), where the welding is done. Of those, 161 MCOs have received final welded closure and ''N'' stamps. All cover cap final closure welds have met specified requirements without incident.

  7. arc lamp heal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cultures) -- (Animal Behaviour Wang, Yan 40 Spatial and time-dependent distribution of plasma parameters in the metal-halide arc lamp. Physics Websites Summary: for the...

  8. WELDING RESEARCH -s77WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    WELDING RESEARCH -s77WELDING JOURNAL ABSTRACT. The microstructure of AL- 6XN plates joined via a double-sided fric- tion stir weld has been investigated. The microstructural zones that develop during friction stir welding (FSW) reflect de- creasing strains and less severe thermal cy- cles with increasing

  9. WELDING RESEARCH -s51WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    WELDING RESEARCH -s51WELDING JOURNAL ABSTRACT. Electron microprobe analy- sis was utilized to examine the gradient of alloying elements across the weld inter- face of austenitic/ferritic dissimilar alloy welds. The concentration gradients were converted to martensite start (Ms) tem- perature gradients

  10. WELDING RESEARCH -s281WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    WELDING RESEARCH -s281WELDING JOURNAL ABSTRACT. Superaustenitic stainless steel alloys can often pose difficulties dur- ing fusion welding due to the unavoidable microsegregation of Mo and tramp ele. A method of producing austenitic welds is proposed that can po- tentially circumvent these issues by de

  11. SOAR: An extensible suite of codes for weld analysis and optimal weld schedules

    SciTech Connect (OSTI)

    Eisler, G.R.; Fuerschbach, P.W.

    1997-07-01T23:59:59.000Z

    A suite of MATLAB-based code modules has been developed to provide optimal weld schedules, regulating weld process parameters for CO2 and pulse Nd:YAG laser welding methods, and arc welding in support of the Smartweld manufacturing initiative at Sandia National Laboratories. The optimization methodology consists of mixed genetic and gradient-based algorithms to query semi-empirical, nonlinear algebraic models. The optimization output provides heat-input-efficient welds for user-specified weld dimensions. User querying of all weld models is available to examine sub-optimal schedules. In addition, a heat conduction equation solver for 2-D heat flow is available to provide the user with an additional check of weld thermal effects. The inclusion of thermodynamic properties allows the extension of the empirical models to include materials other than those tested. All solution methods are provided with graphical user interfaces and display pertinent results in two and three-dimensional form. The code architecture provides an extensible framework to add an arbitrary number of modules.

  12. Neural network analysis of strength and ductility of welding alloys for high strength low

    E-Print Network [OSTI]

    Cambridge, University of

    Neural network analysis of strength and ductility of welding alloys for high strength low alloy There are considerable demands for the development of weld metals for high strength low alloy steels. To assist in meeting such demands, a neural network was trained and tested on a set of data obtained on weld metals

  13. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  14. Narrow gap laser welding

    DOE Patents [OSTI]

    Milewski, J.O.; Sklar, E.

    1998-06-02T23:59:59.000Z

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  15. Mechanical Properties of Aluminum Tailor Welded Blanks at Superplastic Temperatures

    SciTech Connect (OSTI)

    Davies, Richard W.; Vetrano, John S.; Smith, Mark T.; Pitman, Stan G.

    2002-10-06T23:59:59.000Z

    This paper describes an investigation of the mechanical properties of weld material in aluminum tailor welded blanks (TWB) at superplastic temperatures and discusses the potential application of TWBs in superplastic forming operations. Aluminum TWBs consist of multiple sheet materials of different thickness or alloy that are butt-welded together into a single, variable thickness blank. To evaluate the performance of the weld material in TWBs, a series of tensile tests were conducted at superplastic temperatures with specimens that contained weld material in the gage area. The sheet material used in the study was Sky 5083 aluminum alloy, which was joined to produce the TWBs by gas tungsten arc welding using an AA5356 filler wire. The experimental results show that, in the temperature range of 500?C to 550?C and at strain rates ranging from 10-4 sec-1 to 10-2 sec-1, the weld material has a higher flow stress and lower ductility than the monolithic sheet material. The weld material exhibited elongations of 40% to 60% under these conditions, whereas the monolithic sheet achieved 220% to 360% elongation. At the same temperatures and strain rates, the weld material exhibited flow stresses 1.3 to 4 times greater than the flow stress in the monolithic sheet. However, the weld material did show a substantial increase in the strain rate sensitivity and ductility when compared to the same material formed at room temperature.

  16. Dissimilar-alloy laser welding of titanium: Ti6Al-4V to Beta-C{trademark}

    SciTech Connect (OSTI)

    Liu, P.S.; Baeslack, W.A. III; Hurley, J.

    1994-12-31T23:59:59.000Z

    Beta-C{sup TM} is a metastable-beta titanium alloy (nominal composition: Ti-3wt%Al-8wt%V-6wtTCr-4wt%Mo-4wt%Zr) which can be thermomechanically processed and heat treated to provide excellent combinations of strength, ductility, and fracture toughness. Recently, the increased application of metastable-beta titanium alloys in aerospace and commercial applications has resulted in the necessity to join these alloys to conventional alpha-beta titanium alloys. Based on this previous work, two approaches were considered for improving the ductility of dissimilar-alloy welds between Ti-6Al-4V and Beta-C{sup TM} in the present study: (1) application of a low heat input welding process to minimize the fusion zone and heat-affected zone (HAZ) beta grain size and (2) modification of the fusion zone chemical composition to allow greater microstructural optimization through postweld aging. CO{sub 2} laser welds were produced between Ti-6Al-4V and Beta-C{sup TM} sheet. Three different nominal fusion zone chemical compositions were obtained by varying the laser beam locations relative to the joint centerline and thereby melting different quantities of each base metal. For comparable postweld aging conditions, the laser welds exhibited ductilities superior to those of coarse-grained gas tungsten arc welds. Fracture analysis of the weld zone revealed a transition from a predominantly transgranular fracture in the low-temperature aged conditions to increasingly intergranular fracture following aging at higher temperature. This transition was promoted by an increase in the thickness and continuity of alpha phase at beta grain boundaries.

  17. HAZ hardenability in welded C-Mn steels: The role of prior microstructure

    SciTech Connect (OSTI)

    Sarafinchin, D.; Patchett, B.M.

    1994-12-31T23:59:59.000Z

    The hardenability of the heat-affected zone (HAZ) in C-Mn steels is one of the primary influences on susceptibility to HAC in welded structures. Procedure control of HAZ hardness is based on the use of preheat and/or heat input to limit the peak HAZ hardness to 350--450 Hv10, depending on hydrogen level. Determination of procedural conditions depends on material thickness and carbon equivalent, but does not involve prior microstructure. This study investigated the influence of hot-rolled and normalized base metal microstructures on the level, development and location of peak hardness in steels of identical chemical composition. One heat of A516Gr70 steel in the hot-rolled condition was cut in two and one-half was normalized. This produced microstructures of differing grain size and pearlite coarseness. Gas tungsten arc welding (GTAW) fusion welds at two heat inputs (0.5 and 2.5 KJ/mm) were placed in each of the two base metals. Macro-and microhardness surveys and metallographic analysis were used o determine the location and level of HAZ hardness. Carbon gradients due to incomplete dissolution of cementite and lack of time for homogenization by diffusion cause significant differences in macro-and microhardness of HAZ constituents in A516Gr70 weld zones. Increased pearlite grain size, and to a lesser extent, pearlite lamellar thickness, produce martensitic zones of high hardness in hot-rolled A516Gr70 in two regions: at temperatures just over the A{sub 3} and at temperatures just over the A{sub 1}. Of the two, the region just over the A{sub 3} although removed from the fusion line, has the highest HAZ hardness and is most likely to be susceptible to HAC. Normalized steel is likely to be more resistant to HAC in the HAZ than hot-rolled steel of identical chemical composition.

  18. The eects of dilution and base plate strength on stress distributions in multi-pass welds deposited using low

    E-Print Network [OSTI]

    Cambridge, University of

    ciently low temperature to compensate for accumulated thermal contraction strains. However, the welding not be exhausted until the weld cools to ambient temperature. This usually means that the weld metal should at an elevated temperature, further thermal contraction will lead to a build up of tensile stress as the weld

  19. UM Taubman College Metals Lab Handbook

    E-Print Network [OSTI]

    Papalambros, Panos

    of welding technologies including MIG, TIG, stick welding as well as high and low temperature brazing and tool introductions are scheduled at the beginning of each semester. Welding tutorials are provided for unsupervised use. #12;5 Welding Tutorials and Tool Introductions A major goal of the Metals Lab is to empower

  20. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    SciTech Connect (OSTI)

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16T23:59:59.000Z

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements for the actual can welding process, however, did not result in an improved weld geometry. Several possibilities for the lack of positive response exist, some of which are that (1) an insufficient number of test articles were welded under prototypic conditions, (2) the process was not optimized so that significant improvements were observable over the 'noise', and (3) the in-situ arc anneal closed the gap down too much so the can was unable to exhaust pressure ahead of the weld. Several operational and mechanical improvements were identified. The weld clamps were changed to a design consistent with those used in the legacy operations. A helium puff operation was eliminated; it is believed that this operation was the cause of the original weld defect. Also, timing of plug mast movement was found to correspond with weld irregularities. The timing of the movement was changed to occur during weld head travel between tacks. In the end a three sequential tack weld process followed by a pulse weld at the same current and travel speed as was used for the legacy processes was suggested for use during the IC qualification effort. Relative to legacy welds, the PDC IC weld demonstrates greater fluctuation in the region of the weld located between tack welds. However, canister weld response (canister to canister) is consistent and with the aid of the optical mapping system (for targeting the cut position) is considered adequate. DR measurements and METs show the PDC IC welds to have sufficient ligament length to ensure adequate canister pressure/impact capacity and to ensure adequate stub function. The PDC welding process has not been optimized as a result of this effort. Differences remain between the legacy BTC welds and the PDC IC weld, but these differences are not sufficient to prevent resumption of the current PDC IC qualification effort. During the PDC IC qualification effort, a total of 17 cans will be welded and a variety of tests/inspections will be performed. The extensive data collected during that qualification effort should be of a sufficient population to determ

  1. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

    1987-01-01T23:59:59.000Z

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  2. Residual stress in laser welded dissimilar steel tube-to-tube joints

    SciTech Connect (OSTI)

    Sun, Zheng (Technical Research Centre of Finland, Espoo (Finland). Lab. of Production Engineering)

    1993-09-01T23:59:59.000Z

    Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.

  3. Modeling of fundamental phenomena in welds

    SciTech Connect (OSTI)

    Zacharia, T.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Goldak, J.A. [Carleton Univ., Ottawa, Ontario (Canada); DebRoy, T.A. [Pennsylvania State Univ., University Park, PA (United States); Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland); Bhadeshia, H.K.D.H. [Cambridge Univ. (United Kingdom)

    1993-12-31T23:59:59.000Z

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  4. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

  5. Intermetallic alloy welding wires and method for fabricating the same

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1996-06-11T23:59:59.000Z

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  6. Combinatorial optimization of welding

    E-Print Network [OSTI]

    Sóbester, András

    C E D C Combinatorial optimization of welding sequences The problem Combinatorial optimization a welding example of a tail bearing housing vanes ­ Figure 1. The major structural details are the outer ring, the inner ring and the vanes. The vanes are welded to the rings using TIG welding. Fig. 1: Tail

  7. Weld solidification cracking in 304 to 204L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15T23:59:59.000Z

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  8. Weld solidification cracking in 304 to 304L stainless steel

    SciTech Connect (OSTI)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  9. DOI: 10.1002/adem.201100211 Atomistic Simulation of the Explosion Welding Process**

    E-Print Network [OSTI]

    Nordlund, Kai

    DOI: 10.1002/adem.201100211 Atomistic Simulation of the Explosion Welding Process** By Ossi Saresoja, Antti Kuronen* and Kai Nordlund Explosive welding (EXW) is an industrial process used to join. In the process, welding occurs in a high velocity collision between metal plates, achieved by using chemical

  10. An Analysis of Heat and Fluid Flow Phenomena 1n Electroslag Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    and temperature distri- bution~ are given for several idealized models of the electroslag welding process) ) An Analysis of Heat and Fluid Flow Phenomena 1n Electroslag Welding Two physical models created and fluid flow phenom- ena in metals processing operations have been applied to electroslag weld- ing

  11. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    SciTech Connect (OSTI)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew; Faraone, Kevin M. (Honeywell FM& T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01T23:59:59.000Z

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  12. Electron beam weld development on a Filter Pack Assembly. Final report

    SciTech Connect (OSTI)

    Dereskiewicz, J.P.

    1994-06-01T23:59:59.000Z

    A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.

  13. WELDING RESEARCH SUPPLEMENT TO THE WELDING JOURNAL, JUNE, 1982

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) WELDING RESEARCH SUPPLEMENT TO THE WELDING JOURNAL, JUNE, 1982 Sponsored by the American Welding Society .1mJ the Welding Research Council The Effect of Electrical Resistance on Nugget Formation During Spot Welding Applying a higher resistance coating to HSLA steel increases the welding current range

  14. WELDING RESEARCH ~------------~-~ SUPPLEMENT TO THE WELDING JOURNAL, AUGUST 1989

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) WELDING RESEARCH ·~------------~-~ SUPPLEMENT TO THE WELDING JOURNAL, AUGUST 1989 Sponsored by the American Welding Society and the Welding Research Council All papers published in the Welding Journal's Welding Research Supplement undergo Peer Review before publication for: 1) originality of the contribution

  15. Proceedings of NAMRI/SME, Vol. 39, 2011 Strength and Microstructure of Laser Fusion Welded Ti-SS

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    welding to diffusion bonding including metal-metal, metal- ceramic, and metal-polymer joints [1 such as stainless steel and titanium, as well as shape memory materials such as NiTi. Many material pairs, however. This study investigates the microstructures and strength of the laser fusion welded titanium-stainless steel

  16. Method for producing titanium aluminide weld rod

    DOE Patents [OSTI]

    Hansen, Jeffrey S. (Corvallis, OR); Turner, Paul C. (Albany, OR); Argetsinger, Edward R. (Albany, OR)

    1995-01-01T23:59:59.000Z

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  17. Fusion welding process

    DOE Patents [OSTI]

    Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

    1983-01-01T23:59:59.000Z

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  18. Rotating arc spark plug

    DOE Patents [OSTI]

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27T23:59:59.000Z

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  19. Welding Process Decoupling for Improved Control David E. Hardt

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Laboratory for Electromagnetic and Electronic and Systems Massachusetts Institute ofTechnology The Gas Metal, the use of such control methods has not advanced the quality of welding through better process regulation

  20. Dual Sync Pulse orbital welding of Zeron 100

    SciTech Connect (OSTI)

    Warburton, G.R.; Spence, M.A. [Weir Materials Ltd., Manchester (United Kingdom); Potter, S.R. [Dimetrics, Inc., Davidson, NC (United States)

    1994-12-31T23:59:59.000Z

    The paper describes a new orbital GTAW welding system. Dual Synchronized Pulsation is a further development of the Sync Pulse mode of operation. In Sync Pulse operation the primary weld parameters (current, voltage and wire feed speed) are pulsed between a primary and background value together with synchronization to the torch oscillation position allied with presetting duration using in dwell, excursion and out dwell times. Dual Sync Pulse utilizes two wire feed systems feeding a chill wire directly into the rear of the weld pool on the side opposite the weld torch and the main wire feed. The chill wires fed into the trailing side of the torch absorbs energy from the weld pool effectively limiting heat transmitted to the base material. This technique provides higher deposition rates, decreased welding times and lower heat inputs per pound of deposited metal. Using Dual Sync Pulse, substantial increases in metal deposition rate compared to single wire technique were obtained together with lower heat inputs per kg (pound) of deposited metal. Both mechanical properties and corrosion test results met normal fabrication specification requirements. No evidence of intermetallic phase precipitation was found using optical microscopy. The ability to increase deposition rate without concurrent increase in heat input offers the fabricator significant advantages when welding a super duplex stainless steels such as Zeron 100. In addition, the reduced number of runs and lower heat inputs provide welds with less hoop shrinkage and lower residual stress.

  1. Fusion welding. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning the fusion welding of metals and non-metals. Among the materials cited are aluminum alloys, stainless steel, high density polyethylenes, titanium, ceramic fibers, and glass. Improvement of fusion welding through modeling and real-time control, studies on the bloating mechanism of shales, and prevention of fusion welding are also examined. (Contains a minimum of 53 citations and includes a subject term index and title list.)

  2. CRAD, Welding, Cutting and Brazing Assessment Plan

    Broader source: Energy.gov [DOE]

    This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks.

  3. Arc initiation in cathodic arc plasma sources

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA)

    2002-01-01T23:59:59.000Z

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  4. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect (OSTI)

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01T23:59:59.000Z

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  5. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    SciTech Connect (OSTI)

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11T23:59:59.000Z

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  6. Plasma arc melting of zirconium

    SciTech Connect (OSTI)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31T23:59:59.000Z

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  7. Arc melter demonstration baseline test results

    SciTech Connect (OSTI)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01T23:59:59.000Z

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  8. EVALUATION OF CONSTANT CURRENT WELD CONTROL FOR PINCH WELDING

    SciTech Connect (OSTI)

    Korinko, P; STANLEY, S; HOWARD, H

    2005-10-11T23:59:59.000Z

    Modern weld controllers typically use current to control the weld process. SRS uses a legacy voltage control method. This task was undertaken to determine if the improvements in the weld control equipment could be implemented to provide improvements to the process control. The constant current mode of operation will reduce weld variability by about a factor of 4. The constant voltage welds were slightly hotter than the constant current welds of the same nominal current. The control mode did not appear to adversely affect the weld quality, but appropriate current ranges need to be established and a qualification methodology for both welding and shunt calibrations needs to be developed and documented.

  9. Dual wire welding torch and method

    DOE Patents [OSTI]

    Diez, Fernando Martinez (Peoria, IL); Stump, Kevin S. (Sherman, IL); Ludewig, Howard W. (Groveland, IL); Kilty, Alan L. (Peoria, IL); Robinson, Matthew M. (Peoria, IL); Egland, Keith M. (Peoria, IL)

    2009-04-28T23:59:59.000Z

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  10. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect (OSTI)

    CANNELL, G.R.

    2004-12-15T23:59:59.000Z

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  11. Method and apparatus for reclaiming metal values from electric arc furnace flue dust and sludge and rendering residual solids recyclable or non-hazardous

    SciTech Connect (OSTI)

    Bishop, N.G.; Bottinelli, N.E.; Kotraba, N.L.

    1988-07-19T23:59:59.000Z

    This patent describes an apparatus for treating dust and sludge contaminated with heavy metals and heavy metal oxides, comprising: waste material storage means; a mixer; means communicating with the waste material storage means and the mixer for introducing the waste material, solid carbonaceous material, and an organic binder to the mixer; a pelletizing device; means for introducing material from the mixer into the pelletizing device; pelletizer discharge means; an inclined rotary reduction smelter vessel having a charging and pouring opening in one end thereof; means for introducing pellets from the pelletizer discharge means to the rotary reduction smelter vessel; retractable burner means for heating the interior of the smelter vessel; means for rotating the smelter vessel about its inclined axis; and means for tilting the smelter vessel about a horizontal axis.

  12. CO{sub 2} laser welding of duplex and super-duplex stainless steels (the effect of argon-nitrogen assist-gas mixtures)

    SciTech Connect (OSTI)

    Robinson, J.M.; Reed, R.C. [Univ. of Cambridge (United Kingdom); Camyab, A. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom)

    1996-12-31T23:59:59.000Z

    Continuous wave CO{sub 2} laser welds have been fabricated on duplex and super duplex stainless steel substrates at a power of 3.5 kW. The work has examined the influence of Ar-N{sub 2} assist-gas mixtures on weld metal composition and microstructure. Welding in pure argon leads to reduction in the Cr, Ni, Mo and N content of the weld metal and a significant decrease in austenite volume fraction relative to the baseplate. Relative to welding in Ar, the use of a N{sub 2} bearing assist-gas restores the Cr, Ni and Mo levels to those found in the baseplate at the welding speeds employed. Moreover, the N{sub 2} bearing assist-gases result in an increase in the weld metal N content and austenite volume fraction relative to welding in pure Ar.

  13. Non-Vacuum Electron Beam Welding

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2007-01-31T23:59:59.000Z

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R&D are that various processes involving electron ion and laser beams that have now restrictions can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates.

  14. MAIN APPLICATIONS Spot welding

    E-Print Network [OSTI]

    De Luca, Alessandro

    IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing N Poke welding All IRB 6400R-versions have Foundry Plus protection. For details, see under manipulator 6400PE 1600 kg Others 2060 - 2390 kg ENVIRONMENT Ambient temperature Manipulator 5 ­ 50°C Relative

  15. Capacitor discharge process for welding braided cable

    DOE Patents [OSTI]

    Wilson, Rick D. (Corvallis, OR)

    1995-01-01T23:59:59.000Z

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  16. Weld Results SUNY Stony Brook

    E-Print Network [OSTI]

    McDonald, Kirk

    Weld Results Yan Zhan SUNY Stony Brook June 13rd, 2013 1 #12;Outline · Studied Parameters · Results Analysis ­ Contours Plots For the Weld Region ­ Axial Velocity Profile at Different Locations Near the Weld ­ Plots of Turbulent Kinetic Energy and Momentum Thickness Near the Weld ­ Line Plot Goes From Inlet

  17. arc welding parameters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the software sophistication, economics, and availability of the MS-DOSWINDOWS environment. The main objective of the work, the design of a control system and its...

  18. arc welding system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phased arrays is inspection speed: linear travel speeds of up to 100 mmsec are possible. Sizing is typically performed using diffraction approaches (TOFD and back diffraction),...

  19. Miniaturized cathodic arc plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

    2003-04-15T23:59:59.000Z

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  20. Welding Process Fundamentals* Thomas W. Eagar and Aaron D. Mazzeo, Massachusetts Institute of Technology

    E-Print Network [OSTI]

    Eagar, Thomas W.

    (such as fastening, adhesive bonding, soldering, brazing, arc welding, diffusion bonding, and resistance the material surrounding it. Although some pro- cesses, such as diffusion bonding, can achieve results solids will bond if their surfaces are brought into intimate contact. One factor that generally inhibits

  1. OREGON STATE UNIVERSITY (OSU) TRAINING RESEARCH ISOTOPE GENERAL ATOMICS (TRIGA) OVERPACK CLOSURE WELDING PROCESS PARAMETER DEVELOPMENT & QUALIFICATION

    SciTech Connect (OSTI)

    CANNELL, G.R.

    2006-09-11T23:59:59.000Z

    Spent Nuclear Fuel (SNF) from the Oregon State University (OSU) TRIGA{reg_sign} Reactor is currently being stored in thirteen 55-gallon drums at the Hanford Site's low-level burial grounds. This fuel is soon to be retrieved from buried storage and packaged into new containers (overpacks) for interim storage at the Hanford Interim Storage Area (ISA). One of the key activities associated with this effort is final closure of the overpack by welding. The OSU fuel is placed into an overpack, a head inserted into the overpack top, and welded closed. Weld quality, for typical welded fabrication, is established through post-weld testing and nondestructive examination (NDE); however, in this case, once the SNF is placed into the overpack, routine testing and NDE are not feasible. An alternate approach is to develop and qualify the welding process/parameters, demonstrate beforehand that they produce the desired weld quality, and then verify parameter compliance during production welding. Fluor engineers have developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrating that weld quality requirements for closure of packaged SNF overpacks are met, using this alternate approach. The following reviews the activities performed for this development and qualification effort.

  2. Review: Low transformation temperature weld filler for tensile residual stresses reduction S. W. Ooi*, J.E. Garnham and T. I. Ramjaun

    E-Print Network [OSTI]

    Cambridge, University of

    1 Review: Low transformation temperature weld filler for tensile residual stresses reduction S. W for the reduction of harmful residual stresses in weld zones is reviewed, which utilises low temperature, solid transformation temperature of the weld metal so as to take advantage of transformation expansion, the residual

  3. WELDING RESEARCH -s55WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    . This region was followed by a dual-phase austenite/martensite region near the in- terface between the grade steels and stainless steels still occur in many in- dustrial applications. These failures have generally between the carbon steel and stainless steel end members to permit the deposition of two similar welds

  4. Recent advances in vacuum arc ion sources

    SciTech Connect (OSTI)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01T23:59:59.000Z

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  5. Experimental investigation of welding penetration-depth in high-purity aluminium

    SciTech Connect (OSTI)

    Tong, W. [Babcock and Wilcox, Lynchburg, VA (United States). Naval Nuclear Fuel Div.

    1996-12-31T23:59:59.000Z

    One of the most important parameters in the superconducting splice design is the welding penetration-depth because it determines the electrical resistivity across the welded joints through the high-purity aluminum stabilizers. Highly resistive welds could lead to conductor instability when the superconductor goes normal. In the present investigation, experiments were performed using gas tungsten-arc welding to identify the effects of the welding parameters on the penetration-depth. The experimental results will be applied to the optimization of the superconducting splice design. The mock-up test data and theoretical analysis have shown that the higher energy input and lower welding speed produce the deeper penetration-depth in high-purity aluminum. In order to achieve an approximately uniform penetration-depth, three methods were explored: (i) a starting-delay at the welding start point, (ii) an external cooling, and (iii) staggered overlapping weldments. The experimental results have suggested that a uniform penetration-depth can be obtained under the thermal equilibrium welding conditions.

  6. Fracture toughness of the molten zone of resistance spot welds Florent Krajcarz1,2*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). In these tests, the load vs. load line displacement curve is recorded to derive the weld strength (i.e. maximal of the base metal still significantly influences the load vs. displacement curve, yet to a lesser extent than and the crack extension resistance of the molten zone of resistance spot welds under Mode I loading has been

  7. Analysis of weld solidification cracking in cast nickel aluminide alloys

    SciTech Connect (OSTI)

    Santella, M.L.; Feng, Z. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-09-01T23:59:59.000Z

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni{sub 5}Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results.

  8. Friction stir welding tool

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Barnes, Timothy A. (Ammon, ID)

    2008-04-15T23:59:59.000Z

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  9. Investigation of electromagnetic welding

    E-Print Network [OSTI]

    Pressl, Daniel G. (Daniel Gerd)

    2009-01-01T23:59:59.000Z

    We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

  10. Concurrent ultrasonic weld evaluation system

    DOE Patents [OSTI]

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15T23:59:59.000Z

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  11. Concurrent ultrasonic weld evaluation system

    DOE Patents [OSTI]

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04T23:59:59.000Z

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  12. College of Design ARC Architecture

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Design ARC Architecture KEY: # = new course * = course changed = course dropped,landscape,andarchitecturalspaceswithattentiontotheirapplicationtothearchitecturalexperience.Studio:4hoursperweek. Prereq: Admission to the School of Architecture. ARC 102 DRAWING II: OBSERVATIONAL OF ARCHITECTURE. (3

  13. TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING

    SciTech Connect (OSTI)

    Hovanski, Yuri

    2009-05-06T23:59:59.000Z

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  14. Certification of a weld produced by friction stir welding

    DOE Patents [OSTI]

    Obaditch, Chris; Grant, Glenn J

    2013-10-01T23:59:59.000Z

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  15. An investigation of the dynamic separation of spot welds under plane tensile pulses

    SciTech Connect (OSTI)

    Ma, Bohan; Fan, Chunlei; Chen, Danian, E-mail: chdnch@nbu.edu.cn; Wang, Huanran; Zhou, Fenghua [Mechanics and Materials Science Research Center, Ningbo University, Zhejiang 315211 (China)

    2014-08-07T23:59:59.000Z

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results.

  16. Robotic Welding and Inspection System

    SciTech Connect (OSTI)

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01T23:59:59.000Z

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  17. Friction stir welding tool and process for welding dissimilar materials

    DOE Patents [OSTI]

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07T23:59:59.000Z

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  18. Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation and modeling tools for discovering

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation with industry to leverage and transfer the efforts and results http://arc.engin.umich.edu/ #12;

  19. Weld penetration and defect control

    SciTech Connect (OSTI)

    Chin, B.A.

    1992-05-15T23:59:59.000Z

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  20. Method and apparatus for assessing weld quality

    DOE Patents [OSTI]

    Smartt, Herschel B. (Idaho Falls, ID); Kenney, Kevin L. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Carlson, Nancy M. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Taylor, Paul L. (Boise, ID); Reutzel, Edward W. (State College, PA)

    2001-01-01T23:59:59.000Z

    Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

  1. Repair welding of fusion reactor components. Final technical report

    SciTech Connect (OSTI)

    Chin, B.A.; Wang, C.A.

    1997-09-30T23:59:59.000Z

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  2. WELDING RESEARCH ~~--------------~~~ SUPPLEMENT TO THE WELDING JOURNAL, MAY 1990

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) WELDING RESEARCH ~~--------------~~~ SUPPLEMENT TO THE WELDING JOURNAL, MAY 1990 Sponsored by the American Welding Society and the Welding Research Council All papers published in the Welding Journal's Welding Research Supplement undergo Peer Review before publication for: 1) originality of the contribution

  3. Masatsu kakuhan setsugo "Friction Stir Welding Complete aspects of FSW" Japan Welding Society

    E-Print Network [OSTI]

    Cambridge, University of

    Masatsu kakuhan setsugo ­ "Friction Stir Welding ­ Complete aspects of FSW" Japan Welding Society years ago that the Friction Stir Welding (FSW) method was proposed by TWI. Because FSW is a solid state welding method, the peak temperature reached during FSW welding is lower than the traditional welding

  4. Method for welding chromium molybdenum steels

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1986-01-01T23:59:59.000Z

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  5. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15T23:59:59.000Z

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  6. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, Rodney L. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM); Grose, Stephen M. (Glenwood, WV)

    1997-01-01T23:59:59.000Z

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  7. The Magnetite Crisis in the Evolution of Arc-related Magmas and the Initial

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    and back-arc magma series is their association with ores of the rare, but economically important metals Au of these metals is not straightforward. For Au, one of the rarest metals on Earth, with a primitive mantle RESEARCH SCHOOL OF EARTH SCIENCES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA RECEIVED

  8. Application of Bayesian Neural Network for modeling and prediction of ferrite number in austenitic stainless steel welds

    E-Print Network [OSTI]

    Cambridge, University of

    . In duplex austenitic-ferritic stainless steel weld metals, a lower ferrite limit is specified for stress in austenitic stainless steel welds M. Vasudevan, M. Murugananth*, and A.K. Bhaduri Materials Joining Section the influence of compositional variations on ferrite content for the austenitic stainless steel base

  9. Shell Hoop Prestress Generated by Welding

    E-Print Network [OSTI]

    Meuser, R.B.

    2011-01-01T23:59:59.000Z

    can be generated by the welding process. The data are notagainst the yoke for welding. TEST SETUP Annealed Type 304in two passes using TIG welding. After strain measurements

  10. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect (OSTI)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15T23:59:59.000Z

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  11. Arc Position Sensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept ofY-12Arah SchuurArc

  12. Robotic weld overlay coatings for erosion control. Final technical progress report, July 1992--July 1995

    SciTech Connect (OSTI)

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1995-10-15T23:59:59.000Z

    The erosion behavior of weld overlay coatings has been studied. Eleven weld overlay alloys were deposited on 1018 steel substrates using the plasma arc welding process and erosion tested at 400{degrees}C at 90{degrees} and 30{degrees} particle impact angles. The microstructure of each coating was characterized before erosion testing. A relative ranking of the coatings erosion resistance was developed by determining the steady state erosion rates. Ultimet, Inconel-625, and 316L SS coatings showed the best erosion resistance at both impact angles. It was found that weld overlays that exhibit good abrasion resistance did not show good erosion resistance. Erosion tests were also performed for selected wrought materials with chemical composition similar to weld overlays. Eroded surfaces of the wrought and weld alloys were examined by Scanning Electron Microscopy (SEM). Microhardness tests were performed on the eroded samples below the erosion surface to determine size of the plastically deformed region. It was found that one group of coatings experienced significant plastic deformation as a result of erosion while the other did not. It was also established that, in the steady state erosion regime, the size of the plastically deformed region is constant.

  13. Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042

    SciTech Connect (OSTI)

    Robino, C.V.; Cieslak, M.J.

    1994-02-01T23:59:59.000Z

    This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.

  14. Cathodic Vacuum Arc Plasma of Thallium

    E-Print Network [OSTI]

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01T23:59:59.000Z

    P. J. Martin, Handbook of Vacuum Arc Science and Technology.charge state distributions of vacuum arc plasmas: The originand the broadening of vacuum-arc ion charge state

  15. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

  16. Joining Uranium to Aluminum using Electron Beam Welding and an Explosively Clad Niobium Interlayer

    SciTech Connect (OSTI)

    Elmer, J W; Terrill, P; Brasher, D; Butler, D

    2001-06-12T23:59:59.000Z

    A uranium alloy was joined to a high strength aluminum alloy using a commercially pure niobium interlayer. Joining of the Nb interlayer to the aluminum alloy was performed using an explosive welding process, while joining the Nb interlayer to the uranium alloy was performed using an electron beam welding process. Explosive welding was selected to bond the Nb to the aluminum alloy in order to minimize the formation of brittle intermetallic phases. Electron beam welding was selected to join the Nb to the uranium alloy in order to precisely control melting so as to minimize mixing of the two metals. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines. Optical microscopy, scanning electron microscopy, microhardness, and tensile testing of the welds were used to characterize the resulting joints. This paper presents the welding techniques and processing parameters that were developed to produce high integrity ductile joints between these materials.

  17. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01T23:59:59.000Z

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  18. Resistance Spot Welding of Galvanized Steel: Part II. Mechanisms of Spot Weld Nugget Formation

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ( l Resistance Spot Welding of Galvanized Steel: Part II. Mechanisms of Spot Weld Nugget Formation S. A. GEDEON and T. W. EAGAR Dynamic inspection monitoring of the weld current, voltage, resistance of material variations and weld process parameter modifications on resistance spot welding of coated

  19. Arc fault detection system

    DOE Patents [OSTI]

    Jha, Kamal N. (Bethel Park, PA)

    1999-01-01T23:59:59.000Z

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  20. Arc fault detection system

    DOE Patents [OSTI]

    Jha, K.N.

    1999-05-18T23:59:59.000Z

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  1. WELDING AND CUTTING 10.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 10-1 SECTION 10 WELDING AND CUTTING 10.A GENERAL 10.A.01 Welders, cutters, and their supervisor shall be trained in the safe operation of their equipment, safe welding/cutting practices, and welding/cutting respiratory and fire protection. > AIHA publication "Welding Health and Safety: A Field

  2. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    465.   Sapp ME.  A History of Welding: from Hepheastus to whistoryfolder/welding/index.html.   Saric M, Markicevic, be retrieved from American Welding Society publications. The

  3. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B., E-mail: stepanovib@tpu.ru; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A. [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)] [Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050 (Russian Federation)

    2014-02-15T23:59:59.000Z

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  4. Laser welding of fused quartz

    DOE Patents [OSTI]

    Piltch, Martin S.; Carpenter, Robert W.; Archer III, McIlwaine

    2003-06-10T23:59:59.000Z

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  5. Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method

    E-Print Network [OSTI]

    McHenry, Michael E.

    Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method E to generate carbon-coated transition metal (TM) and TM-carbide nanocrystallites. The magnetic nanocrystallites report here on the synthesis and separation of carbon-coated ferromagnetic transition metal (TM) and TM

  6. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect (OSTI)

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 (India)

    2012-07-01T23:59:59.000Z

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  7. Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin

    E-Print Network [OSTI]

    Craddock, Paul R

    2009-01-01T23:59:59.000Z

    Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back-arc basin ...

  8. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect (OSTI)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01T23:59:59.000Z

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  9. INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 15 (2004) 991999 PII: S0957-0233(04)74770-0

    E-Print Network [OSTI]

    Zhang, YuMing

    2004-01-01T23:59:59.000Z

    for accurate control of heat input. As a close relative and modification of GTAW, plasma arc welding (PAW) has, penetration 1. Introduction Gas tungsten arc welding (GTAW) is the primary process for precision joining of metals due to its capability for accurate control of heat input. Although plasma arc welding (PAW

  10. The role of electroplated coatings in metal joining

    SciTech Connect (OSTI)

    Dini, J.W. [Lawrence Livermore National Lab., CA (United States)

    1996-05-01T23:59:59.000Z

    Electroplated and electroless coatings often play an important role in soldering, brazing, and welding operations. Thin deposits applied to critical surfaces before the joining operations can provide the difference between success and failure. Diffusion welding applications sometimes require coatings to help promote joining. For some applications, electroplating by itself can be used to join metals that cannot be welded or brazed because of metallurgical incompatibility. The use of electroplated coatings for these various joining applications is reviewed here.

  11. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    less hazardous compared to MIG welding, these areas as wellareas where high concentrations occurred; 3) although resistance welding is considered less hazardoushazardous welding operations such as resistance welding should also be effectively controlled. Those who work in areas

  12. Dynamic Characterization of Spot Welds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, and fail more often under impact? - What are the roles of alloy composition and welding parameters in the change in failure mode? - What would it take to have crash model...

  13. Plasma arc melting of titanium-tantalum alloys

    SciTech Connect (OSTI)

    Dunn, P.; Patterson, R.A. [Los Alamos National Lab., NM (United States); Haun, R. [Retech, Inc., Ukiah, CA (United States)

    1994-08-01T23:59:59.000Z

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys.

  14. Inspection of Nickel Alloy Welds: Results from Five Year International Program

    SciTech Connect (OSTI)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

    2011-06-23T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

  15. The application of the fusion method of thermit welding to small diameter tubing: An analysis of mold design and powder quantity.

    E-Print Network [OSTI]

    Eller, Frank Charles

    1972-01-01T23:59:59.000Z

    of thermit welding to the joining of small diameter steel tubing. This research was done in cooperation with Thomas M. Glynn (7), who investigated another basic aspect of this problem, Thermit welding is one of the oldest welding processes. It makes use... in the joining of ferrous metals of large cross sectional area, usually castings or f'orgings in the railroad and shipping industries. During this period, thermit welding was also applied to the joining of pipe by a process called the plastic method. This iv...

  16. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    SciTech Connect (OSTI)

    Mousavi, S. A. A. Akbari; Zareie, H. R. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-01-17T23:59:59.000Z

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  17. Application of Taguchi method in Nd-YAG laser welding of super duplex stainless steel

    SciTech Connect (OSTI)

    Yip, W.M.; Man, H.C.; Ip, W.H. [Hong Kong Polytechnic Univ., Kowloon (Hong Kong)

    1996-12-31T23:59:59.000Z

    This investigation is aimed at achieving a near 50-50 % ferrite-austenite ratio of laser welded super duplex stainless steel, UNS S 32760 (Zeron 100). Bead-on-plate welding has been carried out using a 2 kW Nd-YAG laser with 3 different kinds of wave form, Continuous, Sine and Square wave. The weld metals were examined with respect to the phase volume contents by X-ray diffraction. Laser welding involved a large number of variables, interaction and levels of variables. Taguchi Method was selected and used to reduce the number of experimental conditions and to identify the dominant factors. The optimum combinations of controllable factors were found from each set of wave form. The optimum 40-60% ferrite-austenite ratio were realized on some of the combination parameter groups after using the Parameter Design method.

  18. High pressure neon arc lamp

    DOE Patents [OSTI]

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15T23:59:59.000Z

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  19. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect (OSTI)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15T23:59:59.000Z

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  20. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14T23:59:59.000Z

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  1. This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the

    E-Print Network [OSTI]

    Zhang, YuMing

    of temperature profile in DE-GMAW, the weld dimension at cross section and temperature distribution are obtained of double-electrode gas metal arc welding process C.S. Wu a,*, M.X. Zhang a , K.H. Li b , Y.M. Zhang b metal arc welding), a finite element analysis (FEA) model is developed to numerically analyze this novel

  2. Waste Heat Recovery – Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  3. Pre-resistance-welding resistance check

    DOE Patents [OSTI]

    Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  4. Phase transformations in welded supermartensitic stainless steels

    E-Print Network [OSTI]

    Carrouge, Dominique

    - ferrite phase, and the development of a model to facilitate the choice of a suitable post-weld heat-treatment temperature. The microstructural examination of a variety of welds revealed the presence of retained ?-ferrite in dual-phase and grain... -coarsened HAZ regions. Under normal welding conditions, ?-ferrite retention was more pronounced in dual-phase HAZ and in molybdenum containing alloys. However, in multipass welds, ?-ferrite distribution was non-uniform as a result of reheating effects. A number...

  5. Ferrite determination in stainless steel welds -- Advances since 1974

    SciTech Connect (OSTI)

    Kotecki, D.J. [Lincoln Electric Co., Cleveland, OH (United States)

    1997-01-01T23:59:59.000Z

    Examination of MagneGage Number 3 Magnet strengths led to a concept for extending, by extrapolation, the calibration range of AWS A4.2-7.4 to ferrite levels above 28 FN. Ferrite Numbers could then be assigned to thinner coating thickness standards for primary calibration of MagneGages over the extended range. Calibration using primary standards is limited to a very few instruments, due to the difference in distribution of ferromagnetic material in coating thickness standards vs that in stainless steel weld metal. secondary standards, covering the range from near zero to about 100 FN, became available for calibrating additional instruments at the beginning of 1995. A round robin of tests established that the interlaboratory reproducibility of measurement after calibration by the secondary standards is similar to that observed with MagneGages calibrated by use of primary standards. Excessive ferrite in duplex stainless steel weld metals has adverse effects on weld properties. The utility of the Ferrite Number measurement system for duplex stainless steels is thus established. Development of a solid link between Ferrite Number and ferrite percent, determination of ferrite in the heat-affected zone (HAZ) of duplex stainless steel weldments, and further development of predicting diagrams remain for the future.

  6. Laser Welding of Aluminum and Aluminum Alloys

    E-Print Network [OSTI]

    Eagar, Thomas W.

    .. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies, many aluminum alloys contain magnesium or zinc, which are easily vaporized and thereby form a plasma

  7. Selection of Processes for Welding Steel Rails

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ...._ _) Selection of Processes for Welding Steel Rails by N.S. Tsai* and T.W. Eagar* ABSTRACT 421 The advantages and limitations ofseveral conventional and prospective rail welding processes are reviewed with emphasis on the heat input rate, on joint preparation, on post weld grinding and on resultant metallurgical

  8. TRANSIENT THERMAL BEHAVIOR IN RESISTANCE SPOT WELDING

    E-Print Network [OSTI]

    Eagar, Thomas W.

    temperature response during resistance spot welding was measured and discussed with various process parameters that the measurement of temperature profiles developed during the welding process is very important in this respect composition on galvanized steel, the temperature distribution during welding was monitored in a one

  9. Energy Sources Used for Fusion Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology reliability. The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding proc- esses. The purpose of this Section of the Volume is to discuss

  10. Contamination and solid state welds.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-05-01T23:59:59.000Z

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  11. Melting efficiency in fusion welding

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    1991-01-01T23:59:59.000Z

    Basic to our knowledge of the science of welding is an understanding of the melting efficiency, which indicates how much of the heat deposited by the welding process is used to produce melting. Recent calorimetric studies of GTAW, PAW, and LBW processes have measured the net heat input to the part thereby quantifying the energy transfer efficiency and in turn permitting an accurate determination of the melting efficiency. It is indicated that the weld process variables can dramatically affect the melting efficiency. This limiting value is shown to depend on the weld heat flow geometry as predicted by analytical solutions to the heat flow equation and as demonstrated by the recent empirical data. A new dimensionless parameter is used to predict the melting efficiency and is shown to correlate extremely well with recent empirical data. This simple prediction methodology is notable because it requires only a knowledge of the weld schedule and the material properties in order to estimate melting efficiency. 22 refs., 16 figs.

  12. Laboratory experiments on arc deflection and instability

    SciTech Connect (OSTI)

    Zweben, S.; Karasik, M.

    2000-03-21T23:59:59.000Z

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  13. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect (OSTI)

    Brown, Ian; Oks, Efim

    2005-05-01T23:59:59.000Z

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  14. Intraluminal tissue welding for anastomosis

    DOE Patents [OSTI]

    Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Zimmerman, George (Lafayette, CA); Jacques, Steven (Portland, OR)

    1998-10-27T23:59:59.000Z

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

  15. Intraluminal tissue welding for anastomosis

    DOE Patents [OSTI]

    Glinsky, M.; London, R.; Zimmerman, G.; Jacques, S.

    1998-10-27T23:59:59.000Z

    A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or ``welded`` using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage. 8 figs.

  16. Optical penetration sensor for pulsed laser welding

    DOE Patents [OSTI]

    Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  17. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect (OSTI)

    Anders, Andre

    2011-12-18T23:59:59.000Z

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  18. Volatilization and redox testing in a DC arc melter: FY-93 and FY-94

    SciTech Connect (OSTI)

    Grandy, J.D.; Sears, J.W.; Soelberg, N.R.; Reimann, G.A.; McIlwain, M.E.

    1996-07-01T23:59:59.000Z

    The purpose of these experiments was to study the dissolution, retention, volatilization, and trapping of transuranic radionuclide elements (TRUs), mixed fission and activation products, and high vapor pressure metals (HVPMS) during processing in a high temperature arc furnace. In all cases, surrogate elements (lanthanides) were used in place of radioactive ones. The experiments were conducted utilizing a small DC arc melter developed at the Idaho National Engineering Laboratory (INEL) Research Center (IRC). The small arc melter was originally developed in 1992 and has been used previously for waste form studies of iron enriched basalt (IEB) and IEB with zirconium and titanium additions (IEB4). Section 3 contains a description of the small arc melter and its operational capabilities are discussed in Chapter 4. The remainder of the document describes each testing program and then discusses results and findings.

  19. Shimmed electron beam welding process

    DOE Patents [OSTI]

    Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

    2002-01-01T23:59:59.000Z

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  20. Weld penetration and defect control. Final report

    SciTech Connect (OSTI)

    Chin, B.A.

    1992-05-15T23:59:59.000Z

    Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

  1. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01T23:59:59.000Z

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  2. Random Curves by Conformal Welding

    E-Print Network [OSTI]

    K. Astala; P. Jones; A. Kupiainen; E. Saksman

    2009-12-17T23:59:59.000Z

    We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to SLE$(\\kappa)$ for $\\kappa<4$.

  3. Random Curves by Conformal Welding

    E-Print Network [OSTI]

    Astala, K; Kupiainen, A; Saksman, E

    2009-01-01T23:59:59.000Z

    We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to SLE$(\\kappa)$ for $\\kappa<4$.

  4. Filters for cathodic arc plasmas

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  5. Effect of Welding Speed and Defocusing Distance on the Quality of Laser Welded Ti-6Al-4V

    E-Print Network [OSTI]

    Medraj, Mamoun

    Effect of Welding Speed and Defocusing Distance on the Quality of Laser Welded Ti-6Al-4V A:YAG laser, Laser welding, Ti-6Al-4V alloy Abstract In this study, the weldability of 5.1-mm thick Ti-6Al-4V at various welding speeds and defocusing distances. The joint quality was characterized in terms of weld

  6. Stability measurements of PPL atmospheric pressure arc

    SciTech Connect (OSTI)

    Roquemore, L.; Zweben, S.J. [Princeton Plasma Physics Lab., NJ (United States); Wurden, G.A. [Los Alamos National Lab., NM (United States)

    1997-12-31T23:59:59.000Z

    Experiments on the stability of atmospheric pressure arcs have been started at PPL to understand and improve the performance of arc furnaces used for processing applications in metallurgy and hazardous waste treatment. Previous studies have suggested that the violent instabilities in such arcs may be due to kink modes. A 30 kW, 500 Amp CW DC experimental arc furnace was constructed with a graphite cathode and a molten steel anode. The arc plasma is diagnosed with 4000 frames/sec digital camera, Hall probes, and voltage and current monitors. Under certain conditions, the arc exhibits an intermittent helical instability, with the helix rotating at {approx}600 Hz. The nature of the instability is investigated. A possible instability mechanism is the self-magnetic field of the arc, with saturation occurring due to inhomogeneous heating in a helical arc. The effect of external DC and AC magnetic fields on the instability is investigated. Additionally, arc deflection due to external transverse magnetic field is investigated. The deflection angle is found to be proportional to the applied field, and is in good agreement with a simple model of the {rvec J} x {rvec b} force on the arc jet.

  7. ARC-ED Curriculum: The Application of Video Game Formats to Educational Software

    E-Print Network [OSTI]

    Chaffin, Jerry D.; Maxwell, Bill; Thompson, Barbara

    1982-01-01T23:59:59.000Z

    educational practices are examined in relation to the motivational features of arcade games. Also, guidelines for educational curriculum based on arcade game formats are proposed and the term Arc-Ed Curriculum is offered to describe such software. The content...

  8. Method and device for frictional welding

    DOE Patents [OSTI]

    Peacock, H.B.

    1992-10-13T23:59:59.000Z

    A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

  9. Method and device for frictional welding

    DOE Patents [OSTI]

    Peacock, Harold B. (867 N. Belair Rd., Evans, GA 30809)

    1992-01-01T23:59:59.000Z

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

  10. Passively damped vibration welding system and method

    DOE Patents [OSTI]

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02T23:59:59.000Z

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  11. Method and device for frictional welding

    DOE Patents [OSTI]

    Peacock, H.B.

    1991-01-01T23:59:59.000Z

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

  12. Linkage of the ArcHydro Data Model with SWAT

    E-Print Network [OSTI]

    Linkage of the ArcHydro Data Model with SWAT Francisco Olivera, Ph.D., P.E. Milver Valenzuela Texas on a hub basis. Independent of the already connected models HUB #12;Arc Hydro Arc Hydro can be used as the hub for connecting hydrologic models. #12;Arc Hydro #12;What it is and what it is not ... Arc Hydro

  13. Development of a comprehensive weld process model

    SciTech Connect (OSTI)

    Radhakrishnan, B.; Zacharia, T.; Paul, A.

    1997-05-01T23:59:59.000Z

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.

  14. Recycling of electric-arc-furnace dust

    SciTech Connect (OSTI)

    Sresty, G.C.

    1990-05-01T23:59:59.000Z

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  15. Chemical composition and RT[sub NDT] determinations for Midland weld WF-70

    SciTech Connect (OSTI)

    Nanstad, R.K.; McCabe, D.E.; Swain, R.L.; Miller, M.K. (Oak Ridge National Lab., TN (United States))

    1992-12-01T23:59:59.000Z

    The Heavy-Section Steal Irradiation Program Tenth Irradiation Series has the objective to investigate the affects of radiation on the fracture toughness of the low-upper-shelf submerged-arc welds (B W designation WF-70) in the reactor pressure vessel of the canceled Midland Unit 1 nuclear plant. This report discusses determination of variations in chemical composition And reference temperature (RT[sub NDT]) throughout the welds. Specimens were machined from different sections and through thickness locations in both the beltline and nozzle course welds. The nil-ductility transition temperatures ranged from [minus]40 to [minus]60[degrees]C ([minus]40 and [minus]76[degrees]F) while the RT[sub NDT]S, controlled by the Charpy behavior, varied from [minus]20 to 37[degrees]C ([minus]4 to 99[degrees]F). The upper-shelf energies varied from 77 to 108 J (57 to 80 ft-lb). The combined data revealed a mean 41-J (30-ft-lb) temperature of [minus]8[degrees]C (17[degrees]F) with a mean upper-shelf energy of 88 J (65 ft-lb). The copper contents range from 0.21 to 0.34 wt % in the beltline weld and from 0.37 to 0.46 wt % in the nozzle course weld. Atom probe field ion microscope analyses indicated substantial depletion of copper in the matrix but no evidence of copper clustering. Statistical analyses of the Charpy and chemical composition results as well as interpretation of the ASME procedures for RT[sub NDT] determination are discussed.

  16. Promising Inspection Technique for Vehicle Welding Offers Efficient...

    Office of Environmental Management (EM)

    Promising Inspection Technique for Vehicle Welding Offers Efficient Alternative Promising Inspection Technique for Vehicle Welding Offers Efficient Alternative April 22, 2015 -...

  17. THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS

    E-Print Network [OSTI]

    Cambridge, University of

    THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS by Naseem Issa Abdallah Haddad;The Development of Microstructure in Duplex Stainless Steel Welds Abstract Duplex stainless steels

  18. Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and

    E-Print Network [OSTI]

    Sengupta, Raja

    Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and MODPATH Abstract Modeling. This paper addresses groundwater modeling which is one of the many entities in environmental modeling in ArcView 3.2a. The objective was to create an integrated system where a user could do groundwater

  19. Welding the AT-400A Containment Vessel

    SciTech Connect (OSTI)

    Brandon, E.

    1998-11-01T23:59:59.000Z

    Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

  20. Lienert named American Welding Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and industry with great distinction as an individual who contributed significantly to the knowledge, science, and application of welding," the society said in a statement. Research...

  1. Welding shield for coupling heaters

    DOE Patents [OSTI]

    Menotti, James Louis (Dickinson, TX)

    2010-03-09T23:59:59.000Z

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  2. Modelling of friction stir welding

    E-Print Network [OSTI]

    Colegrove, Paul Andrew

    is influenced by the fractUling of the tungsten wire. Finally, Nowak et al. 85 examined the flow during the FSW of polycarbonate and found similar flow fields to those observed in aluminium. Because of polycarbonate's different properties it was necessary... is conducted into the tool and welded material, and is then convected from the top surface or conducted into the backing plate. Both analytical and numerical models have been used to describe this heat flow. The following section describes thermal modelling...

  3. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01T23:59:59.000Z

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  4. Polymer Welding: Strength Through Entanglements

    E-Print Network [OSTI]

    Ting Ge; Flint Pierce; Dvora Perahia; Gary S. Grest; Mark O. Robbins

    2012-11-29T23:59:59.000Z

    Large-scale simulations of thermal welding of polymers are performed to investigate the rise of mechanical strength at the polymer-polymer interface with the welding time. The welding process is in the core of integrating polymeric elements into devices as well as in thermal induced healing of polymers; processes that require development of interfacial strength equal to that of the bulk. Our simulations show that the interfacial strength saturates at the bulk shear strength much before polymers diffuse by their radius of gyration. Along with the strength increase, the dominant failure mode changes from chain pullout at the interface to chain scission as in the bulk. Formation of sufficient entanglements across the interface, which we track using a Primitive Path Analysis is required to arrest catastrophic chain pullout at the interface. The bulk response is not fully recovered until the density of entanglements at the interface reaches the bulk value. Moreover, the increase of interfacial strength before saturation is proportional to the number of interfacial entanglements between chains from opposite sides.

  5. Development of a Comprehensive Weld Process Model

    SciTech Connect (OSTI)

    Radhakrishnan, B.; Zacharia, T.

    1997-05-01T23:59:59.000Z

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at ORNL. The timing results illustrate the potential of the modified computer model for the analysis of large-scale welding simulations. 2. The kinetics of grain structure evolution in the weld heat affected zone (HAZ) has been simulated with reasonable accuracy by coupling an improved MC grain growth algorithm with a methodology for converting the MC parameters of grain size and time to real parameters. The simulations effectively captured the thermal pinning phenomenon that has been reported in the weld HAZ. 3. A cellular automaton (CA) code has been developed to simulate the solidification microstructure in the weld fusion zone. The simulations effectively captured the epitaxial growth of the HAZ grains, the grain selection mechanism, and the formation of typical grain structures observed in the weld t%sion zone. 4. The point heat source used in the LMES welding code has ben replaced with a distributed heat source to better capture the thermal characteristics and energy distributions in a commercial welding heat source. 5. Coupled thermal-mechanical and metallurgical models have been developed to accurately predict the weld residual stresses, and 6. Attempts have been made to integrate the newly developed computational capabilities into a comprehensive weld design tool.

  6. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17T23:59:59.000Z

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep after 50-60% of the rupture life, irrespective of test temperature in the range of 750-950 C. The results showed that the stress dependence of the creep rate followed a power law for both base alloy and weldments. The data also showed that the stress exponent for creep is the same and one can infer that the same mechanism is operative in both base metal and weldments in the temperature range of the current study. SEM fractography analysis indicated that both base metal and weldment showed combined fracture modes consisting of dimple rupture and intergranular cracking. Intergranular cracking was more evident in the weldment specimens, which is consistent with the observation of lower creep ductility in the weldment than in the base metal.

  7. Multi-mode ultrasonic welding control and optimization

    DOE Patents [OSTI]

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28T23:59:59.000Z

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  8. SmartWeld working session for the GTS4

    SciTech Connect (OSTI)

    Kleban, S. [Sandia National Labs., Albuquerque, NM (United States); Hicken, K.; Ng, R. [Sandia National Labs., Livermore, CA (United States); Fricke, B. [Allied Signal Kansas City Division, MO (United States)

    1997-08-01T23:59:59.000Z

    Results from SmartWeld`s first working session involving in-progress designs is presented. The Welding Advisor component of SmartWeld was thoroughly exercised, evaluated all eleven welds of the selected part. The Welding Advisor is an expert system implemented with object-oriented techniques for knowledge representation. With two welding engineers in attendance, the recommendations of the Welding Advisor were thoroughly examined and critiqued for accuracy and for areas of improvement throughout the working session. The Weld Schedule Database component of SmartWeld was also exercised. It is a historical archive of proven, successful weld schedules that can be intelligently searched using the current context of SmartWeld`s problem solving state. On all eleven welds, the experts agreed that Welding Advisor recommended the most risk free options. As a result of the Advisor`s recommendation, six welds agreed completely with the experts, two welds had their joint geometry modified for production, and three welds were not modified but extra care was exercised during welding. 25 figs., 3 tabs.

  9. Purification of tantalum by plasma arc melting

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  10. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  11. antilles island arc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The morphology of the underthrust oceanic crust controls the mag matic activity of the island arc, and particularly the development, in space and time, of "arc compartments." Denis...

  12. Type B Accident Investigation of the Arc Flash at Brookhaven...

    Broader source: Energy.gov (indexed) [DOE]

    Arc Flash at Brookhaven National Laboratory, April 14, 2006 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 February 10, 2006 An...

  13. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01T23:59:59.000Z

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  14. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1987-11-17T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  15. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  16. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1985-08-05T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  17. Effect of Scratches on Pinch Welds

    SciTech Connect (OSTI)

    Korinko, P

    2005-10-11T23:59:59.000Z

    Fill stems for tritium reservoirs have stringent scratch requirements such that any indications that appear to have depth are cause for rework or rejection. A scoping study was undertaken to evaluate the effect of scratches approximately 0.0015 to 0.002 inch deep on the fitness for service and bond quality. The stems were characterized using borescope before and after welding. The four stems were welded with near optimal weld parameters, proof tested, and examined metallographically. The stems were radiographed, proof tested, and examined metallographically. The scratches did not adversely affect (1) the weld integrity based on radiography, (2) the ability to withstand the proof pressure, and (3) the weld quality based on metallographic cross-sections. Based on these limited results at a nominal weld current, the weld process is very robust. It may be able to recover from manufacturing defects and inspection anomalies worse than those expected for typical fill stem manufacturing processes; additional testing specific to each application over a range of weld heats is needed to verify applicability of these results.

  18. Thermochemical Analysis of Hydrogen Absorption in Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    '' .' j I ~l Thermochemical Analysis of Hydrogen Absorption in Welding A new model that addresses the shortcomings of Sievert's law for predicting hydrogen absorption is proposed ABSTRACT. A systematic review of diatomic hydrogen) to calcu· late the hydrogen absorption reaction temperature in the weld pool is invalid

  19. Manual tube-to-tubesheet welding torch

    DOE Patents [OSTI]

    Kiefer, Joseph H. (Tampa, FL); Smith, Danny J. (Tampa, FL)

    1982-01-01T23:59:59.000Z

    A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.

  20. Design of Welding Alloys Creep and Toughness

    E-Print Network [OSTI]

    Marimuthu, Murugananth

    The subject of welding is challenging because of its complexity and because its applications are in the majority of cases, safety critical. The work presented in this thesis deals with both these aspects from the point of view of welding alloys...

  1. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect (OSTI)

    Chen, Jian [ORNL] [ORNL; Zhang, Wei [ORNL] [ORNL; Yu, Zhenzhen [ORNL] [ORNL; Feng, Zhili [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  2. Subaqueous Explosive Eruption and Welding of Pyroclastic Deposits

    E-Print Network [OSTI]

    Busby, Cathy

    Subaqueous Explosive Eruption and Welding of Pyroclastic Deposits Peter Kokelaar and Cathy Busby fabrics indicative of welding of glass shards and pumice at temperatures >500"C. The occurrence emplacement temperature in pyroclas- tic deposits is welding. Welding is hot-state viscous deformation

  3. Optical Inspection of Welding Seams Fabian Timm1,2

    E-Print Network [OSTI]

    Optical Inspection of Welding Seams Fabian Timm1,2 , Thomas Martinetz1 , and Erhardt Barth1,2 1 present a framework for automatic inspection of welding seams based on specular reflections. To this end by using welding techniques. Soldering and welding techniques are common in diverse areas such as printed

  4. Theoretical analysis of ARC constriction

    SciTech Connect (OSTI)

    Stoenescu, M.L.; Brooks, A.W.; Smith, T.M.

    1980-12-01T23:59:59.000Z

    The physics of the thermionic converter is governed by strong electrode-plasma interactions (emissions surface scattering, charge exchange) and weak interactions (diffusion, radiation) at the maximum interelectrode plasma radius. The physical processes are thus mostly convective in thin sheaths in front of the electrodes and mostly diffusive and radiative in the plasma bulk. The physical boundaries are open boundaries to particle transfer (electrons emitted or absorbed by the electrodes, all particles diffusing through some maximum plasma radius) and to convective, conductive and radiative heat transfer. In a first approximation the thermionic converter may be described by a one-dimensional classical transport theory. The two-dimensional effects may be significant as a result of the sheath sensitivity to radial plasma variations and of the strong sheath-plasma coupling. The current-voltage characteristic of the converter is thus the result of an integrated current density over the collector area for which the boundary conditions at each r determine the regime (ignited/unignited) of the local current density. A current redistribution strongly weighted at small radii (arc constriction) limits the converter performance and opens questions on constriction reduction possibilities. The questions addressed are the followng: (1) what are the main contributors to the loss of current at high voltage in the thermionic converter; and (2) is arc constriction observable theoretically and what are the conditions of its occurrence. The resulting theoretical problem is formulated and results are given. The converter electrical current is estimated directly from the electron and ion particle fluxes based on the spatial distribution of the electron/ion density n, temperatures T/sub e/, T/sub i/, electrical voltage V and on the knowledge of the transport coefficients. (WHK)

  5. Deformation Behavior of Laser Welds in High Temperature Oxidation Resistant Fe-Cr-Al Alloys for Fuel Cladding Applications

    SciTech Connect (OSTI)

    Field, Kevin G [ORNL; Gussev, Maxim N [ORNL; Yamamoto, Yukinori [ORNL; Snead, Lance Lewis [ORNL

    2014-01-01T23:59:59.000Z

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al in weight percent with a minor addition of yttrium using laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds has been carried out to determine the performance of welds as a function of alloy composition. Laser welding resulted in a defect free weld devoid of cracking or inclusions for all alloys studied. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. No significant correlation was found between the deformation behavior/mechanical performance of welds and the level of Cr or Al in the alloy ranges studied.

  6. The B and W Owners Group program for microstructural characterization and radiation embrittlement modelling of Linde 80 reactor vessel welds

    SciTech Connect (OSTI)

    Pavinich, W.A. [Grove Engineering, Knoxville, TN (United States); Harbison, L.S. [B and W Nuclear Technologies, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    The Babcock and Wilcox Owners Group (B and WOG) is embrittlement of Linde 80 reactor vessel welds from a micro-mechanical viewpoint. Previous work that focused on characterizing the large microstructural features indicated that a large portion of the bulk copper content is in precipitate/inclusion/carbide form. This result indicates that copper in solid solution is considerably less than the bulk composition. Field-ion microscope atom probe investigations on unirradiated weld metals with bulk copper contents ranging from 0.22 to 0.38 wt%, also indicate significant amount of copper are tied up in precipitate/inclusion/carbide form. This results is significant since the bulk copper content (which includes both copper in solid solution and copper contained in precipitates, inclusions, and carbides) is used in Regulatory Guide 1.99, Revision 2 to determine radiation damage. This paper reviews these results. Existing radiation embrittlement models superpose the changes in yield strength due to defect clusters and copper-rich precipitates induced by neutron irradiation. Low-copper Linde 80 welds display little or no increase in the 41 joule (30 ft-lb) transition temperature as a result of neutron irradiation which indicates that precipitation is the dominant component of radiation embrittlement for Linde 80 welds. Future work will include further microstructural characterizations of Linde 80 reactor vessel welds and applying the existing radiation embrittlement models to Linde 80 welds. This paper describes the detailed plans for future work.

  7. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect (OSTI)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30T23:59:59.000Z

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  8. Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds

    SciTech Connect (OSTI)

    Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

    1995-12-31T23:59:59.000Z

    Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

  9. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia

    2012-05-01T23:59:59.000Z

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  10. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    SciTech Connect (OSTI)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01T23:59:59.000Z

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 °C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

  11. Influence of welding passes on grain orientation -the example of a multi-pass V-weld.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of welding passes on grain orientation - the example of a multi-pass V-weld. Jing YE;Abstract The accurate modelling of grain orientations in a weld is important, when accurate ultrasonic test predictions of a welded assembly are needed. To achieve this objective, Electricité de France (EDF

  12. An Application of Augmented Reality (AR) in the Teaching of an Arc Welding Robot

    E-Print Network [OSTI]

    Chong, J. W. S.

    Augmented Reality (AR) is an emerging technology that utilizes computer vision methods to overlay virtual objects onto the real world scene so as to make them appear to co-exist with the real objects. Its main objective ...

  13. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect (OSTI)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15T23:59:59.000Z

    Zirconium nitride (ZrN) coatings were deposited on 1??m finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5??m with hardness in the range of 30–40?GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  14. Scan welding: Thermomechanical model and experimental validation

    SciTech Connect (OSTI)

    Fourligkas, N.; Doumanidis, C.C. [Tufts Univ., Medford, MA (United States)

    1996-12-31T23:59:59.000Z

    This article presents a comparative thermomechanical analysis of classical versus the new scan welding methods, that have been recently developed to achieve simultaneous control of multiple weld quality features. Unlike conventional welding with a concentrated heat source in sequential motion, the scan welding torch reciprocates rapidly on dynamic trajectories, and its power is modulated in-process, to provide a regulated heat input distribution on the entire weld surface. The new process was modeled by a real-time analytical, lumped model, consisting of a composite heat source description, double-cell circulation in the weld puddle, dynamic solid conduction and estimation of the mechanical strength of the joint. The process is computationally and experimentally shown to generate a smooth and uniform temperature field, and to deposit the full length of the weld bead simultaneously at a controlled solidification rate. The observed interlacing of grains on the bead interface and the regulated material microstructure yield improved tensile joint strength. The model can be used for design of a closed-loop thermal controller, using temperature feedback from an infrared pyrometer and model-referenced parameter identification.

  15. Arc distribution during the vacuum arc remelting of Ti-6Al-4V

    SciTech Connect (OSTI)

    Woodside, Charles Rigel [U.S. DOE; King, Paul E. [U.S. DOE; Nordlund, Chris [ATI Albany Operations

    2013-01-01T23:59:59.000Z

    Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot–Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall.

  16. Detection of arcs in automotive electrical systems

    E-Print Network [OSTI]

    Mishrikey, Matthew David

    2005-01-01T23:59:59.000Z

    At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

  17. The arc cloud complex: a case study

    E-Print Network [OSTI]

    Miller, Robert Loren

    1984-01-01T23:59:59.000Z

    THE ARC CLOUD COMPLEX: A CASE STUDY A Thesis by ROBERT LOREN MILLER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1984 Major Subject...: Meteorology THE ARC CLOUD COMPLEX; A CASE STUDY A Thesis by ROBERT LOREN MILLER Approved as to style and content by: Kenneth C. Brundidge (Chairman of Committee) Walter K. Henry (Member) Marshall ~ Mcparland (Member) James R. Scog s (Head...

  18. Prediction of Welding Distortion Panagiotis Michaleris and Andrew DeBiccari

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    1 Prediction of Welding Distortion Panagiotis Michaleris and Andrew DeBiccari Edison Welding Institute Columbus, Ohio ABSTRACT. This paper presents a numerical analysis technique for predicting welding induced distortion. The technique combines two dimensional welding simulations with three dimensional

  19. Ion source with improved primary arc collimation

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  20. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect (OSTI)

    Cao, Guoping; Yang, Yong

    2013-12-19T23:59:59.000Z

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-matallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved, 1) To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug. 2) investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys. 3) Simulate the irradiation effects on the PWM weldments using ion irradiation.

  1. Method and apparatus for real time weld monitoring

    DOE Patents [OSTI]

    Leong, Keng H. (Lemont, IL); Hunter, Boyd V. (Bolingbrook, IL)

    1997-01-01T23:59:59.000Z

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  2. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18T23:59:59.000Z

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  3. Waste form development for a DC arc furnace

    SciTech Connect (OSTI)

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01T23:59:59.000Z

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  4. COMPARISON OF AIR AND DEUTERIUM ON PINCH WELD BOND APPEARANCE

    SciTech Connect (OSTI)

    Korinko, P

    2005-10-11T23:59:59.000Z

    The effect that air and deuterium internal atmospheres have on the pinch weld bond quality was evaluated by conducting a scoping study using type 304L stainless steel LF-7 test stems that were fabricated for an associated study. Welds were made under cool, yet nominal conditions to exacerbate the influence of the atmosphere. The bond quality of the welds was directly related to the internal atmosphere with the air atmosphere welds being of lower quality than the deuterium atmosphere welds for nominally identical welding conditions.

  5. Low Distortion Welded Joints for NCSX

    SciTech Connect (OSTI)

    M. Denault, M Viola, W. England

    2009-02-19T23:59:59.000Z

    The National Compact Stellarator Experiment (NCSX) required precise positioning of the field coils in order to generate suitable magnetic fields. A set of three modular field coils were assembled to form the Half Field-Period Assemblies (HPA). Final assembly of the HPA required a welded shear plate to join individual coils in the nose region due to the geometric limitations and the strength constraints. Each of the modular coil windings was wound on a stainless steel alloy (Stellalloy) casting. The alloy is similar to austenitic 316 stainless steel. During the initial welding trials, severe distortion, of approximately 1/16", was observed in the joint caused by weld shrinkage. The distortion was well outside the requirements of the design. Solutions were attempted through several simultaneous routes. The joint design was modified, welding processes were changed, and specialized heat reduction techniques were utilized. A final joint design was selected to reduce the amount of weld material needed to be deposited, while maintaining adequate penetration and strength. Several welding processes and techniques using Miller Axcess equipment were utilized that significantly reduced heat input. The final assembly of the HPA was successful. Distortion was controlled to 0.012", well within the acceptable design tolerance range of 0.020" over a 3.5 foot length.

  6. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  7. Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation

    DOE Patents [OSTI]

    Trent, J.B.; Murphy, J.L.

    1980-01-03T23:59:59.000Z

    The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  8. Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation

    DOE Patents [OSTI]

    Trent, Jett B. (Knoxville, TN); Murphy, Jimmy L. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  9. Ion source with improved primary arc collimation

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1983-12-16T23:59:59.000Z

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  10. CUTTING -WELDING -HOT WORKS REQUIRED NOTIFICATION TO CUFD

    E-Print Network [OSTI]

    Stuart, Steven J.

    CUTTING - WELDING - HOT WORKS REQUIRED NOTIFICATION TO CUFD Instructions: Fill out this form in its Time for work: Description of Work: Brazing Roofing Sweating WeldingSolderingCutting Other

  11. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Energy Savers [EERE]

    Stir Spot Welding of Advanced High Strength Steels (AHSS) Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) Presentation from the U.S. DOE Office of Vehicle...

  12. Modelling of Mechanical Properties of Ferritic Weld Metals

    E-Print Network [OSTI]

    Lalam, Sree Harsha

    2000-12-05T23:59:59.000Z

    #6;K\\H^]_Q`LWN#19;BZKaHZKMb`L#19;KMKcQ`]edcQgfhN#6;Q`LiQ`]kjWBIDGlGQTF#6;Q`mEBon#4;OPNpN#19;BZKcqaSIDRr`KMLJFJDRNsn Q`]#17;tiO`[#17;YILJDGHIb`K`u#15;ACBZKvL#19;K\\F#6;K\\OPLJfwB#8;HIK\\F#19;fhLJDRYxK\\HyBZKMLJK\\DGSyziO`F{fhQTSIHIXIfhN#6;K\\H#8;XISIHZKML... |N#19;BZKvFJXZmxKML#19;r}DVF#19;DRQTS~Q`] j#21;LJQ`]K\\F#19;F#19;Q`LC?uI?^uId#4;uI?#17;uI?iBIO`HZK\\F#19;BIDVO#4;DVS|N#19;BIK?dcKMm OPL#19;N#19;[^K\\SoNCQ`]#23;?vOPN#6;KMLJDGO`lGFa?gfMDRK\\SIfhK3O`SIH&?=KMN#19;O`lGlGXZLJb`n`? qaSIDRr`KMLJF#19;DGNsn?Q`]?ti...

  13. Assessing Exposures to Particulate Matter and Manganese in Welding Fumes

    E-Print Network [OSTI]

    LIU, SA

    2010-01-01T23:59:59.000Z

    helmets.   American Industrial Hygiene Association Journal welding.   American Industrial Hygiene Association Journal electrodes.  American  Industrial Hygiene Association 

  14. Prediction of cooling rate and microstructure in laser spot welds

    E-Print Network [OSTI]

    Cambridge, University of

    during laser spot welding of low alloy steel. A transient heat transfer model that takes into account

  15. Finite Element Modeling and Validation of Residual Stresses in 304 L Girth Welds

    SciTech Connect (OSTI)

    Dike, J.J.; Ortega, A.R.; Cadden, C.H.; Rangaswamy, P. Brown, D.

    1998-06-01T23:59:59.000Z

    Three dimensional finite element simulations of thermal and mechanical response of a 304 L stainless steel pipe subjected to a circumferential autogenous gas tungsten arc weld were used to predict residual stresses in the pipe. Energy is input into the thermal model using a volumetric heat source. Temperature histories from the thermal analysis are used as loads in the mechanical analyses. In the mechanical analyses, a state variable constitutive model was used to describe the material behavior. The model accounts for strain rate, temperature, and load path histories. The predicted stresses are compared with x-ray diffraction determinations of residual stress in the hoop and circumferential directions on the outside surface of the pipe. Calculated stress profiles fell within the measured data. Reasons for observed scatter in measured stresses are discussed.

  16. Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds

    SciTech Connect (OSTI)

    Badji, Riad [LPMTM-CNRS- Universite Paris 13, 99, av. J.B. Clement, 93430 Villetaneuse (France)], E-mail: riadbadji1@yahoo.fr; Bouabdallah, Mabrouk [Ecole Nationale Polytechnique, 10, Avenue Hassan Badi, BP 182, El Harrach (Algeria); Bacroix, Brigitte; Kahloun, Charlie [LPMTM-CNRS- Universite Paris 13, 99, av. J.B. Clement, 93430 Villetaneuse (France); Belkessa, Brahim; Maza, Halim [Welding and NDT research Centre, B.P 64, Cheraga (Algeria)

    2008-04-15T23:59:59.000Z

    The phase transformations and mechanical behaviour during welding and subsequent annealing treatment of 2205 duplex stainless steel have been investigated. Detailed microstructural examination showed the presence of higher ferrite amounts in the heat affected zone (HAZ), while higher amounts of austenite were recorded in the centre region of the weld metal. Annealing treatments in the temperature range of 800-1000 deg. C resulted in a precipitation of {sigma} phase and M{sub 23}C{sub 6} chromium carbides at the {gamma}/{delta} interfaces that were found to be preferential precipitation sites. Above 1050 deg. C, the volume fraction of {delta} ferrite increases with annealing temperature. The increase of {delta} ferrite occurs at a faster rate in the HAZ than in the base metal and fusion zone. Optimal mechanical properties and an acceptable ferrite/austenite ratio throughout the weld regions corresponds to annealing at 1050 deg. C. Fractographic examinations showed that the mode of failure changed from quasi-cleavage fracture to dimple rupture with an increase in the annealing temperature from 850 to 1050 deg. C.

  17. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    SciTech Connect (OSTI)

    Li, Leijun

    2012-11-02T23:59:59.000Z

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  18. Ion source based on the cathodic arc

    DOE Patents [OSTI]

    Sanders, D.M.; Falabella, S.

    1994-02-01T23:59:59.000Z

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.

  19. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr. [Institute for Diagnostic Imaging Research, Physics Department, University of Windsor, 292 Essex Hall, 401 Sunset Ave. N9B 3P4 Windsor, Ontario (Canada)

    2010-02-22T23:59:59.000Z

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  20. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  1. Some European Developments in Welding Consumables L. Karlsson

    E-Print Network [OSTI]

    Cambridge, University of

    Some European Developments in Welding Consumables L. Karlsson and H. K. D. H. Bhadeshia* November 1 a selected survey of incisive research on novel welding consumables which contribute to the structural and insight based on metallurgical experience. We congratulate the Japan Welding Society for organising

  2. A PARANETRIC STlJDY OF THE ELECTROSLAG WELDING PROCESS

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) A PARANETRIC STlJDY OF THE ELECTROSLAG WELDING PROCESS by W. S. Ricci and T. W. Eagar conducted on electroslag welds to statistically evaluate the effect of i ndependent process variables upon dependent process responses consisting of heat affected zone size, dilution, form factor, welding speed

  3. Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels

  4. Minimization of welding residual stress and distortion in large structures

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    1 Minimization of welding residual stress and distortion in large structures P. Michaleris at Champaign Urbana, Urbana, IL Abstract Welding distortion in large structures is usually caused by buckling due to the residual stress. In cases where the design is fixed and minimum weld size requirements

  5. Welding residual stresses in ferritic power plant steels

    E-Print Network [OSTI]

    Cambridge, University of

    REVIEW Welding residual stresses in ferritic power plant steels J. A. Francis*1 , H. K. D. H require therefore, an accounting of residual stresses, which often are introduced during welding. To do in the estimation of welding residual stresses in austenitic stainless steels. The progress has been less convincing

  6. CONFORMAL WELDING AND KOEBE'S THEOREM CHRISTOPHER J. BISHOP

    E-Print Network [OSTI]

    Bishop, Christopher

    CONFORMAL WELDING AND KOEBE'S THEOREM CHRISTOPHER J. BISHOP Abstract. It is well known that not every orientation preserving homeomorphism of the circle to itself is a conformal welding, but in this paper we prove several results which state that every homeomorphism is \\almost" a welding in a precise

  7. Cinematography of Resistance Spot Welding of Galvanized Steel Sheet

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Cinematography of Resistance Spot Welding of Galvanized Steel Sheet Preweld and postweld current modifications on the resistance spot welding of galvanized steel sheet ·are analyzed using high phenomena through· out the weld process are discussed. In addition. the duration of current modifi· cation

  8. Conformal welding and the sewing equations Eric Schippers

    E-Print Network [OSTI]

    Schippers, Eric

    Conformal welding and the sewing equations Eric Schippers Department of Mathematics University of Manitoba Winnipeg Rutgers 2014 Eric Schippers (Manitoba) Conformal welding Rutgers 1 / 41 #12;Introduction Schippers (Manitoba) Conformal welding Rutgers 2 / 41 #12;Introduction Our work in general We began

  9. A shape optimization formulation of weld pool determination. , A. Ellabibb

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The determination of temperature field in a welding process permits the control of mechanical effects (residual consists in finding the weld pool and T the temperature gradient in the workpiece, solution of: K T xA shape optimization formulation of weld pool determination. A. Chakiba , A. Ellabibb , A

  10. Apparatus for the concurrent inspection of partially completed welds

    DOE Patents [OSTI]

    Smartt, Herschel B. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Larsen, Eric D. (Idaho Falls, ID); Bitsoi, Rodney J. (Ririe, ID); Perrenoud, Ben C. (Rigby, ID); Miller, Karen S. (Idaho Falls, ID); Pace, David P. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An apparatus for the concurrent inspection of partially completed welds is described in which is utilized in combination with a moveable welder for forming a partially completed weld, and an ultrasonic generator mounted on a moveable welder in which is reciprocally moveable along a path of travel which is laterally disposed relative to the partially completed weld.

  11. Arc Geometry and Algebra: Foliations, Moduli ... - Purdue University

    E-Print Network [OSTI]

    2012-07-04T23:59:59.000Z

    the simplicial complex which has one simplex for each arc family ? with the i–the face ..... 1.6.2 Loop graph of an arc family: A geometric construction of the dual.

  12. arc ion sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and performance of vacuum arc ion sources. Brown, I 2013-01-01 2 Development of High Efficiency Versatile Arc Discharge Ion Source (VADIS) at CERN Isolde CERN Preprints Summary: We...

  13. arc ion source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and performance of vacuum arc ion sources. Brown, I 2013-01-01 2 Development of High Efficiency Versatile Arc Discharge Ion Source (VADIS) at CERN Isolde CERN Preprints Summary: We...

  14. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    SciTech Connect (OSTI)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca; Jung, I.-H., E-mail: in-ho.jung@mcgill.ca; Brochu, M., E-mail: mathieu.brochu@mcgill.ca

    2013-12-15T23:59:59.000Z

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of the (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.

  15. Correlations between SAR arc intensity and solar and geomagnetic activity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ±1960, Rees and Akasofu (1963) and Roach and Roach (1963) found that there are correlations of the SAR arc

  16. The Inception of the ArcGIS Marine Data Model

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    . Shapefiles and coverages can now be easily loaded as feature classes in the ArcGISTM geodatabase for more

  17. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04T23:59:59.000Z

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  18. Actively controlled vibration welding system and method

    DOE Patents [OSTI]

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02T23:59:59.000Z

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  19. Results of crack-arrest tests on two irradiated high-copper welds

    SciTech Connect (OSTI)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K. (Oak Ridge National Lab., TN (USA))

    1990-12-01T23:59:59.000Z

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288{degree}C to an average fluence of 1.9 {times} 10{sup 19} neutrons/cm{sup 2} (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K{sub Ia} curve. 9 refs., 21 figs., 10 tabs.

  20. Modeling solute redistribution and microstructural development in fusion welds of multi-component alloys

    SciTech Connect (OSTI)

    Dupont, J.N.; Robino, C.V.; Newbury, B.D.

    1999-12-15T23:59:59.000Z

    Solute redistribution and microstructural evolution have been modeled for gas tungsten arc fusion welds in experimental Ni base superalloys. The multi-component alloys were modeled as a pseudo-ternary {gamma}-Nb-C system. The variation in fraction liquid and liquid composition during the primary L {r{underscore}arrow} {gamma} and eutectic type L {r{underscore}arrow} ({gamma} + NbC) stages of solidification were calculated for conditions of negligible Nb diffusion and infinitely rapid C diffusion in the solid phase. Input parameters were estimated by using the Thermo-Calc NiFe Alloy data base and compared to experimentally determined solidification parameters. The solidification model results provide useful information for qualitatively interpreting the influence of alloy composition on weld microstructure. The quantitative comparisons indicate that, for the alloy system evaluated, the thermodynamic database provides sufficiently accurate values for the distribution coefficients of Nb and C. The calculated position of the {gamma}-NbC two-fold saturation line produces inaccurate results when used as inputs for the model, indicating further refinement to the database is needed for quantitative estimates.

  1. Way to reduce arc voltage losses in hybrid thermionic converters

    SciTech Connect (OSTI)

    Tskhakaya, V.K.; Yarygin, V.I.

    1982-03-01T23:59:59.000Z

    Experimental results are reported concerning the output and emission characteristics of the arc and hybrid regimes in a plane-parallel thermionic converter with Pt--Zr--O electrode pair. It is shown that arc voltage losses can be reduced to values below those obtainable in ordinary arc thermionic converters.

  2. Evaluation of the clinical usefulness of modulated Arc treatment

    E-Print Network [OSTI]

    Lee, Young Kyu; Kim, Yeon Sil; Choi, Byung Ock; Nam, Sang Hee; Park, Hyeong Wook; Kim, Shin Wook; Shin, Hun Joo; Lee, Jae Choon; Kim, Ji Na; Park, Sung Kwang; Kim, Jin Young; Kang, Young-Nam

    2015-01-01T23:59:59.000Z

    The purpose of this study is to evaluate the clinical usefulness of modulated arc (mARC) treatment techniques. The mARC treatment plans of the non-small cell lung cancer (NSCLC) patients were performed in order to verify the clinical usefulness of mARC. A pre study was conducted to find the most competent plan condition of mARC treatment and the usefulness of mARC treatment plan was evaluated by comparing it with the other Arc treatment plans such as Tomotherapy and RapidArc. In the case of mARC, the optimal condition for the mARC plan was determined by comparing the dosimetric performance of the mARC plans with the use of various parameters. The various parameters includes the photon energies (6 MV, 10 MV), optimization point angle (6{\\deg}-10{\\deg} intervals), and total segment number (36-59 segment). The best dosimetric performance of mARC was observed at 10 MV photon energy and the point angle 6 degree, and 59 segments. The each treatment plans of three different techniques were compared with the followin...

  3. Energy Savings in Electric Arc Furnace Melting

    E-Print Network [OSTI]

    Lubbeck, W.

    1982-01-01T23:59:59.000Z

    Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

  4. Pairing, pseudogap and Fermi arcs in cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaminski, Adam; Gu, Genda; Kondo, Takeshi; Takeuchi, Tsunehiro

    2014-10-31T23:59:59.000Z

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore »creates “artificial” Fermi arcs for Tc pair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. We demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  5. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    E-Print Network [OSTI]

    Endrino, Jose L.

    2010-01-01T23:59:59.000Z

    dual-cathode arc deposition (PDC-FCVA) source containingand metal cathodes [2]. The PDC-FCVA system in combinationCu,Mo) incorporation in a-C by PDC-FCVA. The modification of

  6. Method and apparatus for welding precipitation hardenable materials

    DOE Patents [OSTI]

    Murray, Jr., Holt (Hopewell, NJ); Harris, Ian D. (Dublin, OH); Ratka, John O. (Cleveland Heights, OH); Spiegelberg, William D. (Parma, OH)

    1994-01-01T23:59:59.000Z

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  7. Method and apparatus for welding precipitation hardenable materials

    DOE Patents [OSTI]

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28T23:59:59.000Z

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  8. Fluor Hanford Nuclear Material Stabilization Project Welding Manual

    SciTech Connect (OSTI)

    BERKEY, J.R.

    2000-10-20T23:59:59.000Z

    The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE.

  9. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01T23:59:59.000Z

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  10. Method for the concurrent ultrasonic inspection of partially completed welds

    DOE Patents [OSTI]

    Johnson, John A. (Idaho Falls, ID); Larsen, Eric D. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    A method for the concurrent ultrasonic inspection of partially completed welds is disclosed and which includes providing a pair of transducers which are individually positioned on the opposite sides of a partially completed weld to be inspected; moving the transducers along the length of and laterally inwardly and outwardly relative to the partially completed weld; pulsing the respective transducers to produce an ultrasonic signal which passes through or is reflected from the partially completed weld; receiving from the respective transducers ultrasonic signals which pass through or are reflected from the partially completed welds; and analyzing the ultrasonic signal which has passed through or is reflected from the partially completed weld to determine the presence of any weld defects.

  11. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  12. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  13. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anders, Andre

    2014-10-01T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  14. Plasma arc melting of a 80 wt % tantalum-20 wt % titanium alloy

    SciTech Connect (OSTI)

    Dunn, P.S.; Patterson, R.A.

    1994-10-01T23:59:59.000Z

    An alloy of 80wt% tantalum-20wt% titanium is being considered for use in an oxidizing and highly corrosive liquid metal application. The high melting point of the alloy, 2400 C, and other physical properties narrowed the possible melting techniques. Previous melting experience with these materials by electron beam resulted in extensive vaporization of the titanium during the melt and poor chemical homogeneity. A technique has been developed using plasma arc melting to melt refractory alloys with very dissimilar densities and vapor pressures. The 80Ta--20Ti alloy falls into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. The melting of these materials is further complicated by the high melting point of tantalum( 3020 C) and the relatively low boiling point of titanium( 3287 C). The plasma arc melting technique described results in good chemical homogeneity with ingot size quantities of material.

  15. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    SciTech Connect (OSTI)

    Anders, Andre

    2014-08-17T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  16. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anders, Andre

    2014-10-01T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overviewmore »is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less

  17. Exploring high temperature phenomena related to post-detonation using an electric arc

    SciTech Connect (OSTI)

    Dai, Z. R., E-mail: dai1@llnl.gov; Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

    2013-11-28T23:59:59.000Z

    We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100??s. Samples took the form of a 4??m-thick film deposited onto 8 pairs of 17??m-thick Cu electrodes supported on a 25??m-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO{sub 2}, UC{sub 2}, UCu{sub 5},) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ?2300?K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  18. Effect of Nd:YAG laser welding on microstructure and hardness of an Al-Li based alloy

    SciTech Connect (OSTI)

    Cui, Li, E-mail: cuili@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Li, Xiaoyan, E-mail: xyli@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); He, Dingyong, E-mail: dyhe@bjut.edu.cn [Beijing University of Technology (China)] [Beijing University of Technology (China); Chen, Li, E-mail: ouchenxi@163.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China); Gong, Shuili, E-mail: gongshuili@sina.com [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)] [AVIC Beijing Aeronautical Manufacturing Technology Research Institute (China)

    2012-09-15T23:59:59.000Z

    Butt joints of 3.0 mm thick sheets of an Al-Li based alloy have been produced using Nd:YAG laser welding without filler metals. The hardness distribution and microstructure of the alloy and welded joints were investigated. The changes in the grain shapes, grain orientations, microtexture, and precipitates of the fusion zone were analyzed using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that Nd:YAG laser welding leads to a change of the microhardness, grain shape, grain orientations, and a disappearance of the microtexture and precipitates. A narrow band of EQZ along the fusion boundary and a predominantly equiaxed dendritic structure are developed in the fusion zone. The formation of the predominately equiaxed dendritic grains is due to a heterogeneous nucleation mechanism aided by equilibrium A1{sub 3}Zr phases as well as the growth of pre-existing nuclei created by dendrite fragmentation, or by grain detachment resulted from Nd:YAG laser welding processes. In addition, Nd:YAG laser welding produces lower Vickers hardness than that of the base metal due to the decrease in the in quantity of {delta} Prime precipitates in the fusion zone. - Graphical Abstract: The grain shapes, grain orientations, microtexture, and precipitates of the solidified fusion zone were investigated and compared with the base metal using optical microscope, electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). EBSD orientation map of laser welded joint in 5A90 alloys is presented in Fig. 3. It clearly shows that a narrow band EQZ along the fusion boundary and the predominantly equiaxed grains have been developed in the fusion zone of 5A90 alloys. Also, it is clear that the microstructure of the base metal is characterized by laminated grains with preferred orientations, whereas the fusion zone is predominately equiaxed grains in different colors having random orientations. Highlights: Black-Right-Pointing-Pointer The predominantly equiaxed dendritic structure is developed in the fusion zone. Black-Right-Pointing-Pointer The fusion zone with equiaxed grains shows random orientations and microtexture. Black-Right-Pointing-Pointer The loss in hardness in the fusion zone is due to the decrease in {delta} Prime precipitates. Black-Right-Pointing-Pointer The non-epitaxial growth occurs at fusion boundary. Black-Right-Pointing-Pointer The equilibrium A1{sub 3}Zr phases maybe the nuclei of new grains in the fusion zone.

  19. Laser Autogenous Brazing of Biocompatible, Dissimilar Metals in Tubular Geometries

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Laser Autogenous Brazing of Biocompatible, Dissimilar Metals in Tubular Geometries Gen Satoh, Grant that are unsuitable for use within the human body. This study investigates a new process, Laser Autogenous Brazing Laser Welding, Joining, Brazing, NiTi, Shape Memory, Stainless Steel, Autogenous Laser Brazing

  20. Remote Welding, NDE and Repair of DOE Standardized Canisters

    SciTech Connect (OSTI)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.