Powered by Deep Web Technologies
Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Distributed Metadata Management, Data Discovery and Access System  

E-Print Network (OSTI)

Mercury is a federated metadata harvesting, search and retrieval tool based on both open source and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury was developed during 2007. This new version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, support for RSS delivery of search results, among other features. Mercury provides a single portal to information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fa...

Palanisamy, Giriprakash; Green, Jim; Wilson, Bruce

2010-01-01T23:59:59.000Z

2

Web Site Metadata  

E-Print Network (OSTI)

International World Wide Web Conference, pages 1123–1124,Erik Wilde. Site Metadata on the Web. In Proceedings of theUCB ISchool Report 2009-028 Web Site Metadata [4] David R.

Wilde, Erik; Roy, Anuradha

2009-01-01T23:59:59.000Z

3

A Metadata-Rich File System  

Science Conference Proceedings (OSTI)

Despite continual improvements in the performance and reliability of large scale file systems, the management of file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, metadata, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS includes Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the defacto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

Ames, S; Gokhale, M B; Maltzahn, C

2009-01-07T23:59:59.000Z

4

A digital metadata schema repository  

Science Conference Proceedings (OSTI)

The metadata schema of a digital archive describes the structure and attributes of metadata. Analysis and definition of metadata schema for a new digital archive must be carefully performed at the first stage. To ease the task, we implement a metadata ... Keywords: HTML, XML, digital archive, metadata schema repository, native XML database, web-based

Yen-Chun Lin; Hsiang-An Wang; Chien-Chung Huang; Wei Chen

2008-05-01T23:59:59.000Z

5

General Relativity Problem of Mercury's Perihelion Advance Revisited  

E-Print Network (OSTI)

The work is devoted to the critical analysis of theoretical prediction and astronomical observation of GR effects, first of all, the Mercury's perihelion advance. In the first part, the methodological issues of observations are discussed including a practice of observations, a method of recognizing the relativistic properties of the effect and recovering it from bulk of raw data, a parametric observational model, and finally, methods of assessment of the effect value and statistical level of confidence. In the second part, the Mercury's perihelion advance and other theoretical problems are discussed in relationship with the GR physical foundations. Controversies in literature devoted to the GR tests are analyzed. The unified GR approach to particles and photons is discussed with the emphasis on the GR classical tests. Finally, the alternative theory of relativistic effect treatment is presented.

Anatoli A. Vankov

2010-08-10T23:59:59.000Z

6

The precession of Mercury and the deflection of starlight by special relativity alone  

E-Print Network (OSTI)

I show that the precession of the orbit of Mercury and the deflection of starlight by the Sun are effects of special relativity alone when the gravitational field of a particle is treated in the same way as the electric field of a charged particle . General relativity is not needed to explain them.

Robert L. Kurucz

2006-08-21T23:59:59.000Z

7

Urban Heat Island Assessment: Metadata Are Important  

Science Conference Proceedings (OSTI)

Urban heat island (UHI) analyses for the conterminous United States were performed using three different forms of metadata: nightlights-derived metadata, map-based metadata, and gridded U.S. Census Bureau population metadata. The results ...

Thomas C. Peterson; Timothy W. Owen

2005-07-01T23:59:59.000Z

8

Universal metadata standard  

Science Conference Proceedings (OSTI)

Consciousness is based on the association of notions or a neural network. Similarly, the creation of the next-generation Internet (semantic web) is impossible without attributes that allow the semantic association of documents and their integration into ... Keywords: association, classification, document, documentography, identification, metabase, metadata, metagraphy, standard

A. V. Poleev

2011-04-01T23:59:59.000Z

9

Using metadata schema registry as a core function to enhance usability and reusability of metadata schemas  

Science Conference Proceedings (OSTI)

Metadata schema registries have great potential to enhance usability and reusability of metadata schemas. Application profiles are a key concept for Dublin Core, and have a crucial role in promoting reuse of metadata schemas. This paper discusses basic ... Keywords: application profile, metadata schema interoperability, metadata schema model, metadata schema registry, reusability of metadata schemas

Mitsuharu Nagamori; Shigeo Sugimoto

2007-08-01T23:59:59.000Z

10

Hydrogen Geysers: Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury's Surface  

E-Print Network (OSTI)

High resolution images of Mercury's surface, from the MESSENGER spacecraft, reveal many bright deposits associated with irregular, shallow, rimless depressions whose origins were attributed to volatile-related activity, but absent information on the nature and origin of that volatile matter. Here I describe planetary formation, unlike the cited models, and show that primordial condensation from an atmosphere of solar composition at pressures of one atmosphere or above will lead to iron condensing as a liquid and dissolving copious amounts of hydrogen, which is subsequently released as Mercury's core solidifies and escapes from the surface, yielding the observed pit-like features with associated highly-reflecting matter. The exiting hydrogen chemically reduces some iron compound, probably iron sulfide, to the metal, which accounts for the bright deposits.

J. Marvin Herndon

2011-10-20T23:59:59.000Z

11

Design and Implementation of a Metadata-rich File System  

Science Conference Proceedings (OSTI)

Despite continual improvements in the performance and reliability of large scale file systems, the management of user-defined file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and semantic metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address these problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, user-defined attributes, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS incorporates Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the de facto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.

Ames, S; Gokhale, M B; Maltzahn, C

2010-01-19T23:59:59.000Z

12

Java Metadata Facility  

SciTech Connect

The Java Metadata Facility is introduced by Java Specification Request (JSR) 175 [1], and incorporated into the Java language specification [2] in version 1.5 of the language. The specification allows annotations on Java program elements: classes, interfaces, methods, and fields. Annotations give programmers a uniform way to add metadata to program elements that can be used by code checkers, code generators, or other compile-time or runtime components. Annotations are defined by annotation types. These are defined the same way as interfaces, but with the symbol {at} preceding the interface keyword. There are additional restrictions on defining annotation types: (1) They cannot be generic; (2) They cannot extend other annotation types or interfaces; (3) Methods cannot have any parameters; (4) Methods cannot have type parameters; (5) Methods cannot throw exceptions; and (6) The return type of methods of an annotation type must be a primitive, a String, a Class, an annotation type, or an array, where the type of the array is restricted to one of the four allowed types. See [2] for additional restrictions and syntax. The methods of an annotation type define the elements that may be used to parameterize the annotation in code. Annotation types may have default values for any of its elements. For example, an annotation that specifies a defect report could initialize an element defining the defect outcome submitted. Annotations may also have zero elements. This could be used to indicate serializability for a class (as opposed to the current Serializability interface).

Buttler, D J

2008-03-06T23:59:59.000Z

13

Applied Parallel Metadata Indexing  

SciTech Connect

The GPFS Archive is parallel archive is a parallel archive used by hundreds of users in the Turquoise collaboration network. It houses 4+ petabytes of data in more than 170 million files. Currently, users must navigate the file system to retrieve their data, requiring them to remember file paths and names. A better solution might allow users to tag data with meaningful labels and searach the archive using standard and user-defined metadata, while maintaining security. last summer, I developed the backend to a tool that adheres to these design goals. The backend works by importing GPFS metadata into a MongoDB cluster, which is then indexed on each attribute. This summer, the author implemented security and developed the user interfae for the search tool. To meet security requirements, each database table is associated with a single user, which only stores records that the user may read, and requires a set of credentials to access. The interface to the search tool is implemented using FUSE (Filesystem in USErspace). FUSE is an intermediate layer that intercepts file system calls and allows the developer to redefine how those calls behave. In the case of this tool, FUSE interfaces with MongoDB to issue queries and populate output. A FUSE implementation is desirable because it allows users to interact with the search tool using commands they are already familiar with. These security and interface additions are essential for a usable product.

Jacobi, Michael R [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

14

Web-based metadata schema repository  

Science Conference Proceedings (OSTI)

The metadata schema of a digital archive describes the structure and attributes of metadata. Analysis and definition of metadata schema for a new digital archive must be carefully carried out and determined at the first stage of development. To ease ... Keywords: digital archive, extensible markup language, hyperText markup language, metadata schema repository, native XML database, web-based

Yen-Chun Lin; Hsiang-An Wang; Chien-Chung Huang; Wei Chen

2008-04-01T23:59:59.000Z

15

Turning data into information: assessing and reporting GIS metadata integrity using integrated computing technologies.  

E-Print Network (OSTI)

??A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata… (more)

Mulrooney, Timothy J.

2009-01-01T23:59:59.000Z

16

Required and Optional Metadata | Scientific and Technical Information...  

Office of Scientific and Technical Information (OSTI)

Metadata Print page Print page Email page Email page Metadata Provided to OSTI via AN 241.1 Web Metadata Provided to OSTI via OSTI-to-Site TAP (formerly harvesting) Metadata...

17

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

18

Automatic metadata generation using associative networks  

Science Conference Proceedings (OSTI)

In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering the effectiveness of digital information services. Many of the existing mechanisms for the automated creation of metadata rely primarily on content analysis ... Keywords: Associative networks, metadata generation, particle-swarms

Marko A. Rodriguez; Johan Bollen; Herbert Van De Sompel

2009-02-01T23:59:59.000Z

19

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

20

ORNL DAAC, Regional and Global Data in Mercury, April 25, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

can now be located and acquired through the Mercury metadata search system at the ORNL DAAC. Thirty-five data sets were added in the past 3 months. A variety of data held by...

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Regional and Global Data in Mercury, December 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional and Global Data in Mercury Regional and Global Data in Mercury Regional and global biogeochemical dynamics data can now be located and acquired through a metadata search system at the ORNL DAAC. Climate, hydroclimatology, soil, and vegetation data held by data centers around the world are available through a Web-based system called "Mercury." Mercury allows users to search metadata files to identify data sets of interest, and it directs the users to the data. The data sets indexed in Mercury were chosen by the ORNL DAAC's User Working Group as important to the global change research community for understanding the function of terrestrial ecosystems and for examining patterns across temporal and spatial scales. The following types of regional and global data are currently indexed in

22

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

23

Assessment of classification and indexing of an agricultural journal based on metadata in AGRIS and CAB Abstracts databases  

Science Conference Proceedings (OSTI)

Agricultural thesauri and classification schemes are being increasingly upgraded as ontologies, prompting end-user awareness of the concept of structured taxonomies and metadata. Related agricultural databases, such as Agris and CAB Abstracts, exhibit ... Keywords: agricultural classification, agricultural journals, agricultural thesauri, agriculture, databases, descriptors, information retrieval, journal classification, journal indexing, metadata, ontology, scientific papers, semantics, subject categories, subject headings, terminology

Tomaz Bartol

2009-05-01T23:59:59.000Z

24

Nearly-automated metadata hierarchy creation  

Science Conference Proceedings (OSTI)

Currently, information architects create metadata category hierarchies manually. We present a nearly-automated approach for deriving such hierarchies, by converting the lexical hierarchy WordNet into a format that reflects the contents of a target ...

Emilia Stoica; Marti A. Hearst

2004-05-01T23:59:59.000Z

25

Metadata-Based Parallelization of Program Instrumentation  

E-Print Network (OSTI)

Program instrumentation has a wide variety of useful applications, but tool writers must overcome the challenge of substantial overheads caused by introducing additional code and data into a program. This paper observes that instrumentation usually operates on many discrete, independent data structures, which we call metadata parallelism. We proposes to exploit this phenomenon to reduce the overhead of instrumented programs by executing instrumentation function invocations that manipulate different pieces of metadata simultaneously in different threads. The key challenge to spreading instrumentation function execution across many threads is ensuring that metadata updates occur in the correct order, and do not suffer from data races. Metadata-based parallelization solves this problem by using a user-specified mapping of instrumentation function invocations to serialization sets.

Matthew D. Allen; Gurindar S. Sohi; Matthew D. Allen; Gurindar S. Sohi

2007-01-01T23:59:59.000Z

26

The current state of the science related to the re-release of mercury from coal combustion products  

Science Conference Proceedings (OSTI)

The stability of mercury associated with CCPs is an issue that has only recently been under investigation but has become a prominent question as the industry strives to determine if current management options for CCPs will need to be modified. Mercury and other air toxic elements can be present in fly ash, FGD material and bottom ash and boiler slag. Mercury concentrations ranging from {lt} 0.01 to 2.41 ppm in fly ash and from 0.001 to 0.342 ppm in bottom ash have been reported. Stability of mercury must be evaluated by tests that include 1) direct leachability; 2) vapor-phase release at ambient and elevated temperatures; and 3) microbiologically induced leachability and vapor-phase release. The amount of mercury leached from currently produced CCPs is extremely low and does not appear to represent an environmental or re-release hazard. Concentrations of mercury in leachates from fly ashes and FGD material using either the toxicity characteristic leaching procedure (TCLP) or the synthetic groundwater leaching procedure (SGLP) are generally below detection limits. The release of mercury vapor from CCPs resulting from the use of mercury control technologies has been evaluated on a limited basis. Research indicates that mercury bound to the ash or activated carbon is fairly stable. The EERC found that organomercury species were detected at very low levels both in the vapor and leachate generated from the microbiologically mediated release experiments. The current state of the science indicates that mercury associated with CCPs is stable and highly unlikely to be released under most management conditions, including utilisation and disposal. The exception to this is exposure to high temperatures such as those that may be achieved in cement and wallboard production. Therefore, existing CCPs management options are expected to be environmentally sound options for CCPs from systems with mercury control technologies installed. 2 refs., 2 photos.

Debra F. Pflughoeft-Hassett; David J. Hassett; Loreal V. Heebink; Tera D. Buckley [University of North Dakota Energy and Environmental Research Center (EERC) (United States)

2006-07-01T23:59:59.000Z

27

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

28

Extending metadata definitions by automatically extracting and organizing glossary definitions  

Science Conference Proceedings (OSTI)

Metadata descriptions of database contents are required to build and use systems that access and deliver data in response to user requests. When numerous heterogeneous databases are brought together in a single system, their various metadata formalizations ...

Eduard Hovy; Andrew Philpot; Judith Klavans; Ulrich Germann; Peter Davis; Samuel Popper

2003-05-01T23:59:59.000Z

29

Validation of music metadata via game with a purpose  

Science Conference Proceedings (OSTI)

Quantity of music metadata on the Web is sufficient, music recommendation and online repository systems are proof of it. However, it became a real challenge to keep quality of these metadata at reasonable level as the cost of manual validation is too ... Keywords: game with a purpose, human computing, metadata validation, multimedia, music information retrieval

Peter Dula?ka; Jakub šimko; Mária Bieliková

2012-09-01T23:59:59.000Z

30

Two-layered metadata service model in grid environment  

Science Conference Proceedings (OSTI)

The primary problem of data management in grid environment is how to effectively organise the geographical distributed storage devices to support the collaborative data operations. This paper focuses on how to resolve the above problem and presents a ... Keywords: data grid, data management, grid computing, metadata replication, metadata service models, replica metadata, sparse strongly connected graph

Muzhou Xiong; Hai Jin; Song Wu

2009-07-01T23:59:59.000Z

31

Indian Statistical Institute: Using Multiple Metadata Formats in DSpace  

E-Print Network (OSTI)

of The University of Manitoba to provide etdms metadata format. However, the user community has often expressed the requirement for other metadata formats like VRA core, IMS etc. Support for many metadata formats will greatly enhance the use of DSpace and the type...

Prasad, A R D

2005-07-07T23:59:59.000Z

32

Publications | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Afsahi, and R. Ross, Mercury: Enabling Remote Procedure Call for High-Performance Computing, IEEE International Conference on Cluster Computing, Sep 2013. DOIslides...

33

Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures  

SciTech Connect

A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl/sub 2/) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 ..mu..M HgCl/sub 2/ elicited a concentration-related cytotoxicity. Cellular accumulation of /sup 203/Hg was also concentration-related, with 1.0 nmol/10/sup 6/ cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables.

Bracken, W.M.; Sharma, R.P.; Bourcier, D.R.

1984-01-01T23:59:59.000Z

34

The Long-Term Ecological Research community metadata standardisation project: a progress report  

Science Conference Proceedings (OSTI)

We describe the process by which the Long-Term Ecological Research (LTER) Network standardised their metadata through the adoption of the Ecological Metadata Language (EML). We describe the strategies developed to improve motivation ... Keywords: EML, LTER Network, Long-Term Ecological Research Network, ecological metadata language, machine-mediated data synthesis, metadata management, metadata-driven data synthesis, standardisation

Inigo San Gil; Karen Baker; John Campbell; Ellen G. Denny; Kristin Vanderbilt; Brian Riordan; Rebecca Koskela; Jason Downing; Sabine Grabner; Eda Melendez; Jonathan M. Walsh; Mason Kortz; James Conners; Lynn Yarmey; Nicole Kaplan; Emery R. Boose; Linda Powell; Corinna Gries; Robin Schroeder; Todd Ackerman; Ken Ramsey; Barbara Benson; Jonathan Chipman; James Laundre; Hap Garritt; Don Henshaw; Barrie Collins; Christopher Gardner; Sven Bohm; Margaret O'Brien; Jincheng Gao; Wade Sheldon; Stephanie Lyon; Dan Bahauddin; Mark Servilla; Duane Costa; James Brunt

2009-08-01T23:59:59.000Z

35

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

36

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

37

Guidelines for Mercury Measurements Using the Ontario Hydro Method  

Science Conference Proceedings (OSTI)

The Clean Air Mercury Rule (CAMR) requires measurement of mercury emissions from coal-fired power plants. The rule requires that all coal-fired power plants emitting >29 lb of mercury per year install continuous mercury measurement technology. Either a continuous mercury monitor (CMM) or sorbent traps meeting the requirements of 40 Code of Federal Regulations (CFR) Part 75, Appendix K, protocols must be used. To ensure the technologies are operating properly, CAMR also requires that a relative accuracy t...

2007-08-28T23:59:59.000Z

38

NETL: IEP - Mercury Emissions Control: News Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

News Releases The following are links to various recent news stories related to mercury in the environment. These links are provided strictly as a convenience to the general...

39

Metadata in the collaboratory for multi-scale chemical science  

Science Conference Proceedings (OSTI)

The goal of the Collaboratory for the Multi-scale Chemical Sciences (CMCS) [1] is to develop an informatics-based approach to synthesizing multi-scale chemistry information to create knowledge in the chemical sciences. CMCS is using a portal and metadata-aware ... Keywords: Dublin Core, WebDAV, chemistry, collaboratory, knowledge management, metadata

Carmen Pancerella; John Hewson; Wendy Koegler; David Leahy; Michael Lee; Larry Rahn; Christine Yang; James D. Myers; Brett Didier; Renata McCoy; Karen Schuchardt; Eric Stephan; Theresa Windus; Kaizar Amin; Sandra Bittner; Carina Lansing; Michael Minkoff; Sandeep Nijsure; Gregor von Laszewski; Reinhardt Pinzon; Branko Ruscic; Al Wagner; Baoshan Wang; William Pitz; Yen-Ling Ho; David Montoya; Lili Xu; Thomas C. Allison; William H. Green, Jr.; Michael Frenklach

2003-09-01T23:59:59.000Z

40

mod_oai: an apache module for metadata harvesting  

Science Conference Proceedings (OSTI)

We describe mod_oai, an Apache 2.0 module that implements the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). OAI-PMH is the de facto standard for metadata exchange in digital libraries and allows repositories to expose their contents ...

Michael L. Nelson; Herbert Van de Sompel; Xiaoming Liu; Terry L. Harrison; Nathan McFarland

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mercury Information Clearinghouse  

SciTech Connect

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

42

Glossary Term - Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Previous Term (Liquid Nitrogen) Glossary Main Index Next Term (Mole) Mole Mercury Mercury as seen by the Mariner 10 spacecraft on March 24, 1974. Mercury is the...

43

Geospatial metadata extraction from product description document applying methods from ontology engineering  

Science Conference Proceedings (OSTI)

Metadata creation is a bottleneck in European Union (EU) INSPIRE Directive. Firstly the paper presents results from a conformance test conducted at Swedish Land Survey. The results of the testing show a gap between the current statuses of metadata ... Keywords: INSPIRE, Sweden, Swedish Land Survey, document annotation, geospatial metadata, metadata extraction, ontology engineering

Imad Abugessaisa

2010-09-01T23:59:59.000Z

44

The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata  

SciTech Connect

The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification.

Liolios, Konstantinos; Chen, Amy; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Phil; Markowitz, Victor; Kyrpides, Nikos C.

2009-09-01T23:59:59.000Z

45

Metadata driven memory optimizations in dynamic binary translator  

Science Conference Proceedings (OSTI)

A dynamic binary translator offers solutions for translating and running source architecture binaries on target architecture at runtime. Regardless of its growing popularity, practical dynamic binary translators usually suffer from the limited optimizations ... Keywords: dynamic binary translator, memory optimizations, metadata

Chaohao Xu; Jianhui Li; Tao Bao; Yun Wang; Bo Huang

2007-06-01T23:59:59.000Z

46

A Metadata Model Supporting Scalable Interactive TV Services  

Science Conference Proceedings (OSTI)

In this paper, we introduce a novel metadata model for describing scalable and interactive TV services that can be enriched with supplemental multimedia information. The model allows users to access such TV services not only via their traditional TV ...

Gwenael Durand; Gabriella Kazai; Mounia Lalmas; Uwe Rauschenbach; Patrick Wolf

2005-01-01T23:59:59.000Z

47

Toward a Standardized Metadata Protocol for Urban Meteorological Networks  

Science Conference Proceedings (OSTI)

With the growing number and significance of urban meteorological networks (UMNs) across the world, it is becoming critical to establish a standard metadata protocol. Indeed, a review of existing UMNs indicate large variations in the quality, quantity, and ...

Catherine L. Muller; Lee Chapman; C.S.B. Grimmond; Duick T. Young; Xiao-Ming Cai

2013-08-01T23:59:59.000Z

48

mTags: augmenting microkernel messages with lightweight metadata  

Science Conference Proceedings (OSTI)

In this work we propose mTags, an efficient mechanism that augments microkernel interprocess messages with lightweight metadata to enable the development of new, system-wide functionality without requiring modification of the application source code. ...

Augusto Born de Oliveira; Ahmad Saif Ur Rehman; Sebastian Fischmeister

2012-07-01T23:59:59.000Z

49

Extending Metadata Definitions by Automatically Extracting and Organizing Glossary Definitions  

E-Print Network (OSTI)

Metadata descriptions of database contents are required to build and use systems that access and deliver data in response to user requests. When numerous heterogeneous databases are brought together in a single system, their various metadata formalizations must be homogenized and integrated in order to support the access planning and delivery system. This integration is a tedious process that requires human expertise and attention. In this paper we describe a method of speeding up the formalization and integration of new metadata. The method takes advantage of the fact that databases are often described in web pages containing natural language glossaries that define pertinent aspects of the data. Given a root URL, our method identifies likely glossaries, extracts and formalizes aspects of relevant concepts defined in them, and automatically integrates the new formalized metadata concepts into a large model of the domain and associated conceptualizations.

Eduard Hovy; Andrew Philpot; Judith Klavans; Ulrich Germann; Peter Davis; Samuel Popper

2003-01-01T23:59:59.000Z

50

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

51

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

52

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

53

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

54

PEER-REVIEW An Experimental Study on Mercury Sorption by  

E-Print Network (OSTI)

flue gases. These studies have shown the relative ease of controlling oxidized mercury (specifically, Nashville, 1996 8. B. Hall, O . Lindqvist, and E. Ljungstrom, "Mercury Chemistry in Simulated Flue Gases municipal waste combustor (MWC), flue gas mercury is mainly found as HgCI2. They postulated thatHgCl2

Columbia University

55

Mercury in Nelson’s Sparrow Subspecies at Breeding Sites  

E-Print Network (OSTI)

Background: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson’s Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson’s Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies.

Virginia L Winder; Steven D. Emslie

2012-01-01T23:59:59.000Z

56

Required and Optional Metadata for Harvesting (OSTI-to-Site) | Scientific  

Office of Scientific and Technical Information (OSTI)

Required and Optional Metadata Required and Optional Metadata Required and Optional Metadata for Harvesting (OSTI-to-Site) Print page Print page Email page Email page Required Metadata Records with missing required metadata will not be accepted. Metadata Standardized XML Tag Names for Output File Business Rules/Required Values, etc. Access Limitation System defaults to UNL Information must be unclassified unlimited for harvested products. Site Accession Number Unique site-assigned number that OSTI uses to recognize previously harvested records that are being updated. STI Product Type Product type value must be a code: AR - S&T Accomplishment Report B - Book/monograph/factsheet CO - Conference/Event Paper, Presentation, Proceedings

57

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

58

Strong Lines of Mercury ( Hg )  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Mercury ( Hg ). ...

59

Mercury: the planet and its orbit  

E-Print Network (OSTI)

The planet closest to the Sun, Mercury, is the subject of renewed attention among planetary scientists, as two major space missions will visit it within the next decade. These will be the first to return to Mercury, after the flybys by NASA's Mariner 10 spacecraft in 1974--5. The difficulties of observing this planet from the Earth make such missions necessary for further progress in understanding its origin, evolution and present state. This review provides an overview of what is known about Mercury and what are the major outstanding issues. Mercury's orbital and rotation periods are in a unique 2:3 resonance; an analysis of the orbital dynamics of Mercury is presented here, as well as Mercury's special role in testing theories of gravitation. These derivations provide a good insight into the complexities of planetary motion in general, and how, in the case of Mercury, its proximity to the Sun can be described and exploited in terms of general relativity. Mercury's surface, superficially similar to that of the Moon, presents intriguing differences, representing a different, and more complex history in which the role of early volcanism remains to be clarified and understood. Mercury's interior presents the most important puzzles: it has the highest uncompressed density among the terrestrial planets, implying a very large, mostly iron core. This does not appear to be the completely solidified yet, as Mariner 10 found a planetary magnetic field that is probably generated by an internal dynamo, in a liquid outer layer of the large iron core. The current state of the core, once established, will provide a constraint for its evolution from the time of the planet's formation. Mercury's environment is highly variable. There is only a tenuous exosphere around Mercury; its sourc...

André Balogh; Giacomo Giampieri

2002-01-01T23:59:59.000Z

60

COLLOQUIUM: Cybersnooping: Collection and Analysis of Metadata and Content  

NLE Websites -- All DOE Office Websites (Extended Search)

November 20, 2013, 4:00pm to 5:15pm November 20, 2013, 4:00pm to 5:15pm Colloquia MBG Auditorium COLLOQUIUM: Cybersnooping: Collection and Analysis of Metadata and Content Professor Edward Felten Princeton University Abstract: COLL.11.20.13.pdf Recent reports indicate that governments (and perhaps others) have been collecting large amount of metadata and possibly content of phone calls, emails, and other communications. This talk will review what we know about current collection activities, and will consider the potential privacy implications of the collected information. Metadata collection in particular has significant privacy impact, especially when analyzed across a large population over time. Finally, the talk will consider the impact of collection activities on public policy, the relationship between online

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in General Relativity  

E-Print Network (OSTI)

Taking up a method devised by Taylor and Wheeler and collecting pieces of their work we offer a self-contained derivation of the formulae giving both the precession of the orbit of a planet around the Sun and the deflection angle of a light pulse passing near the Sun in the framework of General Relativity. The demonstration uses only elementary algebra without resorting to tensor formalism. No prior knowledge in relativity is needed to follow the presentation.

Christian Magnan

2007-12-21T23:59:59.000Z

62

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

63

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

64

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

65

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

66

Evaluation of Methods for Mercury Analysis of Appendix K Sorbent Tubes  

Science Conference Proceedings (OSTI)

emissions beginning in 2009. Sorbent tube mercury monitoring systems, as described in Appendix K to 40 CFR Part 75 (the Clean Air Mercury Rule), can fill two potential roles in mercury monitoring: as a replacement for a continuous emission mercury monitor (CEMM) in routine compliance monitoring, and as a potential reference method for relative accuracy test audits (RATA) of a CEMM. U.S. regulations do not specify the analytical procedures to be used to measure mercury in sorbent material, and few laborat...

2007-02-15T23:59:59.000Z

67

Creating MAGIC: system for generating learning object metadata for instructional content  

Science Conference Proceedings (OSTI)

This paper presents our latest work on building a system called MAGIC (Metadata Automated Generation for Instructional Content) that will automatically identify segments and generate critical metadata conforming with the SCORM (Sharable Content Object ... Keywords: e-learning, instructional video content analysis, learning object metadata, text analysis, text categorization

Ying Li; Chitra Dorai; Robert Farrell

2005-11-01T23:59:59.000Z

68

Sample-based collection and adjustment algorithm for metadata extraction parameter of flexible format document  

Science Conference Proceedings (OSTI)

We propose an algorithm for automatically generating metadata extraction parameters. It first enumerates candidates on the basis of metadata occurrence in training documents, and then examines these candidates to avoid side effects and to maximize effectiveness. ... Keywords: keyword extraction, layout characteristics, logical structure analysis, metadata extraction

Toshiko Matsumoto; Mitsuharu Oba; Takashi Onoyama

2010-06-01T23:59:59.000Z

69

Symmetric active/active metadata service for high availability parallel file systems  

Science Conference Proceedings (OSTI)

High availability data storage systems are critical for many applications as research and business become more data driven. Since metadata management is essential to system availability, multiple metadata services are used to improve the availability ... Keywords: Fault tolerance, Group communication, High availability, Metadata management, Parallel file systems

Xubin He; Li Ou; Christian Engelmann; Xin Chen; Stephen L. Scott

2009-12-01T23:59:59.000Z

70

Mercury in the Environment  

Science Conference Proceedings (OSTI)

EPRI periodically issues updates on critical research on environmental mercury, discussing scientific findings of crucial interest for a complete understanding of mercury sources, transport, fate, cycling, human exposure, and health effects. This document is part of that EPRI series, focusing on several critical reviews of mercury sources and impacts.

2007-03-30T23:59:59.000Z

71

S-CREAM - Semi-automatic CREAtion of Metadata  

Science Conference Proceedings (OSTI)

Richly interlinked, machine-understandable data constitute the basis for the Semantic Web. We provide a framework, S-CREAM, that allows for creation of metadata and is trainable for a specific domain. Annotating web documents is one of the major techniques ...

Siegfried Handschuh; Steffen Staab; Fabio Ciravegna

2002-10-01T23:59:59.000Z

72

NETL: Mercury Emissions Control Technologies - Development of Comprehensive  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Mercury Control Via Sorbent Injection Full-Scale Testing of Mercury Control Via Sorbent Injection DOE has identified technologies (based on past DOE and other R&D organizations' mercury measurement and control achievements) that are expected to be important in developing possible strategies on mercury control for the coal-fired electric utility industry. To address critical questions related to cost and efficiency of these mercury control technologies, DOE has funded the first of a kind large-scale initiative aimed at testing and evaluating large-scale mercury control technologies for coal-based power systems. These tests will collect cost and performance data with parametric and long term field experiments at power plants with existing air pollution control devices (APCDs) utilized to control other pollutants as well as mercury in hopes of providing the cheapest control options for the utility industry in mid-term application (5 to 10 years).

73

Mercury in mussels of Bellingham Bay, Washington, (USA)  

SciTech Connect

Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

Roesijadi, G.; Drum, A.S.; Bridge, J.R.

1978-11-01T23:59:59.000Z

74

The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal  

SciTech Connect

In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States); Holmes-Burns, H. [Westinghouse Savannah River Co., Aiken, SC (United States); Petersell, J. [AIMS, Inc., Golden, CO (United States); Schwendiman, L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1997-02-01T23:59:59.000Z

75

SCR Catalyst Management for Mercury Control  

Science Conference Proceedings (OSTI)

A number of EPRI projects conducted over the past several years have examined the effects of SCR catalyst on mercury speciation. These projects have focused on the various factors influencing mercury oxidation, related to both the flue gas conditions and the catalysts themselves. However, the majority of these studies have only examined the speciation at the SCR inlet and outlet. Much less is known about the interlayer speciation, however, which is very important when developing catalyst management ...

2012-11-16T23:59:59.000Z

76

Mercury Calibration System  

Science Conference Proceedings (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

77

Process for low mercury coal  

DOE Patents (OSTI)

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

78

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

R. J. Warmack, “Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor,” Ieee Trans.N. E. Selin, “Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

79

Process for low mercury coal  

SciTech Connect

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

80

OpenEI:Projects/Tools Metadata | Open Energy Information  

Open Energy Info (EERE)

Tools Metadata Tools Metadata Jump to: navigation, search The community Energy Tools Strategic Initiative created an openEI category called "CommunityEnergyTool." There was already a category called "Tool" in OpenEI, and after a couple of naming collisions, it became apparent that we had to deconflict these categories. We discussed providing separate forms that both fed into a common Tool category, one for community energy tools and one for the Low Emissions Development Strategies (LEDS) page. However, we wanted to leverage each others work, and during a meeting on December 15, 2010, we were able to come up with a merged Tool category that we believe meets the needs of both projects. The details of the decisions reached in that meeting are below. Participants: Sadie Cox, Jessica Katz, Jorn Aabakken, Ryan Mckeel, Samuel

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE`s needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities.

Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

82

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

83

Mercury Thermometer Alternatives Training  

Science Conference Proceedings (OSTI)

... tutorials are designed for educating various industrial user groups about the upcoming and current changes that ban the use of mercury products. ...

2013-06-04T23:59:59.000Z

84

MERCURY & DIMETHYLMERCURY EXPOSURE & EFFECTS  

SciTech Connect

This report identifies the dose response data available for several toxic mercury compounds and summarizes the symptoms and health effects associated with each of them.

HONEYMAN, J.O.

2005-12-13T23:59:59.000Z

85

Mercury Risk Assessment II  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency in 2005, will require significant reductions in mercury emissions from coal-fired power plants. In formulating the regulations, a central point of debate...

86

Habitat-Lite: A GSC case study based on free text terms for environmental metadata  

SciTech Connect

There is an urgent need to capture metadata on the rapidly growing number of genomic, metagenomic and related sequences, such as 16S ribosomal genes. This need is a major focus within the Genomic Standards Consortium (GSC), and Habitat is a key metadata descriptor in the proposed 'Minimum Information about a Genome Sequence' (MIGS) specification. The goal of the work described here is to provide a light-weight, easy-to-use (small) set of terms ('Habitat-Lite') that captures high-level information about habitat while preserving a mapping to the recently launched Environment Ontology (EnvO). Our motivation for building Habitat-Lite is to meet the needs of multiple users, such as annotators curating these data, database providers hosting the data, and biologists and bioinformaticians alike who need to search and employ such data in comparative analyses. Here, we report a case study based on semi-automated identification of terms from GenBank and GOLD. We estimate that the terms in the initial version of Habitat-Lite would provide useful labels for over 60% of the kinds of information found in the GenBank isolation-source field, and around 85% of the terms in the GOLD habitat field. We present a revised version of Habitat-Lite and invite the community's feedback on its further development in order to provide a minimum list of terms to capture high-level habitat information and to provide classification bins needed for future studies.

Kyrpides, Nikos; Hirschman, Lynette; Clark, Cheryl; Cohen, K. Bretonnel; Mardis, Scott; Luciano, Joanne; Kottmann, Renzo; Cole, James; Markowitz, Victor; Kyrpides, Nikos; Field, Dawn

2008-04-01T23:59:59.000Z

87

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

88

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

89

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

90

Mercury Control Update 2009  

Science Conference Proceedings (OSTI)

EPRI has been evaluating cost-effective methods for reducing mercury emissions from coal-fired power plants. This report summarizes the current status of mercury control technologies and offers detailed discussion of boiler bromide addition balance-of-plant impacts and activated carbon injection (ACI) tests at selected sites.

2009-12-14T23:59:59.000Z

91

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

92

DOE Mercury Control Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

93

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

94

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

95

A Flexible Online Metadata Editing and Management System  

SciTech Connect

A metadata editing and management system is being developed employing state of the art XML technologies. A modular and distributed design was chosen for scalability, flexibility, options for customizations, and the possibility to add more functionality at a later stage. The system consists of a desktop design tool or schema walker used to generate code for the actual online editor, a native XML database, and an online user access management application. The design tool is a Java Swing application that reads an XML schema, provides the designer with options to combine input fields into online forms and give the fields user friendly tags. Based on design decisions, the tool generates code for the online metadata editor. The code generated is an implementation of the XForms standard using the Orbeon Framework. The design tool fulfills two requirements: First, data entry forms based on one schema may be customized at design time and second data entry applications may be generated for any valid XML schema without relying on custom information in the schema. However, the customized information generated at design time is saved in a configuration file which may be re-used and changed again in the design tool. Future developments will add functionality to the design tool to integrate help text, tool tips, project specific keyword lists, and thesaurus services. Additional styling of the finished editor is accomplished via cascading style sheets which may be further customized and different look-and-feels may be accumulated through the community process. The customized editor produces XML files in compliance with the original schema, however, data from the current page is saved into a native XML database whenever the user moves to the next screen or pushes the save button independently of validity. Currently the system uses the open source XML database eXist for storage and management, which comes with third party online and desktop management tools. However, access to metadata files in the application introduced here is managed in a custom online module, using a MySQL backend accessed by a simple Java Server Faces front end. A flexible system with three grouping options, organization, group and single editing access is provided. Three levels were chosen to distribute administrative responsibilities and handle the common situation of an information manager entering the bulk of the metadata but leave specifics to the actual data provider.

Aguilar, Raul [Arizona State University; Pan, Jerry Yun [ORNL; Gries, Corinna [Arizona State University; Inigo, Gil San [University of New Mexico, Albuquerque; Palanisamy, Giri [ORNL

2010-01-01T23:59:59.000Z

96

Embedding Metadata and Other Semantics In Word-Processing Documents  

E-Print Network (OSTI)

in autotext (pre-loaded text modules that can be inserted in a document), applied by customized buttons or menus. Generally speaking tables are useful for microformats that do not have to be inline with other text. Microformats The techniques for embedding... Profile–A Journey about Metadata. D-Lib Magazine, 14(3/4), 1082-9873. Retrieved , from http://www.dlib.org/dlib/march08/pearce/03pearce.html [webpage] Sefton, P., (2006). The Integrated Content Environment for Research and Scholarship. ICE Website...

Sefton, Peter; Barnes, Ian; Ward, Ron; Downing, Jim

2008-12-08T23:59:59.000Z

97

Metadata from WMO Publication No. 47 and an Assessment of Voluntary Observing Ship Observation Heights in ICOADS  

Science Conference Proceedings (OSTI)

It is increasingly recognized that metadata can significantly improve the quality of scientific analyses and that the availability of metadata is particularly important for the study of climate variability. The International Comprehensive Ocean–...

Elizabeth C. Kent; Scott D. Woodruff; David I. Berry

2007-02-01T23:59:59.000Z

98

Metadata harvesting framework in P2P-based digital libraries  

Science Conference Proceedings (OSTI)

This paper reviews the main efforts in the research of harvesting metadata records in distributed digital libraries environment. The advantages and remained issues are briefly presented in order to have a comparison in our new approaches. A general scenario ... Keywords: digital library, metadata, peer-to-peer, services

Hao Ding; Ingeborg Solvberg

2004-10-01T23:59:59.000Z

99

A trigram hidden Markov model for metadata extraction from heterogeneous references  

Science Conference Proceedings (OSTI)

Our objective was to explore an efficient and accurate extraction of metadata such as author, title and institution from heterogeneous references, using hidden Markov models (HMMs). The major contributions of the research were the (i) development of ... Keywords: Bibliography, Hidden Markov models, Metadata extraction, Second order, Shrinkage

Bolanle Ojokoh; Ming Zhang; Jian Tang

2011-05-01T23:59:59.000Z

100

Advanced overview of version 2.0 of the open archives initiative protocol for metadata harvesting  

Science Conference Proceedings (OSTI)

This tutorial is a follow-on to "Introduction to the Open Archives Initiative Protocol for Metadata Harvesting" (OAI-PMH), given earlier the same day. It is appropriate for those who have completed the earlier tutorial or are already familiar with OAI-PMH. ... Keywords: OAI, OAI-PMH, harvesting, interoperability, metadata

Michael L. Nelson; Herbert Van de Sompel; Simeon Warner

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Looking back, looking forward: a metadata standard for LANL's aDORe repository  

Science Conference Proceedings (OSTI)

Although often disparaged or dismissed in the library community, the MARC standard, notably the MARCXML standard, provides surprising flexibility and robustness for mapping disparate metadata to a vendor-neutral format for storage, exchange, and downstream ... Keywords: MARCXML, data mapping, metadata standards

Beth Goldsmith; Frances Knudson

2006-06-01T23:59:59.000Z

102

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

103

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

104

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

105

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

106

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

107

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

108

Mercury Risk Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

109

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

110

Mercury Control Update 2010  

Science Conference Proceedings (OSTI)

A February 2008 decision by the U.S. District of Columbia Circuit Court of Appeals remanded the Clean Air Mercury Rule back to the U.S. Environmental Protection Agency, opening the possibility of more stringent federal emission limits similar to those already adopted by some states. To meet these stringent limits, high mercury removals based on Maximum Achievable Control Technology for individual power plants may be needed. To help electric power companies comply with tightening emission standards in a ...

2010-12-31T23:59:59.000Z

111

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

112

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

113

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

114

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

115

NETL: Mercury Emissions Control Technologies - Preliminary Field Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Field Evaluation of Mercury Control Using Combustion Modifications Preliminary Field Evaluation of Mercury Control Using Combustion Modifications General Electric – Energy and Environmental Research Corporation is developing a new technology that reduces the cost of mercury removal from flue gas by combining it with carbon reduction in a burnout system and simultaneously controlling nitrogen oxides emissions. Data on mercury removal at Western Kentucky Electric’s Green Station will be obtained and used to assess options to improve the efficiency of mercury removal. These options will be further investigated in pilot-scale testing on a 300 kW combustor. Related Papers and Publications: Preliminary Field Evaluation of Hg Control Using Combustion Modifications [PDF-732KB] - Presented at the 2004 Electric Utilities Environmental Conference, Tucson, AZ - January 19-22, 2004.

116

NETL: Mercury Emissions Control Technologies - University of North Dakota,  

NLE Websites -- All DOE Office Websites (Extended Search)

Table Of Contents for Field Testing Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems Mercury Oxidation Upstream of an ESP and Wet FGD Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems The scope of the project consists of attempting to control mercury at four different power plants using two novel concepts. The first concept is using furnace additives that will enhance the sorbent effectiveness for mercury capture. The other concept involves using novel treated carbons to significantly increase sorbent reactivity and resultant capture of Hg. The furnace additives will be tested at Leland Olds Station and Antelope Valley Station while the novel sorbents will be tested at Stanton Station Units 1 &10. Related Papers and Publications:

117

ORNL DAAC Announces Mercury EOS  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Mercury EOS Search and Order April 21, 2003: Mercury EOS, the ORNL DAAC's new search and order system that works with NASA's EOS ClearingHouse (ECHO), is now operational....

118

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

119

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network (OSTI)

too much is consumed. This toxic form of mercury is producedfrom inorganic mercury by sulfur- and iron-reducing bacteriadischarge of total mercury and monomethyl mercury to central

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

120

Mercury and frame-dragging in light of the MESSENGER flybys: conflict with general relativity, poor knowledge of the physical properties of the Sun, data reduction artifact, or still insufficient observations?  

E-Print Network (OSTI)

The Lense-Thirring precession of the longitude of perihelion of Mercury, as predicted by general relativity by using the value of the Sun's angular momentum S = 190 x 10^39 kg m^2 s^-1 from helioseismology, is -2.0 milliarcseconds per century, computed in a celestial equatorial reference frame. It disagrees at 4-{\\sigma} level with the correction 0.4 +/- 0.6 milliarcseconds per century to the standard Newtonian/Einsteinian precession, provided that the latter is to be entirely attributed to frame-dragging. The supplementary precession was recently determined in a global fit with the INPOP10a ephemerides to a long planetary data record (1914-2010) including also 3 data points collected in 2008-2009 from the MESSENGER spacecraft. The INPOP10a models did not include the solar gravitomagnetic field at all, so that its signature might have partly been removed in the data reduction process. On the other hand, the Lense-Thirring precession may have been canceled to a certain extent by the competing precessions caused by small mismodeling in the quadrupole mass moment of the Sun and in the PPN parameter beta entering the Schwarzschild-like 1PN precession, both modeled in INPOP10a. On the contrary, the oblateness of Mercury itself has a negligible impact on its perihelion. The same holds for the mismodelled actions of both the largest individual asteroids and the ring of the minor asteroids. Future analysis of more observations from the currently ongoing MESSENGER mission will shed further light on such an issue which, if confirmed, might potentially challenge our present-day picture of the currently accepted laws of gravitation and/or of the physical properties of the Sun.

Lorenzo Iorio

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas Mileage of 1994 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

122

Gas Mileage of 1985 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

123

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

124

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

125

SAP for Mercury Control  

Science Conference Proceedings (OSTI)

EPRI and the Illinois State Geological Survey (ISGS) have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas, upstream of the particulate control device, for mercury adsorption. The SAP is designed to help significantly reduce the cost of AC for power plant mercury control. This report summarizes laboratory and Phase 1 field test...

2009-06-17T23:59:59.000Z

126

Mercury Controls Update 2011  

Science Conference Proceedings (OSTI)

In light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011, the requirement to reduce emissions of mercury and other HAPs is one of the key challenges for coal-fired power plants. The proposed MACT ruling limits mercury emissions to 1.2 lb/TBtu at the stack (4.0 lb/TBtu for lignite-fired units), based on a 30-day rolling average including startup and shutdown periods. To help electri...

2011-12-21T23:59:59.000Z

127

Mercury in FGD Byproducts  

Science Conference Proceedings (OSTI)

This report provides interim results from two EPRI co-funded projects that pertain to what happens to mercury in flue gas from coal-fired power boilers when the scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and by USG Corporation under Cooperative Agreement DE-FC26-04NT42080, "Fate of Mercury in Synthetic Gypsum Used for Wallboard Production." The second project is being co-sponsore...

2005-12-07T23:59:59.000Z

128

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

129

Assessment of Mercury Emissions, Transport, Fate, and Cycling for the Continental United States: Model Structure and Evaluation  

Science Conference Proceedings (OSTI)

New findings on mercury emissions, cycling, and fate have allowed the development of improved simulation tools and the assembly of verification data sets for modeling mercury transport and deposition. This report describes new simulations of mercury emissions, transport, and deposition from the atmosphere that form an important first step in for relating mercury concentrations and deposition rates at particular geographic locations to their ultimate source regions.

2000-12-15T23:59:59.000Z

130

MIT's CWSpace project: packaging metadata for archiving educational content in DSpace  

E-Print Network (OSTI)

This paper describes work in progress on the research project CWSpace, sponsored by the MIT and Microsoft Research iCampus program, to investigate the metadata standards and protocols required to archive the course ...

Reilly, William

2006-01-20T23:59:59.000Z

131

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

132

Gas Mileage of 1986 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

133

Gas Mileage of 1991 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

134

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

135

Revealing the Unseen in Social Networking Sites: Is Your Metadata Protected?  

E-Print Network (OSTI)

The increased usage of mobile devices, equipped with digital cameras, has allowed users to take photographs and share them more easily and more quickly than in the past. Everyday thousands, if not hundreds of thousands, of photos are uploaded to social networking websites using computers and mobile devices. It has been said that "a picture is worth a thousand words " but now we must consider the additional information contained within these pictures taken with digital devices. This additional information, also known as metadata, can contain information such as the date and time the picture was taken, the make and model of the camera used to take the picture, and geographic location information or geographic metadata. Geographic metadata also provides valuable information such as latitude and longitude coordinates, altitude, and GPS time and date stamps using the Coordinated Universal Time (UTC) system. This information can be used to pinpoint the exact location where a picture was taken, and it can be used by criminals for their unlawful endeavors. In this paper, we will evaluate whether popular social networking sites are protecting their users ' picture metadata by performing an experiment to determine whether this metadata is accessible after it has been downloaded from these social networking websites. Risks associated with privacy and possible solutions, techniques, and tools to remove metadata in photographs uploaded to social networking sites will also be presented.

April L. Tanner, Ph.D.; Sedrick Jefferson; Gordon Skelton, Ph.D.; Myspace Are

2013-01-01T23:59:59.000Z

136

Why mercury prefers soft ligands  

Science Conference Proceedings (OSTI)

Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

Riccardi, Demian M [ORNL] [ORNL; Guo, Hao-Bo [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL; Parks, Jerry M [ORNL] [ORNL; Summers, Anne [University of Georgia, Athens, GA] [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco] [University of California, San Francisco; Liang, Liyuan [ORNL] [ORNL; Smith, Jeremy C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

137

Electrolytic recovery of mercury enriched in isotopic abundance  

DOE Patents (OSTI)

The present invention is directed to a method of electrolytically extracting liquid mercury from HgO or Hg.sub.2 Cl.sub.2. Additionally there are disclosed two related techniques associated with the present invention, namely (1) a technique for selectively removing product from different regions of a long photochemical reactor (photoreactor) and (2) a method of accurately measuring the total quantity of mercury formed as either HgO or Hg.sub.2 Cl.sub.2.

Grossman, Mark W. (Belmont, MA)

1991-01-01T23:59:59.000Z

138

Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

Hulet, G.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

139

Gas Mileage of 2002 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

140

Gas Mileage of 2008 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Gas Mileage of 1987 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

142

Gas Mileage of 1990 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

143

Gas Mileage of 1999 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1999 Mercury Cougar 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1999 Mercury Cougar View MPG Estimates Shared By...

144

Gas Mileage of 1984 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1984 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1984 Mercury Capri 18 City 20 Combined 22 Highway 1984...

145

Gas Mileage of 1988 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1988 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1988 Mercury Cougar 18 City 21 Combined 25 Highway 1988...

146

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

147

Gas Mileage of 1996 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1996 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1996 Mercury Cougar 17 City 19 Combined 24 Highway 1996...

148

Gas Mileage of 2007 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2007 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Mercury Grand Marquis View MPG Estimates...

149

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

150

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

151

Gas Mileage of 1989 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

152

Gas Mileage of 1993 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

153

Evaluation of Sorbent Trap Materials and Methods for Flue Gas Mercury Measurement  

Science Conference Proceedings (OSTI)

Sorbent traps are used as an alternative to continuous mercury monitors (CMM) for measuring vapor phase mercury concentrations in stacks of coal-fired power plants and for relative accuracy test audits (RATAs) of CMMs. EPRI has an ongoing program of research on sorbent trap methods, evaluating the performance of sorbent materials and the methods used to measure mercury on the sorbent traps. This report presents results of two investigations targeted at evaluating the performance of sorbent trap methods f...

2009-02-16T23:59:59.000Z

154

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

155

Public Health Guidance Note Mercury  

E-Print Network (OSTI)

Mercury (Hg) occurs in nature as the mineral cinnibar (red mercuric sulfide) and has found widespread use in industry. The commercial

unknown authors

2002-01-01T23:59:59.000Z

156

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

157

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

158

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

159

PUBLIC HEALTH STATEMENT MERCURY  

E-Print Network (OSTI)

This Public Health Statement is the summary chapter from the Toxicological Profile for Mercury. It is one in a series of Public Health Statements about hazardous substances and their health effects. A shorter version, the ToxFAQs™, is also available. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are

unknown authors

1999-01-01T23:59:59.000Z

160

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method for scavenging mercury  

DOE Patents (OSTI)

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

162

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

163

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

164

Mercury Emissions Data Analyses  

Science Conference Proceedings (OSTI)

This report contains the visual materials included in presentations given at Research Triangle Park, North Carolina on April 3, 2002. Participants included representatives from EPRI, DOE, RMB Consulting & Research, and EERC. The MACT Working Group gave a presentation on "Variability in Hg Emissions Based on SCEM Data." The visuals in the report are a set of graphs documenting results of mercury emissions over time, using semi-continuous emissions monitor (SCEM) data. The EPA Utility Working Group gave a ...

2002-05-02T23:59:59.000Z

165

Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates  

SciTech Connect

East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

2010-02-01T23:59:59.000Z

166

Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates  

SciTech Connect

East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

2010-02-01T23:59:59.000Z

167

Symmetric Active/Active Metadata Service for High Availability Parallel File Systems  

Science Conference Proceedings (OSTI)

High availability data storage systems are critical for many applications as research and business become more data-driven. Since metadata management is essential to system availability, multiple metadata services are used to improve the availability of distributed storage systems. Past research focused on the active/standby model, where each active service has at least one redundant idle backup. However, interruption of service and even some loss of service state may occur during a fail-over depending on the used replication technique. In addition, the replication overhead for multiple metadata services can be very high. The research in this paper targets the symmetric active/active replication model, which uses multiple redundant service nodes running in virtual synchrony. In this model, service node failures do not cause a fail-over to a backup and there is no disruption of service or loss of service state. We further discuss a fast delivery protocol to reduce the latency of the needed total order broadcast. Our prototype implementation shows that metadata service high availability can be achieved with an acceptable performance trade-off using our symmetric active/active metadata service solution.

He, X. [Tennessee Technological University; Ou, Li [Tennessee Technological University; Engelmann, Christian [ORNL; Chen, Xin [Tennessee Technological University; Scott, Stephen L [ORNL

2009-01-01T23:59:59.000Z

168

Gas Mileage of 2000 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

169

Gas Mileage of 2004 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

170

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

171

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

172

Gas Mileage of 1998 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

173

Gas Mileage of 2005 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

174

Gas Mileage of 1995 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

175

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

176

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

177

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

178

Comprehensive Metadata Query Interface for Heterogeneous Data Archives Based on Open Source PostgreSQL ORDBMS  

E-Print Network (OSTI)

We use PostgreSQL DBMS for storing XML metadata, described by the IVOA Characterisation Data Model. Initial XML type support in the PostgreSQL has recently been implemented. We make heavy use of this feature in order to provide comprehensive search over Characterisation metadata tree. We built a prototype of the Characterisation metadata query service, implementing two access methods: (1) HTTP-GET/POST based interface implements almost direct translation of the query parameter name into XPath of the data model element in the XML serialisation; (2) Web-Service based interface to receive XQuery which is also directly translated into XPath. This service will be used in the ASPID-SR archive, containing science-ready data obtained with the Russian 6-m telescope.

Ivan Zolotukhin; Nikolay Samokhvalov; Francois Bonnarel; Igor Chilingarian

2007-11-02T23:59:59.000Z

179

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

180

Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica  

SciTech Connect

Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO{sub 2}){sub 1-x}(LSiO{sub 1.5}){sub x}, where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S {le} 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu{sup t}){sub 2}. At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J. (MSU); (CMU); (Iowa State)

2010-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

182

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

183

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

184

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

185

Does proximity to coal-fired power plants influence fish tissue mercury?  

E-Print Network (OSTI)

Does proximity to coal-fired power plants influence fish tissue mercury? Dana K. Sackett · D. Derek+Business Media, LLC 2010 Abstract Much of the mercury contamination in aquatic biota originates from coal of contaminated fish. In this study, we quantified the relative importance of proximity to coal-fired power plants

186

Recovery from Mercury Contamination in the Second Songhua River, China  

E-Print Network (OSTI)

K. , & Rubin, J. R. (2005). Mercury levels and relationshipsJ. , et al. (1999). Mercury in contaminated coastalEnvironmental costs of mercury pollution. Science of the

Zhang, Z. S.; Sun, X. J.; Wang, Q. C.; Zheng, D. M.; Zheng, N.; Lv, X. G.

2010-01-01T23:59:59.000Z

187

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

188

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk...

189

FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY  

SciTech Connect

In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch. Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study showed that determination of representative BAFs for large rivers requires the collect

Halverson, N

2008-09-30T23:59:59.000Z

190

Common Metadata for Climate Modelling Digital Repositories CIM-enabled OASIS  

E-Print Network (OSTI)

Common Metadata for Climate Modelling Digital Repositories CIM-enabled OASIS CERFACS Technical-1.2.1 Scientific Digital Repositories DOCUMENT Deliverable D5.7 Month 36 Deliverable Title CIM-enabled OASIS to manipulate the CIM Authors S. Valcke, J.M. Epitalon, M.P. Moine, CERFACS Document Status Final Document Link

191

Towards an Automatic Metadata Management Framework for Smart Oil Charalampos Chelmis1  

E-Print Network (OSTI)

of the oil exploration process in the oil industry. Our system is capable of annotating models and images. Introduction Oil and gas organizations are in continuous pressure to investigate and employ innovativeTowards an Automatic Metadata Management Framework for Smart Oil Fields Charalampos Chelmis1 , Jing

Prasanna, Viktor K.

192

Metadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Explosions  

E-Print Network (OSTI)

Metadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Page Number: 0 Date:20/9/10 Time:20:22:18 1 S 2 SEISMIC MONITORING OF NUCLEAR EXPLOSIONSAu1 3 Paul G Administration, Beijing, China 6 Introduction 7 The original development of nuclear weapons, and their 8 first

Foulger, G. R.

193

Reliability Mechanisms for File Systems Using Non-Volatile Memory as a Metadata Store  

E-Print Network (OSTI)

itself. Write-protected data structures are used in the context of database management systems to limit of write protection. Figure 4 contains the structures required to maintain filesystem metadata integrity, the log and its supporting structures are stored in the protected region of MRAM along with the file

Miller, Ethan L.

194

System support for exploration and expert feedback in resolving conflicts during integration of metadata  

Science Conference Proceedings (OSTI)

A critical reality in integration is that knowledge obtained from different sources may often be conflicting. Conflict-resolution, whether performed during the design phase or during run-time, can be costly and, if done without a proper understanding ... Keywords: Exploration of alternatives, Feedback-based conflict-resolution, Metadata integration, System feedback, Taxonomy, User feedback

K. Selçuk Candan; Huiping Cao; Yan Qi; Maria Luisa Sapino

2008-11-01T23:59:59.000Z

195

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

196

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

197

Mercury Control Technology Selection Guide  

Science Conference Proceedings (OSTI)

EPRI, the DOE National Energy Technology Laboratory, and various other organizations have undertaken extensive RD programs over the past decade to develop cost-effective methods for reducing mercury emissions from coal-burning power plants. The field tests sponsored by these organizations have produced a significant amount of pilot and full-scale mercury control data for a variety of technologies at power plant sites with different boiler types, firing different coals, and equipped with various air emiss...

2006-09-22T23:59:59.000Z

198

Mercury Stability in FGD Byproducts  

Science Conference Proceedings (OSTI)

A significant fraction of the mercury in coals fired for power generation currently is removed by wet flue gas desulfurization (FGD) systems and incorporated in the byproducts from those systems. This report summarizes the results of an EPRI-sponsored project to measure the stability of mercury in FGD byproducts from coal-fired generating plants under simulated landfill and reuse conditions. The current effort repeated portions of a 2003 project, documented in EPRI report 1004254, to determine whether th...

2004-03-24T23:59:59.000Z

199

Mercury Atomic Clock Sets Time-Keeping Record  

Science Conference Proceedings (OSTI)

Mercury Atomic Clock Sets Time-Keeping Record. ... A prototype mercury optical clock originally was demonstrated at NIST in 2000. ...

2013-08-27T23:59:59.000Z

200

Effects of Chlorine and Other Flue Gas Parameters on Selective Catalytic Reduction Technology for Mercury Oxidation and Capture  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technologythe technology of choice for meeting stringent nitrogen oxides (NOx) emission limits for coal-fired electric generating plantshas potential for oxidizing mercury, which would provide enhanced removal in downstream systems. Catalyst behavior is relatively well understood for deNOx and SO2 oxidation, but less is known about mercury oxidation behavior. This test program was designed to determine general behavior of typical SCR catalysts on mercury oxidation and ...

2009-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fission modes of mercury isotopes  

E-Print Network (OSTI)

Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\\ast.

M. Warda; A. Staszczak; W. Nazarewicz

2012-05-25T23:59:59.000Z

202

Fission Modes of Mercury Isotopes  

Science Conference Proceedings (OSTI)

Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

Warda, M. [Maria Curie-Sk?odowska University-Poland; Staszczak, A. [Maria Curie-Sklodowska University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw

2012-01-01T23:59:59.000Z

203

Mercury-free fluorescent lighting  

Science Conference Proceedings (OSTI)

A brief comparative review of possible mercury free fluorescent lighting technologies is presented, including rare-gas positive column discharges, molecular discharges, and dielectric barrier discharges. Detailed experimental results on xenon positive column discharges will then be considered. In order to judge whether xenon-based discharges are a viable UV source it is necessary to measure the radiant emittance (power per unit area) for the vacuum ultraviolet (VUV) resonance xenon emission at 147 nm. Two techniques to determine the VUV radiant emittance have been developed and applied to xenon discharges. One method combines the measured resonance level density using absorption spectroscopy and a calculation of the trapped decay rate for the resonance radiation to arrive at the radiant emittance at 147 nm. A second method utilizes a direct measurement of the radiance (power per unit area per unit solid angle) at 147 nm using a calibrated VUV photodiode, and a calculation of the relative angular distribution of the resonance radiation to determine the radiant emittance. In both techniques a simulation of the transport of resonance radiation is key to determining the radiant emittance.

Doughty, D.A. [General Electric Corporate Research and Development, Schenectady, NY (United States)

1996-05-01T23:59:59.000Z

204

US Food and Drug Administration survey of methyl mercury in canned tuna  

SciTech Connect

Methyl mercury was determined by the US Food and Drug Administration (FDA) in 220 samples of canned tuna collected in 1991. Samples were chosen to represent different styles, colors, and packs as available. Emphasis was placed on water-packed tuna, small can size, and the highest-volume brand names. The average methyl mercury (expressed as Hg) found for the 220 samples was 0.17 ppm; the range was <0.10-0.75 ppm. Statistically, a significantly higher level of methyl mercury was found in solid white and chunk tuna. Methyl mercury level was not related to can size. None of the 220 samples had methyl mercury levels that exceeded the 1 ppm FDA action level. 11 refs., 1 tab.

Yess, J. [Food and Drug Administration, Washington, DC (United States)

1993-01-01T23:59:59.000Z

205

Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism  

E-Print Network (OSTI)

AJ (2005) Inorganic mercury dissociates preassembledmetabolize toxicants, such as mercury, differently. RNA wasexpression microarrays. Mercury levels were measured using

2011-01-01T23:59:59.000Z

206

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

207

Critical review of mercury chemistry in flue gas.  

SciTech Connect

Mercury (Hg) and its compounds have long been recognized as potentially hazardous to human health and the environment. Many man-made sources of mercury have been reduced in recent years through process changes and control measures. However, emissions of mercury from coal-fired power plants, while exceedingly dilute by the usual pollution standards, still constitute a major source when considered in the aggregate. Concerns over those emissions and the prospect of impending emissions regulations have led to a wide range of research projects dealing with the measurement and control of mercury in flue gas. This work has made considerable progress in improving the understanding of mercury emissions and their behavior, but inconsistencies and unexpected results have also shown that a better understanding of mercury chemistry is needed. To develop a more complete understanding of where additional research on mercury chemistry is needed, the U.S. Department of Energy (DOE) asked Argonne National Laboratory (Argonne) to conduct a critical review of the available information as reported in the technical literature. The objectives were to summarize the current state of the art of chemistry knowledge, identify significant knowledge gaps, and recommend future research to resolve those gaps. An initial evaluation of potential review topics indicated that the scope of the review would need to be limited and focused on the most important topics relative to mercury control. To aid in this process, Argonne developed a brief survey that was circulated to researchers in the field who could help identify and prioritize the many aspects of the problem. The results of the survey were then used to design and guide a highly focused literature search that identified key papers for analysis. Each paper was reviewed, summarized, and evaluated for the relevance and quality of the information presented. The results of that work provided the basis for conclusions regarding the state of knowledge of mercury chemistry and recommendations for further research. This report begins by summarizing the survey process and describing how the results were used to shape the critical review. Analyses of information obtained from the various publications are presented chronologically, beginning with the earliest relevant publication found and concluding with the end of the review in early 2003. Finally, the conclusions and recommendations for future research are presented. The survey instrument is included in Appendix A, while detailed information on each of the publications reviewed is given in Appendix B.

Mendelsohn, M. H.; Livengood, C. D.

2006-11-27T23:59:59.000Z

208

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, M.M.; Yost, F.G.

1986-04-09T23:59:59.000Z

209

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

210

NETL: Emissions Characterization - Mercury Reactions in Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Reactions in Power Plant Plumes: Bowen Study DOE-NETL is participating in a field study, managed by EPRI, to document the changes in mercury speciation that may be...

211

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

OpenEI by expanding it. Mercury Solar Systems is a company located in New Rochelle, New York . References "Mercury Solar Systems" Retrieved from "http:en.openei.orgw...

212

Gas Mileage of 2009 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2009 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2009 Mercury Grand Marquis FFV Gas 16 City 19 Combined 24 Highway E85 12 City...

213

Gas Mileage of 2010 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2010 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

214

Gas Mileage of 2011 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2011 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

215

Gas Mileage of 2003 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2003 Mercury Mountaineer 2WD FFV 6 cyl, 4.0 L, Automatic 5-spd, Regular Gas or E85 Compare 2003 Mercury Mountaineer 2WD FFV Gas 14 City 16 Combined 19 Highway E85 10 City...

216

Gas Mileage of 2006 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Highway 2006 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2006 Mercury Grand Marquis Gas 15 City 18 Combined 23 Highway E85 11 City 13...

217

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

Ernie F. Stine

2002-08-14T23:59:59.000Z

218

Enabling run-time memory data transfer optimizations at the system level with automated extraction of embedded software metadata information  

Science Conference Proceedings (OSTI)

The information about the run-time behavior of software applications is crucial for enabling system level optimizations for embedded systems. This embedded Software Metadata information is especially important today, because several complex multi-threaded ...

Alexandros Bartzas; Miguel Peon-Quiros; Stylianos Mamagkakis; Francky Catthoor; Dimitrios Soudris; Jose M. Mendias

2008-01-01T23:59:59.000Z

219

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

220

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities’ mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wet–flue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

222

Transitioning from Mercury Thermometers to Alternative ...  

Science Conference Proceedings (OSTI)

... methods in the petroleum industry continue to specify mercury- in-glass thermometers. ... Thermometers are available from many commercial sources ...

2013-06-03T23:59:59.000Z

223

Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1  

SciTech Connect

May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1997-09-08T23:59:59.000Z

224

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

225

Lumex Mercury CEM  

E-Print Network (OSTI)

Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. ETV works in partnership with recognized standards and testing organizations; with stakeholder groups that consist of buyers, vendor organizations, and permitters; and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible. The Advanced Monitoring Systems (AMS) Center, one of six technology centers under ETV, is operated by Battelle in cooperation with EPA’s National Exposure Research Laboratory. The AMS Center has recently evaluated the performance of continuous emission monitors used to measure mercury in flue gases. This

unknown authors

2001-01-01T23:59:59.000Z

226

Metadata Provided to OSTI via 241.4 (Software Submission) | Scientific and  

Office of Scientific and Technical Information (OSTI)

4 (Software Submission) 4 (Software Submission) Print page Print page Email page Email page STI Metadata Elements Required (R), Required, but allows for default value (RWD), or Optional (O). Metadata Element Description Required/Optional Record Status Identifies the software product as new or revised R Software Title The title, acronym, and short KWIC (keywords in context) title of the software. R Software Developer(s) Unlimited number is acceptable; the primary software developer should be listed first. Allows for NONE as an option for few cases where necessary. R E-mail Address(es) Provide in same order as developer names. Will not be available to end-user. O Site Product Number Unique site number that identifies software product. O DOE Contract Number Required for all (can be NONE) R R&D Project ID

227

Effects of Chlorine and Other Flue Gas Parameters on SCR Catalyst Mercury Oxidation and Capture Efficiencies  

Science Conference Proceedings (OSTI)

Although catalyst behavior is relatively well understood with respect to deNOx and SO2 oxidation, relatively little is known about mercury oxidation behavior. This test program seeks to evaluate the mercury oxidation performance of multiple types of Selective Catalytic Reduction (SCR) catalyst as a function of changes in various flue gas parameters, including chlorine level, ammonia level, flow rate, and temperature. This interim report describes the results from parametric testing on the first catalyst.

2008-08-27T23:59:59.000Z

228

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

Constance Senior; Temi Linjewile

2003-10-31T23:59:59.000Z

230

RETRACTED: Model-driven development of OLAP metadata for relational data warehouses  

Science Conference Proceedings (OSTI)

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The authors have plagiarized part of a paper that ...

Jesús Pardillo; Jose-Norberto Mazón

2012-01-01T23:59:59.000Z

231

Apparatus for control of mercury  

DOE Patents (OSTI)

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

232

Mercury and platinum abundances in mercury-manganese stars  

E-Print Network (OSTI)

We report new results for the elemental and isotopic abundances of the normally rare elements mercury and platinum in HgMn stars. Typical overabundances can be 4 dex or more. The isotopic patterns do not follow the fractionation model of White et al (1976).

C. M. Jomaron; M. M. Dworetsky; D. A. Bohlender

1998-05-06T23:59:59.000Z

233

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

234

www.elsevier.com/locate/envres Decadal mercury trends in San Francisco Estuary sediments  

E-Print Network (OSTI)

Monitoring sediment quality and total mercury concentrations over the period 1993–2001 at 26 stations in San Francisco Estuary has shown the seasonal cycling of mercury sediment concentrations, as well as a significant (Po0:05) decrease in those concentrations at eight stations across the estuary. This decrease in sediment mercury concentrations is attributed to the transport of relatively cleaner sediment to the estuary from the Sacramento River and San Joaquin River watersheds. Despite the decreases observed in some parts of the estuary, no corresponding trend has been found in concurrent studies on sport fish and bivalves in the estuary.

Christopher H. Conaway A; John R. M. Ross B; Richard Looker C; Robert P. Mason D; A. Russell Flegal A

2006-01-01T23:59:59.000Z

235

RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES  

SciTech Connect

Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

Robin M. Stewart

1999-09-29T23:59:59.000Z

236

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network (OSTI)

Long-period forcing of Mercury’s libration in longitude.M. : Resonant forcing of Mercury’s libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

237

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

238

Control of mercury methylation in wetlands through iron addition  

E-Print Network (OSTI)

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

239

Amended Silicated for Mercury Control  

Science Conference Proceedings (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

240

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mercury in Alaskan Eskimo mothers and infants  

E-Print Network (OSTI)

The potential danger of natural mercury accumulation in the diet of the Eskimo is evaluated through mercury levels determined in cord blood, placenta, maternal blood, hair, and milk of 38 maternal-infant pairs from Anchorage and the Yukon-Kuskokwim Delta. Although mercury levels are not discernably dangerous, trends to larger accumulations in maternal and fetal RBC and placental tissue with proximity to the sea and consumption of seals during pregnancy provide the basis for considering possible indicators of neonatal involvement. Mercury level in RBC from cord blood appeared as the best potential indicator of this involvement, although relationships with the mother's diet and level of mercury in the placenta also appear useful. In this area, average and maximal mercury levels in cord blood are 39 and 78 ng/ml, respectively, far below the acknowledged toxic level in infants of these mothers who eat seals or fish every day during their pregnancy.

William A. Galster

1976-01-01T23:59:59.000Z

242

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

243

Release of Mercury During Curing of Concrete Containing Fly Ash and Mercury Sorbent Material  

Science Conference Proceedings (OSTI)

This report provides laboratory data on mercury release during the initial curing stage of concrete made with fly ash or mixtures of fly ash and activated carbon containing mercury. These experiments suggest that mercury is not released from these concretes during initial curing.

2002-12-09T23:59:59.000Z

244

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

245

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

246

An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii | Open  

Open Energy Info (EERE)

Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Abstract Concentrations of soil mercury of 15 to 1250ppb were determined in the Puna geothermal areaon the lower east rift zone of Kilauea volcano. As the area is young and volcanically active a wide range of soils exist. Hg concentrations are partly controlled by such factors as soil development and organic content, which tend to complicate interpretation of the absolute concentrations measured. The pH of both ground gas and soil may also influence transport and fixation of the Hg, and some low pH soils may be due to SO2 and C02 in ground gas. By relating the Hg concentration of

247

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

248

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

249

NETL: Mercury Emissions Control Technologies - Non-Thermal Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma Based Removal of Mercury Project Summary Powerspan Corp. will pilot test a multi-pollutant technology that converts mercury into mercuric oxide, nitrogen oxide...

250

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

251

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

252

THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE  

Science Conference Proceedings (OSTI)

Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

Sandra Meischen

2004-07-01T23:59:59.000Z

253

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

254

NETL: Mercury Emissions Control Technologies - Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Integrated Approach to Mercury Control This project will demonstrate a novel multi-pollutant control technology for coal-fired power plants that can reduce...

255

NETL: Mercury Emissions Control Technologies - Brominated Sorbents...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPs, and Fly Ash Use in Concrete Sorbent Technology will test two technologies for mercury removal from flue gas. Their concrete safe brominated sorbent will be tested at...

256

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

257

Mercury Emission Measurement at a CFB Plant  

DOE Green Energy (OSTI)

In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

John Pavlish; Jeffrey Thompson; Lucinda Hamre

2009-02-28T23:59:59.000Z

258

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

259

Establishing Measurement Traceability for Gaseous Mercury ...  

Science Conference Proceedings (OSTI)

... NIST already provides mercury traceability to the SI for many solid- and liquid-matrix materials, including fossil fuels, through the SRM program, but ...

2012-10-01T23:59:59.000Z

260

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using SCR and SNCR NOx Control Technologies Determination of the Speciated Mercury Inventory at Four Coal-Fired Boilers Using Continuous Hg Monitors Longer-Term Testing of...

262

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

263

NETL: Mercury Emissions Control Technologies - Modifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Jointly funded by DOE and the Electric Power Research Institute (EPRI), this project's purpose is to investigate novel approaches of capturing elemental and...

264

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

265

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

266

Understanding Mercury Chemistry in Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

A pilot combustor has been used successfully to investigate the reaction mechanisms that govern oxidation and sorption onto fly ash of vapor-phase mercury in coal combustion flue gases. This project was designed to gain the understanding necessary to intelligently manipulate conditions leading to increased native capture by the fly ash and/or oxidation for subsequent capture by existing air pollution controls. This report describes parametric tests conducted to determine the relative impact of each varia...

2006-10-11T23:59:59.000Z

267

Controls on Fluxes of Mercury in Aquatic Food Webs: Application of the Dynamic Mercury Cycling Model to Four Enclosure Experiments w ith Additions of Stable Mercury Isotopes  

Science Conference Proceedings (OSTI)

New controls on utility mercury emissions are under consideration in order to limit human exposure to mercury resulting from fish consumption. Evaluation of such measures requires an understanding of how mercury cycles through lakes and streams. This report describes the application of EPRI's Dynamic Mercury Cycling Model (D-MCM) to experiments involving the addition of stable mercury Hg(II) isotopes to four 10-meter-diameter enclosures in a lake.

2001-09-21T23:59:59.000Z

268

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

269

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

270

Recovery of Mercury From Contaminated Liquid Wastes  

SciTech Connect

The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles.

1998-06-12T23:59:59.000Z

271

Fly ash properties and mercury sorbent affect mercury release from curing concrete  

Science Conference Proceedings (OSTI)

The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe [State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2009-04-15T23:59:59.000Z

272

2006 Mercury Control Technology Conference Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

273

Mercury removal from solid mixed waste  

SciTech Connect

The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I{sub 2} leaching processes to determine the applicability of this process to mercury containing solid mixed waste.

Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

1994-12-31T23:59:59.000Z

274

Metadata for Digital Libraries: Architecture and Design Rationale \\Lambda Michelle Baldonado ChenChuan K. Chang Luis Gravano  

E-Print Network (OSTI)

, the full text of #12; a textual document would be included as the value of its Full Text attribute, interoperabil­ ity, attribute model, attribute model translation, meta­ data repository, InfoBus, proxy this information metadata. In an earlier paper [1], we analyzed the needs of our digital library InfoBus archi

Gravano, Luis

275

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

276

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

277

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-12-31T23:59:59.000Z

278

Analysis of mercury diffusion pumps  

SciTech Connect

Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs.

Dunn, K.A.

1991-01-01T23:59:59.000Z

279

Treatment of mercury containing waste  

DOE Patents (OSTI)

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

280

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.  

E-Print Network (OSTI)

K. ; Khan, R. H. Low dose mercury toxicity and human health.Gochfeld, M. Cases of mercury exposure, bioavailability, andto enhanced extraction for mercury. Acknowledgements For

Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

2008-01-01T23:59:59.000Z

282

A Mass Balance for Mercury in the San Francisco Bay Area  

E-Print Network (OSTI)

and transformation of mercury. I. Model development andand transformation of mercury. II. Simulation results forFernandez, G. C. J. , Mercury and plants in contaminated

MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

2005-01-01T23:59:59.000Z

283

Metadata Provided to OSTI via AN 241.3 Web | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

AN 241.3 Web AN 241.3 Web Print page Print page Email page Email page STI Metadata Elements Required (R), Required, but allows for default value (RWD), or Optional (O). Element Description Requirements Author(s) Include all author names; the primary author should be listed first. Allows for "Not Available" as an option for few cases where necessary. R E-mail Address(es) Provide in same order as author names. Will not be available to the end-user. This data is used by OSTI to automate author notification. O Country of Publication Include if country of publication is not United States; defaults to United States RWD Description/ Abstract Defined as the abstract for STI Products. Provide if available (it can be excerpted from the technical report). Text should be publicly releasable information (not personal, financial, or sensitive). Text should be spell-checked, limited in length to 5000 characters, and follow input standards for special characters.

284

Metadata Provided to OSTI via 241.1 Web | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

1 Web 1 Web Print page Print page Email page Email page STI Metadata Elements Required (R), Required, but allows for default value (RWD), or Optional (O). Element Description Requirements Author(s) Include all author names; the primary author should be listed first. Allows for "Not Available" as an option for few cases where necessary. R E-mail Address(es) Provide in same order as author names. Will not be available to the end-user. This data is used by OSTI to automate author notification. O Country of Publication Include if country of publication is not United States; defaults to United States RWD Description/ Abstract Defined as the abstract for STI Products. Provide if available (it can be excerpted from the technical report). Text should be publicly releasable information (not personal, financial, or sensitive). Text should be spell-checked, limited in length to 5000 characters, and follow input standards for special characters.

285

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

286

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

287

AN EXPERIMENT ON DEHASIDDHI WITH MERCURY  

E-Print Network (OSTI)

ABSTRACT: The author experimented with the dehasiddhi using mercury. The interesting experiment is narrated in this article. The land of Bharath is the only place which developed the science dealing with the metal remedies for holistic health during the Vedic period when people in other parts of the world continued to use potions and witchcraft to cure diseases of the body. This science in Vedic language is termed rasa sastra. It uses metals such as iron, copper, silver, gold mercury, elements such as iron, copper, silver, gold mercury, elements such as sulphur, mica and other materials such as shells, pearls corals jewels, salts, etc in a purified and processed form for internal

M. P Alexander

1995-01-01T23:59:59.000Z

288

Phytoremediation of Ionic and Methyl Mercury P  

DOE Green Energy (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

289

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

290

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

291

ZZ Mercury Storage Book.indb  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final Mercury Storage EIS, contact: AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY ENVIRONMENTAL IMPACT STATEMENT David Levenstein, Document Manager Office of Environmental Compliance (EM-41) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Fax: 877-274-5462 Printed with soy ink on recycled paper Cover Sheet Lead Agency: U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Environmental Protection Agency (EPA)

292

Why 25?? and Y-12 mercury losses  

NLE Websites -- All DOE Office Websites (Extended Search)

"25"? and Y-12 mercury losses Recently I learned something new regarding the "shortcut names" or code names for uranium-235 and plutonium-239. It seems the codes used to discuss...

293

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

294

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

295

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

296

Analysis of Alternative Mercury Control Strategies  

Reports and Publications (EIA)

This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

Alan Beamon

2005-01-01T23:59:59.000Z

297

NETL: Mercury Emissions Control Technologies - Utilization of...  

NLE Websites -- All DOE Office Websites (Extended Search)

for mercury removal is produced from coal in a gasification process in-situ at coal burning plant. The main objective of this project is to obtained technical information...

298

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

299

NETL: News Release - Meeting Mercury Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

June 18, 2001 June 18, 2001 Meeting Mercury Standards DOE Selects 6 Projects to Develop Cost-Saving Technologies for Curbing Mercury Emissions from Coal Power Plants Power Plant with Fish - MORGANTOWN, WV - With President Bush's National Energy Plan calling for mandatory reductions in the release of mercury from electric power plants - part of the Plan's multi-pollutant reduction strategy - the U.S. Department of Energy today named six new projects to develop innovative technologies that can curb mercury emissions from coal plants more effectively and at a fraction of today's costs. The winning projects were submitted by the University of North Dakota's Energy & Environmental Research Center in Grand Forks; URS Group. Inc., of Austin, TX; CONSOL, Inc., of Library, PA; Southern Research Institute in

300

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

Science Conference Proceedings (OSTI)

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Symplectic Integrator Mercury: Bug Report  

E-Print Network (OSTI)

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

302

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

303

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

304

Article Removal of Mercury by Foam Fractionation Using Surfactin,  

E-Print Network (OSTI)

Abstract: The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ionsInt. J. Mol. Sci. 2011, 12 8246 was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required 10 × CMC. However, the enrichment of mercury

A Biosurfactant; Hau-ren Chen; Chien-cheng Chen; A. Satyanarayana Reddy; Chien-yen Chen; Wun Rong Li; Min-jen Tseng; Hung-tsan Liu; Wei Pan; Jyoti Prakash Maity; Shashi B. Atla

2011-01-01T23:59:59.000Z

305

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

306

Mercury abatement report on the US Department of Energy Oak Ridge Y- 12 Plant for fiscal year 1995  

SciTech Connect

This Annual Mercury Abatement Report for fiscal year 1995 summarizes the status of activities and the levels of mercury contamination in East Fork Poplar Creek (EFPC) resulting from activities at the US Department of Energy`s Oak Ridge Y-12 Plant. The report outlines the status of the on-going project activities in support of project compliance, the results of the ongoing sampling and characterization efforts, the biological monitoring activities, and our conclusions relative to the progress in demonstrating compliance with the National Pollutant Discharge Elimination (NPDES) permit. Overall, the pace of mercury activities at the Y-12 Plant is ahead of the compliance schedules in the NPDES permit and new and exciting opportunities are being recognized for achieving additional mercury reductions. These opportunities were not felt to be achievable several years ago.

NONE

1995-11-01T23:59:59.000Z

307

Metadata Provided to OSTI via Batch Upload (Site-to-OSTI) | Scientific and  

Office of Scientific and Technical Information (OSTI)

Batch Upload (Site-to-OSTI) Batch Upload (Site-to-OSTI) Print page Print page Email page Email page STI Metadata Elements Required (R), Required, but allows for default value (RWD), or Optional (O). Element Description Requirements Author(s) Include all author names; the primary author should be listed first. Allows for "Not Available" as an option for few cases where necessary. R E-mail Address(es) Provide in same order as author names. Will not be available to the end-user. This data is used by OSTI to automate author notification. O Country of Publication Include if country of publication is not United States; defaults to United States RWD Description/ Abstract Defined as the abstract for STI Products. Provide if available (it can be excerpted from the technical report). Text should be publicly releasable information (not personal, financial, or sensitive). Text should be spell-checked, limited in length to 5000 characters, and follow input standards for special characters.

308

On the oscillations in Mercury's obliquity  

E-Print Network (OSTI)

One major objective of MESSENGER and BepiColombo spatial missions is to accurately measure Mercury's rotation and its obliquity in order to obtain constraints on internal structure of the planet. Which is the obliquity's dynamical behavior deriving from a complete spin-orbit motion of Mercury simultaneously integrated with planetary interactions? We have used our SONYR model integrating the spin-orbit N-body problem applied to the solar System (Sun and planets). For lack of current accurate observations or ephemerides of Mercury's rotation, and therefore for lack of valid initial conditions for a numerical integration, we have built an original method for finding the libration center of the spin-orbit system and, as a consequence, for avoiding arbitrary amplitudes in librations of the spin-orbit motion as well as in Mercury's obliquity. The method has been carried out in two cases: (1) the spin-orbit motion of Mercury in the 2-body problem case (Sun-Mercury) where an uniform precession of the Keplerian orbital plane is kinematically added at a fixed inclination (S2K case), (2) the spin-orbit motion of Mercury in the N-body problem case (Sun and planets) (Sn case). We find that the remaining amplitude of the oscillations in the Sn case is one order of magnitude larger than in the S2K case, namely 4 versus 0.4 arcseconds (peak-to-peak). The mean obliquity is also larger, namely 1.98 versus 1.80 arcminutes, for a difference of 10.8 arcseconds. These theoretical results are in a good agreement with recent radar observations but it is not excluded that it should be possible to push farther the convergence process by drawing nearer still more precisely to the libration center.

E. Bois; N. Rambaux

2007-09-07T23:59:59.000Z

309

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Final Mercury Storage Environmental Impact Statement: DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage January 19, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON - The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations. Based on these factors, DOE identified the Waste Control Specialists, LLC, site near Andrews, Texas, as the preferred alternative for long-term management and storage of mercury. DOE will consider the environmental impact information presented in this

310

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

311

Laser altimeter measurements from MESSENGER's recent mercury flybys  

E-Print Network (OSTI)

The performance of the Mercury Laser Altimeter is reported from MESSENGER's flybys of Mercury in January and October 2008. The instrument ranged to 600 km at >60deg incidence angle and 1600 km in nadir direction.

Sun, Xiaoli

312

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network (OSTI)

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

Lü, Jiangning

2011-01-01T23:59:59.000Z

313

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

314

Mercurial commitments with applications to zero-knowledge sets  

Science Conference Proceedings (OSTI)

We introduce a new flavor of commitment schemes, which we call mercurial commitments. Informally, mercurial commitments are standard commitments that have been extended to allow for soft decommitment. Soft decommitments, on the one hand, ...

Melissa Chase; Alexander Healy; Anna Lysyanskaya; Tal Malkin; Leonid Reyzin

2005-05-01T23:59:59.000Z

315

VEE-0020 - In the Matter of Mercury Fuel Service, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

316

Removal of mercury from coal via a microbial pretreatment process  

Science Conference Proceedings (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

317

NIST: Mercury, Atomic Ref. Data for Elect. Struct. Calc.  

Science Conference Proceedings (OSTI)

Table of contents logo, Atomic Reference Data for Electronic Structure Calculations. Mercury. Key to notation | HTML table ...

318

U.S. Mercury Deposition Under Alternative Regulatory Scenarios  

Science Conference Proceedings (OSTI)

The Federal Clean Air Mercury Rule regulates electric utility mercury emissions while permitting individual states to enact stricter rules at their discretion. Computer modeling has shown how mercury deposition patterns will change if all regulated utility power plants follow the Federal rule, vs. alternative state rules. These patterns of deposition can be compared to the limiting case: what if all U.S. utility mercury emissions were zeroed out? The findings show that regulations stricter than the Feder...

2007-12-14T23:59:59.000Z

319

Selective Catalytic Reduction Mercury Oxidation Data to Support Catalyst Management  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) mercury oxidation can be pivotal for Mercury and Air Toxics Standards compliance, especially for those units that rely on co-benefits as their primary method of mercury control. Much work has been done historically to understand the mercury behavior across SCRs, especially as a function of operating conditions, and in particular, flue gas composition. The present work seeks to integrate the accumulated knowledge into a practical document that will aid utilities in ...

2013-11-13T23:59:59.000Z

320

End of an Era: NIST to Cease Calibrating Mercury ...  

Science Conference Proceedings (OSTI)

... Burning of coal is a major source of vaporous mercury released into the atmosphere. Compact fluorescents use less electricity ...

2011-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bench-scale studies with mercury contaminated SRS soil  

SciTech Connect

Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

Cicero, C.A.

1995-12-31T23:59:59.000Z

322

Mercury Removal Characteristics of Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/ electrostatic precipitator (ESP) locations in coal-fired power stations in China, and then various mercury speciation, Hg0, Hg2+ ... Keywords: coal-fired power plant, mercury, fabric filter, electrostatic precipitator

Yang Liguo, Fan Xiaoxu, Duanyu Feng, Wang Yunjun

2013-01-01T23:59:59.000Z

323

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

324

MERCURY CONTROL FOR MWCs USING THE SODIUM TETRASULFIDE PROCESS  

E-Print Network (OSTI)

technologies for mercury control for flue gases of Municipal Waste Combustors (MWCs) not only ecological hydrochloric acid (HCl) and elemental mercury (Hg") under oxidizing conditions of the off-gases downstream to the decreasing gas temperature, the elemental mercury is able to react with other flue gas components. The main

Columbia University

325

Mercury and Dioxin Control for Municipal Waste Combustors Anthony Licata  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

326

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

327

Mercury levels in Lake Powell. Bioamplification of mercury in man-made desert reservoir  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield mean mercury levels in ppb of 0.01 in water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Trout were unique in having lower concentrations in muscle than in highly vascularized blood tissues. Concentrations increased with increased body weight and higher levels on the food chain. Muscle of some large fish over 2 kg whole body weight exceeded 500 ppb. Bioamplification of mercury up the food chain and association of mercury with organic matter are demonstrated.

Potter, L.; Kidd, D.; Standiford, D.

1975-01-01T23:59:59.000Z

328

EVALUATION OF MERCURY COOLED BREEDER REACTORS  

SciTech Connect

A technical and economic evaluation of a mercury-cooled fast breeder reactor is presented. The objectives of the program were to establish the technical feasibility of a fast breeder reactor cooled with boiling mercury and to evaluate the long-range potential of such a reactor power plant for production of economic power. Details of the conceptual design of a 100-Mw(e) reactor and system are discussed. The power cost from a mercury cooled fast breeder reactor was estimated as 21.4 mills/kwh which is competitive with the power cost for the initial Enrico Fermi plant. It was concluded that this reactor concept is technically feasible and has promising long-range economic potential. (M.C.G.)

Battles, D.W.

1960-12-14T23:59:59.000Z

329

October 2001 Mercury Report of Earth Engineering Center to New York Academy of Sciences SOURCES AND MATERIAL BALANCE OF MERCURY  

E-Print Network (OSTI)

of mercury from MWC flue gases. After MACT controls reduce total mercury emission rates by 90% or greater not address any chemical transformations affecting mercury in soil, water or sediments (oxidation, reduction Speciation in Flue Gases: Overcoming the Analytical Difficulties," Brooks Rand Ltd., Seattle, WA, Fall 1991

Columbia University

330

Mercury's spin-orbit model and signature of its dynamical parameters  

E-Print Network (OSTI)

The 3:2 spin-orbit resonance between the rotational and orbital motions of Mercury results from a functional dependance on a tidal friction adding to a non-zero eccentricity with a permanent asymmetry in the equatorial plane of the planet. The upcoming space missions, MESSENGER and BepiColombo with onboard instrumentation capable of measuring the Mercury's rotational parameters, stimulate the objective to attempt to an accurate theory of the planet's rotation. We have used our BJV relativistic model of solar system integration including the spin-orbit motion of the Moon. This model had been previously built in accordance with the requirements of the Lunar Laser Ranging observational accuracy. We extended this model to the spin-orbit couplings of the terrestrial planets including Mercury; the updated model is called SONYR (acronym of Spin-Orbit N-BodY Relativistic model). An accurate rotation of Mercury has been then obtained. Moreover, the conception of the SONYR model is suitable for analyzing the different families of hermean rotational librations. We accurately identify the non-linear relations between the rotation of Mercury and its dynamical figure (\\cmr2, $C_{20}$, and $C_{22}$). Notably, for a variation of 1% on the \\cmr2 value, signatures in the $\\phi$ hermean libration in longitude as well as in the $\\eta$ obliquity of the planet are respectively 0.45 arcseconds (as) and 2.4 milliarcseconds (mas). These determinations provide new constraints on the internal structure of Mercury to be discussed with the expected accuracy forecasted in the BepiColombo mission (respectively 3.2 and 3.7 as according to Milani et al 2001).

Nicolas Rambaux; Eric Bois

2003-07-17T23:59:59.000Z

331

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

332

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

333

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

334

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

335

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

336

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

337

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

338

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

339

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

340

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A proposed sensor deployment to investigate biogeochemical controls on mercury cycling in Mugu Lagoon, California (CON 5)  

E-Print Network (OSTI)

biogeochemical controls on mercury cycling in Mugu Lagoon,of UCLA, is impaired for mercury, a potent neurotoxin, whichhealth and wildlife t o •Mercury methylation is the process

Sarah Rothenberg; Jenny Jay

2006-01-01T23:59:59.000Z

342

LFCM (liquid-fed ceramic melter) processing characteristics of mercury  

SciTech Connect

An experimental-scale liquid-fed ceramic melter was used in a series of tests to evaluate the processing characteristics of mercury in simulated defense waste under various melter operating conditions. This solidification technology had no detectable capacity for incorporating mercury into its borosilicate, vitreous, product, and essentially all the mercury fed to the melter was lost to the off-gas system as gaseous effluent. An ejector venturi scrubber condensed and collected 97% of the mercury evolved from the melter. Chemically the condensed mercury effluent was composed entirely of chlorides, and except in a low-temperature test, mercury chlorides (Hg{sub 2}Cl{sub 2}) was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg{sub 2}Cl{sub 2} residues was capable of saturating the quenched process exhaust with mercury vapor. However, the vapor pressure of mercury in the quenched melter exhaust was easily and predictably controlled with an off-gas stream chiller. 5 refs., 4 figs., 12 tabs.

Goles, R.W.; Sevigny, G.J.; Andersen, C.M.

1990-06-01T23:59:59.000Z

343

FY09 assessment of mercury reduction at SNL/NM.  

Science Conference Proceedings (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

344

Demonstration of An Integrated Approach to Mercury Control at Lee Station  

SciTech Connect

General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners afte

Vitali Lissianski; Pete Maly

2007-12-31T23:59:59.000Z

345

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

346

NETL: News Release - Innovative Mercury Removal Technique Shows Early  

NLE Websites -- All DOE Office Websites (Extended Search)

August 5, 2003 August 5, 2003 Innovative Mercury Removal Technique Shows Early Promise Photochemical Process Developed in Federal Lab Removes Mercury from Flue Gas - NETL scientist Evan Granite prepares a lab test of the UV mercury removal process. - NETL scientist Evan Granite prepares for a lab test of the UV mercury removal process. MORGANTOWN, WV - A promising technology to remove mercury from coal-fired power plants -- dubbed the "GP-254 Process" -- has been developed and is currently being tested at the Department of Energy's National Energy Technology Laboratory (NETL). Newly patented, the GP-254 Process enhances mercury removal using ultraviolet light to induce various components of power plant stack gas to react with the mercury, and changes the

347

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

348

Mercury Handling for the Target System for a Muon Collider  

Science Conference Proceedings (OSTI)

The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

2012-01-01T23:59:59.000Z

349

The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture  

DOE Green Energy (OSTI)

Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

John Kramlich; Linda Castiglone

2007-06-30T23:59:59.000Z

350

Application of chemical kinetics to mercury cycling in the aquatic environment: Photoreduction of mercury(II) and binding of mercury(II) and methylmercury(+) to natural ligands .  

E-Print Network (OSTI)

??The thesis comprises four main chapters on chemical reactions and kinetics of some of the processes involved in the global mercury cycle. In the first… (more)

Ababneh, Fuad A

2013-01-01T23:59:59.000Z

351

NETL: IEP - Mercury Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers The Clean Air Act Amendments of 1990 (CAAA) brought about new awareness regarding the overall health-effects of stationary source fossil combustion emissions. Title III of the CAAA identified 189 pollutants, including mercury, as hazardous or toxic and required the Environmental Protection Agency (EPA) to evaluate their emissions by source, health effects and environmental implications, including the need to control these emissions. These pollutants are collectively referred to as air toxics or hazardous air pollutants (HAPs). The provisions in Title III specific to electric generating units (EGU) were comprehensively addressed by DOE's National Energy Technology Laboratory (NETL) and the Electric Power Research Institute (EPRI) in collaborative air toxic characterization programs conducted between 1990 and 1997. This work provided most of the data supporting the conclusions found in EPA's congressionally mandated reports regarding air toxic emissions from coal-fired utility boilers; the Mercury Study Report to Congress (1997)1 and the "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress" (1998).2 The first report identified coal-fired power plants as the largest source of human-generated mercury emissions in the U.S. and the second concluded that mercury from coal-fired utilities was the HAP of "greatest potential concern" to the environment and human health that merited additional research and monitoring.

352

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

353

Mercury and Other Trace Metals in Coal  

Science Conference Proceedings (OSTI)

This document summarizes the trace metal analyses of more than 150 as-received bituminous, sub-bituminous, and lignite coal samples from full-scale power plants. Analyses for mercury, arsenic, beryllium, cadmium, chromium, copper, nickel, and lead offer a benchmark for utilities to compare and contrast their own estimates and measurements of trace element content in coal.

1997-02-25T23:59:59.000Z

354

Coal Biomodification to Reduce Mercury Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal BiomodifiCation to ReduCe meRCuRy emissions Description In partnership with a number of...

355

Impacts of NOx Controls on Mercury Controllability  

Science Conference Proceedings (OSTI)

Past tests have led researchers and air pollution regulators to hypothesize that nitrogen oxides (NOx) controls can enhance mercury capture by particulate collection devices and sulfur dioxide (SO2) scrubbers. This technology review presents results obtained to date from a comprehensive program designed to confirm, qualify, and quantify these hypotheses.

2002-03-13T23:59:59.000Z

356

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

357

NETL: Mercury Emissions Control Technologies - Multi-Pollutant Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Pollutant Control Using Membrane-Based Up-Flow Wet Precipitation Multi-Pollutant Control Using Membrane-Based Up-Flow Wet Precipitation The primary objective of this work is to compare the performance of metallic collecting surfaces to the performance of membrane collecting surfaces in a wet electrostatic precipitator (ESP), in terms of their efficiency in removing fine particulates, acid aerosols, and mercury from an actual power plant flue gas stream. The relative durability and overall cost-effectiveness of the membrane collectors versus metallic collectors will also be evaluated. Due to the higher specific powers, superior corrosion resistance, and better wetting and cleaning qualities, the membrane-collecting surface is expected to perform better than the metallic surface. The second objective of the project will be to compare the overall fine particulate, acid aerosol, and mercury removal efficiency of the baseline flue gas treatment system on BMP Units 1 and 2 to the efficiencies obtained when the two wet ESP systems (metallic and membrane collectors) are added to the existing treatment system.

358

Oak Ridge Reservation volume I. Y-12 mercury task force files: A guide to record series of the Department of Energy and its contractors  

Science Conference Proceedings (OSTI)

The purpose of this guide is to describe each of the series of records identified in the documents of the Y-12 Mercury Task Force Files that pertain to the use of mercury in the separation and enrichment of lithium isotopes at the Department of Energy`s (DOE) Y-12 Plant in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project. Specific attention will be given to the history of the DOE-Oak Ridge Reservation, the development of the Y-12 Plant, and the use of mercury in the production of nuclear weapons during the 1950s and early 1960s. This introduction provides background information on the Y-12 Mercury Task Force Files, an assembly of documents resulting from the 1983 investigation of the Mercury Task Force into the effects of mercury toxicity upon workplace hygiene and worker health, the unaccountable loss of mercury, and the impact of those losses upon the environment. This introduction also explains the methodology used in the selection and inventory of these record series. Other topics include the methodology used to produce this guide, the arrangement of the detailed record series descriptions, and information concerning access to the collection.

NONE

1995-02-17T23:59:59.000Z

359

Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler  

SciTech Connect

Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

Khalid Omar

2008-04-30T23:59:59.000Z

360

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

Science Conference Proceedings (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents  

SciTech Connect

This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

Thomas K. Gale

2005-07-01T23:59:59.000Z

362

Fate of soluble uranium in the I{sub 2}/KI leaching process for mercury removal  

SciTech Connect

General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of {approximately} 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake.

Bostick, W.D.; Davis, W.H.; Jarabek, R.J. [East Tennessee Technology Park, Oak Ridge, TN (United States). Materials and Chemistry Lab.

1997-09-01T23:59:59.000Z

363

Development of a method for the speciation of source mercury emissions  

SciTech Connect

In a study conducted at the Research Triangle Institute (RTI), funded through an EPA cooperative agreement, RTI and EPA researchers sought to identify a stationary source mercury (Hg) speciation method that is applicable to both fossil fuel and waste combustion processes. Initial research included the bench-scale evaluation of EPA Method 29, as well as the identification of other potential impinger solution reagents and methods capable of selectively capturing and preserving mercury species. A relatively simple speciation/collection approach for Hg emissions from fossil fuel combustion was developed that employed impingers containing deionized water (Draft Method 101B) upstream of the Method 29 peroxide solution. Recent work by RTI and EPA has focused on the evaluation of a dilute sodium hydroxide impinger solution to replace the water used in Draft Method 101B. Results obtained to date from both bench tests and pilot-scale combustion tests indicate that the alkaline mercury speciation method (AMS) is highly effective at speciating elemental and ionic mercury emissions in the presence of Cl{sub 2} concentrations up to 20 ppmv and SO{sub 2} levels exceeding 1,500 ppmv. Other potential interferences investigated during the study were hydrogen chloride, nitric oxide, carbon dioxide, and moisture.

Giglio, J.J.; O`Rourke, J.A.; Grohse, P.M.; Wilshire, F.; Ryan, J.

1998-04-21T23:59:59.000Z

364

The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds  

E-Print Network (OSTI)

G. J. (2007). Release of mercury from Rocky Mountain forestSlemr, F. (2001). Gaseous mercury emissions from a fire inMontesdeoca, M. R. (2008). Mercury transport in response to

2010-01-01T23:59:59.000Z

365

Contribution of Iron-Reducing Bacteria to Mercury Methylation in Marine Sediments  

E-Print Network (OSTI)

AND R. P. MASON. 2006. Mercury methylation by dissimilatoryPRUCHA, AND G. MIERLE. 1991. Mercury methylation by sulfate-AND J. M. SIEBURTH. 1993. Mercury biogeochemical cycling in

Fleming, Emily J.; Nelson, D C

2006-01-01T23:59:59.000Z

366

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network (OSTI)

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

367

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

and R. E. Poulson. Mercury Emissions From A Simulated In-for the Measurement of Mercury in Oil Shale Gases D. GirvinJFOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES D. C.

Girvin, D.G.

2011-01-01T23:59:59.000Z

368

A Solid-State 199Hg NMR Study of Mercury Halides  

E-Print Network (OSTI)

red polymorph) suggest that the mercury is in sites of cubicTable III. NMR Properties of Mercury Halide Nuclei a IsotopeState 199 Hg NMR Study of Mercury Halides R. E. Taylor 1 *,

Taylor, Robert E; Bai, Shi; Dybowski, Cecil

2011-01-01T23:59:59.000Z

369

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETL’s Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

370

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Air Quality III: Mercury, Trace Elements, and Particulate34, 2711. 7. Sloss, L.L. Mercury – Emissions and Control.1996 , Jan. , 60 pp. 2. Mercury Study Report to Congress;

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

371

Mercury, Cadmium and Lead Biogeochemistry in the Soil–Plant–Insect System in Huludao City  

E-Print Network (OSTI)

YE, Ketris MP (2005a) Mercury in coal: a review part 1of total and methyl mercury by arthropods. Bull Environ259 DOI 10.1007/s00128-009-9688-6 Mercury, Cadmium and Lead

Zhang, Zhong-Sheng; Lu, Xian-Guo; Wang, Qi-Chao; Zheng, Dong-Mei

2009-01-01T23:59:59.000Z

372

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network (OSTI)

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

373

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network (OSTI)

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

374

Evaluation of MerCAP^TM for Power Plant Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MErCaP(tm) for PowEr Plant MErCury Control Background Several technologies are under development for removing mercury from power plant flue gas streams. The mercury...

375

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

376

Oxidation of Mercury in Products of Coal Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

377

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

378

Mercury Energy formerly Aquus Energy | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Aquus Energy Energy formerly Aquus Energy Jump to: navigation, search Name Mercury Energy (formerly Aquus Energy) Place New Rochelle, New York Zip 10801 Sector Solar Product Integrator of solar energy systems for commercial and residential clients located in the mid-Atlantic and Northeast regions of the US through its wholly-owned subsidary Mercury Solar Energy. References Mercury Energy (formerly Aquus Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mercury Energy (formerly Aquus Energy) is a company located in New Rochelle, New York . References ↑ "Mercury Energy (formerly Aquus Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Energy_formerly_Aquus_Energy&oldid=348731

379

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

380

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thief Process Removal of Mercury from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

382

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

383

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

384

Stabilization of Mercury in High pH Tank Sludges  

Science Conference Proceedings (OSTI)

DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

Spence, R.; Barton, J.

2003-02-24T23:59:59.000Z

385

NETL: Emissions Characterization - Direct Measurement of Mercury Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Under DOE-NETL Cooperative Agreement DE-FC26-03NT41724, EPRI, in collaboration with Frontier Geosciences and the University of North Dakota Energy and Environmental Research Center (EERC), will perform precise in-stack and in-plume sampling of mercury emitted from the stack of WE Energies' Pleasant Prairie coal-fired power plant near Kenosha, Wisconsin. The overall objective of the project is to clarify the role, rates and end result of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. This information is critical in determining the role of coal-fired plants in mercury deposition and in developing cost-effective, environmentally sound policies and strategies for reducing the adverse environmental effects of mercury.

386

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

387

Significance of Pre-Industrial and Older Anthropogenic Sources of Mercury in Ichawaynochaway Creek Watershed, Georgia  

Science Conference Proceedings (OSTI)

In response to concerns about elevated levels of mercury in fish tissue, the U.S. Environmental Protection Agency (EPA) has developed mercury Total Maximum Daily Loads (TMDL), which is a calculation of the maximum amount of mercury a waterbody can assimilate without exceeding the applicable water quality standard. These calculations assume that >99% of mercury load to the aquatic systems is derived from recent atmospheric deposition and that older anthropogenic mercury or mercury from terrestrial sources...

2004-06-16T23:59:59.000Z

388

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

389

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

390

The Effect of Ammonia on Mercury Partitioning in Fly Ash  

Science Conference Proceedings (OSTI)

Management options and environmental assessments for fly ash are driven primarily by their physical and chemical characteristics. This report describes the results of a laboratory study on the leaching of mercury from several paired fly ash samples from facilities employing powdered activated carbon (PAC) injection for mercury control. While previous EPRI research has shown that mercury leaching from ash with PAC is negligible, it has also been found that ammonia complexes can increase the mobility of so...

2008-03-25T23:59:59.000Z

391

Controlling mercury spills in laboratories with a thermometer exchange program  

SciTech Connect

This paper presents a case for replacing mercury thermometers with their organic-liquid-filled counterparts. A review of liquid-in glass-thermometers is given. In addition, a brief summary of mercury's health effects and exposure limits is presented. Spill cleanup methods and some lessons learned from our experience are offered as well. Finally, an overview of the mercury thermometer exchange program developed at Lawrence Berkeley National Laboratory is presented.

McLouth, Lawrence D.

2002-03-25T23:59:59.000Z

392

State of Knowledge on Mercury Chemistry in Power Plant Plumes  

Science Conference Proceedings (OSTI)

Chemical transformations may occur in the flue gas plume of coal-fired power plants (CFPP) that convert reactive gaseous mercury (RGM) into gaseous elemental mercury (GEM). Since the chemical form of inorganic Hg determines its solubility in water and therefore its deposition rate, understanding this chemistry has important implications for emission control. This fact sheet summarizes the state-of-knowledge of mercury chemistry, kinetics, and thermodynamics in CFPP plumes.

2008-12-23T23:59:59.000Z

393

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

394

Development and Demonstration of Mercury Control by Dry Technologies  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency (EPA) will regulate mercury emissions from coal-fired boilers under Title III of the Clean Air Act Amendments of 1990, with compliance slated for December 2007. It is thus very important for power producers to determine the amount of mercury emissions from their power plants, options for reducing mercury emissions, the cost-effectiveness of various removal technologies, and the potential impact on power plant operation and other air pollutant emissions.

2003-02-17T23:59:59.000Z

395

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

396

Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal  

SciTech Connect

The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

Alan Bland; Jesse Newcomer; Kumar Sellakumar

2008-08-17T23:59:59.000Z

397

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

Gary M. Blythe

2003-10-01T23:59:59.000Z

398

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

Gary M. Blythe

2002-02-22T23:59:59.000Z

399

NETL: IEP - Mercury Emissions Control: Methods Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods Development Methods Development EPRI and NETL collaboratively funded a $3-million program under the DOE/ University of North Dakota Energy and Environmental Research Center (UNDEERC) Jointly Sponsored Research Program (JSRP) to evaluate, develop, and validate a mercury speciation method for coal-fired produced flue gas. There was a 60/40 percent split of the funding, as required under the JSRP for this two-year effort. The work conducted by the EERC identified the Ontario Hydro Method as the best mercury speciation method. The EERC has validated the Ontario Hydro Method at both pilot- and full-scale levels. Radian International aided in the full-scale validation, with a written protocol of the method being finalized through the American Society for Testing and Materials (ASTM).

400

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Novel Solution of Mercury Perihelion Shift  

E-Print Network (OSTI)

We present a novel solution of the Mercury perihelion advance shift in the new gravity model. It is found that the non-relativistic reduction of the Dirac equation with the gravitational potential produces the new gravitational potential of $\\displaystyle{V(r)=-{GMm\\over r}+{G^2M^2m^2\\over 2mc^2r^2}}$. This potential can explain the Mercury perihelion advance shift without any free parameters. Also, it can give rise to the $\\omega-$shift of the GPS satellite where the advance shift amounts to $({\\Delta \\omega\\over \\omega})_{th} \\simeq 3.4\\times 10^{-10}$ which should be compared to the recent observed value of $({\\Delta \\omega\\over \\omega})_{exp} \\simeq 4.5\\times 10^{-10}$.

Takehisa Fujita; Naohiro Kanda

2009-11-11T23:59:59.000Z

402

FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

2004-08-01T23:59:59.000Z

403

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

404

Mercury levels in albacore tuna (Thunnus alalunga) and the effects of canning.  

E-Print Network (OSTI)

??Mercury is a toxic heavy metal released into the environment from both natural and anthropogenic sources. The organic form of mercury is a potent neurotoxin… (more)

Rasmussen, Rosalee S.

2006-01-01T23:59:59.000Z

405

Oxidation of elemental mercury by chlorine: Gas phase, Surface, and Photo-induced reaction pathways  

E-Print Network (OSTI)

of Elemental Mercury by Chlorine: Gas Phase, Surface, andthe oxidation of mercury by chlorine gas. The kinetics wasoxidation of Hg 0 by chlorine (Cl 2 ). The three concurrent

Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

2004-01-01T23:59:59.000Z

406

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

407

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

408

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

409

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

410

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

411

NETL: Mercury Emissions Control Technologies - Long-Term Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control In this project, The University of North Dakota Energy & Environmental Research Center...

412

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

413

NIST: X-Ray Mass Attenuation Coefficients - Mercury  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 3 Mercury Z = 80 HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). 1.00000 ...

414

ORNL DAAC, Land Validation Data in Mercury, June 4, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

collected at field sites for comparison with satellite-derived products. A total of 51 land validation data sets are currently registered in Mercury. The data include land...

415

BSA 99-09: Improved Ex-Situ Mercury Remediation  

The present invention provides a process for the treatment of mercury containing waste in a single reaction vessel. ... i.e. mixed wastes. ...

416

Critical National Need Idea Title: Effective Mercury Removal ...  

Science Conference Proceedings (OSTI)

... a report to the White House, "Methylmercury in the GulfOfMexico: State of Knowledge and Research Needs", detailed the harm of mercury from coal- ...

2011-08-02T23:59:59.000Z

417

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon ...

418

Simultaneous Determination of Mercury and Tin Species in ...  

Science Conference Proceedings (OSTI)

... humans. In some cases, more than 90 % of the total mercury found in edible fish tissue is in the form of methylmercury. ...

2013-03-21T23:59:59.000Z

419

AWMA 97th Annual Conference & Exhibition Mercury and Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Coal-Fired Power Plants AWMA 97 th Annual Conference & Exhibition Mercury and Power Generation Panel June 23, 2003 Indianapolis, IN Thomas J. Feeley, III...

420

DOE-NETLs Mercury R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative February 14, 2002 ACS Monthly Meeting November 4, 2004 History of Mercury R&D 1990 1995 2000 2005 2010 * Field testing * Plume chemistry Final Hg Regulations *...

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

422

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

423

Method for Removal of Mercury from Various Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 6,576,092 entitled "Method for Removal of Mercury from Various Gas Streams."...

424

NETL: News Release - DOE Licenses Mercury Control Patent to Help...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 DOE Licenses Mercury Control Patent to Help Meet Clean Air Regulations Research Aims at Trace Element Reduction from Power Generation Facilities by 2010 Washington, DC - A...

425

NETL: CCPI - TOXECON Retrofit for Mercury and Multi-Pollutant...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004) Environmental Reports TOXECON Retrofit for Mercury and Multi-Pollutant Control, Environmental Assessment PDF-847KB (Sept 2003) PAPERS AND PRESENTATIONS Concrete...

426

NETL: Mercury Emissions Control Technologies - Long-term Operation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Papers and Publications: Long-Term Evaluation of Activated Carbon Injection for Mercury Control Upstream of a COHPAC Fabric Filter PDF-298KB presented at Air Quality IV...

427

Mercury removal from coal by leaching with sulfur-dioxide.  

E-Print Network (OSTI)

??Mercury from coal-fired utilities has been identified as one of the most hazardous air pollutants and the greatest potential public health concern. Furthermore, it has… (more)

Chateker, Poornima.

2010-01-01T23:59:59.000Z

428

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

429

Large-Scale Testing of Enhanced Mercury Removal for Subbituminous...  

NLE Websites -- All DOE Office Websites (Extended Search)

the mid-1990s to develop advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Anticipating new Federal rules and possible state legislation,...

430

DOE/NETL & EPRI Sponsored Mercury Measurements Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL & EPRI Sponsored Mercury Measurements Workshop July 13, 2004 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

431

Mercury Specie and Multi-Pollutant Control  

SciTech Connect

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

Rob James; Virgil Joffrion; John McDermott; Steve Piche

2010-05-31T23:59:59.000Z

432

AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE  

SciTech Connect

This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

John H. Pavlish; Steven A. Benson

1999-07-01T23:59:59.000Z

433

Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage  

Science Conference Proceedings (OSTI)

In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

2011-01-01T23:59:59.000Z

434

Gravitomagnetism and the Earth-Mercury range  

E-Print Network (OSTI)

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2010-02-01T23:59:59.000Z

435

Mercury-selenium interactions in the environment  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments of 1990 require the U.S. Environmental Protection Agency (EPA) to consider the need to control emissions of trace elements and compounds emitted from coal combustion, including coal-fired power plants. Concern has been expressed about emissions of mercury and arsenic, for example, since health effects may be associated with exposure to some of these compounds. By and large, effects of trace element emissions have been considered individually, without regard for possible interactions. To the extent that the relevant environmental pathways and health endpoints differ, this mode of analysis is appropriate. For example, arsenic is considered a carcinogen and mercury affects the brain. However, there may be compelling reasons to consider emissions of mercury (Hg) and selenium (Se) together: (1) Both Se and Hg are emitted from power plants primarily as vapors. (2) Hg and Se are both found in fish, which is the primary pathway for Hg health effects. (3) Se has been shown to suppress Hg methylation in aqueous systems, which is a necessary step for Hg health effects at current environmental concentrations. (4) Se is a trace element that is essential for health but that can also be toxic at high concentrations; it can thus have both beneficial and adverse health effects, depending on the dosage. This paper reviews some of the salient characteristics and interactions of the Hg-Se system, to consider the hypothesis that the effects of emissions of these compounds should be considered jointly.

Saroff, L. [Department of Energy, Washington, DC (United States); Lipfert, W.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1996-02-01T23:59:59.000Z

436

The free precession and libration of Mercury  

E-Print Network (OSTI)

An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core

S. J. Peale

2005-07-06T23:59:59.000Z

437

HISTORY OF MERCURY USE AND ENVIRONMENTAL CONTAMINATION  

SciTech Connect

Between 1950 and 1963 approximately 11 million kilograms of mercury (Hg) were used at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) for lithium isotope separation processes. About 3% of the Hg was lost to the air, soil and rock under facilities, and East Fork Poplar Creek (EFPC) which originates in the plant site. Smaller amounts of Hg were used at other Oak Ridge facilities with similar results. Although the primary Hg discharges from Y-12 NSC stopped in 1963, small amounts of Hg continue to be released into the creek from point sources and diffuse contaminated soil and groundwater sources within Y-12 NSC. Mercury concentration in EFPC has decreased 85% from not, vert, similar2000 ng/L in the 1980s. In general, methylmercury concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases.Mercury discharges from an industrial plant have created a legacy contamination problem exhibiting complex and at times counter-intuitive patterns in Hg cycling.

Brooks, Scott C [ORNL; Southworth, George R [ORNL

2011-01-01T23:59:59.000Z

438

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

439

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

2008-07-31T23:59:59.000Z

440

Assessment of mercury in the Savannah River Site environment  

SciTech Connect

Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "metadata mercury related" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells  

Science Conference Proceedings (OSTI)

Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing {sup 203}Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of {+-}2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

Sugiharto [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Centre for Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No 49, Jakarta 12440 (Indonesia); Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Santoso, Sigit Budi; Abidin, Zainal [Centre for Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No 49, Jakarta 12440 (Indonesia); Santoso, Gatot Budi [PT. Industri Soda Indonesia, Jl. Raya Waru 31, Sidoarjo 61256 (Indonesia)

2010-06-22T23:59:59.000Z

442

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

443

NETL: Mercury Emissions Control Technologies - Amended Silicates for  

NLE Websites -- All DOE Office Websites (Extended Search)

Amended Silicates for Mercury Control Amended Silicates for Mercury Control The project is designed to implement a comprehensive demonstration of the use of Amended Silicates for mercury control on a commercial-scale generating unit. Miami Fort Unit 6 burns eastern bituminous coal, has a nominal output of 175 MW, and a flue gas volumetric flow of 535,000 actual cubic feet per minute (acfm) at full load. The demonstration includes a baseline phase with no injection of mercury control sorbents, injection of carbon to develop a mercury-control technology baseline for sorbent performance comparison, and the injection of Amended Silicates at several rates. All sorbent will be injected upstream of the existing electro-static precipitators (ESPs) on the host unit, providing a nominal 1-second contact time before the gas flow enters an ESP. Mercury measurements will be made upstream of the sorbent injection and downstream of the first ESP to characterize the performance of the sorbent technologies. In addition, samples of coal and fly ash will be collected and analyzed to provide data for a mercury mass balance for the unit. The mercury measurements will be made with continuous emissions monitors as well as with Ontario-Hydro wet-chemistry sampling. Samples of fly ash plus sorbent from demonstration cases which include Amended Silicate sorbent injection will be collected from ESP hoppers for use in concrete testing to confirm the suitability of the material as a portland cement replacement.

444

Elevated Mercury Concentrations in Humans of Madre de  

E-Print Network (OSTI)

The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (a = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a

Dios Peru; Katy Ashe

2012-01-01T23:59:59.000Z

445

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents (OSTI)

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

446

Mercury concentrations in tissues of Florida bald eagles  

Science Conference Proceedings (OSTI)

We collected 48 blood and 61 feather samples from nestling bald eagles at 42 nests and adult feather samples from 20 nests in north and central Florida during 1991-93. We obtained 32 liver, 10 feather, and 5 blood samples from 33 eagle carcasses recovered in Florida during 1987-93. For nestlings, mercury concentrations in blood (GM = 0.16 ppm wet wt) and feather (GM = 3.23 ppm) samples were correlated (r = 0.69, P = 0.0001). Although nestlings had lower mercury concentrations in feathers than did adults (GM = 6.03 ppm), the feather mercury levels in nestlings and adults from the same nest were correlated (r = 0.63, P eagles (GM = 0.23 ppm) was similar to Florida nestlings but some Florida nestlings had blood mercury concentrations up to 0.61 ppm, more than twice as high as captive adults. Feather mercury concentrations in both nestlings and adults exceeded those in captive eagles, but concentrations in all tissues were similar to, or lower than, those in bald eagles from other wild populations. Although mercury concentrations in Florida eagles are below those that cause mortality, they are in the range of concentrations that can cause behavioral changes or reduce reproduction. We recommend periodic monitoring of mercury in Florida bald eagles for early detection of mercury increases before negative effects on reproduction occur. 26 refs., 5 figs., 2 tabs.

Wood, P.B.; Wood, J.M. [Wes Virginia Univ., Morgantown, WV (United States); White, J.H. [Florida Game and Fresh Water Fish Commission, Eustis, FL (United States)] [and others

1996-01-01T23:59:59.000Z

447

Implications of mercury interactions with band-gap semiconductor oxides  

SciTech Connect

Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

2008-09-01T23:59:59.000Z

448

MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS  

SciTech Connect

The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

Thomas K. Gale

2002-06-01T23:59:59.000Z

449

Method for removal of mercury from various gas streams  

DOE Patents (OSTI)

The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

Granite, E.J.; Pennline, H.W.

2003-06-10T23:59:59.000Z

450

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network (OSTI)

that were placed in an oven at 50 °C overnight to ensure complete oxidation of all mercury species. Analysis requiring pollutant scrubbers that also likely remove a fraction of the Hg in flue gases. If so, the resultsAtmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural

451

XAS Catches the Chemical Form of Mercury in Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

view large image view large image contact info Friday, 29 August 2003 X-ray Absorption Spectroscopy Catches the Chemical Form of Mercury in Fish - SSRL Scientists Reveal New Findings in Science Article The presence of "methyl mercury" in fish is well-known, but until now the detailed chemical identity of the mercury has remained a mystery. In an x-ray absorption spectroscopy study published in the August 29 issue of Science (Science 301, 2003: 1203; Science now: Murky Picture on Fish Mercury), SSRL scientists report that the chemical form of mercury involves a sulfur atom (most likely in a so-called aliphatic form). The study presents significant new knowledge - because the toxic properties of mercury (or any element) are critically dependent upon its chemical form - and represents an important milestone in