Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Search for Popcorn Mesons in Events with Two Charmed Baryons  

SciTech Connect

The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

Hartfiel, Brandon; /SLAC

2006-07-07T23:59:59.000Z

2

Meson cloud contributions to baryon axial form factors  

E-Print Network (OSTI)

The axial form factor as well as the axial charge of octet baryons are studied in the perturbative chiral quark model (PCQM) with the quark wave functions predetermined by fitting the theoretical results of the proton charge form factor to experimental data. The theoretical results are found, based on the predetermined quark wave functions, in good agreement with experimental data and lattice values. This may indicate that the electric charge and axial charge distributions of the constituent quarks are the same. The study reveals that the meson cloud plays an important role in the axial charge of octet baryons, contributing 30%-40% to the total values, and strange sea quarks have a considerable contribution to the axial charge of the $\\Sigma$ and $\\Xi$.

X. Y. Liu; K. Khosonthongkee; A. Limphirat; P. Suebka; Y. Yan

2014-08-01T23:59:59.000Z

3

Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions  

E-Print Network (OSTI)

Heavy baryon/meson ratios Lambda(c)/D(0) and Lambda(b)/(B) over bar (0) in relativistic heavy ion collisions are studied in the quark coalescence model. For heavy baryons, we include production from coalescence of heavy quarks with free light quarks...

Oh, Yongseok; Ko, Che Ming; Lee, Su Houng; Yasui, Shigehiro.

2009-01-01T23:59:59.000Z

4

String Junction Model, Cluster Hypothesis, Penta-Quark Baryon and Tetra-Quark Meson  

Science Journals Connector (OSTI)

......and mB 1 GeV is the ordinary light baryon mass. In this paper...non-strange quarks. Mass of such light penta-quark baryons with NJ...O(10) MeV. While mass of light tetra-quark meson with NJ...junction was first written in the Christmas greeting card of Y. Nambu around......

Masahiro Imachi; Shoichiro Otsuki; Fumihiko Toyoda

2008-10-01T23:59:59.000Z

5

Effective chiral meson-baryon Lagrangian from quark-diquark flavor dynamics  

Science Journals Connector (OSTI)

The approach of path integral hadronization is applied to an SU(2) model of quark-diquark flavor dynamics. Within such a scheme we derive an effective chiral meson-baryon Lagrangian, where the Goldberger-Treiman relation, found earlier at the quark-meson level, is now reestablished at the composite hadron level. Masses and coupling constants of composite hadrons are then calculable by the parameters of the underlying microscopic quark-diquark picture.

D. Ebert and Th. Jurke

1998-06-16T23:59:59.000Z

6

Chiral unitary approach to S-wave meson baryon scattering in the strangeness S=0 sector  

Science Journals Connector (OSTI)

We study the S-wave interaction of mesons with baryons in the strangeness S=0 sector in a coupled channel unitary approach. The basic dynamics is drawn from the lowest order meson-baryon chiral Lagrangians. Small modifications inspired by models with explicit vector meson exchange in the t channel are also considered. In addition the ??N channel is included and shown to have an important repercussion in the results, particularly in the isospin 3/2 sector. The N*(1535) resonance is dynamically generated and appears as a pole in the second Riemann sheet with its mass, width, and branching ratios in fair agreement with experiment. A ?(1620) resonance also appears as a pole at the right position although with a very large width, coming essentially from the coupling to the ??N channel, in qualitative agreement with experiment.

T. Inoue; E. Oset; M. J. Vicente Vacas

2002-02-14T23:59:59.000Z

7

Anti-strange meson-baryon interaction in hot and dense nuclear matter  

E-Print Network (OSTI)

We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at FAIR energies. Our results rely on a chiral unitary approach in coupled channels which incorporates the $s$- and $p$-waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement full unitarization and self-consistency for both the $s$- and $p$-wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content $S=-1$. The obtained total cross sections mostly reflect the fate of the $\\Lambda(1405)$ resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the $p$-wave amplitudes [$\\Lambda$, $\\Sigma$ and $\\Sigma^*(1385)$]. The single-particle potentials of these hyperons at finite momentum, density and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics of strangeness production in nucleus-nucleus collisions.

Daniel Cabrera; Laura Tolos; Jörg Aichelin; Elena Bratkovskaya

2014-11-14T23:59:59.000Z

8

Anti-strange meson-baryon interaction in hot and dense nuclear matter  

E-Print Network (OSTI)

We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at FAIR energies. Our results rely on a chiral unitary approach in coupled channels which incorporates the $s$- and $p$-waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement full unitarization and self-consistency for both the $s$- and $p$-wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content $S=-1$. The obtained total cross sections mostly reflect the fate of the $\\Lambda(1405)$ resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium propert...

Cabrera, Daniel; Aichelin, Jörg; Bratkovskaya, Elena

2014-01-01T23:59:59.000Z

9

An initial study of mesons and baryons containing strange quarks with GlueX  

E-Print Network (OSTI)

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in $\\gamma p$ collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic $J^{PC}$, corresponding to $q\\bar{q}$ states ($q=u,$ $d,$ or $s$) coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and $\\pm1$, and both isoscalar members, $|s\\bar{s}\\ >$ and $|u\\bar{u}\\ > + |d\\bar{d}\\ >$, for each predicted hybrid combination of $J^{PC}$, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Detailed studies of the performance of the \\gx detector have indicated that identification of particular final states with kaons is possible using the baseline detector configuration. The efficiency of kaon detection coupled with the relatively lower production cross section for particles containing hidden strangeness will require a high intensity run in order for analyses of such states to be feasible. We propose to collect a total of 200 days of physics analysis data at an average intensity of $5\\times 10^7$ tagged photons on target per second. This data sample will provide an order of magnitude statistical improvement over the initial GlueX running, which will allow us to begin a program of studying mesons and baryons containing strange quarks. In addition, the increased intensity will permit us to study reactions that may have been statistically limited in the initial phases of GlueX. Overall, this will lead to a significant increase in the potential for \\gx to make key experimental advances in our knowledge of hybrid mesons and excited $\\Xi$ baryons.

The GlueX Collaboration; A. AlekSejevs; S. Barkanova; M. Dugger; B. Ritchie; I. Senderovich; E. Anassontzis; P. Ioannou; C. Kourkoumeli; G. Voulgaris; N. Jarvis; W. Levine; P. Mattione; W. McGinley; C. A. Meyer; R. Schumacher; M. Staib; P. Collins; F. Klein; D. Sober; D. Doughty; A. Barnes; R. Jones; J. McIntyre; F. Mokaya; B. Pratt; W. Boeglin; L. Guo; P. Khetarpal; E. Pooser; J. Reinhold; H. Al Ghoul; S. Capstick; V. Crede; P. Eugenio; A. Ostrovidov; N. Sparks; A. Tsaris; D. Ireland; K. Livingston; D. Bennett; J. Bennett; J. Frye; M. Lara; J. Leckey; R. Mitchell; K. Moriya; M. R. Shepherd; A. Szczepaniak; R. Miskimen; A. Mushkarenkov; B. Guegan; J. Hardin; J. Stevens; M. Williams; A. Ponosov; S. Somov; C. Salgado; P. Ambrozewicz; A. Gasparian; R. Pedroni; T. Black; L. Gan; S. Dobbs; K. K. Seth; A. Tomaradze; J. Dudek; F. Close; E. Swanson; S. Denisov; G. Huber; D. Kolybaba; S. Krueger; G. Lolos; Z. Papandreou; A. Semenov; I. Semenova; M. Tahani; W. Brooks; H. Hakobyan; S. Kuleshov; O. Soto; A. Toro; I. Vega; R. White; F. Barbosa; E. Chudakov; H. Egiyan; M. Ito; D. Lawrence; M. McCaughan; M. Pennington; L. Pentchev; Y. Qiang; E. S. Smith; A. Somov; S. Taylor; T. Whitlatch; E. Wolin; B. Zihlmann

2013-05-07T23:59:59.000Z

10

New thermal model with distinct freeze-out temperatures for baryons and mesons  

SciTech Connect

A significant amount of experimental data for particle production in high-energy heavy ion collisions (10 - 200 GeV/A at center of mass) has been accumulated during last years. Many different theoretical attempts have tried to describe these data using thermal models in the approximation of global thermal equilibrium considering only one freeze-out temperature. However the thermal models often are not able to describe adequately the whole multiplicities of hadrons. For instance, the abundance of strange particles is overestimate and the pion yields are underestimated. In this work is presented a thermal hadronic model with two different temperatures in order to describe the baryonic and mesonic chemical freeze-out in ultra-relativistic heavy ion collisions. The model is used to fit the particle population ratios of the hadrons produced in the reaction. The proposal is not merely to incorporate one additional degree of freedom in the adjustment procedure of data, but to present and alternative scenario for the freeze out stage in the collisional proces s. This new reformulated version of thermal model was applied to a set of data, offering a rather good improvement in the fitting of the calculated particle ratios to the data. The results suggest that the introduced model makes the thermal approach more robust to handle with a larger number of colliding systems and a more comprehensive set of reaction observables.

De Assis, Leonardo P. G.; Duarte, Sergio B. [Centro Brasileiro de Pesquisas Fisicas Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil); Chiapparini, Marcelo [Instituto de Fisica, Universidade do Estado do Rio de Janeiro Rua Sao Francisco Xavier 524, 20 550-900 Rio de Janeiro-RJ (Brazil); Hirsch, Luciana R. [Departamento de Fisica, Universidade Tecnologica Federal do Parana Av. Sete de Setembro, 3165, 8 0230-901 Curitiba-PR (Brazil); Delfino, Antonio Jr. [Instituto de Fisica, Universidade Federal Fluminense Av. Gal. Milton Tavares de Souza, 24210-346 Niteroi-RJ (Brazil)

2013-05-06T23:59:59.000Z

11

Observation and study of the baryonic B-meson decays B?D(*)pp? (?)(?)  

E-Print Network (OSTI)

We present results for B-meson decay modes involving a charm meson, protons, and pions using 455×10[superscript 6] BB? pairs recorded by the BaBar detector at the SLAC PEP-II asymmetric-energy e[superscript +]e[superscript ...

Cowan, Ray Franklin

12

Baryons  

NLE Websites -- All DOE Office Websites (Extended Search)

Bariones Bariones Volver Principal ESTOY PERDIDO!!! Los bariones siempre contienen tres quarks y pueden también contener algunos gluones y pares quark-antiquark. Un protón = uud y un neutrón = udd. Cada quark dentro de un barión intercambia rápidamente cargas de color con los otros quarks en ese barión. Sin embargo, el barión (al igual que todos los hadrones) no tiene carga neta de color porque las diferentes cargas de color se cancelan entre sí. Los valores posibles del spin de los bariones son 1/2, 3/2, ..., es decir son fermiones. Por cada barión existe un barión de antimateria (antibarión) constituído por los 3 antiquarks correspondientes. Tabla de Bariones | Mesones Volver Use el botón "Volver" de su navegador o regrese a la Ruta del Modelo Standard.

13

Search for the associated production of charmed baryon and meson states by a 9.3-GeV photon beam  

Science Journals Connector (OSTI)

We report a search for narrow (? 15 MeV) resonances decaying into one strange particle and other hadrons, and produced in 9.3-GeV ?p interactions in the SLAC-LBL 82-in. bubble chamber. A search for the exclusive reactions ?p?B++M- (?p?B+M0), where B and M refer to narrow baryon and meson resonances decaying into any of a large number of specific channels, yielded upper limits at the 95% confidence level of 110 nb (120 nb). An independent search for the inclusive production of narrow states decaying into a ? or K0 with charged pions was made, also with negative results.

D. J. Quinn and R. H. Milburn

1976-12-01T23:59:59.000Z

14

Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons with 9.3 fb-1  

E-Print Network (OSTI)

note 10726 Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom measurements of direct CP­violating asymmetries in charmless decays of neutral bottom hadrons to pairs corresponding to 9.3 fb-1 of integrated luminosity, we measure the direct CP violation in bottom strange mesons

Fermilab

15

A direct measurement of meson-baryon contributions to the electroexcitation of the $N(1675){\\frac{5}{2}}^-$ nucleon resonance  

E-Print Network (OSTI)

We report on the determination of the electrocouplings for the transition from the proton to the $N^+(1675){\\frac{5}{2}}^-$ resonance state using new differential cross section data on $e p \\rightarrow e\\pi^+ n$ by the CLAS collaboration at $1.8 \\le Q^2 1675){\\frac{5}{2}}^-$ helicity amplitudes show significant coupling through the $A^p_{1/2}$ amplitude for $Q^2 \\le 4$GeV$^2$, while $A^p_{3/2}$ drops much faster and at $Q^2 \\ge 1.8$GeV$^2$ is already much smaller than $A^p_{1/2}$. Both results are consistent with the meson-baryon contributions from the dynamical coupled-channel model.

Aznauryan, I G

2014-01-01T23:59:59.000Z

16

Hybrid Baryons in QCD  

SciTech Connect

We present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

Jozef J. Dudek, Robert G. Edwards

2012-03-01T23:59:59.000Z

17

Baryon Spectroscopy and Resonances  

SciTech Connect

A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense effort, notably the ordering of the Roper resonance in the low-lying Nucleon spectrum.

Robert Edwards

2011-12-01T23:59:59.000Z

18

Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter  

SciTech Connect

Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme-type interaction density functional, thus providing a direct link to well modeled nuclear forces. Moreover, it allows for a derivation of the equation of state for cold uniform dense nuclear matter for application to calculations of the properties of neutron stars.

Hrayr Matevosyan

2007-07-09T23:59:59.000Z

19

Quark confinement mechanism for baryons  

E-Print Network (OSTI)

The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic field among quarks and that enables one to get a number of numerical estimates for the mentioned parameters from experimental data. We also discuss chiral limit for the baryons under consideration and estimate the purely gluonic contribution to their masses. Further the problem of masses in particle physics is shortly discussed within the framework of the given approach. Finally, a few remarks are made about the so-called Yang-Mills Millennium problem and a possible way for proving it is outlined.

Yu. P. Goncharov

2013-12-14T23:59:59.000Z

20

Baryon production and the charmed-quark fragmentation function  

Science Journals Connector (OSTI)

The fragmentation function for a charmed quark into a charmed baryon should peak at large x like its fragmentation function for charmed mesons. With model assumptions the decay of these fast baryons can account for as much as 20 to 40% of the ?'s observed at large x in e+e- annihilation at Ec.m.=30 GeV.

Thomas A. DeGrand

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter  

SciTech Connect

We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of {sigma}, {omega}, and {rho} mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.

Carroll, J. D.; Leinweber, D. B.; Williams, A. G.; Thomas, A. W. [Centre for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, SA 5005 (Australia); Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States); College of William and Mary, Williamsburg, Virginia 23187 (United States) and Centre for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, SA 5005 (Australia)

2009-04-15T23:59:59.000Z

22

On the nature of the lowest $1/2^-$ baryon nonet and decuplet  

E-Print Network (OSTI)

From recent study of properties of the lowest spin-parity $1/2^-$ baryons, $N^*(1535)$ and $\\Delta^*(1620)$, new pictures for the internal structure of the lowest $1/2^-$ baryon octet and decuplet are proposed. While the lowest $1/2^-$ baryon octet may have large diquark-diquark-antiquark component, the lowest $1/2^-$ baryon decuplet is proposed to have large vector-meson-baryon components. Evidence for the "missing" members of the new pictures is pointed out and suggestions are made for detecting these predicted states from forthcoming experiments.

B. S. Zou

2007-11-30T23:59:59.000Z

23

Nuclear matter at high temperature and low net baryonic density  

SciTech Connect

We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

Costa, R. S.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud, 150 Urca 22290-180, Rio de Janeiro, RJ (Brazil); Oliveira, J. C. T. [Departamento de Fisica, Universidade Federal de Roraima, Campus do Paricarana, s/n, 69310-270, Boa Vista, RR (Brazil); Rodrigues, H. [Centro Federal de Educacao Tecnologica do Rio de Janeiro, Av. Maracana, 249 Maracana 20271-110, Rio de Janeiro, RJ (Brazil); Chiapparini, M. [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524 Maracana, Rio de Janeiro, RJ (Brazil)

2010-11-12T23:59:59.000Z

24

Gluon content of the {eta} and {eta}{sup '} mesons and the {eta}{gamma} , {eta}{sup '}{gamma} electromagnetic transition form factors  

SciTech Connect

We compute power-suppressed corrections to the {eta}{gamma} and {eta}{sup '}{gamma} transition form factors Q{sup 2}F{sub {eta}}{sub ({eta}}{sub {sup '}}{sub {gamma}}(Q{sup 2}) arising from the end point regions x{yields}0,1 by employing the infrared-renormalon approach. The contribution to the form factors from the quark and gluon content of the {eta},{eta}{sup '} mesons is taken into account using for the {eta}-{eta}{sup '} mixing the SU{sub f}(3) singlet {eta}{sub 1} and octet {eta}{sub 8} basis. The theoretical predictions obtained this way are compared with the corresponding CLEO data and restrictions on the input parameters (Gegenbauer coefficients) B{sub 2}{sup q}({eta}{sub 1}), B{sub 2}{sup g}({eta}{sub 1}), and B{sub 2}{sup q}({eta}{sub 8}) in the distribution amplitudes for the {eta}{sub 1},{eta}{sub 8} states with one nonasymptotic term are deduced. Comparison is made with the results from QCD perturbation theory.

Agaev, S.S.; Stefanis, N.G. [High Energy Physics Laboratory, Baku State University, Z. Khalilov Street 23, 370148 Baku (Azerbaijan); Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2004-09-01T23:59:59.000Z

25

Precision Measurement of the ?[0 over b] Baryon Lifetime  

E-Print Network (OSTI)

The ratio of the ?[0 over b] baryon lifetime to that of the B?[superscript 0] meson is measured using 1.0??fb[superscript -1] of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The ?[0 over ...

Williams, Michael

26

Magnetic moments of octet baryons at finite density and temperature  

E-Print Network (OSTI)

We investigate the change of magnetic moments of octet baryons in nuclear matter at a finite density and temperature. Quark-meson coupling models are employed in describing properties of octet baryons and their interactions. Magnetic moments of octet baryons are found to increase non-negligibly as density and temperature increase, and we find that temperature dependence can be strongly correlated with the quark-hadron phase transition. Model dependence is also examined by comparing the results from the quark-meson coupling (QMC) model to those by the modified QMC (MQMC) model where the bag constant is assumed to depend on density. Both models predict sizable dependence on density and temperature, but the MQMC model shows a more drastic change of magnetic moments. Feasible changes of the nucleon mass by strong magnetic fields are also reported in the given models.

C. Y. Ryu; C. H. Hyun; M. -K. Cheoun

2010-08-12T23:59:59.000Z

27

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Office RPD relative percent difference RSD relative standard deviation TIC tentatively identified compound DOERL-96-68, HASQARD Table of Contents, Rev. 3 Volume...

28

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS March 21, 2013 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ......

29

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

assurancecontrol) 3. Responsible operations manager 4. Equipment custodian 5. Cognizant engineer. *Reviewapproval is mandatory. 18.3.3 Hostile Environment Plan Contents The plan...

30

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

31

Hybrid Mesons  

E-Print Network (OSTI)

The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum numbers other than 0^{++}, however, this can give rise to states with "exotic" quantum numbers J^{PC}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-},... The lowest-lying hybrid multiplet is expected to contain a state with exotic quantum numbers J^{PC}=1^{-+}. The identification of such a state is considered a "smoking gun" for the observation of non-qqbar mesons. The search for hybrid states has been a central goal of hadron spectroscopy in the last 20 years. Ongoing and upcoming high-statistics experiments are expected to shed new light on the existence of such states in nature. In this paper, theoretical predictions for masses and decay modes as well as recent experimental evidence for hybrid meson states and future experimental directions are discussed.

Bernhard Ketzer

2012-08-25T23:59:59.000Z

32

Baryon Resonances Observed at BES  

E-Print Network (OSTI)

The $\\psi$ decays provide a novel way to explore baryon spectroscopy and baryon structure. The baryon resonances observed from $\\psi$ decays at BES are reviewed. The implications and prospects at upgraded BESIII/BEPCII are discussed.

B. S. Zou

2008-02-01T23:59:59.000Z

33

Rapid Thermalization by Baryon Injection in Gauge/Gravity Duality  

E-Print Network (OSTI)

Using the AdS/CFT correspondence for strongly coupled gauge theories, we calculate thermalization of mesons caused by a time-dependent change of a baryon number chemical potential. On the gravity side, the thermalization corresponds to a horizon formation on the probe flavor brane in the AdS throat. Since heavy ion collisions are locally approximated by a sudden change of the baryon number chemical potential, we discuss implication of our results to RHIC and LHC experiments, to find a rough estimate of rather rapid thermalization time-scale t_{th} < 1 [fm/c]. We also discuss universality of our analysis against varying gauge theories.

Koji Hashimoto; Norihiro Iizuka; Takashi Oka

2011-08-26T23:59:59.000Z

34

MESONS --- 1998 UPDATE  

NLE Websites -- All DOE Office Websites (Extended Search)

MESONS MESONS in the 1998 Review of Particle Physics Please use this CITATION: C. Caso et al. (Particle Data Group), The European Physical Journal C3 (1998) 1 Cut-off date for this update was January 1998. Some of the Particle Listings also have Review articles. PostScript Files PDF Files Combined list of PostScript and PDF Files (with the number of pages) PostScript Files for the Mesons * PostScript Light Unflavored Mesons (pi, eta, rho, ...) * PostScript Strange Mesons (K's) * PostScript Charmed Mesons (D's) * PostScript Charmed, Strange Mesons (D(s)'s) * PostScript Bottom Mesons (B's) * PostScript Bottom, Strange Mesons (B(s)'s) * PostScript Bottom, Charmed Mesons (B(c)'s) * PostScript c cbar Mesons (eta(c), ... J/psi, ... chi(c0)) * PostScript b bbar Mesons (Upsilon, ... chi(b0))

35

Precision measurement of the Lambda_b baryon lifetime  

E-Print Network (OSTI)

The ratio of the \\Lambda b baryon lifetime to that of the B0 meson is measured using 1.0/fb of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The \\Lambda b baryon is observed for the first time in the decay mode \\Lambda b -> J/\\psi pK-, while the B0 meson decay used is the well known B0 -> J/\\psi pi+K- mode, where the pi+ K- mass is consistent with that of the K*0(892) meson. The ratio of lifetimes is measured to be 0.976 +/- 0.012 +/- 0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B0 meson lifetime, the \\Lambda b lifetime is found to be 1.482 +/- 0.018 +/- 0.012 ps. In both cases the first uncertainty is statistical and the second systematic.

LHCb collaboration; R. Aaij; B. Adeva; M. Adinolfi; C. Adrover; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; S. Ali; G. Alkhazov; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; S. Amerio; Y. Amhis; L. Anderlini; J. Anderson; R. Andreassen; J. E. Andrews; R. B. Appleby; O. Aquines Gutierrez; F. Archilli; A. Artamonov; M. Artuso; E. Aslanides; G. Auriemma; M. Baalouch; S. Bachmann; J. J. Back; C. Baesso; V. Balagura; W. Baldini; R. J. Barlow; C. Barschel; S. Barsuk; W. Barter; Th. Bauer; A. Bay; J. Beddow; F. Bedeschi; I. Bediaga; S. Belogurov; K. Belous; I. Belyaev; E. Ben-Haim; G. Bencivenni; S. Benson; J. Benton; A. Berezhnoy; R. Bernet; M. -O. Bettler; M. van Beuzekom; A. Bien; S. Bifani; T. Bird; A. Bizzeti; P. M. Bj\\ornstad; T. Blake; F. Blanc; J. Blouw; S. Blusk; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; T. J. V. Bowcock; E. Bowen; C. Bozzi; T. Brambach; J. van den Brand; J. Bressieux; D. Brett; M. Britsch; T. Britton; N. H. Brook; H. Brown; I. Burducea; A. Bursche; G. Busetto; J. Buytaert; S. Cadeddu; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; P. Campana; D. Campora Perez; A. Carbone; G. Carboni; R. Cardinale; A. Cardini; H. Carranza-Mejia; L. Carson; K. Carvalho Akiba; G. Casse; L. Castillo Garcia; M. Cattaneo; Ch. Cauet; R. Cenci; M. Charles; Ph. Charpentier; P. Chen; N. Chiapolini; M. Chrzaszcz; K. Ciba; X. Cid Vidal; G. Ciezarek; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; E. Cogneras; P. Collins; A. Comerma-Montells; A. Contu; A. Cook; M. Coombes; S. Coquereau; G. Corti; B. Couturier; G. A. Cowan; D. C. Craik; S. Cunliffe; R. Currie; C. D'Ambrosio; P. David; P. N. Y. David; A. Davis; I. De Bonis; K. De Bruyn; S. De Capua; M. De Cian; J. M. De Miranda; L. De Paula; W. De Silva; P. De Simone; D. Decamp; M. Deckenhoff; L. Del Buono; N. Déléage; D. Derkach; O. Deschamps; F. Dettori; A. Di Canto; H. Dijkstra; M. Dogaru; S. Donleavy; F. Dordei; A. Dosil Suárez; D. Dossett; A. Dovbnya; F. Dupertuis; P. Durante; R. Dzhelyadin; A. Dziurda; A. Dzyuba; S. Easo; U. Egede; V. Egorychev; S. Eidelman; D. van Eijk; S. Eisenhardt; U. Eitschberger; R. Ekelhof; L. Eklund; I. El Rifai; Ch. Elsasser; A. Falabella; C. Färber; G. Fardell; C. Farinelli; S. Farry; D. Ferguson; V. Fernandez Albor; F. Ferreira Rodrigues; M. Ferro-Luzzi; S. Filippov; M. Fiore; C. Fitzpatrick; M. Fontana; F. Fontanelli; R. Forty; O. Francisco; M. Frank; C. Frei; M. Frosini; S. Furcas; E. Furfaro; A. Gallas Torreira; D. Galli; M. Gandelman; P. Gandini; Y. Gao; J. Garofoli; P. Garosi; J. Garra Tico; L. Garrido; C. Gaspar; R. Gauld; E. Gersabeck; M. Gersabeck; T. Gershon; Ph. Ghez; V. Gibson; L. Giubega; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; P. Gorbounov; H. Gordon; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; E. Greening; S. Gregson; P. Griffith; O. Grünberg; B. Gui; E. Gushchin; Yu. Guz; T. Gys; C. Hadjivasiliou; G. Haefeli; C. Haen; S. C. Haines; S. Hall; B. Hamilton; T. Hampson; S. Hansmann-Menzemer; N. Harnew; S. T. Harnew; J. Harrison; T. Hartmann; J. He; T. Head; V. Heijne; K. Hennessy; P. Henrard; J. A. Hernando Morata; E. van Herwijnen; A. Hicheur; E. Hicks; D. Hill; M. Hoballah; C. Hombach; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; N. Hussain; D. Hutchcroft; D. Hynds; V. Iakovenko; M. Idzik; P. Ilten; R. Jacobsson; A. Jaeger; E. Jans; P. Jaton; A. Jawahery; F. Jing; M. John; D. Johnson; C. R. Jones; C. Joram; B. Jost; M. Kaballo; S. Kandybei; W. Kanso; M. Karacson; T. M. Karbach; I. R. Kenyon; T. Ketel; A. Keune; B. Khanji; O. Kochebina; I. Komarov; R. F. Koopman; P. Koppenburg; M. Korolev; A. Kozlinskiy; L. Kravchuk; K. Kreplin; M. Kreps; G. Krocker; P. Krokovny; F. Kruse; M. Kucharczyk; V. Kudryavtsev; T. Kvaratskheliya; V. N. La Thi; D. Lacarrere; G. Lafferty; A. Lai; D. Lambert; R. W. Lambert; E. Lanciotti; G. Lanfranchi; C. Langenbruch; T. Latham; C. Lazzeroni; R. Le Gac; J. van Leerdam; J. -P. Lees; R. Lefèvre; A. Leflat; J. Lefrançois; S. Leo; O. Leroy; T. Lesiak; B. Leverington; Y. Li; L. Li Gioi; M. Liles; R. Lindner; C. Linn; B. Liu; G. Liu; S. Lohn; I. Longstaff; J. H. Lopes; N. Lopez-March; H. Lu; D. Lucchesi; J. Luisier; H. Luo; F. Machefert; I. V. Machikhiliyan; F. Maciuc; O. Maev; S. Malde; G. Manca; G. Mancinelli; J. Maratas; U. Marconi; P. Marino; R. Märki; J. Marks; G. Martellotti; A. Martens; A. Martín Sánchez; M. Martinelli; D. Martinez Santos; D. Martins Tostes; A. Massafferri; R. Matev; Z. Mathe; C. Matteuzzi; E. Maurice; A. Mazurov; B. Mc Skelly; J. McCarthy; A. McNab; R. McNulty; B. Meadows; F. Meier; M. Meissner; M. Merk; D. A. Milanes; M. -N. Minard; J. Molina Rodriguez; S. Monteil; D. Moran; P. Morawski; A. Mordà; M. J. Morello; R. Mountain; I. Mous; F. Muheim; K. Müller; R. Muresan

2013-07-31T23:59:59.000Z

36

Holography, charge and baryon asymmetry  

E-Print Network (OSTI)

The reason for baryon asymmetry in our universe has been a pertinent question for many years. The holographic principle suggests a charged preon model underlies the Standard Model of particle physics and any such charged preon model requires baryon asymmetry. This note estimates the baryon asymmetry predicted by charged preon models in closed inflationary Friedmann universes.

T. R. Mongan

2012-02-08T23:59:59.000Z

37

Baryon Number Violation  

E-Print Network (OSTI)

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

K. S. Babu; E. Kearns; U. Al-Binni; S. Banerjee; D. V. Baxter; Z. Berezhiani; M. Bergevin; S. Bhattacharya; S. Brice; R. Brock; T. W. Burgess; L. Castellanos; S. Chattopadhyay; M-C. Chen; E. Church; C. E. Coppola; D. F. Cowen; R. Cowsik; J. A. Crabtree; H. Davoudiasl; R. Dermisek; A. Dolgov; B. Dutta; G. Dvali; P. Ferguson; P. Fileviez Perez; T. Gabriel; A. Gal; F. Gallmeier; K. S. Ganezer; I. Gogoladze; E. S. Golubeva; V. B. Graves; G. Greene; T. Handler; B. Hartfiel; A. Hawari; L. Heilbronn; J. Hill; D. Jaffe; C. Johnson; C. K. Jung; Y. Kamyshkov; B. Kerbikov; B. Z. Kopeliovich; V. B. Kopeliovich; W. Korsch; T. Lachenmaier; P. Langacker; C-Y. Liu; W. J. Marciano; M. Mocko; R. N. Mohapatra; N. Mokhov; G. Muhrer; P. Mumm; P. Nath; Y. Obayashi; L. Okun; J. C. Pati; R. W. Pattie Jr.; D. G. Phillips II; C. Quigg; J. L. Raaf; S. Raby; E. Ramberg; A. Ray; A. Roy; A. Ruggles; U. Sarkar; A. Saunders; A. Serebrov; Q. Shafi; H. Shimizu; M. Shiozawa; R. Shrock; A. K. Sikdar; W. M. Snow; A. Soha; S. Spanier; G. C. Stavenga; S. Striganov; R. Svoboda; Z. Tang; Z. Tavartkiladze; L. Townsend; S. Tulin; A. Vainshtein; R. Van Kooten; C. E. M. Wagner; Z. Wang; B. Wehring; R. J. Wilson; M. Wise; M. Yokoyama; A. R. Young

2013-11-21T23:59:59.000Z

38

Yukawa Meson, Sakata Model and Baryon-Lepton Symmetry Revisited  

Science Journals Connector (OSTI)

......understand the nature of two new forces - the nuclear and the...1960 Rochester Conf. on High Energy Physics. New York: Interscience. 843. This...1960 Rochester Con! on High Energy Physics Onterscience, New York), p. 843. This talk was......

Robert E. Marshak

1985-05-01T23:59:59.000Z

39

Baryon masses in the three-state Potts field theory in a weak magnetic field  

E-Print Network (OSTI)

The 3-state Potts field theory describes the scaling limit of the 3-state Potts model on the two-dimensional lattice near its continuous phase transition point. In the presence of thermal and magnetic field perturbations, the 3-state Potts field theory in the ordered phase exhibits confinement of kinks, which allows both mesons and baryons. We calculate the masses of light baryons in this model in the weak confinement regime in leading order of the small magnetic field. In leading order of perturbation theory, the light baryons can be viewed as bound states of three quantum particles - the kinks, which move on a line and interact via a linear potential. We determine the masses of the lightest baryons by numerical solution of the associated non-relativistic one-dimensional quantum three-body problem.

S. B. Rutkevich

2014-08-08T23:59:59.000Z

40

Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction  

E-Print Network (OSTI)

We present the spectrum of baryons in a new SU(4) gauge theory with fundamental fermion constituents. The spectrum of these bosonic baryons is of significant interest for composite dark matter theories. Here, we compare the spectrum and properties of SU(3) and SU(4) baryons, and then compute the dark-matter direct detection cross section via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the constituent-fermion mass that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark matter coupling are performed on quenched $16^{3} \\times 32$, $32^{3} \\times 64$, $48^{3} \\times 96$, and $64^{3} \\times128$ lattices with three different lattice spacings, using Wilson fermions with moderate to heavy pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical study of composite baryonic dark matter.

Thomas Appelquist; Evan Berkowitz; Richard C. Brower; Michael I. Buchoff; George T. Fleming; Joe Kiskis; Graham D. Kribs; Meifeng Lin; Ethan T. Neil; James C. Osborn; Claudio Rebbi; Enrico Rinaldi; David Schaich; Chris Schroeder; Sergey Syritsyn; Gennady Voronov; Pavlos Vranas; Evan Weinberg; Oliver Witzel

2014-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hadronic scattering of charmed mesons  

E-Print Network (OSTI)

The scattering cross sections of charm mesons with hadrons such as the pion, rho meson, and nucleon are studied in an effective Lagrangian. In heavy ion collisions, rescattering of produced charm mesons by hadrons affects the invariant mass spectra...

Lin, ZW; Ko, Che Ming; Zhang, B.

2000-01-01T23:59:59.000Z

42

Meson electromagnetic form factors  

E-Print Network (OSTI)

The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.

Stanislav Dubnicka; Anna Z. Dubnickova

2012-10-23T23:59:59.000Z

43

Baryon resonances coupled to Pion-Nucleon states in lattice QCD  

E-Print Network (OSTI)

In recent years the study of two particle systems on the lattice has led to excellent results in the meson sector of the QCD spectrum, however baryon resonances mostly remain unexplored. We present a study of pion-nucleon systems as decay product of baryon resonances in different channels, with special focus on the nucleon spectrum. We evaluate the correlation functions of single and multi particle interpolators. All the Wick contributions are explicitly computed and the consequences of reduced symmetries in moving frames are taken into account. We discuss the theoretical setup together with results for $n_f=2$ mass degenerate light quarks.

Verduci, Valentina

2014-01-01T23:59:59.000Z

44

Pion condensation in electrically neutral cold matter with finite baryon density  

E-Print Network (OSTI)

The possibility of the pion condensation phenomenon in cold and electrically neutral dense baryonic matter is investigated in $\\beta$-equilibrium. For simplicity, the consideration is performed in the framework of a NJL model with two quark flavors at zero current quark mass and for rather small values of the baryon chemical potential, where the diquark condensation might be ignored. Two sets of model parameters are used. For the first one, the pion condensed phase with finite baryon density is realized. In this phase both electrons and the pion condensate take part in the neutralization of the quark electric charge. For the second set of model parameters, the pion condensation is impossible if the neutrality condition is imposed. The behaviour of meson masses vs quark chemical potential has been studied in electrically neutral matter.

D. Ebert; K. G. Klimenko

2006-04-26T23:59:59.000Z

45

Heavy Hybrid mesons Masses  

E-Print Network (OSTI)

We estimate the ground state masses of the heavy hybrid mesons using a phenomenological QCD-type potential. 0^{- -},1^{- -},0^{- +},1^{- +} and 0^{+ -} J^{PC} states are considered.

F. Iddir; L. Semlala

2006-11-13T23:59:59.000Z

46

Expectations for Baryon and Lepton Nonconservation  

Science Journals Connector (OSTI)

Are baryon and lepton conservation actually violated in nature? At this moment, we do not know. Nevertheless, it seems a good idea to try to anticipate the details of baryon or lepton nonconserving processes, ...

Steven Weinberg

1980-01-01T23:59:59.000Z

47

Mixing of Pseudoscalar Mesons  

E-Print Network (OSTI)

Eta-eta' mixing is discussed in the quark-flavor basis with the hypothesis that the decay constants follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the axial vector anomaly - all mixing parameters are fixed to first order of flavor symmetry breaking. An alternative set of parameters is obtained from a phenomenological analysis. We also discuss mixing in the octet-singlet basis and show how the relevant mixing parameters are related to those in the quark-flavor basis. The dependence of the mixing parameters on the strength of the anomaly and the amount of flavor symmetry breaking is investigated. Finally, we present a few applications of the quark-flavor mixing scheme, such as radiative decays of vector mesons, the photon-pseudoscalar meson transition form factors, the coupling constants of eta and eta' to nucleons, and the isospin-singlet admixtures to the pi^0 meson.

Th. Feldmann; P. Kroll

2002-01-08T23:59:59.000Z

48

Quark-Model Baryon-Baryon Interaction Applied to the Neutron-Deuteron Scattering (II) Polalization Observables of the Elastic Scattering  

E-Print Network (OSTI)

The neutron-deuteron (nd) scattering is solved in the Faddeev formalism, employing the energy-independent version of the quark-model baryon-baryon interaction fss2. The differential cross sections and the spin polarization of the elastic scattering up to the neutron incident energy $E_n=65$ MeV are well reproduced without reinforcing fss2 with the three-body force. The vector analyzing-power of the neutron, $A_y(\\theta)$, in the energy region $E_n$ < 25 MeV is largely improved in comparison with the predictions by the meson-exchange potentials, thus yielding a partial solution of the long-standing $A_y$-puzzle owing to the nonlocality of the short-range repulsion produced by the quark-model baryon-baryon interaction. The large Coulomb effect in the vector and tensor analyzing-powers in $E_n$ < 10 MeV is also analyzed based on the Vincent and Phatak method and recent detailed studies by other authors.

Kenji Fukukawa; Yoshikazu Fujiwara

2011-02-15T23:59:59.000Z

49

Partonic flow and $?$-meson production in Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV  

E-Print Network (OSTI)

We present first measurements of the $\\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\\Omega$ to those of the $\\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\\Lambda$ baryons, supporting baryon-meson scaling. Since $\\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

B. I. Abelev

2007-03-20T23:59:59.000Z

50

Photo-Mesons from Carbon  

Science Journals Connector (OSTI)

Photons from the Berkeley 322-Mev electron synchrotron have been used to produce mesons from a carbon target. These mesons have been observed with nuclear emulsions at angles of 45°, 90°, and 135° to the photon beam. The ratio of the number of ?- to ?+ mesons produced is 1.29±0.22, 1.30±0.12, and 1.34±0.20, respectively, at each of the above angles. The energy spectra and the differential cross sections of ?-mesons at each of these angles have been obtained. The total cross section for the production of ?-mesons is 4.0±1.6×10-28 cm2 per nucleus per "equivalent quantum." The number of "equivalent quanta," Q, is defined as the total energy in the beam divided by the maximum photon energy. The cross section for production of ?-meson pairs at the target is estimated to be less than 2 percent of the cross section for ?-meson production.

J. M. Peterson; W. S. Gilbert; R. S. White

1951-03-15T23:59:59.000Z

51

Symmetry energy effects on the mixed hadron-quark phase at high baryon density  

SciTech Connect

The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,{rho}{sub B}) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.

Di Toro, M.; Greco, V.; Plumari, S. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy); Pysics and Astronomy Department, University of Catania (Italy); Liu, B. [IHEP, Chinese Academy of Sciences, Beijing (China); Theoretical Physics Center for Scientific Facilities, Chinese Academy of Sciences, 100049 Beijing (China); Baran, V. [Pysics Faculty, University of Bucharest and NIPNE-HH (Romania); Colonna, M. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy)

2011-01-15T23:59:59.000Z

52

Connecting the Baryons: Multiwavelength Data for SKA HI Surveys  

E-Print Network (OSTI)

The science achievable with SKA HI surveys will be greatly increased through the combination of HI data with that at other wavelengths. These multiwavelength datasets will enable studies to move beyond an understanding of HI gas in isolation to instead understand HI as an integral part of the highly complex baryonic processes that drive galaxy evolution. As they evolve, galaxies experience a host of environmental and feedback influences, many of which can radically impact their gas content. Important processes include: accretion (hot and cold mode, mergers), depletion (star formation, galactic winds, AGN), phase changes (ionised/atomic/molecular), and environmental effects (ram pressure stripping, tidal effects, strangulation). Governing all of these to various extents is the underlying dark matter distribution. In turn, the result of these processes can significantly alter the baryonic states in which material is finally observed (stellar populations, dust, chemistry) and its morphology (galaxy type, bulge/d...

Meyer, Martin; Obreschkow, Danail; Driver, Simon; Staveley-Smith, Lister; Zwaan, Martin

2015-01-01T23:59:59.000Z

53

Searches for the baryon- and lepton-number violating decays $B^0\\rightarrow\\Lambda_c^ \\ell^-$, $B^-\\rightarrow\\Lambda\\ell^-$, and $B^-\\rightarrow\\bar{\\Lambda}\\ell^-$  

SciTech Connect

Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either {Lambda}{sub c} or {Lambda} and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2 - 520) x 10{sup -8} are set on the branching fractions at the 90% confidence level.

del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Bari /Bari U.; Milanes, D.A.; /INFN, Bari; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /Milan U. /Milan U. /Milan U. /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

2011-06-22T23:59:59.000Z

54

The Facility for Antiproton and Ion Research and the Compressed Baryonic Matter Experiment  

Science Journals Connector (OSTI)

The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific activities at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high?energy nucleus?nucleus collisions. This includes the study of the equation?of?state of nuclear matter at high densities and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs. The layout and the physics performance of the proposed CBM experimental facility will be discussed.

P. Senger

2010-01-01T23:59:59.000Z

55

Scalar Mesons and Chiral Dynamics  

Science Journals Connector (OSTI)

We discuss scalar mesons properties on the light of chiral dynamics. Considering them as the chiral partners of pseudo?scalar mesons we propose an explanation to their unusual properties based on non?trivial vacuum effects coming from the interplay between spontaneous breaking of chiral symmetry and the violation of UA (1) symmetry by instantons. Including vector mesons as external sources we work out predictions for radiative decays of vector mesons and compare some of them with recent experimental results from high luminosity ? factories.

Mauro Napsuciale

2002-01-01T23:59:59.000Z

56

Scalar Mesons and Chiral Dynamics  

E-Print Network (OSTI)

We discuss scalar mesons properties on the light of chiral dynamics. Considering them as the chiral partners of pseudo-scalar mesons we propose an explanation to their unusual properties based on non-trivial vacuum effects coming from the interplay between spontaneous breaking of chiral symmetry and the violation of $U_A(1)$ symmetry by instantons. Including vector mesons as external sources we work out predictions for radiative decays of vector mesons and compare some of them with recent experimental results from high luminosity $\\Phi$ factories.

Mauro Napsuciale

2002-04-15T23:59:59.000Z

57

Magnetized baryonic matter in holographic QCD  

E-Print Network (OSTI)

We investigate the properties of the Sakai-Sugimoto model at finite magnetic field and baryon chemical potentials. We show that in a finite magnetic field, there exists a spatially homogeneous configuration carrying finite baryon number density. At low magnetic field and baryon chemical potential the equation of state of the matter coincides with that obtained from the chiral perturbation theory Lagrangian with an anomalous term. We discuss the behavior of the system at larger magnetic fields.

Ethan G. Thompson; Dam T. Son

2008-06-02T23:59:59.000Z

58

Partial decay widths of negative parity baryons in the 1/N{sub c} expansion  

SciTech Connect

The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

Gonzalez de Urreta, E. J. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N. N. [Physics Department, Centro Atomico Constituyentes, CNEA, Argentina, CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina. and Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina); Jayalath, C. P. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States) and Department of Physics, Peradeniya University, Peradeniya (20400) (Sri Lanka); Goity, J. L. [Department of Physics, Hampton University, Hampton, VA 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

2013-03-25T23:59:59.000Z

59

Negative parity baryon decays in the 1/N{sub c} expansion  

SciTech Connect

The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are obtained.

Jayalath, C. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Department of Physics, Peradeniya University, Peradeniya 20400 (Sri Lanka); Goity, J. L. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Gonzalez de Urreta, E. [Department of Theoretical Physics, Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N. N. [Department of Theoretical Physics, Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

2011-10-01T23:59:59.000Z

60

Partial Decay Widths of Negative Parity Baryons in the 1/N{sub c} Expansion  

SciTech Connect

The partial decay widths of lowest lying negative parity baryons belonging to the 70-plet of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with single pseudoscalar meson emission. The analysis is carried out to sub-leading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. Conclusions about the magnitude of SU(3) breaking effects along with predictions for some unknown or poorly determined partial decay widths of known resonances are given.

Gonzalez de Urreta, Emiliano [CNEA, Buenos Aires; Scoccola, Norberto [CNEA, Buenos Aires; Jayalath, Chandala [JLAB, Hampton U.; Goity, Jose [JLAB, Hampton U.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The light meson spectroscopy program  

SciTech Connect

Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.

Smith, Elton S. [JLAB

2014-06-01T23:59:59.000Z

62

Photoproduction of ?0 Mesons  

Science Journals Connector (OSTI)

Data and methods of analysis are presented on the details of the reaction ?+p?p+?0 in a 12-in. hydrogen bubble chamber exposed to a bremsstrahlung photon beam of 6-BeV maximum energy at the Cambridge Electron Accelerator. The ?0-production differential cross sections and decay angular distributions, at various photon-energy intervals, are compared with the predictions of the one-pion-exchange (OPE) model and the strong-absorption model (SAM). The experimental data seem to be in better agreement with the SAM predictions. However, much more data will be required for determining the exact role of the OPE mechanism in the photoproduction of ?0 mesons.

Brown-Harvard-MIT-Padova-Weizmann Institute Bubble Chamber Group

1967-03-25T23:59:59.000Z

63

Baryon Fluctuations in High Energy Nuclear Collisions  

E-Print Network (OSTI)

We propose that dramatic changes in the variances and covariance of protons and antiprotons can result if baryons approach chemical equilibrium in nuclear collisions at RHIC. To explore how equilibration alters these fluctuations, we formulate both equilibrium and nonequilibrium hadrochemical descriptions of baryon evolution. Contributions to fluctuations from impact parameter averaging and finite acceptance in nuclear collisions are numerically simulated.

Sean Gavin; Claude Pruneau

1999-07-09T23:59:59.000Z

64

Open bottom mesons in hot asymmetric hadronic medium  

E-Print Network (OSTI)

The in-medium masses and optical potentials of $B$ and ${\\bar B}$ mesons are studied in an isospin asymmetric, strange, hot and dense hadronic environment using a chiral effective model. The chiral $SU(3)$ model originally designed for the light quark sector, is generalized to include the heavy quark sector ($c$ and $b$) to derive the interactions of the $B$ and $\\bar B$ mesons with the light hadrons. Due to large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are due to the in-medium interaction of the light quark content of these open-bottom mesons. Both $B$ and $\\bar B$ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, ($B^+$, $B^-$) as well as ($B^0$, ${\\bar B}^0$), is observed to be broken in the medium, due to equal and opposite contributions from a vectorial Weinberg-Tomozawa interaction term. Addition of hyperons to the medium lowers further the in-medium mass for each of these four mesons, while a non-zero isospin asymmetry is observed to break the approximate mass degeneracy of each pair of isospin doublets. These medium effects are found to be strongly density dependent, and bear a considerably weaker temperature dependence. The results obtained in the present investigation are compared to predictions from the quark-meson coupling model, heavy meson effective theory, and the QCD Sum Rule approach.

Divakar Pathak; Amruta Mishra

2014-09-02T23:59:59.000Z

65

Baryon number violation in particle decays  

Science Journals Connector (OSTI)

It has been argued in the past that in baryogenesis via out-of-equilibrium decays one must consider loop diagrams that contain more than one baryon number violating coupling. In this paper we argue that the requirement with regard to baryon number violating couplings in loop diagrams is that the interaction between the intermediate on-shell particles and the final particles should correspond to a net change in baryon number and that this can be satisfied even if the loop diagram contains only one baryon number violating coupling. Put simply, we show that to create a baryon asymmetry there should be net B violation to the right of the “cut” in the loop diagram. This is of relevance to some works involving the out-of-equilibrium decay scenario.

Rathin Adhikari and Raghavan Rangarajan

2002-03-25T23:59:59.000Z

66

Viscosity of meson matter  

Science Journals Connector (OSTI)

We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase shifts are fits to the experimental data obtained from chiral perturbation theory and the inverse amplitude method. Our results take the correct nonrelativistic limit (viscosity proportional to the square root of the temperature), show a viscosity of the order of the cube of the pion mass up to temperatures somewhat below that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher temperatures, where the viscosity follows a temperature power law with an exponent near 3.

Antonio Dobado and Felipe J. Llanes-Estrada

2004-06-29T23:59:59.000Z

67

Eta absorption by mesons  

E-Print Network (OSTI)

Using the $[SU(3)_{\\mathrm{L}} \\times SU(3)_{\\mathrm{R}}]_{\\mathrm{global}% }\\times [SU(3)_V]_{\\mathrm{local}}$ chiral Lagrangian with hidden local symmetry, we evaluate the cross sections for the absorption of eta meson ($% \\eta$) by pion ($\\pi$), rho ($\\rho$), omega ($\\omega$), kaon ($K$), and kaon star ($K^*$) in the tree-level approximation. With empirical masses and coupling constants as well as reasonable values for the cutoff parameter in the form factors at interaction vertices, we find that most cross sections are less than 1 mb, except the reactions $\\rho\\eta\\to K\\bar K^*(\\bar KK^*)$, $\\omega\\eta\\to K\\bar K^*(\\bar KK^*)$, $K^*\\eta\\to\\rho K$, and $K^*\\eta\\to\\omega K$, which are a few mb, and the reactions $\\pi\\eta\\to K\\bar K$ and $K\\eta\\to\\pi K$, which are more than 10 mb. Including these reactions in a kinetic model based on a schematic hydrodynamic description of relativistic heavy ion collisions, we find that the abundance of eta mesons likely reaches chemical equilibrium with other hadrons in nuclear collisions at the Relativistic Heavy Ion Collider.

W. Liu; C. M. Ko; L. W. Chen

2005-05-27T23:59:59.000Z

68

Cold dark matter models with high baryon content  

Science Journals Connector (OSTI)

......Lyman break galaxies appear redder than one would expect if they...dominated cosmologies, although the red- shift ofobject formation is...72, 3754 Dodelson S., Gates E., Turner M. S., 1996...Linsky J. L., Diplas A, Wood B. E., Brown A, Ayres T......

Martin White; Pedro T. P. Viana; Andrew R. Liddle; Douglas Scott

1996-10-21T23:59:59.000Z

69

Magnetic moment of hyperons in nuclear matter by using quark-meson coupling models  

E-Print Network (OSTI)

We calculate the magnetic moments of hyperons in dense nuclear matter by using relativistic quark models. Hyperons are treated as MIT bags, and the interactions are considered to be mediated by the exchange of scalar and vector mesons which are approximated as mean fields. Model dependence is investigated by using the quark-meson coupling model and the modified quark-meson coupling model; in the former the bag constant is independent of density and in the latter it depends on density. Both models give us the magnitudes of the magnetic moments increasing with density for most octet baryons. But there is a considerable model dependence in the values of the magnetic moments in dense medium. The magnetic moments at the nuclear saturation density calculated by the quark meson coupling model are only a few percents larger than those in free space, but the magnetic moments from the modified quark meson coupling model increase more than 10% for most hyperons. The correlations between the bag radius of hyperons and the magnetic moments of hyperons in dense matter are discussed.

C. Y. Ryu; C. H. Hyun; T. -S. Park; S. W. Hong

2008-06-06T23:59:59.000Z

70

Five-quark components in baryons  

E-Print Network (OSTI)

Evidence has been accumulating for the existence of significant intrinsic non-perturbative five-quark components in various baryons. The inclusion of the five-quark components gives a natural explanation of the excess of $\\bar d$ over $\\bar u$, significant quark orbital angular momentum in the proton, the problematic mass and decay pattern of the lowest $1/2^-$ baryon nonet, etc.. A breathing mode of $qqq\\leftrightarrow qqqq\\bar q$ is suggested for the lowest $1/2^-$ baryon octet. Evidence of a predicted member of the new scheme, $\\Sigma^*(1/2^-)$ around 1380 MeV, is introduced.

B. S. Zou

2010-01-07T23:59:59.000Z

71

Chiral Baryon Fields in the QCD Sum Rule  

E-Print Network (OSTI)

We study the structure of local baryon fields using the method of QCD sum rule. We only consider the single baryon fields and calculate their operator product expansions. We find that the octet baryon fields belonging to the chiral representations [(3,3*)+(3*,3)] and [(8,1)+(1,8)] and the decuplet baryon fields belonging to the chiral representations [(3,6)+(6,3)] lead to the baryon masses which are consistent with the experimental data of ground baryon masses. We also calculate their decay constants, check our normalizations for baryon fields in PRD81:054002(2010) and find that they are well-defined.

Hua-Xing Chen

2012-03-15T23:59:59.000Z

72

Isospin Symmetry Breaking and Octet Baryon Masses due to Their Mixing with Decuplet Baryons  

E-Print Network (OSTI)

We study the isospin symmetry breaking and mass splittings of the eight lowest-lying baryons. We consider three kinds of baryon mass terms, including the bare mass term, the electromagnetic terms and the spontaneous chiral symmetry breaking terms. We include the mixing term between flavor-octet and flavor-decuplet baryons. This assumes that the lowest-lying Sigma and Xi baryons contain a few decuplet components and so are not purely flavor-octet. We achieve a good fitting that the difference between every fitted mass and its experimental value is less than 0.2 MeV.

Hua-Xing Chen

2013-12-05T23:59:59.000Z

73

MESON LISTINGS UNDER REVISION (FOR ENCODERS)  

NLE Websites -- All DOE Office Websites (Extended Search)

MESON LISTINGS UNDER REVISION MESON LISTINGS UNDER REVISION (FOR ENCODERS) This WWW page is designed so that encoders can get current Listings of encoded particles with the 'NODES' on the right-hand side of the page. Disclaimer These sections are private PDG files. Please do not quote or refer to them. The authors reserve the right to radically alter these non-completed sections from minute to minute. They are certainly not error free. Conservation Laws The List by Particle Code (includes hidden particle codes) The List in Book Order by Name Light Unflavored Mesons Summary Table Other Light Unflavored Mesons Strange Mesons Summary Table Charmed Mesons Summary Table Charmed, Strange Mesons Summary Table (c cbar) Mesons Summary Table (b bbar) Mesons Summary Table Non (q qbar) Candidates

74

Baryon Dissociation in a Strongly Coupled Plasma  

E-Print Network (OSTI)

Using the dual string theory, we study a circular baryonic configuration in a wind of strongly coupled N=4 Yang-Mills plasma blowing in the plane of the baryon, before and after a quark has dissociated from it. A simple enough model that captures many interesting features is when there are four quarks in the baryon. As a step towards phenomenology, we compare representative dissociated configurations, and make some comments about their energetics and other properties. Related results that we find include the observation that the screening length formula L_s T ~ (1-v^2)^{1/4} obtained previously for other color singlet configurations, is robust for circular baryons as well.

Chethan Krishnan

2008-09-30T23:59:59.000Z

75

Baryon Dissociation in a Strongly Coupled Plasma  

E-Print Network (OSTI)

Using the dual string theory, we study a circular baryonic configuration in a wind of strongly coupled N=4 Yang-Mills plasma blowing in the plane of the baryon, before and after a quark has dissociated from it. A simple enough model that captures many interesting features is when there are four quarks in the baryon. As a step towards phenomenology, we compare representative dissociated configurations, and make some comments about their energetics and other properties. Related results that we find include the observation that the screening length formula L_s T ~ (1-v^2)^{1/4} obtained previously for other color singlet configurations, is robust for circular baryons as well.

Krishnan, Chethan

2008-01-01T23:59:59.000Z

76

Pion cloud effects on baryon masses  

E-Print Network (OSTI)

In this work we explore the effect of pion cloud contributions to the mass of the nucleon and the delta baryon. To this end we solve a coupled system of Dyson-Schwinger equations for the quark propagator, a Bethe-Salpeter equation for the pion and a three-body Faddeev equation for the baryons. In the quark-gluon interaction we explicitly resolve the term responsible for the back-coupling of the pion onto the quark, representing rainbow-ladder like pion cloud effects in bound states. We study the dependence of the resulting baryon masses on the current quark mass and discuss the internal structure of the baryons in terms of a partial wave decomposition. We furthermore determine values for the nucleon and delta sigma-terms.

Helios Sanchis-Alepuz; Christian S. Fischer; Stanislav Kubrak

2014-04-14T23:59:59.000Z

77

Anomaly-induced charges in baryons  

E-Print Network (OSTI)

We show that quantum chiral anomaly of QCD in magnetic backgrounds induces a novel structure of electric charge inside baryons. To illustrate the anomaly effect, we employ the Skyrme model for baryons, with the anomaly-induced gauged Wess-Zumino term (\\pi_0 + (multi-pion)) E_i B_i. Due to this term, the Skyrmions giving a local pion condensation ((\\pi_0 + (multi-pion)) \

Minoru Eto; Koji Hashimoto; Hideaki Iida; Takaaki Ishii; Yu Maezawa

2011-08-31T23:59:59.000Z

78

The Baryonic Tully Fisher Relation  

E-Print Network (OSTI)

We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC2000) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovich's thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovich's thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.

Sebastian Gurovich; Stacy S. McGaugh; Ken C. Freeman; Helmut Jerjen; Lister Staveley-Smith; W. J. G. De Blok

2004-11-17T23:59:59.000Z

79

Photoproduction of mesons off nuclei  

E-Print Network (OSTI)

Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets.

B. Krusche

2011-10-02T23:59:59.000Z

80

Production of Meson Pairs Involving $L \  

E-Print Network (OSTI)

We present a formalism for studying the exclusive production or decay of mesons with any value of the internal orbital angular momentum L. As an application, we discuss the production of meson pairs (involving tensor and pseudotensor mesons) in photon-photon collisions.

Houra-Yaou, L; Parisi, J; Murgia, F; Hansson, J

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BNL | Baryonic Oscillation Spectroscopic Survey (BOSS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Baryonic Oscillation Spectroscopic Survey (BOSS) Baryonic Oscillation Spectroscopic Survey (BOSS) sloan telescope The 2.5-meter Sloan telescope in New Mexico Mapping the Luminous Universe How are galaxies clustered together? What is fueling the accelerating expansion of the universe? Just what is dark energy? These are the big questions that scientists working at the Baryon Oscillation Spectroscopic Survey (BOSS) are asking. Brookhaven National Lab is a member of BOSS, the largest of the four surveys that make up the Sloan Digital Sky Survey III, which maps the sky over the Northern Hemisphere with New Mexico's 2.5-meter Sloan telescope in an attempt to define dark energy and measure its effects. Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III collaboration is working to map the Milky Way, search

82

Strong decays of excited baryons in Large Nc QCD  

SciTech Connect

We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

Goity, J. L. [Physics Dept., Hampton University, Hampton, VA 23668 (United States); TJNAF, Newport News, VA 23606 (United States); Scoccola, N. N. [Lab. TANDAR, CNEA, Av.Libertador 8250, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

2007-02-12T23:59:59.000Z

83

Lattice QCD studies of s-wave meson-baryon interactions  

SciTech Connect

We study the s-wave KN interactions in the isospin I = 0, 1 channels and associated exotic state {Theta}{sup +} from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to m{sub {pi}} = 871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter amplitudes. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential. The I = 0 potential is found to have attractive well at mid range. The KN scattering phase shifts are calculated and compared with the experimental data.

Ikeda, Yoichi [Nishina Center for Accelerator-Based Science, Institute for Physical and Cemical Research (RIKEN), Wako, Saitama 351-0198 (Japan)

2011-10-21T23:59:59.000Z

84

Light meson and baryon spectroscopy from charm decays in Fermilab E791  

E-Print Network (OSTI)

We present results from Fermilab experiment E791. We extracted the fractions of resonant components in the $\\Lambda_c^+\\to p K^- \\pi^+$ decays, and found a significant polarization of the $\\Lambda_c^+$ using a fully 5-dimensional resonant analysis. We also did resonant analyses of $D^+$ and $D^+_s$ decays into $\\pi^+\\pi^-\\pi^+$. We observed an insignificant asymmetry in the Breit Wigner describing the $f_0(980)$ and found good evidence for a light and broad scalar resonance in the $D^+$ decays.

M. V. Purohit

2000-10-16T23:59:59.000Z

85

Energy and system size dependence of phi meson production in Cu+Cu and Au+Au collisions  

SciTech Connect

We study the beam-energy and system-size dependence of {phi} meson production (using the hadronic decay mode {phi} {yields} K{sup +}K{sup -}) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at {radical}s{sub NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from midrapidity (|y| < 0.5) for 0.4 < p{sub T} < 5 GeV/c. At a given beam energy, the transverse momentum distributions for {phi} mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The {phi} meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions with a different trend compared to strange baryons. The enhancement for {phi} mesons is observed to be higher at {radical}s{sub NN} = 200 GeV compared to 62.4 GeV. These observations for the produced {phi}(s{bar s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

STAR Coll

2008-10-28T23:59:59.000Z

86

Energy and system size dependence of ?meson production in Cu+Cu and Au+Au collisions  

E-Print Network (OSTI)

We study the beam-energy and system-size dependence of \\phi meson production (using the hadronic decay mode \\phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \\sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|energy, the transverse momentum distributions for \\phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \\phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \\phi mesons is observed to be higher at \\sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \\phi(s\\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

STAR Collaboration

2008-10-28T23:59:59.000Z

87

Phi Meson in Dense Matter  

E-Print Network (OSTI)

The effect of the kaon loop correction to the property of a phi meson in dense matter is studied in the vector dominance model. Using the density-dependent kaon effective mass determined from the linear chiral perturbation theory, we find...

Ko, Che Ming; Levai, P.; Qiu, X. J.; Li, C. T.

1992-01-01T23:59:59.000Z

88

Study of B Meson Decays to ppbarh Final States  

SciTech Connect

B mesons are unique among well-established non-quarkonium mesons in their ability to decay into baryons. Baryonic B decays offer a wide range of interesting areas of study: they can be used to test our theoretical understanding of rare decay processes involving baryons, search for direct CP violation and study low-energy QCD. This thesis presents measurements of branching fractions and a study of the decay dynamics of the charmless three-body decays of B meson into p{bar p}h final states, where h = {pi}{sup +}, K{sup +}, K{sub S}{sup 0}, K*{sup 0} or K*{sup +}. With a sample of 232 million {Upsilon}(4S) {yields} B{bar B} events collected with the BaBar detector, we report the first observation of the B {yields} p{bar p}K*{sup 0} decay, and provide improved measurements of branching fractions of the other modes. The distribution of the three final-state particles is of particular interest since it provides dynamical information on the possible presence of exotic intermediate states such as the hypothetical pentaquark states {Theta}*{sup ++} and {Theta}{sup +}in the m{sub pK{sup +}} and m{sub pK{sub S}{sup 0}} spectra, respectively, or glueball states (such as the tensor glueball f{sub J}(2220)) in the m{sub p{bar p}} spectrum. No evidence for exotic states is found and upper limits on the branching fractions are set. An enhancement at low p{bar p} mass is observed in all the B {yields} p{bar p}h modes, and its shape is compared between the decay modes and with the shape of the time-like proton form factor. A Dalitz plot asymmetry in B {yields} p{bar p}K{sup +} mode suggests dominance of the penguin amplitude in this decay and disfavors the possibility that the low mass p{bar p} enhancement originates from the presence of a resonance below threshold (such as the recently seen baryonium candidate at 1835 MeV/c{sup 2}). We also identify decays of the type B {yields} X{sub c{bar c}}h {yields} p{bar p}h, where h = K{sup +}, K{sub S}{sup 0}, K*{sup 0} or K*{sup +}, and X{sub c{bar c}} = {eta}{sub c} or J/{psi}. In particular, we report on the evidence of the B {yields} {eta}{sub c}K*{sup +} decay and provide a measurement of the width of {eta}{sub c}.

Hryn'ova, Tetiana B.; /SLAC

2006-03-22T23:59:59.000Z

89

Nuclear aspects of few-baryon systems  

SciTech Connect

Recent progress in understanding the bound state properties of the trinucleons and the alpha particle in terms of a hadron picture of the nucleus is reviewed. The role of three-body forces and meson exchange currents is examined. novel aspects of few-body hypernuclei as well as unresolved issues in this S {ne} O sector are summarized.

Gibson, B.F.

1993-10-01T23:59:59.000Z

90

Hybrid mesons and auxiliary fields  

E-Print Network (OSTI)

Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the $\\pi_1(1600)$ and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body $q\\bar q$ system with an excited flux tube, or a three-body $q\\bar q g$ system. We also compute the masses of the $1^{-+}$ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models.

Fabien Buisseret; Vincent Mathieu

2006-07-07T23:59:59.000Z

91

Analysis of 56-plet positive parity baryon decays in the 1/N{sub c} expansion  

SciTech Connect

The partial decay widths of positive parity baryons belonging to 56-plets of SU(6) are analyzed in the framework of the 1/N{sub c} expansion. The channels considered are those with emission of a single {pi}, K, or K meson, and the analysis is carried out to subleading order in 1/N{sub c} and to first order in SU(3) symmetry breaking. The results for the multiplet [56,0{sup +}], to which the Roper resonance belongs, indicate a poor description of the widths at leading order, requiring important next to leading order corrections. For the multiplet [56,2{sup +}], the P wave decays in the nonstrange sector are well described at leading order, while the F wave decays require the next to leading order corrections, which turn out to be of natural magnitude. SU(3) breaking effects are poorly determined, because only few decays with a K meson in the final state are established, and their widths are not known with sufficient accuracy.

Goity, J. L. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Instituto Balseiro, Centro Atomico Bariloche, 8400 S.C. de Bariloche (Argentina); Jayalath, C. [Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Scoccola, N. N. [Physics Department, Comision Nacional de Energia Atomica, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, (1033) Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

2009-10-01T23:59:59.000Z

92

Baryon resonance production and dielectron decays in proton-proton collisions at 3.5 GeV  

E-Print Network (OSTI)

We report on baryon resonance production and decay in proton-proton collisions at a kinetic energy of $3.5$ GeV based on data measured with HADES. The exclusive channels $pp \\rightarrow np\\pi^{+}$ and $pp \\rightarrow pp\\pi^{0}$ as well as $pp \\rightarrow ppe^{+}e^{-}$ are studied simultaneously for the first time. The invariant masses and angular distributions of the pion-nucleon systems were studied and compared to simulations based on a resonance model ansatz assuming saturation of the pion production by an incoherent sum of baryonic resonances (R) with masses $<2~$ GeV/$c^2$. A very good description of the one-pion production is achieved allowing for an estimate of individual baryon-resonance production-cross-sections which are used as input to calculate the dielectron yields from $R\\rightarrow pe^+e^-$ decays. Two models of the resonance decays into dielectrons are examined assuming a point-like $RN \\gamma^*$ coupling and the dominance of the $\\rho$ meson. The results of model calculations are compared to data from the exclusive $ppe^{+}e^{-}$ channel by means of the dielectron and $pe^+e^-$ invariant mass distributions.

G. Agakishiev; A. Balanda; D. Belver; A. Belyaev; J. C. Berger-Chen; A. Blanco; M. Böhmer; J. L. Boyard; P. Cabanelas; S. Chernenko; A. Dybczak; E. Epple; L. Fabbietti; O. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Fröhlich; T. Galatyuk; J. A. Garzón; R. Gernhäuser; K. Göbel; M. Golubeva; D. González-Díaz; F. Guber; M. Gumberidze; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kämpfer; T. Karavicheva; I. König; W. König; B. W. Kolb; G. Kornakov; R. Kotte; A. Krása; F. Krizek; R. Krücken; H. Kuc; W. Kühn; A. Kugler; A. Kurepin; V. Ladygin; R. Lalik; S. Lang; K. Lapidus; A. Lebedev; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; B. Michalska; J. Michel; C. Müntz; L. Naumann; Y. C. Pachmayer; M. Pa\\lka; Y. Parpottas; V. Pechenov; O. Pechenova; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; E. Schwab; J. Siebenson; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Ströbele; J. Stroth; C. Sturm; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; T. Vasiliev; V. Wagner; M. Weber; C. Wendisch; J. Wüstenfeld; S. Yurevich; Y. Zanevsky

2014-03-28T23:59:59.000Z

93

Evidence for the F/sup / meson  

SciTech Connect

Evidence for a narrow state decaying into an F meson and a photon has been obtained in e/sup +/e/sup -/ annihilation events at 29 GeV c.m. energy. This state lies 139.5 +- 8.3(stat) +- 9.7(syst) MeV above the F-meson mass and is consistent with the expected F( meson. The F mesons are identified by a peak in the K/sup +/K/sup -/..pi../sup + -/ mass at 1.948 +- 0.028 +- 0.010 GeV.

Aihara, H.; Alston-Garnjost, M.; Badtke, D.H.; Bakken, J.A.; Barbaro-Galtieri, A.; Barnes, A.V.; Barnett, B.A.; Blumenfeld, B.J.; Bross, A.D.; Buchanan, C.D.; Chamberlain, O.; Chiba, J.; Chien, C.; Clark, A.R.; Cordier, A.; Dahl, O.I.; Day, C.T.; Derby, K.A.; Eberhard, P.H.; Enomoto, R.; Fancher, D.L.; Fujii, H.; Fujii, T.; Gabioud, B.; Gary, J.W.; Gorn, W.; Hadley, N.J.; Hauptman, J.M.; Hofmann, W.; Huth, J.E.; Hylen, J.; Iwasaki, H.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Kerth, L.T.; Koda, R.I.; Kofler, R.R.; Kwong, K.K.; Layter, J.G.; Lindsey, C.S.; Loken, S.C.; Lu, X.; Lynch, G.R.; Madansky, L.; Madaras, R.J.; Majka, R.M.; Martin, P.S.; Maruyama, K.; Marx, J.N.; Matthews, J.A.J.; Melnikoff, S.O.; Moses, W.; Nemethy, P.; Nygren, D.R.; Oddone, P.J.; Park, D.A.; Pevsner, A.; Pripstein, M.; Robrish, P.R.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Sauerwein, R.R.; Shapiro, G.; Shapiro, M.D.; Shen, B.C.; Slater, W.E.; Stevenson, M.L.; Stork, D.H.; Ticho, H.K.; Toge, N.; van Daalen Wetters, R.

1984-12-24T23:59:59.000Z

94

New Results on Baryon Spectroscopy from MAMI  

SciTech Connect

An overview of the MAMI-C electron accelerator facility (E{sub 0} = 1.6 GeV) and the experimental setups of the A1 and A2 collaborations for electro- and photoproduction reactions is given. Several experimental results and their interpretations for baryon spectroscopy are discussed. The topics presented here are the beam-helicity asymmetry I{center_dot} for {pi}{pi} photoproduction in the second resonance region, the photoproduction of {pi}{sup 0{eta}} up to beam energies of {omega} = 1.4 GeV as a way to study the {Delta}(1700)D{sub 33} baryon, and polarisation observables in h electro- and photoproduction in order to investigate an unexpected s-d-wave phase shift and its possible implications for the nature of the S{sub 11}(1535) resonance.

Schumann, Sven [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

2010-08-05T23:59:59.000Z

95

Two Baryons with Twisted Boundary Conditions  

SciTech Connect

The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.

Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)

2014-04-01T23:59:59.000Z

96

Baryon Tri-local Interpolating Fields  

E-Print Network (OSTI)

We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.

Hua-Xing Chen

2012-05-24T23:59:59.000Z

97

Meson spectra of asymptotically free gauge theories from holography  

E-Print Network (OSTI)

Using holography, we study the low-lying mesonic spectrum of a range of asymptotically free gauge theories. First we revisit a simple top-down holographic model of QCD-like dynamics with predictions in the M_rho-M_pi plane. The meson masses in this model are in very good agreement with lattice gauge theory calculations in the quenched approximation. We show that the key ingredient for the meson mass predictions is the running of the anomalous dimension of the quark condensate, gamma. This provides an explanation for the agreement of holographic and quenched lattice gauge theory calculations. We then study the `Dynamic AdS/QCD model' in which the gauge theory dynamics is included by a choice for the running of gamma. We use the naive two-loop perturbative running of the gauge coupling extrapolated to the non-perturbative regime to estimate the running of gamma across a number of theories. We consider models with quarks in the fundamental, adjoint, two-index symmetric and two-index anti-symmetric representations. We display predictions for M_rho, M_pi, M_sigma and the lightest glueball mass. Many of these theories, where the contribution to the running of gamma is dominated by the gluons, give very similar spectra, which also match with lattice expectations for QCD. On the other hand, a significant difference between spectra in different holographic models is seen for theories where the quark content changes the gradient of the running of gamma around the scale at which chiral symmetry breaking is triggered at gamma approximately 1. For these walking theories we see an enhancement of the rho-mass and a suppression of the sigma-mass. Both phenomena are characteristic for walking behaviour in the physical meson masses.

Johanna Erdmenger; Nick Evans; Marc Scott

2014-12-10T23:59:59.000Z

98

Electroweak strings, zero modes and baryon number  

Science Journals Connector (OSTI)

The Dirac equations for leptons and quarks in the background of an electroweak Z—string have zero mode solutions. If two loops of electroweak string are linked, the zero modes on one of the loops interacts with the other loop via an Aharanov-Bohm interaction. The effects of this interaction are briefly discussed and it is shown that the fermions induce a baryon number on linked loops of Z—string.

Tanmay Vachaspati

1995-01-01T23:59:59.000Z

99

Charmed bottom baryon spectroscopy from lattice QCD  

We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

2014-11-01T23:59:59.000Z

100

CP Violation in D mesons Aljosa Polsak  

E-Print Network (OSTI)

Seminar 1b CP Violation in D mesons Aljosa Polsak Adviser: prof. dr. Peter Krizan Co-adviser: dr. Anze Zupanc Ljubljana, November 2013 Abstract In this seminar we take a look at CP violation in neutral D mesons. We firstly examine the theoretical basics for CP violation. We start with the CKM matrix

Â?umer, Slobodan

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rho Meson in Dense Hadronic Matter  

E-Print Network (OSTI)

The spectral function of a rho meson that is at rest in dense hadronic matter and couples strongly to the pion is studied in the vector dominance model by including the effect of the delta-hole polarization on the pion. With the free rho-meson mass...

Asakawa, M.; Ko, Che Ming; Levai, P.; Qiu, X. J.

1992-01-01T23:59:59.000Z

102

Current Algebras and Meson Decays  

Science Journals Connector (OSTI)

By using quark-algebra equal-time commutation relations and a smooth pole-dominated form for the vector-vector-axial-vector vertex in the high-energy limit, one can describe the radiative decays of the vector mesons and the ??3? decay in excellent agreement with experimental data. It is shown, however, that if we exploit all equations this procedure gives, we get into contradictions. By introducing a non-smooth amplitude, the contradictions can be eliminated in such a way that the good predictions of the smooth case remain unaltered. The various aspects of the results are discussed.

Tibor Nagy

1970-04-01T23:59:59.000Z

103

Decuplet baryon magnetic moments in the chiral quark model  

Science Journals Connector (OSTI)

We present calculations of the decuplet baryon magnetic moments in the chiral quark model. As input we use parameters obtained in qualitatively accurate fits to the octet baryon magnetic moments studied previously. The values found for the magnetic moments of ?++ and ?- are in good agreement with experiments. We finally calculate the total quark spin polarizations of the decuplet baryons and find that they are considerably smaller than what is expected from the non-relativistic quark model.

Johan Linde; Tommy Ohlsson; Håkan Snellman

1998-05-01T23:59:59.000Z

104

Light Vector Mesons in the Nuclear Medium  

SciTech Connect

The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff

Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

2008-07-01T23:59:59.000Z

105

Charged track multiplicity in B meson decay  

Science Journals Connector (OSTI)

We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the ?(4S) resonance. Using a sample of 1.5×106 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71±0.02-0.15+0.21 for the decay of the pair. This corresponds to a mean multiplicity of 5.36±0.01-0.08+0.11 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82±0.05-0.19+0.21 charged particles per BB¯ decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62±0.04-0.18+0.24 per BB¯ pair.

G. Brandenburg et al. (CLEO Collaboration)

2000-03-07T23:59:59.000Z

106

Cosmology with X-ray Cluster Baryons  

SciTech Connect

X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

Linder, Eric V.

2007-04-10T23:59:59.000Z

107

Magnetic Polarizability of Diquarks in Baryons  

E-Print Network (OSTI)

We study the response of diquark wave function in \\Lambda-type baryons to strong magnetic fields. It is found that quantum state of J=0 diquark (ud) in the magnetic field changes due to magnetic polarizability, and constituent quarks in (ud) diquark become polarized. The phenomenon influences polarized quark distribution functions \\Delta u(x) and \\Delta d(x), which therefore may be sensitive to the internal electromagnetic fields in hypernuclei. We also speculate, that strange quark polarization in nucleon may originate from the interaction of virtual (ss') quark pairs with the intrinsic magnetic field of nucleon B $\\approx$ 10^13 T.

Peter Filip

2014-01-29T23:59:59.000Z

108

Thermodynamics of baryonic matter with strangeness within non-relativistic energy density functional model  

E-Print Network (OSTI)

We study the thermodynamical properties of compressed baryonic matter with strangeness within non-relativistic energy density functional models with a particular emphasis on possible phase transitions found earlier for a simple $n,p,e,\\Lambda$-mixture. The aim of the paper is twofold: I) examining the phase structure of the complete system, including the full baryonic octet and II) testing the sensitivity of the results to the model parameters. We find that, associated to the onset of the different hyperonic families, up to three separate strangeness-driven phase transitions may occur. Consequently, a large fraction of the baryonic density domain is covered by phase coexistence with potential relevance for (proto)-neutron star evolution. It is shown that the presence of a phase transition is compatible both with the observational constraint on the maximal neutron star mass, and with the present experimental information on hypernuclei. In particular we show that two solar mass neutron stars are compatible with important hyperon content. Still, the parameter space is too large to give a definitive conclusion of the possible occurrence of a strangeness driven phase transition, and further constraints from multiple-hyperon nuclei and/or hyperon diffusion data are needed.

Ad. R. Raduta; F. Gulminelli; M. Oertel

2014-06-02T23:59:59.000Z

109

Information content of polarization measurements  

Science Journals Connector (OSTI)

Information entropy is applied to the state of knowledge of reaction amplitudes in pseudoscalar meson photoproduction, and a scheme is developed that quantifies the information content of a measured set of polarization observables. It is shown that this definition of information is a more practical measure of the quality of a set of measured observables than whether the combination is a mathematically complete set. It is also shown that, when experimental uncertainty is introduced, complete sets of measurements do not necessarily remove ambiguities and that experiments should strive to measure as many observables as practical to extract amplitudes.

D. G. Ireland

2010-08-13T23:59:59.000Z

110

Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks  

E-Print Network (OSTI)

This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite large even in such boxes. The large mass infinite volume calculations performed here are consistent with the results of numerical calculations using the Bringoltz method. The calculation of the baryon crystal interaction energy requires the assumption that at low-densities the ground state is composed of individual baryons, each in a color-singlet state and orthogonal to each other. This assumption is plausible but ad hoc in that one can construct configurations in which the entire state is color-singlet but cannot be broken into individual color-singlet baryons. The interaction energy of low-density baryon crystals calculated with the assumption is consistent with numerical results based on Bringoltz's approach suggesting that the assumption is justified. This further supports a similar assumption that was made in 3+1 dimensions, where no alternative means of calculation exist.

Prabal Adhikari; Thomas D. Cohen; Arec Jamgochian; Nilay Kumar

2012-12-10T23:59:59.000Z

111

Baby Skyrmions stabilized by vector mesons  

E-Print Network (OSTI)

Recent results suggest that multi-Skyrmions stabilized by omega mesons have very similar properties to those stabilized by the Skyrme term. In this paper we present the results of a detailed numerical investigation of a (2+1)-dimensional analogue of this situation. Namely, we compute solitons in an O(3) sigma-model coupled to a massive vector meson and compare the results to baby Skyrmions, which are solitons in an O(3) sigma-model including a Skyrme term. We find that multi-solitons in the vector meson model are surprisingly similar to those in the baby Skyrme model, and we explain this correspondence using a simple derivative expansion.

David Foster; Paul Sutcliffe

2009-01-23T23:59:59.000Z

112

Absorption of the $?$ and $?$ Mesons in Nuclei  

E-Print Network (OSTI)

Due to their long lifetimes, the $\\omega$ and $\\phi$ mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from $^{2}$H, C, Ti, Fe, and Pb targets. This paper reports the first measurement of the ratio of nuclear transparencies for the $e^{+}e^{-}$ channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels.

M. H. Wood; R. Nasseripour; M. Paolone; C. Djalali; D. P. Weygand; the CLAS Collaboration

2010-06-17T23:59:59.000Z

113

Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model  

SciTech Connect

We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

Gilberto Ramalho, Kazuo Tsushima

2011-09-01T23:59:59.000Z

114

The Baryon Catastrophe and the multiphase intracluster medium  

E-Print Network (OSTI)

We review the theories and observations which together have led to the concept of the Baryon Catastrophe: observations of the baryon fraction on the scale of clusters of galaxies appear to be at least three times as high as the universal baryon fraction predicted by the theory of primordial nucleosynthesis in a flat, $\\Omega_0 = 1$, universe. We investigate whether this discrepancy could be eliminated by treating the intracluster gas as a multiphase medium, and find that this treatment both lowers the calculated mass of gas in a cluster and increases the inferred gravitational potential. These combined effects can reduce the calculated baryon fraction by between a quarter and a half: the precise amount depends upon the volume fraction distribution of density phases in the gas but is independent of the temperature profile across the cluster. Thus moving to a multiphase intracluster medium cannot resolve the Baryon Catastrophe by itself; other possible causes and explanations are discussed.

K. F. Gunn; P. A. Thomas

1995-10-17T23:59:59.000Z

115

K+ production in baryon-baryon and heavy-ion collisions  

E-Print Network (OSTI)

Kaon production cross sections in nucleon-nucleon, nucleon-Delta, and Delta-Delta interactions are studied in a boson exchange model. For the latter two interactions, the exchanged pion can be on-mass shell...only contributions due to a virtual pion an included via the Peierls method by taking into account the finite Delta width. With these cross sections and also those for pion-baryon interactions, subthreshold kaon production from heavy-ion collisions...

Li, GQ; Ko, Che Ming; Chung, WS.

1998-01-01T23:59:59.000Z

116

Heavy Baryon Mixing in Chiral Perturbation Theory  

E-Print Network (OSTI)

We discuss the SU(3) and heavy quark spin-symmetry breaking mixing between the Xi_c and Xi'_c charmed baryons. Chromomagnetic hyperfine interactions are the leading source of spin-symmetry breaking and together with the SU(3) breaking mass differences between the lightest pseudo-Goldstone bosons gives the leading contribution to the mixing. Such contributions are computed in chiral perturbation theory and compared to quark model expectations. We also compute the leading contribution to the semileptonic decay Xi_b -> Xi'_c l nu at zero recoil, and find that it is an order of magnitude smaller than naive power counting would suggest. It appears that Xi_b -> Xi'_c l nu is dominated by incalculable counterterms, and we discuss the implications for quark models based on the essential role of hyperfine interactions.

C. Glenn Boyd; Ming Lu; Martin J. Savage

1996-12-20T23:59:59.000Z

117

Quantum Operator Design for Lattice Baryon Spectroscopy  

SciTech Connect

A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

Adam Lichtl

2007-09-06T23:59:59.000Z

118

12. CP violation in meson decays 1 12. CP VIOLATION IN MESON DECAYS  

E-Print Network (OSTI)

12. CP violation in meson decays 1 12. CP VIOLATION IN MESON DECAYS Revised May 2012 by D. Kirkby (UC Irvine) and Y. Nir (Weizmann Institute). The CP transformation combines charge conjugation C, for example, a left-handed electron e- L is transformed under CP into a right-handed positron, e+ R. If CP

119

12. CP violation in meson decays 1 12. CP VIOLATION IN MESON DECAYS  

E-Print Network (OSTI)

12. CP violation in meson decays 1 12. CP VIOLATION IN MESON DECAYS Revised August 2009 by D. Kirkby (UC Irvine) and Y. Nir (Weizmann Institute). The CP transformation combines charge conjugation C, for example, a left-handed electron e- L is transformed under CP into a right-handed positron, e+ R. If CP

120

Negative K-Meson Reactions with Protons: Masses of Charged ? Hyperons and the Negative K Meson  

Science Journals Connector (OSTI)

New measurements of the masses of the charged ? hyperons and the negative K meson are reported. The results obtained are M?+=1189.3±0.3 Mev, M?-=1195.8±0.5 Mev, and MK-=493.87±0.46 Mev. No evidence for more than one K--meson mass was found. The terminal behavior of the ?- hyperons was also studied.

Walter H. Barkas, John N. Dyer, Peter C. Giles, Harry H. Heckman, Conrad J. Mason, Norris A. Nickols, and Frances M. Smith

1958-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Photoproduction and Decay of Light Mesons in CLAS  

SciTech Connect

We present preliminary experimental results on photoproduction and decay of light mesons measured with CLAS setup at JLAB . This include Dalitz decay of pseudoscalar and vector mesons, radiative decay of pseudoscalar mesons as well hadronic decays of pseudoscalar and vector mesons. The collected high statistics in some of decay channels exceeds the world data by an order of magnitude and some other decay modes are observed for the first time. It is shown how the CLAS data will improve the world data on transition form factors of light mesons, Dalitz plot analyses, branching ratios of rare decay modes and other fundamental properties potentially accessible through the light meson decays.

Amaryan, Moskov Jamalovich [Old Dominion University

2013-08-01T23:59:59.000Z

122

Production of meson pairs, involving tensor and pseudotensor mesons, in photon-photon collisions  

E-Print Network (OSTI)

Starting from a bound-state model of weakly bound quarks for ($q \\bar{q}$) mesons, we derive a formalism for computing the production or decay of such mesons, whatever the value of their internal orbital angular momentum L. That formalism appears as a natural generalization of the Brodsky-Lepage model (valid only for L=0) that has been widely used in recent years for the computation of exclusive processes in perturbative QCD. We here apply it to the production, in photon-photon collisions, of: i) tensor-meson pairs; ii) pseudotensor-meson pairs; iii) hybrid pairs made of a pion and a pseudotensor meson. The numerical results we obtain allow for some hope of experimentally identifying such pairs, in the charged channels, at high-energy e^+e^- colliders of the next generation, provided integrated luminosities as high as

Houra-Yaou, L; Parisi, J; Murgia, F; Hansson, J

1996-01-01T23:59:59.000Z

123

Kaon condensation and composition of neutron star matter in modified quark-meson coupling model  

E-Print Network (OSTI)

We use the modified quark-meson coupling (MQMC) model to study the composition profile of neutron star matter and compare the results with those calculated by quantum hadrodynamics (QHD). Both MQMC and QHD model parameters are adjusted to produce exactly the same saturation properties so that we can investigate the model dependences of the matter composition at high densities. We consider the possibility of deep kaon optical potential and find that the composition of matter is very sensitive to the interaction strength of kaons with matter. The onset densities of the kaon condensation are studied in detail by varying the kaon optical potentials. We find that the MQMC model produces the kaon condensation at lower densities than QHD. The presence of kaon condensation changes drastically the population of octet baryons and leptons. Once the kaon condensation takes place, the population of kaons builds up very quickly, and kaons become the dominant component of the matter. We find that the $\\omega$-meson plays an important role in increasing the kaon population and suppressing the hyperon population.

C. Y. Ryu; C. H. Hyun; S. W. Hong; B. T. Kim

2007-03-29T23:59:59.000Z

124

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

125

energy content  

Science Journals Connector (OSTI)

energy content, (weight) strength ? Arbeitsvermögen n (im ballistischen Mörser gemessen), Sprengenergie f (im ballistischen Mörser gemessen) [Mit 10 g Sprengstoff ermittelt

2014-08-01T23:59:59.000Z

126

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

127

New Paradigm for Baryon and Lepton Number Violation  

E-Print Network (OSTI)

The possible discovery of proton decay, neutron-antineutron oscillation, neutrinoless beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.

Perez, Pavel Fileviez

2015-01-01T23:59:59.000Z

128

CP violation for neutral charmed meson decays into CP eigenstates  

Science Journals Connector (OSTI)

The CP asymmetries for the decays of the neutral charmed meson into CP eigenstates are carefully studied. Formulas and numerical...

Dong-Sheng Du

2007-04-01T23:59:59.000Z

129

Observables in the decays of B to two vector mesons  

Science Journals Connector (OSTI)

In general there are nine observables in the decay of a B meson to two vector mesons defined in terms of polarization correlations of these mesons. Only six of these can be detected via the subsequent decay angular distributions because of parity conservation in those decays. The remaining three require the measurement of the spin polarization of one of the decay products.

Cheng-Wei Chiang and Lincoln Wolfenstein

2000-03-10T23:59:59.000Z

130

The Existence of Baryons at z=1000  

E-Print Network (OSTI)

Fluctuations in the CMB have now been detected over a wide range of angular scales, and a consistent picture seems to be emerging. The data cannot currently constrain a large number of cosmological parameters, but it is clear that there is more information than just the normalization of the models. Here we use the data to constrain a second parameter, namely the amplitude of the Doppler peak, using a phenomenological approach to the power spectrum. We find that the data prefer a peak of height ~3, with a purely flat spectrum ruled out at the 95%CL. Although there are concerns about possible foregrounds and non-Gaussian fluctuations, we believe that the existence of a peak at degree-scales is established by the data. This immediately implies that reionization was unimportant for the CMB. It also potentially leads to difficulties for models where the fluctuations were produced by topological defects. Independent constraints on Omega_B, on the slope n, etc. will need to wait for further data. At the moment, the simple presence of a Doppler peak should be seen as strong supporting evidence for standard dark matter-dominated models with some few percent of baryons at z=1000.

Douglas Scott; Martin White

1994-07-24T23:59:59.000Z

131

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

222014 5:11:47 PM" "Back to Contents","Data 1: U.S. Gasoline and Diesel Retail Prices" "Sourcekey","EMMEPM0PTENUSDPG","EMMEPM0UPTENUSDPG","EMMEPM0RPTENUS...

132

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:08:27 PM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012MO2" "Date","Missouri...

133

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9262014 3:44:37 PM" "Back to Contents","Data 1: Natural Gas Pipeline & Distribution Use " "Sourcekey","N9170US2","NA1480SAL2","NA1480SAK2","NA1480SAZ...

134

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSDMCF"...

135

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:55 PM" "Back to Contents","Data 1: Natural...

136

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Texas...

137

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:41 PM" "Back to Contents","Data 1: Natural...

138

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:11:23 PM" "Back to Contents","Data 1:...

139

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:32:23 PM" "Back to Contents","Data 1:...

140

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Virginia...

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:26:30 PM" "Back to Contents","Data 1: Alabama...

142

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1: Rhode...

143

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:58 PM" "Back to Contents","Data 1: Natural...

144

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:23 PM" "Back to Contents","Data 1: Vermont...

145

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:10 PM" "Back to Contents","Data 1:...

146

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oregon...

147

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:53 PM" "Back to Contents","Data 1: Utah...

148

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Michigan...

149

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:30 PM" "Back to Contents","Data 1: New...

150

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:52 PM" "Back to Contents","Data 1: Natural...

151

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:24:23 PM" "Back to Contents","Data 1: Kansas...

152

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: U.S....

153

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:02 PM" "Back to Contents","Data 1: South...

154

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Tennessee...

155

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Montana...

156

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:32 PM" "Back to Contents","Data 1: New...

157

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:54 PM" "Back to Contents","Data 1: Natural...

158

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Utah...

159

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:31 PM" "Back to Contents","Data 1: Natural...

160

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oklahoma...

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:08:23 PM" "Back to Contents","Data 1: Illinois...

162

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Maryland...

163

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Percent...

164

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1:...

165

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:54 PM" "Back to Contents","Data 1: Virginia...

166

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:08 PM" "Back to Contents","Data 1: U.S....

167

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:51 PM" "Back to Contents","Data 1: Natural...

168

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:05:23 PM" "Back to Contents","Data 1: Natural...

169

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1:...

170

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: Wyoming...

171

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1: Vermont...

172

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:57 PM" "Back to Contents","Data 1:...

173

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: West...

174

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:00:57 PM" "Back to Contents","Data 1: Iowa...

175

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:45 PM" "Back to Contents","Data 1: South...

176

Meson masses and decay constants from unquenched lattice QCD  

SciTech Connect

We report results for the masses of the flavor nonsinglet light 0{sup ++}, 1{sup --}, and 1{sup +-} mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavors of sea quarks. For the 0{sup ++} and 1{sup +-} mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the {rho} meson. We test the mass dependence of the KSRF relations, between the mass, leptonic coupling constant, and strong coupling of the rho meson.

Jansen, K. [DESY, Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany); McNeile, C. [Department of Physics and Astronomy, Kelvin Building, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Michael, C. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Urbach, C. [Humboldt-Universitaet zu Berlin, Institut fuer Physik Mathematisch-Naturwissenschaftliche Fakultaet I, Theorie der Elementarteilchen/Phaenomenologie, Newtonstrasse 15, 12489 Berlin (Germany)

2009-09-01T23:59:59.000Z

177

Charmonium meson and hybrid radiative transitions  

SciTech Connect

We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.

Guo, Peng [Indiana U., JLAB; Yépez-Martínez, Tochtli [Indiana U.; Szczepaniak, Adam P. [Indiana U., JLAB

2014-06-01T23:59:59.000Z

178

Medium Effects on the Rho-Meson  

E-Print Network (OSTI)

The property of a rho meson in dense nuclear matter is studied using the QCD sum rule. The spectral function appearing on the hadronic side of the sum rule is evaluated in the vector dominance model that takes into account the interaction between...

Asakawa, M.; Ko, Che Ming.

1993-01-01T23:59:59.000Z

179

Dark Energy Constraints from Baryon Acoustic Oscillations  

Science Journals Connector (OSTI)

Baryon acoustic oscillations (BAOs) in the galaxy power spectrum allow us to extract the scale of the comoving sound horizon at recombination, a cosmological standard ruler accurately determined by the cosmic microwave background anisotropy data. We examine various issues important in the use of BAOs to probe dark energy. We find that if we assume a flat universe and priors on ?m, ?mh2, and ?bh2 as expected from the Planck mission, the constraints on dark energy parameters (w0, w') scale much less steeply with survey area than (area)-1/2 for a given redshift range. The constraints on the dark energy density ?X(z), however, do scale roughly with (area)-1/2 due to the strong correlation between H(z) and ?m (which reduces the effect of priors on ?m). Dark energy constraints from BAOs are very sensitive to the assumed linear scale of matter clustering and the redshift accuracy of the survey. For a BAO survey with 0.5 ? z ? 2, ? (R) = 0.4 [corresponding to kmax (z = 0) = 0.086 h Mpc-1], and ?z/ (1 + z) = 0.001, we find = (0.115,0.183) and (0.069, 0.104) for survey areas of 1000 and 10,000 deg2, respectively. We find that it is critical to minimize the bias in the scale estimates in order to derive reliable dark energy constraints. For a 1000 (10,000) deg2 BAO survey, a 1 ? bias in ln H (z) leads to a 2 ? (3 ?) bias in w'. The bias in w' due to the same scale bias from ln DA (z) is slightly smaller and opposite in sign. The results from this paper will be useful in assessing different proposed BAO surveys and guiding the design of optimal dark energy detection strategies.

Yun Wang

2006-01-01T23:59:59.000Z

180

Meson Spectroscopy at JLab@12 GeV  

SciTech Connect

Meson, being the simplest hadronic bound system, is the ideal "laboratory" to study the interaction between quarks, to understand the role of the gluons inside hadrons and to investigate the origin of color confinement. To perform such studies it is important to measure the meson spectrum, with precise determination of resonance masses and properties, looking for rare qbar q states and for unconventional mesons with exotic quantum numbers (i.e. mesons with quantum numbers that are not compatible with a qbar q structure). With the imminent advent of the 12 GeV upgrade of Jefferson Lab a new generation of meson spectroscopy experiments will start: "Meson-Ex" in Hall B and "GLUEX" in Hall D. Both will use photo-production to explore the spectrum of mesons in the light-quark sector, in the energy range of few GeVs.

Celentano, Andrea [INFN-GENOVA

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CEDR Content  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEDR Content" CEDR Content" "The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The CEDR is due to the SPO no later than December 9th." "Worksheet",,"Overview","Action" 1.1,"Content","Stand-alone overview of the CEDR tabs.","None" 2.1,"Funds, Meters, Training","Collects information on energy and water spending, and metering status.","If applicable, complete cells highlighted in orange. Edited and new data cells should be highlighted in light blue." 3.1,"BTU & Gal Key","Reference tab containing all factors and dropdown menu information for all tabs starting with ""3"". If you need to divide up the CEDR, please keep all tabs starting with ""3"" together to ensure calculation links are not broken. ","None"

182

Hybrid meson decay from lattice QCD  

E-Print Network (OSTI)

Besides the conventional hadrons containing valence quarks and valence antiquarks, quantum chromodynamics (QCD) suggests the existence of the hybrid hadrons containing valence gluons in addition to the quarks and antiquarks, and some experiments may have found some. A decisive experimental confirmation of its existence, however, is still needed. At present, lattice simulations have offered the practicable ways of theoretically guiding us to search for the hybrid states. In this dissertation, we study the spectroscopy and the decay rate of the heavy hybrid mesons made of a heavy $b$ quark, a heavy $\\bar b$ antiquark, and a gluon ($b\\bar{b}g$) to selected channels, and use lattice methods to extract the transition matrix elements in full QCD. We are particular interested in the spin-exotic hybrid mesons. For sufficiently heavy quarks (e.g., $b$ quark), we use the leading Born-Oppenheimer (LBO) approximation to calculate the static potential energy at all $b\\bar{b}$ separations. Then, by solving the Schr\\"odinger equation with this potential, we reconstruct the motion of the heavy quarks. In a similar way we can determine decay rates. In this dissertation, we use the numerical lattice method to calculate the mass of the $f_0$ meson at a single lattice spacing and light quark mass, namely, $m_{f_0} = (768 \\pm 136)$ MeV. Most of all we consider the decay channels involving the production of a scalar meson. We obtain the partial decay rate ($\\Gamma$) for the channel $ H \\rightarrow \\chi_b + \\pi + \\pi $, namely, $ \\Gamma = 3.62(98)$ MeV. All of our results are consistent with those of other researchers. Knowledge of the masses and the decay rates should help us considerably in experimental searches for the hybrid mesons.

Ziwen Fu

2011-03-08T23:59:59.000Z

183

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Workbook Contents" Workbook Contents" ,"U.S. State-to-State capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units of Measurement","Frequency","Updated Date" ,"Pipeline State-to-State Capacity","State-to-State capacity","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Inflow Capacity","Inflow capacity from other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Outflow Capacity","Outflow capacity to other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel"

184

Baryon number fluctuation and the quark-gluon plasma  

E-Print Network (OSTI)

baryon number per event is given by ^B&eq5b0^n&5b0 ]g~1 ! ]x 5b0 Ae I1I0 .b0Ae . ~5! Baryon number fluctuation Zi-wei Lin an Cyclotron Institute and Physics Department, Texas ~Received 28 March 2001; We show that vB or vB? , the squared baryon... volume of the system. The equilibrium solution to Eq. ~1! is Pn ,eq5 en I0~2Ae!~n! !2 , ~2! where I0 is the modified Bessel function, and e[ G^Nm1&^Nm2& L . ~3! ?2001 The American Physical Society1 RAPID COMMUNICATIONS ZI-WEI LIN AND C. M. KO...

Lin, ZW; Ko, Che Ming.

2001-01-01T23:59:59.000Z

185

Spectroscopy of triply charmed baryons from lattice QCD  

The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6)x O(3) symmetry. Energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.

Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

2014-10-01T23:59:59.000Z

186

Exclusive vector meson production at HERA  

SciTech Connect

The exclusive photoproduction of {Upsilon} has been studied with the ZEUS detector in ep collisions at HERA. The exponential slope, b, of the |t|-dependence of the cross section, where t is the squared four-momentum transfer at the proton vertex, has been measured. This constitutes the first measurement of the |t|-dependence of the {gamma}p{yields}{Upsilon}p cross section. The differential crosssections as a function of t at lower energies of {gamma}p centre-of-mass has been studied in exclusive diffractive photoproduction of J/{psi} mesons with the H1 detector. The exclusive electroproduction of two pions has been measured by the ZEUS experiment. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, assuming that the studied mass range includes the contributions of the {rho}, {rho} Prime and . {rho}'' vector-meson states.

Szuba, Dorota [Hamburg University, Hamburg (Germany); Collaboration: H1 Collaboration; ZEUS Collaboration

2013-04-15T23:59:59.000Z

187

Rare and forbidden decays of D Mesons  

SciTech Connect

The authors summarize the results of two recent searches for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. using data from Fermilab charm hadroproduction experiment E791, they examined D{sup +} and D{sub s}{sup +} {pi}{ell}{ell} and {Kappa}{ell}{ell} decay modes and the D{sup 0} dilepton decay modes containing either {ell}{sup +}{ell}{sup {minus}}, a {rho}{sup 0}, {bar {Kappa}}*{sup 0}, or {phi} vector meson, or a non-resonant {pi}{pi}, {Kappa}{pi}, or {Kappa}{Kappa} pair of pseudoscalar mesons. No evidence for any of these decays was found. Therefore, the authors presented branching-fraction upper limits at 90% confidence level for the 51 decay modes examined. Twenty-six of these modes had no previously reported limits, and eighteen of the remainder were reported with significant improvements over previously published results.

David A. Sanders et al.

2001-05-23T23:59:59.000Z

188

Hybrid meson masses and the correlated Gaussian basis  

E-Print Network (OSTI)

We revisited a model for charmonium hybrid meson with a magnetic gluon [Yu. S. Kalashnikova and A. V. Nefediev, Phys. Rev. D {\\bf 77}, 054025 (2008)] and improved the numerical calculations. These improvements support the hybrid meson interpretation of X(4260). Within the same model, we computed the hybrid meson mass with an electric gluon which is resolved to be lighter. Relativistic effects and coupling channels decreased also the mass.

Vincent Mathieu

2009-03-09T23:59:59.000Z

189

Example of the Production of a ?- Meson by a K+ Meson  

Science Journals Connector (OSTI)

In 50 meters of 200-300 Mev K+-meson track followed in nuclear emulsion, one interaction event has been found from which a pion track emerges. The incoming K+ meson had a kinetic energy of 323±20 Mev. The K+ meson re-emerged with an energy of 30 Mev at 36 degrees. The pion track has a characteristic negative-pion ending, and the pion was emitted with 34 Mev at 96 degrees. In addition a 40-Mev proton left the star at 81 degrees and there are three other short tracks. Although the kinematics admit an analysis in which no inelastic secondary process occurred among the primary reaction products, strong inelastic secondary processes are quite possible and must be considered. Charge independence holds important implications for the pion yield charge ratios and the early trend of negative excess seems rather striking.

E. Helmy, J. H. Mulvey, D. J. Prowse, and D. H. Stork

1958-12-01T23:59:59.000Z

190

Galaxy Ecosystems: gas contents, inflows and outflows  

E-Print Network (OSTI)

We use a set of observational data for galaxy cold gas mass fraction and gas phase metallicity to constrain the content, inflow and outflow of gas in central galaxies hosted by halos with masses between $10^{11} M_{\\odot}$ to $10^{12} M_{\\odot}$. The gas contents in high redshift galaxies are obtained by combining the empirical star formation histories of Lu et al. (2014) and star formation models that relate star formation rate with the cold gas mass in galaxies. We find that the total baryon mass in low-mass galaxies is always much less than the universal baryon mass fraction since $z = 2$, regardless of star formation model adopted. The data for the evolution of the gas phase metallicity require net metal outflow at $z\\lesssim 2$, and the metal loading factor is constrained to be about $0.01$, or about $60\\%$ of the metal yield. Based on the assumption that galactic outflow is more enriched in metal than both the interstellar medium and the material ejected at earlier epochs, we are able to put stringent c...

Lu, Zhankui; Lu, Yu

2014-01-01T23:59:59.000Z

191

Intercommutation of Z-boson string loops violates baryon number  

Science Journals Connector (OSTI)

We show that delinking of Z-boson string loops changes the helicity and thus violates baryon number. The key point is that an unlinked vortex loop cannot be twisted. The helicity of an eventual magnetic twist when averaged in time is zero.

Jacek Dziarmaga

1995-07-15T23:59:59.000Z

192

Baryon Asymmetry of the Universe (2/2)  

ScienceCinema (OSTI)

In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments

None

2011-10-06T23:59:59.000Z

193

Search for baryon number violation in top-quark decays  

E-Print Network (OSTI)

A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at [sqrt s]=8 TeV. The top-quark decay considered in this search results in one light lepton (muon or ...

CMS Collaboration

194

CP violation for neutral charmed meson decays to CP eigenstates  

E-Print Network (OSTI)

CP asymmetries for neutral charmed meson decays to CP eigenstates are carefully studied. The formulas and numerical results are presented. The impact on experiments is briefly discussed.

Dongsheng Du

2006-08-30T23:59:59.000Z

195

What is interesting in eta and eta' Meson Decays?  

E-Print Network (OSTI)

An introduction to the physics of eta and eta' meson decays is given. A historical account of the discovery of the mesons is presented. It is followed by an overview and classification of the common decay modes and the relevance of the mesons for modern hadron and particle physics. In more detail the hadronic decay modes are discussed and in particular some interesting features of the eta-> 3pi0 decay are presented. The last section briefly reviews and compares reactions used to produce the eta and eta' mesons for the studies of their decays.

Andrzej Kupsc

2007-09-05T23:59:59.000Z

196

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

197

E-Print Network 3.0 - a1-1270 mesons Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

mass lattice QCD Summary: Static-light meson masses from twisted mass lattice QCD Karl Jansen, Chris Michael, Andrea Shindler... -light meson masses from twisted mass lattice QCD",...

198

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

199

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

200

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

202

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

203

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

204

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

205

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

206

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

207

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

208

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

209

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

210

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

211

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

212

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

214

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

215

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

216

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

217

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

218

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

219

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

220

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

222

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

223

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

224

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

225

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

226

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

227

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

228

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

229

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

230

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

231

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

232

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

233

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

234

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

235

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

236

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_a.xls" mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:23 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","MCRFPWV1","MCRFPP21","MCRFPIL1","MCRFPIN1","MCRFPKS1","MCRFPKY1","MCRFP_SMI_1","MCRFPMO1","MCRFPNE1","MCRFPND1","MCRFPOH1","MCRFPOK1","MCRFPSD1","MCRFPTN1","MCRFPP31","MCRFPAL1","MCRFPAR1","MCRFPLA1","MCRFPMS1","MCRFPNM1","MCRFPTX1","MCRFP3FM1","MCRFPP41","MCRFPCO1","MCRFPMT1","MCRFPUT1","MCRFPWY1","MCRFPP51","MCRFPAK1","MCRFPAKS1","MANFPAK1","MCRFPAZ1","MCRFPCA1","MCRFPNV1","MCRFP5F1"

237

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

238

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

239

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

240

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

242

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

243

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

244

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

245

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

246

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

247

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

248

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

249

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

250

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

251

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_a.xls" mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:25 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","MCRFPWV2","MCRFPP22","MCRFPIL2","MCRFPIN2","MCRFPKS2","MCRFPKY2","MCRFP_SMI_2","MCRFPMO2","MCRFPNE2","MCRFPND2","MCRFPOH2","MCRFPOK2","MCRFPSD2","MCRFPTN2","MCRFPP32","MCRFPAL2","MCRFPAR2","MCRFPLA2","MCRFPMS2","MCRFPNM2","MCRFPTX2","MCRFP3FM2","MCRFPP42","MCRFPCO2","MCRFPMT2","MCRFPUT2","MCRFPWY2","MCRFPP52","MCRFPAK2","MCRFPAKS2","MANFPAK2","MCRFPAZ2","MCRFPCA2","MCRFPNV2","MCRFP5F2"

252

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

253

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

254

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

255

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 24653,7098 25019,5910 25384,8097 25749,7233 26114,5090 26480,3672 26845,10767 27210,10787

256

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OK3" "Date","Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

257

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:40 PM" "Back to Contents","Data 1: North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ND3" "Date","North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

258

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35246 35611,0 35976,0 36341,0 36707,0 37072,0 37437,0 37802,0 38168,0 38533,0 38898,0 39263,0

259

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:27 PM" "Back to Contents","Data 1: Kentucky Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KY2" "Date","Kentucky Natural Gas Residential Consumption (MMcf)" 24653,69542 25019,75824 25384,83815 25749,86473 26114,84197 26480,85881

260

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9160us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9160us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" "Sourcekey","N9160US2" "Date","U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" 29235,93000 29266,87000 29295,93000 29326,85000

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:28 AM" "Back to Contents","Data 1: U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" "Sourcekey","N9030US2" "Date","U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891

262

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MI3" "Date","Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

263

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (MMcf)" "Sourcekey","N9070US2" "Date","U.S. Dry Natural Gas Production (MMcf)" 35445,1617923 35476,1465907 35504,1627602 35535,1551268 35565,1610527 35596,1525325

264

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:55 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports (MMcf)" "Sourcekey","N9102US2" "Date","U.S. Natural Gas Pipeline Imports (MMcf)" 35445,268310 35476,232878 35504,254455 35535,235621 35565,236725 35596,227059 35626,230567

265

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:08 PM" "Back to Contents","Data 1: Wyoming Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WY2" "Date","Wyoming Natural Gas Residential Consumption (MMcf)" 24653,11939 25019,12592 25384,16592 25749,17984 26114,19463 26480,22242 26845,13868

266

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:09 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)" "Sourcekey","N3020AK2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)"

267

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 26679,843900 26710,747331 26738,648504 26769,465867 26799,326313

268

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:38 PM" "Back to Contents","Data 1: Montana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MT2" "Date","Montana Natural Gas Residential Consumption (MMcf)" 24653,19756 25019,19711 25384,21463 25749,24794 26114,25379 26480,23787 26845,24923

269

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 35445,3 35476,3

270

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports (MMcf)" "Sourcekey","N9132US2" "Date","U.S. Natural Gas Pipeline Exports (MMcf)" 35445,6424 35476,6846 35504,10601 35535,8211 35565,6284 35596,5741 35626,6380 35657,10101

271

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:10 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

272

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WI3" "Date","Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

273

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Alabama Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AL2" "Date","Alabama Natural Gas Vented and Flared (MMcf)" 35079,194 35110,200 35139,140 35170,132 35200,106 35231,82 35261,205 35292,152

274

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: West Virginia Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WV2" "Date","West Virginia Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

275

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_pct_dc_nus_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:23:48 AM" "Back to Contents","Data 1: U.S. Refinery Yield" "Sourcekey","MLRRYUS3","MGFRYUS3","MGARYUS3","MKJRYUS3","MKERYUS3","MDIRYUS3","MRERYUS3","MNFRYUS3","MOTRYUS3","MNSRYUS3","MLURYUS3","MWXRYUS3","MCKRYUS3","MAPRYUS3","MSGRYUS3","MMSRYUS3","MPGRYUS3"

276

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:36 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)" "Sourcekey","N3020US2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)"

277

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

278

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013","1/15/1997" Monthly","11/2013","1/15/1997" ,"Data 2","Futures Prices",4,"Monthly","11/2013","12/15/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:17 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU"

279

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010PA3" "Date","Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

280

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ut3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ut3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010UT3" "Date","Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: District of Columbia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DC2" "Date","District of Columbia Natural Gas Residential Consumption (MMcf)" 29402,13730 29767,13686 30132,13041 30497,13007

282

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TX3" "Date","Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

283

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skn_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skn_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:29 AM" "Back to Contents","Data 1: U.S. Natural Gas Processing Plant " "Sourcekey","MAOSNUS1","MPPSNUS1","MLPSNUS1","METSNUS1","MPRSNUS1","MBNSNUS1","MBISNUS1"

284

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arizona Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AZ2" "Date","Arizona Natural Gas Vented and Flared (MMcf)" 26114,347 26480,367 26845,277 27210,26 27575,47 27941,32 29036,101 29402,143 29767,106 30132,162

285

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:20 PM" "Back to Contents","Data 1: California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CA3" "Date","California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

286

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:49 PM" "Back to Contents","Data 1: Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OH3" "Date","Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

287

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:30 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020FL3" "Date","Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

288

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 35079,63 35110,63 35139,63 35170,61 35200,62 35231,57 35261,57 35292,55 35323,56

289

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: Nevada Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NV2" "Date","Nevada Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0 33526,0

290

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 35079,217 35110,199 35139,223 35170,219 35200,237 35231,234 35261,239

291

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 31228,4.6 31593,4.62 32324,2.71

292

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 32523,2.69 32554,2.4

293

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 24653,129403 25019,124584 25384,111499 25749,100305 26114,70222 26480,59821 26845,36133 27210,34431

294

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AL2" "Date","Alabama Natural Gas Residential Consumption (MMcf)" 24653,45543 25019,51708 25384,54804 25749,55779 26114,54867 26480,53397 26845,55685

295

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MI2" "Date","Michigan Natural Gas Residential Consumption (MMcf)" 24653,302472 25019,315694 25384,333264 25749,340033 26114,343773 26480,355266

296

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CO3" "Date","Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

297

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WA3" "Date","Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

298

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:05 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 24653,1958 25019,2293 25384,4573 25749,6211 26114,6893 26480,8394 26845,5024

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 24653,52777 25019,56346 25384,58322 25749,59792 26114,48737 26480,47387

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 24653,126629 25019,129408 25384,130766 25749,129629 26114,39799 26480,38797 26845,36411

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

302

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

303

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CA3" "Date","California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

304

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 33253,1788 33284,1684 33312,1571 33343,1593 33373,1807 33404,1690 33434,2042

305

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Tennessee Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TN2" "Date","Tennessee Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

306

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin Natural Gas Residential Consumption (MMcf)" 24653,90994 25019,93425 25384,101124 25749,105208 26114,109758 26480,104648

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:24 PM" "Back to Contents","Data 1: Indiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010IN2" "Date","Indiana Natural Gas Residential Consumption (MMcf)" 24653,139519 25019,145955 25384,156699 25749,158699 26114,162747 26480,169267

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CT3" "Date","Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

311

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mo3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mo3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:36 PM" "Back to Contents","Data 1: Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MO3" "Date","Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

312

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 24653,161849 25019,166439 25384,158852 25749,154089 26114,103564 26480,63667 26845,102091

313

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 34592,646 34834,696 34865,4590 34895,4767 34926,4382 34957,4389 34987,4603 35018,4932

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AZ2" "Date","Arizona Natural Gas Residential Consumption (MMcf)" 24653,25376 25019,26681 25384,28426 25749,29679 26114,32619 26480,34259 26845,36280

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

316

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 31228,3.92 31593,2.35

317

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:23 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ID3" "Date","Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

318

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ME2" "Date","Maine Natural Gas Residential Consumption (MMcf)" 24653,3967 25019,3571 25384,4910 25749,5247 26114,5591 26480,6036 26845,6027 27210,6174

319

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ne3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ne3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:42 PM" "Back to Contents","Data 1: Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NE3" "Date","Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

320

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:47 AM" "Back to Contents","Data 1: Wyoming Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WY2" "Date","Wyoming Natural Gas Vented and Flared (MMcf)" 24653,1498 25019,13038 25384,17632 25749,18419 26114,3860 26480,8376 26845,6618 27210,6102

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:34 PM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MN3" "Date","Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

322

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:10 PM" "Back to Contents","Data 1: California Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CA2" "Date","California Natural Gas Residential Consumption (MMcf)" 24653,522122 25019,517636 25384,562127 25749,552544 26114,630998 26480,637289

323

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 33253,384 33284,350 33312,382 33343,380 33373,382 33404,376 33434,405

324

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 35079,236 35110,220 35139,240 35170,230 35200,241 35231,229 35261,217

325

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: Colorado Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CO2" "Date","Colorado Natural Gas Residential Consumption (MMcf)" 24653,75351 25019,78371 25384,81068 25749,82595 26114,84864 26480,89187

326

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc2d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc2d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:40 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34346,2.13 34347,2.072 34348,2.139 34351,2.196 34352,2.131

327

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

328

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mo2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Missouri Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MO2" "Date","Missouri Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

329

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc4d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc4d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:29 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34323,1.894 34324,1.83 34325,1.859 34326,1.895 34330,1.965

330

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:17 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010US2" "Date","U.S. Natural Gas Gross Withdrawals (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

331

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 24653,3000 25019,2906 25384,2802 25749,2852 26114,2926 26480,5506 26845,7664 27210,5259 27575,1806

332

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 32523,1793 32554,2148 32582,1566 32613,1223 32643,858 32674,638

333

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 24653,25795 25019,22050 25384,22955 25749,19862 26114,2686 26480,20786 26845,22533

334

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

335

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

336

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VA2" "Date","Virginia Natural Gas Residential Consumption (MMcf)" 24653,41495 25019,43582 25384,46663 25749,49554 26114,49488 26480,55427

337

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 35079,112 35110,77 35139,78 35170,91 35200,100 35231,89 35261,100 35292,106

338

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:17 PM" "Back to Contents","Data 1: Georgia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010GA2" "Date","Georgia Natural Gas Residential Consumption (MMcf)" 24653,80322 25019,84072 25384,87878 25749,87359 26114,88319 26480,85256 26845,86191

339

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:33 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)" "Sourcekey","N3020HI2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)"

340

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:31 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)" "Sourcekey","N3020GA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)"

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:14 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)" "Sourcekey","N3020AR2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)"

342

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Connecticut Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CT2" "Date","Connecticut Natural Gas Residential Consumption (MMcf)" 24653,26177 25019,26437 25384,29048 25749,31187 26114,31878 26480,32879

343

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:14 PM" "Back to Contents","Data 1: District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DC3" "Date","District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

344

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ri3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ri3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:54 PM" "Back to Contents","Data 1: Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010RI3" "Date","Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

345

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SD3" "Date","South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

346

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:26 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)" "Sourcekey","N3020DE2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)"

347

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:58 PM" "Back to Contents","Data 1: Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TN3" "Date","Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

348

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ny3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ny3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NY3" "Date","New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

349

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:51 PM" "Back to Contents","Data 1: Oregon Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OR2" "Date","Oregon Natural Gas Residential Consumption (MMcf)" 24653,13427 25019,15126 25384,20507 25749,19742 26114,21217 26480,23331 26845,22271

350

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9140us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9140us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Total Consumption (MMcf)" "Sourcekey","N9140US2" "Date","U.S. Natural Gas Total Consumption (MMcf)" 36906,2676998 36937,2309464 36965,2246633 36996,1807170 37026,1522382 37057,1444378

351

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:45 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34347,2.194 34348,2.268 34351,2.36 34352,2.318 34353,2.252

352

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:16 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010FL3" "Date","Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

353

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:08 PM" "Back to Contents","Data 1: U.S. Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035US2" "Date","U.S. Natural Gas Industrial Consumption (MMcf)" 36906,686540 36937,640026 36965,664918 36996,622054 37026,576532 37057,536820

354

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 26114,355 26480,284 27941,837 28306,607 29402,677 29767,428 30132,435 30497,198 30863,34

355

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OK2" "Date","Oklahoma Natural Gas Residential Consumption (MMcf)" 24653,67395 25019,74782 25384,75310 25749,77460 26114,75238 26480,77608

356

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 24653,997 25019,895 25384,1326 25749,226 26114,1734 26480,2649 26845,1947 27210,1716 27575,1318

357

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ME3" "Date","Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

358

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3060us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:27:25 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in the U.S. (MMcf)" "Sourcekey","N3060US2" "Date","Natural Gas Delivered to Consumers in the U.S. (MMcf)" 36906,2505011 36937,2156873 36965,2086568 36996,1663832

359

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 11139,295700 11504,294406 11870,298520 12235,283197 12600,288236 12965,313498 13331,343346

360

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:25 PM" "Back to Contents","Data 1: Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010IN3" "Date","Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9011us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:36 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011US2" "Date","U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" 33253,1482053 33526,1363737 33984,1452098 34015,1305490

362

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:37 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020US3" "Date","U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

363

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:46 PM" "Back to Contents","Data 1: Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NV3" "Date","Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

364

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9133US3" "Date","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:55 PM" "Back to Contents","Data 1: South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SC3" "Date","South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

366

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010vt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010vt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:03 PM" "Back to Contents","Data 1: Vermont Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VT2" "Date","Vermont Natural Gas Residential Consumption (MMcf)" 29402,1301 29767,1290 30132,1278 30497,1252 30863,1352 31228,1456 31593,1595

367

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly","12/13/2013","1/10/1997" Weekly","12/13/2013","1/10/1997" ,"Data 2","Futures Prices",4,"Weekly","12/13/2013","12/24/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:18 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD" "Date","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

368

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Indiana Natural Gas Vented and Flared (Million Cubic Feet)" "Sourcekey","N9040IN2" "Date","Indiana Natural Gas Vented and Flared (Million Cubic Feet)" 33253,0 33284,0 33312,0 33343,0 33373,0

369

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:32 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020GA3" "Date","Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

370

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:20 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010HI3" "Date","Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

371

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KS2" "Date","Kansas Natural Gas Residential Consumption (MMcf)" 24653,84912 25019,89372 25384,94320 25749,97317 26114,98644 26480,100720 26845,96468

372

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Imports (MMcf)" "Sourcekey","N9100US2" "Date","U.S. Natural Gas Imports (MMcf)" 26679,92694 26710,83870 26738,91581 26769,88407 26799,85844 26830,79121 26860,79428 26891,84400 26922,81157

373

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:18 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010GA3" "Date","Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

374

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9133US2" "Date","Liquefied U.S. Natural Gas Exports (MMcf)" 35445,5604 35476,5596 35504,5675 35535,5660 35565,3812 35596,3786 35626,3756 35657,7532

375

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9170us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9170us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline & Distribution Use (MMcf)" "Sourcekey","N9170US2" "Date","U.S. Natural Gas Pipeline & Distribution Use (MMcf)" 36906,76386 36937,65770 36965,63626 36996,50736

376

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:13 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 32689,99.9 33054,99.2 33419,99.2 33785,99.1 34150,99.1 34515,99.1

377

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CT3" "Date","Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

378

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

379

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

380

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 24653,1861 25019,1120 25384,808 25749,809 26480,1032 26845,1117 27210,1268 27575,1612

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 32523,6774 32554,7118 32582,6736 32613,3835 32643,1927 32674,1402

382

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010LA3" "Date","Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

383

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 32523,1.72 32554,1.88

384

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,1558 26480,1263 26845,834 27210,2137 27575,1398 27941,797

385

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:13 AM" "Back to Contents","Data 1: U.S. Natural Gas Repressuring (MMcf)" "Sourcekey","N9020US2" "Date","U.S. Natural Gas Repressuring (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103 27134 27164

386

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,98 27575,96 27941,99

387

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: Ohio Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OH2" "Date","Ohio Natural Gas Residential Consumption (MMcf)" 24653,442360 25019,444964 25384,456414 25749,459972 26114,460820 26480,478331 26845,439212

388

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 24653,3565 25019,2780 25384,3074 25749,2499 26114,575 26845,1999 27210,1560 27575,1537

389

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

390

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013" Monthly","11/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34349,2.347 34380,2.355 34408,2.109 34439,2.111 34469,1.941

391

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AZ3" "Date","Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

392

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:13 PM" "Back to Contents","Data 1: U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045US2" "Date","U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" 36906,340292 36937,312843 36965,362843

393

Phenomenological implications of the nucleon's meson cloud  

E-Print Network (OSTI)

The long-distance structure of the interacting nucleon receives important contributions from its couplings to light hadronic degrees of freedom -- a light meson cloud -- while an analogous nonperturbative mechanism is expected to generate an intrinsic charm (IC) component to the proton wavefunction. We investigate both possibilities, keeping for the former a special eye to improving the theoretical understanding of the pion-nucleon vertex in light of proposed measurements. Regarding the latter possibility of IC, we highlight recent results obtained by a global QCD analysis of the light-front model proposed in Ref. [1].

T. J. Hobbs

2014-11-09T23:59:59.000Z

394

Chiral Structure of Scalar and Pseudoscalar Mesons  

E-Print Network (OSTI)

We systematically study the chiral structure of local tetraquark currents of flavor singlet and J(P)=0(+). We also investigate their chiral partners, including scalar and pseudoscalar tetraquark currents of flavor singlet, octet, 10, 10_bar and 27. We study their chiral transformation properties. Particularly, we use the tetraquark currents belonging to the "non-exotic" [(3_bar,3)+(3,3_bar)] chiral multiplets to calculate the masses of light scalar mesons through QCD sum rule. The two-point correlation functions are calculated including all terms and only the connected parts. The results are consistent with the experimental values.

Hua-Xing Chen

2013-11-18T23:59:59.000Z

395

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

396

The Relationship Between Baryons and Dark Matter in Extended Galaxy Halos  

E-Print Network (OSTI)

The relationship between gas-rich galaxies and Ly-alpha absorbers is addressed in this paper in the context of the baryonic content of galaxy halos. Deep Arecibo HI observations are presented of two gas-rich spiral galaxies within 125 kpc projected distance of a Ly-alpha absorber at a similar velocity. The galaxies investigated are close to edge-on and the absorbers lie almost along their major axes, allowing for a comparison of the Ly-alpha absorber velocities with galactic rotation. This comparison is used to examine whether the absorbers are diffuse gas rotating with the galaxies' halos, outflow material from the galaxies, or intergalactic gas in the low redshift cosmic web. The results indicate that if the gas resides in the galaxies' halos it is not rotating with the system and possibly counter-rotating. In addition, simple geometry indicates the gas was not ejected from the galaxies and there are no gas-rich satellites detected down to 3.6 - 7.5 x 10^6 Msun, or remnants of satellites to 5-6 x 10^{18} cm^{-2}. The gas could potentially be infalling from large radii, but the velocities and distances are rather high compared to the high velocity clouds around the Milky Way. The most likely explanation is the galaxies and absorbers are not directly associated, despite the vicinity of the spiral galaxies to the absorbers (58-77 kpc from the HI edge). The spiral galaxies reside in a filament of intergalactic gas, and the gas detected by the absorber has not yet come into equilibrium with the galaxy. These results also indicate that the massive, extended dark matter halos of spiral galaxies do not commonly have an associated diffuse baryonic component at large radii.

M. E. Putman; J. L. Rosenberg; J. T. Stocke; R. McEntaffer

2005-10-11T23:59:59.000Z

397

Observation of the doubly strange b-Baryon Omega(b)-  

SciTech Connect

This thesis reports the first experimental evidence of the doubly strange b-baryon {Omega}{sub b}{sup -} (ssb) following the decay channel {Omega}{sub b}{sup -} {yields} J/{psi}(1S) {mu}{sup +}{mu}{sup -} {Omega}{sup -} {Lambda} K{sup -} p {pi}{sup -} in p{bar p} collisions at {radical}s = 1.96 Tev. Using approximately 1.3 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron Collider, they observe 17.8 {+-} 4.9(stat) {+-} 0.8(syst) {Omega}{sub b}{sup -} signal events at 6.165 {+-} 0.010(stat) {+-} 0.013(syst) GeV/c{sup 2} with a corresponding significance of 5.4 {sigma}, meaning that the probability of the signal coming from a fluctuation in the background is 6.7 x 10{sup -8}. The theoretical model we have to describe what we believe are the building blocks of nature and the interactions between them, is known as Standard Model. The Standard Model is the combination of Electroweak Theory and Quantum Chromodynamics into a single core in the attempt to include all interactions of subatomic particles except those due to gravity in a simple framework. This model has proved highly accurate in predicting certain interactions, but it does not explain all aspects of subatomic particles. For example, it cannot say how many particles there should be or what their masses are. The search goes on for a more complete theory, and in particular an unified field theory describing the strong, weak, and electromagnetic forces. Twelve elementary particles are known in the Standard Model: the Fermions. They have spin -1/2 and obey the Pauli Exclusion Principle. Fermions are divided into six Quarks: up u, down d, charm c, strange s, top t and, bottom b; and six Leptons: electron e, muon {mu}, tau {tau}, electron neutrino {nu}{sub e}, muon neutrino {nu}{sub {mu}} and, tau neutrino {nu}{sub {tau}}. Quarks interact via the strong force because they carry color charge, electromagnetically because of their electric charge and via the weak nuclear interaction because of the weak isospin. Quarks form color-neutral composite particles known as Hadrons which are divided in Mesons, containing a quark and an antiquark and Baryons, made up three quarks. Leptons have no color charge and can not interact via the strong force. Only three of them have electric charge, hence interact electromagnetically. The motion of non-electrically charged leptons, the neutrinos, is influenced only by the weak nuclear interaction. Every fermion have an associated antiparticle. For quarks, the antiparticle carry opposite electric charge, color charge and baryon number. For leptons, the antiparticle carry opposite electric charge and lepton number. Fermions are suitably grouped together considering their properties and three generations of them are defined. A higher generation fermion have greater mass than those in lower generations. Charged members of the first generation do not decay and form the ultimate building blocks for all the baryonic matter we know about. Charged members of higher generations have very short half lives and are found normally in high-energy environments. Non-electrically charged fermions do not decay and rarely interact with baryonic matter. The way particles interact and influence each other in the Standard Model is result from matter particles exchanging other particles, known as Force Mediating Particles. They are believed to be the reason of the existence of the forces and interactions between particles observed in the laboratory and the universe. Force mediating particles have spin 1, i.e., they are Bosons, and do not follow the Pauli Exclusion Principle. The types of force mediating particles are: the photon {gamma}, three gauge bosons W{sup {+-}} and Z and, eight gluons g. Photons have no mass, the theory of Quantum Electrodynamics describe them very well and are responsible for mediation of the electromagnetic force between electrically charged particles. Gauge bosons are massive, being Z heavier than W{sup {+-}}. They are responsible for the mediation of the weak interactions between particles of different flavors but

Hernandez Orduna, de Jesus, Jose; /CINVESTAV, IPN

2011-02-01T23:59:59.000Z

398

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1997" Monthly","9/2013","1/15/1997" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_lsum_a_epg0_fpd_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_lsum_a_epg0_fpd_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:41:46 AM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_R3FM_2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

399

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1930" Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_a_epg0_fpd_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_a_epg0_fpd_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:08:03 PM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_R3FM_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

400

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:48 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS2","MCREXUS2","MNGEXUS2","MPPEXUS2","MLPEXUS2","METEXUS2","MPREXUS2","MBNEXUS2","MBIEXUS2","MOLEXUS2","MOHEXUS2","M_EPOOXXFE_EEX_NUS-Z00_MBBLD","MMTEX_NUS-Z00_2","MOOEX_NUS-Z00_2","M_EPOOR_EEX_NUS-Z00_MBBLD","M_EPOOXE_EEX_NUS-Z00_MBBLD","M_EPOORDB_EEX_NUS-Z00_MBBLD","MBCEXUS2","MO1EX_NUS-Z00_2","MO5EX_NUS-Z00_2","MBAEXUS2","MTPEXUS2","MGFEXUS2","MGREXUS2","MG4EX_NUS-Z00_2","MGAEXUS2","MKJEXUS2","MKEEXUS2","MDIEXUS2","M_EPDXL0_EEX_NUS-Z00_MBBLD","MD1EX_NUS-Z00_2","MDGEXUS2","MREEXUS2","MNFEXUS2","MOTEXUS2","MNSEXUS2","MLUEXUS2","MWXEXUS2","MCKEXUS2","MAPEXUS2","MMSEXUS2"

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:09 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS1","MCRUPUS1","MNGUPUS1","MPPUPUS1","MLPUPUS1","METUPUS1","MPRUPUS1","MBNUPUS1","MBIUPUS1","MOLUPUS1","MOHUPUS1","MUOUPUS1","MBCUPUS1","MO1UP_NUS_1","MO5UP_NUS_1","MBAUPUS1","MTPUPUS1","MGFUPUS1","MGRUPUS1","MG4UP_NUS_1","MGAUPUS1","MKJUPUS1","MKEUPUS1","MDIUPUS1","MD0UP_NUS_1","MD1UP_NUS_1","MDGUPUS1","MREUPUS1","MPCUP_NUS_1","MNFUPUS1","MOTUPUS1","MNSUPUS1","MLUUPUS1","MWXUPUS1","MCKUPUS1","MCMUP_NUS_1","MCOUP_NUS_1","MAPUPUS1","MSGUPUS1","MMSUPUS1"

402

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1985" Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_unc_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_unc_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:30:03 AM" "Back to Contents","Data 1: U.S. Refinery Utilization and Capacity" "Sourcekey","MGIRIUS2","MOCLEUS2","MOCGGUS2","MOCIDUS2","MOPUEUS2" "Date","U.S. Gross Inputs to Refineries (Thousand Barrels Per Day)","U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)","U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day)","U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day)","U.S. Percent Utilization of Refinery Operable Capacity"

403

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capwork_a_(na)_8sw0_mbbl_a.xls" capwork_a_(na)_8sw0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_a_(na)_8sw0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:20:16 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SW0_NUS_MBBL","8_NA_8SW0_R10_MBBL","8_NA_8SW0_R20_MBBL","8_NA_8SW0_R30_MBBL","8_NA_8SW0_R40_MBBL","8_NA_8SW0_R50_MBBL" "Date","U.S. Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)"

404

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:11 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS2","MCRUPUS2","MNGUPUS2","MPPUPUS2","MLPUPUS2","METUPUS2","MPRUPUS2","MBNUPUS2","MBIUPUS2","MOLUPUS2","MOHUPUS2","MUOUPUS2","MBCUPUS2","MO1UP_NUS_2","MO5UP_NUS_2","MBAUPUS2","MTPUPUS2","MGFUPUS2","MGRUPUS2","MG4UP_NUS_2","MGAUPUS2","MKJUPUS2","MKEUPUS2","MDIUPUS2","MD0UP_NUS_2","MD1UP_NUS_2","MDGUPUS2","MREUPUS2","MPCUP_NUS_2","MNFUPUS2","MOTUPUS2","MNSUPUS2","MLUUPUS2","MWXUPUS2","MCKUPUS2","MCMUP_NUS_2","MCOUP_NUS_2","MAPUPUS2","MSGUPUS2","MMSUPUS2"

405

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capshell_a_(na)_8ss0_mbbl_a.xls" capshell_a_(na)_8ss0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_a_(na)_8ss0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:17:24 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SS0_NUS_MBBL","8_NA_8SS0_R10_MBBL","8_NA_8SS0_R20_MBBL","8_NA_8SS0_R30_MBBL","8_NA_8SS0_R40_MBBL","8_NA_8SS0_R50_MBBL" "Date","U.S. Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)"

406

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1936" Annual",2012,"6/30/1936" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:40 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

407

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:19:29 AM" "Back to Contents","Data 1: U.S. Refinery & Blender Net Input" "Sourcekey","MTTRIUS1","MCRRIUS1","MNGRIUS1","MPPRIUS1","MLPRIUS1","METRIUS1","MBNRIUS1","MBIRIUS1","MOLRIUS1","MOHRIUS1","M_EPOOOH_YIR_NUS_MBBL","M_EPOOXXFE_YIR_NUS_MBBL","MMTRIUS1","MOORIUS1","M_EPOOR_YIR_NUS_MBBL","MFERIUS1","M_EPOORD_YIR_NUS_MBBL","M_EPOORO_YIR_NUS_MBBL","M_EPOOOXH_YIR_NUS_MBBL","MUORIUS1","MNLRI_NUS_1","MKORI_NUS_1","MH1RI_NUS_1","MRURI_NUS_1","MBCRIUS1","MO1RI_NUS_1","M_EPOBGRR_YIR_NUS_MBBL","MO3RI_NUS_1","MO4RI_NUS_1","MO2RI_NUS_1","MO5RI_NUS_1","MO6RI_NUS_1","MO7RI_NUS_1","MO9RI_NUS_1","MBARIUS1"

408

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1936" Monthly","9/2013","1/15/1936" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:41 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

409

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:47 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

410

Prospects for baryon instability search with long-lived isotopes  

SciTech Connect

In this paper we consider the possibility of observation of baryon instability processes occurring inside nuclei by searching for the remnants of such processes that could have been accumulated in nature as mm long-lived isotopes. As an example, we discuss here the possible detection of traces of {sup 97}Tc, {sup 98}Tc, and {sup 99}Tc in deep-mined nonradioactive tin ores.

Efremenko, Yu. [Oak Ridge National Lab., TN (United States)][Tennessee Univ., Knoxville, TN (United States); Bugg, W.; Cohn, H. [Tennessee Univ., Knoxville, TN (United States); Kamyshkov, Yu. [Oak Ridge National Lab., TN (United States)][Tennessee Univ., Knoxville, TN (United States); Parker, G.; Plasil, F. [Oak Ridge National Lab., TN (United States)

1996-12-31T23:59:59.000Z

411

Observation of the $\\Xi_b^0$ Baryon  

SciTech Connect

The first observation of the heavy baryonic state {Xi}{sub b}{sup 0} is reported by the CDF Collaboration. A new decay mode of the established state {Xi}{sub b}{sup -} is also observed. In both cases the decay into a {Xi}{sub c} plus a charged pion is seen, with an equivalent statistical significance of above 6.8{sigma}. The quark model of elementary particles is well established and has a impressive history of success in its account of hadronic states. Nevertheless, it is important to continue to test it by searching for hitherto unobserved particles that are predicted to exist, both to provide continued confirmation of the quark model, and to provide a background for the possible discovery of unusual types of particle. In this presentation we report the first observation, by the CDF Collaboration, of a new baryonic state, the {Xi}{sub b}{sup 0}. This consists of a bsu quark combination and fills an important gap in the set of baryons containing a b quark.

Bussey, Peter; /Glasgow U.

2011-09-01T23:59:59.000Z

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_prod_whv_a_epg0_vgm_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_whv_a_epg0_vgm_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:54:27 AM" "Back to Contents","Data 1: Natural Gas Marketed Production " "Sourcekey","N9050US2","N9050FX2","N9050AL2","N9050AK2","N9050AZ2","N9050AR2","N9050CA2","N9050CO2","N9050FL2","N9050IL2","N9050IN2","N9050KS2","N9050KY2","N9050LA2","N9050MD2","N9050MI2","N9050MS2","N9050MO2","N9050MT2","N9050NE2","N9050NV2","N9050NM2","N9050NY2","N9050ND2","N9050OH2","N9050OK2","N9050OR2","N9050PA2","N9050SD2","N9050TN2","N9050TX2","N9050UT2","N9050VA2","N9050WV2","N9050WY2"

413

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1870" Annual",2012,"6/30/1870" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_exp_dc_nus-z00_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:46 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

414

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2002" Monthly","9/2013","1/15/2002" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_pri_sum_a_epg0_vrx_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_vrx_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:00:27 PM" "Back to Contents","Data 1: Percentage of Total Natural Gas Residential Deliveries included in Prices " "Sourcekey","NA1504_NUS_4","NA1504_SAL_4","NA1504_SAK_4","NA1504_SAZ_4","NA1504_SAR_4","NA1504_SCA_4","NA1504_SCO_4","NA1504_SCT_4","NA1504_SDE_4","NA1504_SDC_4","NA1504_SFL_4","NA1504_SGA_4","NA1504_SHI_4","NA1504_SID_4","NA1504_SIL_4","NA1504_SIN_4","NA1504_SIA_4","NA1504_SKS_4","NA1504_SKY_4","NA1504_SLA_4","NA1504_SME_4","NA1504_SMD_4","NA1504_SMA_4","NA1504_SMI_4","NA1504_SMN_4","NA1504_SMS_4","NA1504_SMO_4","NA1504_SMT_4","NA1504_SNE_4","NA1504_SNV_4","NA1504_SNH_4","NA1504_SNJ_4","NA1504_SNM_4","NA1504_SNY_4","NA1504_SNC_4","NA1504_SND_4","NA1504_SOH_4","NA1504_SOK_4","NA1504_SOR_4","NA1504_SPA_4","NA1504_SRI_4","NA1504_SSC_4","NA1504_SSD_4","NA1504_STN_4","NA1504_STX_4","NA1504_SUT_4","NA1504_SVT_4","NA1504_SVA_4","NA1504_SWA_4","NA1504_SWV_4","NA1504_SWI_4","NA1504_SWY_4"

415

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

60,"Monthly","9/2013","1/15/1981" 60,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_d_nus_skr_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skr_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:32 AM" "Back to Contents","Data 1: U.S. Refinery " "Sourcekey","MTTRSUS1","MCRRSUS1","MPERSUS1","MPPRSUS1","MLPRSUS1","METRSUS1","MPRRSUS1","MBNRSUS1","MBIRSUS1","M_EPOOOXH_SKR_NUS_MBBL","M_EPOOXXFE_SKR_NUS_MBBL","MMTRSUS1","MOORSUS1","M_EPOOR_SKR_NUS_MBBL","MFERSUS1","M_EPOORD_SKR_NUS_MBBL","M_EPOORO_SKR_NUS_MBBL","MUORSUS1","MNLRSUS1","MKORSUS1","MH1RSUS1","MRURSUS1","MBCRSUS1","MO1RS_NUS_1","M_EPOBGRR_SKR_NUS_MBBL","MO3RS_NUS_1","MO4RS_NUS_1","MO5RS_NUS_1","MO6RS_NUS_1","MO7RS_NUS_1","MO9RS_NUS_1","MBARSUS1","MGFRSUS1","MGRRSUS1","MG1RS_NUS_1","M_EPM0RO_SKR_NUS_MBBL","MG4RS_NUS_1","MG5RS_NUS_1","M_EPM0CAL55_SKR_NUS_MBBL","MG6RS_NUS_1","MGARSUS1","MKJRSUS1","MKERSUS1","MDIRSUS1","MD0RS_NUS_1","MD1RS_NUS_1","MDGRSUS1","MRERSUS1","MRLRSUS1","MRMRSUS1","MRGRSUS1","MPCRS_NUS_1","MNFRSUS1","MOTRSUS1","MNSRSUS1","MLURSUS1","MWXRSUS1","MCKRSUS1","MAPRSUS1","MMSRSUS1"

416

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

56,"Annual",2012,"6/30/1981" 56,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skr_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skr_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:31 AM" "Back to Contents","Data 1: U.S. Refinery " "Sourcekey","MTTRSUS1","MCRRSUS1","MPERSUS1","MPPRSUS1","MLPRSUS1","METRSUS1","MPRRSUS1","MBNRSUS1","MBIRSUS1","M_EPOOOXH_SKR_NUS_MBBL","M_EPOOXXFE_SKR_NUS_MBBL","MMTRSUS1","MOORSUS1","M_EPOOR_SKR_NUS_MBBL","MFERSUS1","M_EPOORD_SKR_NUS_MBBL","MUORSUS1","MNLRSUS1","MKORSUS1","MH1RSUS1","MRURSUS1","MBCRSUS1","MO1RS_NUS_1","M_EPOBGRR_SKR_NUS_MBBL","MO3RS_NUS_1","MO5RS_NUS_1","MO6RS_NUS_1","MO9RS_NUS_1","MBARSUS1","MGFRSUS1","MGRRSUS1","MG1RS_NUS_1","MG4RS_NUS_1","MG5RS_NUS_1","M_EPM0CAL55_SKR_NUS_MBBL","MG6RS_NUS_1","MGARSUS1","MKJRSUS1","MKERSUS1","MDIRSUS1","MD0RS_NUS_1","MD1RS_NUS_1","MDGRSUS1","MRERSUS1","MRLRSUS1","MRMRSUS1","MRGRSUS1","MPCRS_NUS_1","MNFRSUS1","MOTRSUS1","MNSRSUS1","MLURSUS1","MWXRSUS1","MCKRSUS1","MAPRSUS1","MMSRSUS1"

417

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Monthly","9/2013","1/15/1973" 2,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_enp_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_enp_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US2","N9132CN2","NA1287_YEPRT-NCA_2","NGA_EPG0_ENP_YCAL-NCA_MMCF","NA1287_YDTW-NCA_2","NA1287_YMARY-NCA_2","NA1287_YSSM-NCA_2","NA1287_YCHRE-NCA_2","NA1287_YNOYS-NCA_2","NA1287_YBAB-NCA_2","NA1287_YHVR-NCA_2","NGA_EPG0_ENP_YPITT-NCA_MMCF","NGM_EPG0_ENP_YGRIS-NCA_MMCF","NGM_EPG0_ENP_YMSS-NCA_MMCF","NA1287_YUSNI-NCA_2","NGM_EPG0_ENP_YWADD-NCA_MMCF","NA1287_YSUMS-NCA_2","N9132MX2","NA1287_YDUG-NMX_2","NA_EPG0_ENP_YNOGS-NMX_MMCF","NA1287_YCAX-NMX_2","NA1287_YOESA-NMX_2","NA1287_YALA-NMX_2","NA1287_YCLI-NMX_2","NA_EPG0_ENP_YDRT-NMX_MMCF","NA1287_YEGP-NMX_2","NA1287_YELP-NMX_2","NA1287_YHDGO-NMX_2","NA1287_YMFE-NMX_2","NA1287_YPENI-NMX_2","NA1287_Y44RB-NMX_2","NA1287_Y44RM-NMX_2"

418

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

65,"Monthly","9/2013","1/15/1956" 65,"Monthly","9/2013","1/15/1956" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_sum_snd_a_ep00_mbbl_m_cur.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_sum_snd_a_ep00_mbbl_m_cur.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 6:57:53 AM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Supply and Disposition" "Sourcekey","MTTFPUS1","M_EP00_YNP_NUS_MBBL","MTTRPUS1","MTTIMUS1","MTTUA_NUS_1","MTTSCUS1","MTTRIUS1","MTTEXUS1","MTTUPUS1","MTTSTUS1","MTTFPP11","M_EP00_YNP_R10_MBBL","MTTRPP11","MTTIMP11","MTTNRP11","MTTUA_R10_1","MTTSCP11","MTTRIP11","MTTEXP11","MTTUPP11","MTTSTP11","MTTFPP21","M_EP00_YNP_R20_MBBL","MTTRPP21","MTTIMP21","MTTNRP21","MTTUA_R20_1","MTTSCP21","MTTRIP21","MTTEXP21","MTTUPP21","MTTSTP21","MTTFPP31","M_EP00_YNP_R30_MBBL","MTTRPP31","MTTIMP31","MTTNRP31","MTTUA_R30_1","MTTSCP31","MTTRIP31","MTTEXP31","MTTUPP31","MTTSTP31","MTTFPP41","M_EP00_YNP_R40_MBBL","MTTRPP41","MTTIMP41","MTTNRP41","MTTUA_R40_1","MTTSCP41","MTTRIP41","MTTEXP41","MTTUPP41","MTTSTP41","MTTFPP51","M_EP00_YNP_R50_MBBL","MTTRPP51","MTTIMP51","MTTNRP51","MTTUA_R50_1","MTTSCP51","MTTRIP51","MTTEXP51","MTTUPP51","MTTSTP51"

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

59,"Monthly","9/2013","1/15/1963" 59,"Monthly","9/2013","1/15/1963" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_sum_snd_a_ep00_mbblpd_m_cur.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_sum_snd_a_ep00_mbblpd_m_cur.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 6:57:55 AM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Supply and Disposition" "Sourcekey","MTTFPUS2","M_EP00_YNP_NUS_MBBLD","MTTRPUS2","MTTIMUS2","MTTUA_NUS_2","MTTSCUS2","MTTRIUS2","MTTEXUS2","MTTUPUS2","MTTFPP12","M_EP00_YNP_R10_MBBLD","MTTRPP12","MTTIMP12","MTTNRP12","MTTUA_R10_2","MTTSCP12","MTTRIP12","MTTEXP12","MTTUPP12","MTTFPP22","M_EP00_YNP_R20_MBBLD","MTTRPP22","MTTIMP22","MTTNRP22","MTTUA_R20_2","MTTSCP22","MTTRIP22","MTTEXP22","MTTUPP22","MTTFPP32","M_EP00_YNP_R30_MBBLD","MTTRPP32","MTTIMP32","MTTNRP32","MTTUA_R30_2","MTTSCP32","MTTRIP32","MTTEXP32","MTTUPP32","MTTFPP42","M_EP00_YNP_R40_MBBLD","MTTRPP42","MTTIMP42","MTTNRP42","MTTUA_R40_2","MTTSCP42","MTTRIP42","MTTEXP42","MTTUPP42","MTTFPP52","M_EP00_YNP_R50_MBBLD","MTTRPP52","MTTIMP52","MTTNRP52","MTTUA_R50_2","MTTSCP52","MTTRIP52","MTTEXP52","MTTUPP52"

420

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Monthly","9/2013","1/15/1989" 2,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_pnp_dpmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_pnp_dpmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:32 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US3","N9132CN3","NA1287_YEPRT-NCA_3","NGA_EPG0_PNP_YCAL-NCA_DMCF","NA1287_YDTW-NCA_3","NA1287_YMARY-NCA_3","NA1287_YSSM-NCA_3","NA1287_YCHRE-NCA_3","NA1287_YNOYS-NCA_3","NA1287_YBAB-NCA_3","NA1287_YHVR-NCA_3","NGA_EPG0_PNP_YPITT-NCA_DMCF","NGM_EPG0_PNP_YGRIS-NCA_DMCF","NGM_EPG0_PNP_YMSS-NCA_DMCF","NA1287_YUSNI-NCA_3","NGM_EPG0_PNP_YWADD-NCA_DMCF","NA1287_YSUMS-NCA_3","N9132MX3","NA1287_YDUG-NMX_3","NA_EPG0_PNP_YNOGS-NMX_DMCF","NA1287_YCAX-NMX_3","NA1287_YOESA-NMX_3","NA1287_YALA-NMX_3","NA1287_YCLI-NMX_3","NA_EPG0_PNP_YDRT-NMX_DMCF","NA1287_YEGP-NMX_3","NA1287_YELP-NMX_3","NA1287_YHDGO-NMX_3","NA1287_YMFE-NMX_3","NA1287_YPENI-NMX_3","NA1287_Y44RB-NMX_3","NA1287_Y44RM-NMX_3"

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1989" Annual",2012,"6/30/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_pri_sum_a_epg0_vrx_pct_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_vrx_pct_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:00:26 PM" "Back to Contents","Data 1: Percentage of Total Natural Gas Residential Deliveries included in Prices " "Sourcekey","NA1504_NUS_4","NA1504_SAL_4","NA1504_SAK_4","NA1504_SAZ_4","NA1504_SAR_4","NA1504_SCA_4","NA1504_SCO_4","NA1504_SCT_4","NA1504_SDE_4","NA1504_SDC_4","NA1504_SFL_4","NA1504_SGA_4","NA1504_SHI_4","NA1504_SID_4","NA1504_SIL_4","NA1504_SIN_4","NA1504_SIA_4","NA1504_SKS_4","NA1504_SKY_4","NA1504_SLA_4","NA1504_SME_4","NA1504_SMD_4","NA1504_SMA_4","NA1504_SMI_4","NA1504_SMN_4","NA1504_SMS_4","NA1504_SMO_4","NA1504_SMT_4","NA1504_SNE_4","NA1504_SNV_4","NA1504_SNH_4","NA1504_SNJ_4","NA1504_SNM_4","NA1504_SNY_4","NA1504_SNC_4","NA1504_SND_4","NA1504_SOH_4","NA1504_SOK_4","NA1504_SOR_4","NA1504_SPA_4","NA1504_SRI_4","NA1504_SSC_4","NA1504_SSD_4","NA1504_STN_4","NA1504_STX_4","NA1504_SUT_4","NA1504_SVT_4","NA1504_SVA_4","NA1504_SWA_4","NA1504_SWV_4","NA1504_SWI_4","NA1504_SWY_4"

422

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_pipe_dc_r20-r10_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_pipe_dc_r20-r10_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:11:26 AM" "Back to Contents","Data 1: From PADD 1 to PADD 2 Movements by Pipeline" "Sourcekey","MTTMPP2P11","MCRMPP2P11","MPEMPP2P11","MPPMP_R20-R10_1","MLPMPP2P11","MBCMPP2P11","MO5MP_R20-R10_1","MO6MP_R20-R10_1","MO7MP_R20-R10_1","MO9MP_R20-R10_1","M_EPOOR_LMV_R20-R10_MBBL","M_EPOORD_LMV_R20-R10_MBBL","MGFMPP2P11","MGRMPP2P11","MG4MP_R20-R10_1","MG6MP_R20-R10_1","MKJMPP2P11","MKEMPP2P11","MDIMPP2P11","MD0MP_R20-R10_1","MD1MP_R20-R10_1","MDGMPP2P11"

423

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1913" Annual",2012,"6/30/1913" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_sae_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_sae_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:10 AM" "Back to Contents","Data 1: U.S. Total Stocks " "Sourcekey","MTTSTUS1","MCRSTUS1","MAOSTUS1","MPPSTUS1","MLPSTUS1","METSTUS1","MPRSTUS1","MBNSTUS1","MBISTUS1","M_EPOOOXH_SAE_NUS_MBBL","M_EPOOXXFE_SAE_NUS_MBBL","MMTSTUS1","MOOSTUS1","M_EPOOR_SAE_NUS_MBBL","MFESTUS1","M_EPOORD_SAE_NUS_MBBL","M_EPOORO_SAE_NUS_MBBL","MUOSTUS1","MNLST_NUS_1","MKOST_NUS_1","MH1ST_NUS_1","MRUST_NUS_1","MBCSTUS1","MO1ST_NUS_1","M_EPOBGRR_SAE_NUS_MBBL","MO3ST_NUS_1","MO4ST_NUS_1","MO2ST_NUS_1","MO5ST_NUS_1","MO6ST_NUS_1","MO7ST_NUS_1","MO9ST_NUS_1","MBASTUS1","MGFSTUS1","MGRSTUS1","MG1ST_NUS_1","M_EPM0RO_SAE_NUS_MBBL","MG4ST_NUS_1","MG5ST_NUS_1","M_EPM0CAL55_SAE_NUS_MBBL","MG6ST_NUS_1","MGASTUS1","MKJSTUS1","MKESTUS1","MDISTUS1","MD0ST_NUS_1","MD1ST_NUS_1","MDGSTUS1","MRESTUS1","MRLSTUS1","MRMSTUS1","MRGSTUS1","MPCST_NUS_1","MNFSTUS1","MOTSTUS1","MNSSTUS1","MLUSTUS1","MWXSTUS1","MCKSTUS1","MAPSTUS1","MMSSTUS1"

424

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1986" Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_pipe_dc_r20-r10_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_pipe_dc_r20-r10_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:11:27 AM" "Back to Contents","Data 1: From PADD 1 to PADD 2 Movements by Pipeline" "Sourcekey","MTTMPP2P11","MCRMPP2P11","MPEMPP2P11","MPPMP_R20-R10_1","MLPMPP2P11","MBCMPP2P11","MO5MP_R20-R10_1","MO6MP_R20-R10_1","MO7MP_R20-R10_1","MO9MP_R20-R10_1","M_EPOOR_LMV_R20-R10_MBBL","M_EPOORD_LMV_R20-R10_MBBL","MGFMPP2P11","MGRMPP2P11","MG4MP_R20-R10_1","MG6MP_R20-R10_1","MKJMPP2P11","MKEMPP2P11","MDIMPP2P11","MD0MP_R20-R10_1","MD1MP_R20-R10_1","MDGMPP2P11"

425

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

53,"Annual",2012,"6/30/1949" 53,"Annual",2012,"6/30/1949" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_cons_sum_a_epg0_vc0_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_cons_sum_a_epg0_vc0_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:50:03 PM" "Back to Contents","Data 1: Natural Gas Consumption " "Sourcekey","N9140US2","NA1490_SAL_2","NA1490_SAK_2","NA1490_SAZ_2","NA1490_SAR_2","NA1490_SCA_2","NA1490_SCO_2","NA1490_SCT_2","NA1490_SDE_2","NA1490_SDC_2","NA1490_SFL_2","NA1490_SGA_2","NA1490_R3FM_2","NA1490_SHI_2","NA1490_SID_2","NA1490_SIL_2","NA1490_SIN_2","NA1490_SIA_2","NA1490_SKS_2","NA1490_SKY_2","NA1490_SLA_2","NA1490_SME_2","NA1490_SMD_2","NA1490_SMA_2","NA1490_SMI_2","NA1490_SMN_2","NA1490_SMS_2","NA1490_SMO_2","NA1490_SMT_2","NA1490_SNE_2","NA1490_SNV_2","NA1490_SNH_2","NA1490_SNJ_2","NA1490_SNM_2","NA1490_SNY_2","NA1490_SNC_2","NA1490_SND_2","NA1490_SOH_2","NA1490_SOK_2","NA1490_SOR_2","NA1490_SPA_2","NA1490_SRI_2","NA1490_SSC_2","NA1490_SSD_2","NA1490_STN_2","NA1490_STX_2","NA1490_SUT_2","NA1490_SVT_2","NA1490_SVA_2","NA1490_SWA_2","NA1490_SWV_2","NA1490_SWI_2","NA1490_SWY_2"

426

Meson properties in a nonlocal SU(3) chiral quark model at finite temperature  

SciTech Connect

Finite temperature meson properties are studied in the context of a nonlocal SU(3) quark model which includes flavor mixing and the coupling of quarks to the Polyakov loop (PL). We analyze the behavior of scalar and pseudoscalar meson masses and mixing angles, as well as quark-meson couplings and pseudoscalar meson decay constants.

Contrera, G. A. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Centro Atomico Constituyentes, Buenos Aires (Argentina); Gomez Dumm, D. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); IFLP, Dpto. de Fisica, Universidad Nacional de La Plata, C.C. 67, (1900) La Plata (Argentina); Scoccola, N. N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

2010-11-12T23:59:59.000Z

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

6,"Annual",2012,"6/30/1985" 6,"Annual",2012,"6/30/1985" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_pnp_dpmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_pnp_dpmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:31 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US3","N9132CN3","NA1287_YEPRT-NCA_3","NGA_EPG0_PNP_YCAL-NCA_DMCF","NA1287_YDTW-NCA_3","NA1287_YMARY-NCA_3","NA1287_YSSM-NCA_3","NA1287_YCHRE-NCA_3","NA1287_YNOYS-NCA_3","NA1287_YWARR-NCA_3","NA1287_YBAB-NCA_3","NA1287_YHVR-NCA_3","NA1287_YPMOR-NCA_3","NA1287_YSHER-NCA_3","NGA_EPG0_PNP_YPITT-NCA_DMCF","NGM_EPG0_PNP_YGRIS-NCA_DMCF","NGM_EPG0_PNP_YMSS-NCA_DMCF","NA1287_YUSNI-NCA_3","NGM_EPG0_PNP_YWADD-NCA_DMCF","NA1287_YSUMS-NCA_3","N9132MX3","NA1287_YDUG-NMX_3","NA_EPG0_PNP_YNOGS-NMX_DMCF","NA1287_YCAX-NMX_3","NA1287_YOESA-NMX_3","NA1287_YOTAY-NMX_3","NA1287_YALA-NMX_3","NA1287_YCLI-NMX_3","NA_EPG0_PNP_YDRT-NMX_DMCF","NA1287_YEGP-NMX_3","NA1287_YELP-NMX_3","NA1287_YHDGO-NMX_3","NA1287_YMFE-NMX_3","NA1287_YPENI-NMX_3","NA1287_Y44RB-NMX_3","NA1287_Y44RM-NMX_3"

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

32,"Monthly","9/2013","1/15/1992" 32,"Monthly","9/2013","1/15/1992" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_png_dpmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_png_dpmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:30 PM" "Back to Contents","Data 1: U.S. Price of Liquefied Natural Gas Exports by Point of Exit " "Sourcekey","N9133US3","NGM_EPG0_PNG_NUS-NBR_DMCF","NGM_EPG0_PNG_YFPT-NBR_DMCF","NGA_EPG0_PNG_YSPL-NBR_DMCF","NGM_EPG0_PNG_NUS-NCA_DMCF","NGM_EPG0_PNG_YSWGR-NCA_DMCF","NGM_EPG0_PNG_NUS-NCI_DMCF","NGM_EPG0_PNG_YSPL-NCI_DMCF","NGM_EPG0_PNG_NUS-NCH_DMCF","NGM_EPG0_PNG_YENA-NCH_DMCF","NGM_EPG0_PNG_YSPL-NCH_DMCF","NGM_EPG0_PNG_NUS-NIN_DMCF","NGA_EPG0_PNG_YFPT-NIN_DMCF","NGM_EPG0_PNG_YSPL-NIN_DMCF","N9133JA3","NGM_EPG0_PNG_YCAM-NJA_DMCF","NA1288_YENA-NJA_3","NGA_EPG0_PNG_YSPL-NJA_DMCF","N9133MX3","NA1288_YNOGS-NMX_3","NA1288_YOTAY-NMX_3","NGM_EPG0_PNG_NUS-NPO_DMCF","NGA_EPG0_PNG_YSPL-NPO_DMCF","N9133RU3","NGM_EPG0_PNG_NUS-NKS_DMCF","NGA_EPG0_PNG_YFPT-NKS_DMCF","NGA_EPG0_PNG_YSPL-NKS_DMCF","NGM_EPG0_PNG_NUS-NSP_DMCF","NGM_EPG0_PNG_YCAM-NSP_DMCF","NGA_EPG0_PNG_YSPL-NSP_DMCF","NGM_EPG0_PNG_NUS-NUK_DMCF","NGA_EPG0_PNG_YSPL-NUK_DMCF"

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_netr_d_r10-z0p_vnr_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_netr_d_r10-z0p_vnr_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:09:56 AM" "Back to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11","MPPNRP11","MLPNRP11","METNRP11","MPRNRP11","MBNNRP11","MBINRP11","MUONRP11","MBCNRP11","MO1NR_R10-Z0P_1","M_EPOBGRR_VNR_R10-Z0P_MBBL","MO3NR_R10-Z0P_1","MO4NR_R10-Z0P_1","MO2NR_R10-Z0P_1","MO5NR_R10-Z0P_1","MO6NR_R10-Z0P_1","MO7NR_R10-Z0P_1","MO9NR_R10-Z0P_1","M_EPOOR_VNR_R10-Z0P_MBBL","M_EPOOXE_VNR_R10-Z0P_MBBL","M_EPOORD_VNR_R10-Z0P_MBBL","M_EPOORO_VNR_R10-Z0P_MBBL","MGFNRP11","MGRNRP11","MG1NR_R10-Z0P_1","M_EPM0RO_VNR_R10-Z0P_MBBL","MG4NR_R10-Z0P_1","MG5NR_R10-Z0P_1","M_EPM0CAL55_VNR_R10-Z0P_MBBL","MG6NR_R10-Z0P_1","MGANRP11","MKJNRP11","MKENRP11","MDINRP11","MD0NR_R10-Z0P_1","MD1NR_R10-Z0P_1","MDGNRP11","MRENRP11","MPFNRP11","MPNNR_R10-Z0P_1","MPONR_R10-Z0P_1","MNSNRP11","MLUNRP11","MWXNRP11","MAPNRP11","MMSNRP11"

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

36,"Annual",2012,"6/30/1985" 36,"Annual",2012,"6/30/1985" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe1_a_epg0_prp_dpmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe1_a_epg0_prp_dpmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:57:08 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Pipeline Imports by Point of Entry " "Sourcekey","N9102US3","N9102CN3","NA1277_YEPRT-NCA_3","NA1277_YCAL-NCA_3","NA1277_YDTW-NCA_3","NA1277_YMARY-NCA_3","NA1277_YCHRE-NCA_3","NA1277_YINL-NCA_3","NA1277_YNOYS-NCA_3","NA1277_YWARR-NCA_3","NA1277_YBAB-NCA_3","NA1277_YHVR-NCA_3","NA1277_YPDEB-NCA_3","NA1277_YPMOR-NCA_3","NA1277_YSWGR-NCA_3","NA1277_YWHIH-NCA_3","NA1277_YPORT-NCA_3","NA1277_YSHER-NCA_3","NA1277_YPITT-NCA_3","NA1277_YCHAP-NCA_3","NA1277_YGRIS-NCA_3","NA1277_YMSS-NCA_3","NA1277_YUSNI-NCA_3","NA1277_YWADD-NCA_3","NA1277_YSUMS-NCA_3","NA1277_YHGSP-NCA_3","NA1277_YNTRY-NCA_3","N9102MX3","NGA_EPG0_PRP_YOESA-NMX_DMCF","NGM_EPG0_PRP_YOTAY-NMX_DMCF","NA1277_YALA-NMX_3","NA1277_YELP-NMX_3","NGA_EPG0_PRP_YGRT-NMX_DMCF","NA1277_YHDGO-NMX_3","NA1277_YMFE-NMX_3","NA1277_YPENI-NMX_3"

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

43,"Monthly","9/2013","1/15/1989" 43,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe1_a_epg0_pml_dpmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe1_a_epg0_pml_dpmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:57:08 PM" "Back to Contents","Data 1: U.S. Price of Liquefied Natural Gas Imports by Point of Entry " "Sourcekey","N9103US3","NGM_EPG0_NUS-NCA_PML_DMCF","NGM_EPG0_PML_YHGSP-NCA_DMCF","N9103AG3","N9103AU3","N9103BX3","N9103EG3","NGM_EPG0_PML_YCAM-NEG_DMCF","NA_EPG0_PML_YELBA-NEG_DPMCF","NGA_EPG0_PML_YFPT-NEG_DMCF","NGM_EPG0_PML_YGLN-NEG_DMCF","NGM_EPG0_NUS-NEK_PML_DMCF","N9103ID3","N9103MY3","N9103NG3","NA_EPG0_PML_YCPT-NNI_3","NGM_EPG0_NUS-NNO_PML_DMCF","NGA_EPG0_PML_YCPT-NNO_DMCF","NGM_EPG0_PML_YFPT-NNO_DMCF","NGA_EPG0_PML_YSPL-NNO_DMCF","N9103MU3","NGM_EPG0_NUS-NPE_PML_DMCF","NGM_EPG0_PML_YCAM-NPE_DMCF","NGA_EPG0_PML_YFPT-NPE_DMCF","N9103QR3","NGM_EPG0_PML_YELBA-NQA_DMCF","NGA_EPG0_PML_YGPT-NQA_DMCF","NGA_EPG0_PML_YSPL-NQA_DMCF","N9103TD3","NGA_EPG0_PML_YCAM-NTD_DMCF","NA1278_YCPT-NTD_3","NA1278_YELBA-NTD_3","NA1278_YEVTT-NTD_3","NGA_EPG0_PML_YFPT-NTD_DMCF","NGM_EPG0_PML_YGLN-NTD_DMCF","NA1278_YLCH-NTD_3","NGA_EPG0_PML_YSPL-NTD_DMCF","N9103UA3","NGM_EPG0_PML_NUS-NYE_DMCF","NGA_EPG0_PML_YEVTT-NYE_DMCF","NGM_EPG0_PML_YFPT-NYE_DMCF","NGA_EPG0_PML_YSPL-NYE_DMCF","N9103983"

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_netr_d_r10-z0p_vnr_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_netr_d_r10-z0p_vnr_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:09:55 AM" "Back to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11","MPPNRP11","MLPNRP11","METNRP11","MPRNRP11","MBNNRP11","MBINRP11","MUONRP11","MBCNRP11","MO1NR_R10-Z0P_1","M_EPOBGRR_VNR_R10-Z0P_MBBL","MO3NR_R10-Z0P_1","MO4NR_R10-Z0P_1","MO2NR_R10-Z0P_1","MO5NR_R10-Z0P_1","MO6NR_R10-Z0P_1","MO7NR_R10-Z0P_1","MO9NR_R10-Z0P_1","M_EPOOR_VNR_R10-Z0P_MBBL","M_EPOOXE_VNR_R10-Z0P_MBBL","M_EPOORD_VNR_R10-Z0P_MBBL","M_EPOORO_VNR_R10-Z0P_MBBL","MGFNRP11","MGRNRP11","MG1NR_R10-Z0P_1","M_EPM0RO_VNR_R10-Z0P_MBBL","MG4NR_R10-Z0P_1","MG5NR_R10-Z0P_1","M_EPM0CAL55_VNR_R10-Z0P_MBBL","MG6NR_R10-Z0P_1","MGANRP11","MKJNRP11","MKENRP11","MDINRP11","MD0NR_R10-Z0P_1","MD1NR_R10-Z0P_1","MDGNRP11","MRENRP11","MPFNRP11","MPNNR_R10-Z0P_1","MPONR_R10-Z0P_1","MNSNRP11","MLUNRP11","MWXNRP11","MAPNRP11","MMSNRP11"

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

36,"Annual",2012,"6/30/1973" 36,"Annual",2012,"6/30/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe1_a_epg0_irp_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe1_a_epg0_irp_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:56:59 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports by Point of Entry " "Sourcekey","N9102US2","N9102CN2","NA1277_YEPRT-NCA_2","NA1277_YCAL-NCA_2","NA1277_YDTW-NCA_2","NA1277_YMARY-NCA_2","NA1277_YCHRE-NCA_2","NA1277_YINL-NCA_2","NA1277_YNOYS-NCA_2","NA1277_YWARR-NCA_2","NA1277_YBAB-NCA_2","NA1277_YHVR-NCA_2","NA1277_YPDEB-NCA_2","NA1277_YPMOR-NCA_2","NA1277_YSWGR-NCA_2","NA1277_YWHIH-NCA_2","NA1277_YPORT-NCA_2","NA1277_YSHER-NCA_2","NA1277_YPITT-NCA_2","NA1277_YCHAP-NCA_2","NA1277_YGRIS-NCA_2","NA1277_YMSS-NCA_2","NA1277_YUSNI-NCA_2","NA1277_YWADD-NCA_2","NA1277_YSUMS-NCA_2","NA1277_YHGSP-NCA_2","NA1277_YNTRY-NCA_2","N9102MX2","NGA_EPG0_IRP_YOESA-NMX_MMCF","NGM_EPG0_IRP_YOTAY-NMX_MMCF","NA1277_YALA-NMX_2","NA1277_YELP-NMX_2","NGA_EPG0_IRP_YGRT-NMX_MMCF","NA1277_YHDGO-NMX_2","NA1277_YMFE-NMX_2","NA1277_YPENI-NMX_2"

434

Magnetic moments of light, charmed, and b-flavored baryons in a relativistic logarithmic potential  

Science Journals Connector (OSTI)

A simple independent-quark model based on the Dirac equation with logarithmic confining potential of the form V(r)=(1+?0)[a ln(r/b)] with a,b>0 is used to calculate the magnetic moments of light, charmed, and b-flavored baryons. Not only do the results obtained for light baryons agree reasonably well with experiment, but also the overall predictions for the charmed and b-flavored baryons compare very well with other model predictions.

S. N. Jena and D. P. Rath

1986-07-01T23:59:59.000Z

435

Baryon stopping in the Color Glass Condensate formalism: A phenomenological study  

E-Print Network (OSTI)

The net-baryon production at forward rapidities is investigated considering the Color Glass Condensate formalism. We assume that at large energies the coherence of the projectile quarks is lost and that the leading baryon production mechanism changes from recombination to independent fragmentation. The phenomenological implications for net-baryon production in $pp/pA/AA$ collisions are analysed and predictions for LHC energies are presented.

F. O. Duraes; A. V. Giannini; V. P. Goncalves; F. S. Navarra

2014-01-30T23:59:59.000Z

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1910" Annual",2012,"6/30/1910" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_imp_dc_nus-z00_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 8:04:15 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS1","MCRIMUS1","MNGIMUS1","MPPIMUS1","MLPIMUS1","MENIMUS1","MEYIMUS1","MPAIM_NUS-Z00_1","MPLIMUS1","MBUIM_NUS-Z00_1","MBYIMUS1","MIIIM_NUS-Z00_1","MIYIMUS1","MOLIMUS1","MOHIMUS1","M_EPOOXXFE_IM0_NUS-Z00_MBBL","MMTIMUS1","MOOIMUS1","M_EPOOR_IM0_NUS-Z00_MBBL","MFEIMUS1","M_EPOORDB_IM0_NUS-Z00_MBBL","M_EPOORDO_IM0_NUS-Z00_MBBL","M_EPOORO_IM0_NUS-Z00_MBBL","M_EPOOOXH_IM0_NUS-Z00_MBBL","MUOIMUS1","MNLIMUS1","MKOIMUS1","MHOIMUS1","MRUIMUS1","MBCIMUS1","M_EPOBGRR_IM0_NUS-Z00_MBBL","MO5IM_NUS-Z00_1","MO6IM_NUS-Z00_1","MO7IM_NUS-Z00_1","MO9IM_NUS-Z00_1","MBAIMUS1","MTPIMUS1","MGFIMUS1","MGRIMUS1","MG1IM_NUS-Z00_1","MG4IM_NUS-Z00_1","MG5IM_NUS-Z00_1","M_EPM0CAL55_IM0_NUS-Z00_MBBL","MG6IM_NUS-Z00_1","MGAIMUS1","MKJIMUS1","MKBIMUS1","MK1IMUS1","MKEIMUS1","MDIIMUS1","MD0IM_NUS-Z00_1","MB0IM_NUS-Z00_1","MB5IM_NUS-Z00_1","MD1IM_NUS-Z00_1","MB1IM_NUS-Z00_1","MB6IM_NUS-Z00_1","MDGIMUS1","MD2IM_NUS-Z00_1","MB2IM_NUS-Z00_1","MB7IM_NUS-Z00_1","MD3IM_NUS-Z00_1","MB3IM_NUS-Z00_1","MB8IM_NUS-Z00_1","MREIMUS1","MRXIMUS1","MRYIMUS1","MRZIMUS1","MPFIM_NUS-Z00_1","MNFIMUS1","MOTIMUS1","MNSIMUS1","MLUIMUS1","MWXIMUS1","MCKIMUS1","MAPIMUS1","MMSIMUS1"

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 8:04:37 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS1","MCRIMUS1","MNGIMUS1","MPPIMUS1","MLPIMUS1","MENIMUS1","MEYIMUS1","MPAIM_NUS-Z00_1","MPLIMUS1","MBUIM_NUS-Z00_1","MBYIMUS1","MIIIM_NUS-Z00_1","MIYIMUS1","MOLIMUS1","MOHIMUS1","M_EPOOXXFE_IM0_NUS-Z00_MBBL","MMTIMUS1","MOOIMUS1","M_EPOOR_IM0_NUS-Z00_MBBL","MFEIMUS1","M_EPOORDB_IM0_NUS-Z00_MBBL","M_EPOORDO_IM0_NUS-Z00_MBBL","M_EPOORO_IM0_NUS-Z00_MBBL","M_EPOOOXH_IM0_NUS-Z00_MBBL","MUOIMUS1","MNLIMUS1","MKOIMUS1","MHOIMUS1","MRUIMUS1","MBCIMUS1","M_EPOBGRR_IM0_NUS-Z00_MBBL","MO5IM_NUS-Z00_1","MO6IM_NUS-Z00_1","MO7IM_NUS-Z00_1","MO9IM_NUS-Z00_1","MBAIMUS1","MTPIMUS1","MGFIMUS1","MGRIMUS1","MG1IM_NUS-Z00_1","MG4IM_NUS-Z00_1","MG5IM_NUS-Z00_1","M_EPM0CAL55_IM0_NUS-Z00_MBBL","MG6IM_NUS-Z00_1","MGAIMUS1","MKJIMUS1","MKBIMUS1","MK1IMUS1","MKEIMUS1","MDIIMUS1","MD0IM_NUS-Z00_1","MB0IM_NUS-Z00_1","MB5IM_NUS-Z00_1","MD1IM_NUS-Z00_1","MB1IM_NUS-Z00_1","MB6IM_NUS-Z00_1","MDGIMUS1","MD2IM_NUS-Z00_1","MB2IM_NUS-Z00_1","MB7IM_NUS-Z00_1","MD3IM_NUS-Z00_1","MB3IM_NUS-Z00_1","MB8IM_NUS-Z00_1","MREIMUS1","MRXIMUS1","MRYIMUS1","MRZIMUS1","MPFIM_NUS-Z00_1","MNFIMUS1","MOTIMUS1","MNSIMUS1","MLUIMUS1","MWXIMUS1","MCKIMUS1","MAPIMUS1","MMSIMUS1"

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

45,"Annual",2012,"6/30/1985" 45,"Annual",2012,"6/30/1985" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_png_dpmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_png_dpmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:30 PM" "Back to Contents","Data 1: U.S. Price of Liquefied Natural Gas Exports by Point of Exit " "Sourcekey","N9133US3","NGM_EPG0_PNG_NUS-NBR_DMCF","NGM_EPG0_PNG_YFPT-NBR_DMCF","NGA_EPG0_PNG_YSPL-NBR_DMCF","NGM_EPG0_PNG_NUS-NCA_DMCF","NA_EPG0_PNG_YBUF-NCA_DMCF","NGM_EPG0_PNG_YSWGR-NCA_DMCF","NGM_EPG0_PNG_NUS-NCI_DMCF","NGM_EPG0_PNG_YSPL-NCI_DMCF","NGM_EPG0_PNG_NUS-NCH_DMCF","NGM_EPG0_PNG_YENA-NCH_DMCF","NGM_EPG0_PNG_YSPL-NCH_DMCF","NGM_EPG0_PNG_NUS-NIN_DMCF","NGA_EPG0_PNG_YFPT-NIN_DMCF","NGM_EPG0_PNG_YSPL-NIN_DMCF","N9133JA3","NGM_EPG0_PNG_YCAM-NJA_DMCF","NGA_EPG0_PNG_YFPT-NJA_DMCF","NA1288_YENA-NJA_3","NA1288_YPNIK-NJA_3","NGA_EPG0_PNG_YSPL-NJA_DMCF","N9133MX3","NA1288_YNOGS-NMX_3","NA1288_YOTAY-NMX_3","NA1288_YSAN-NMX_3","NGM_EPG0_PNG_NUS-NPO_DMCF","NGA_EPG0_PNG_YSPL-NPO_DMCF","N9133RU3","NA_EPG0_PNG_YENA-NRS_DMCF","NGM_EPG0_PNG_NUS-NKS_DMCF","NGA_EPG0_PNG_YFPT-NKS_DMCF","NGA_EPG0_PNG_YSPL-NKS_DMCF","NGM_EPG0_PNG_NUS-NSP_DMCF","NGM_EPG0_PNG_YCAM-NSP_DMCF","NGA_EPG0_PNG_YSPL-NSP_DMCF","NGM_EPG0_PNG_NUS-NUK_DMCF","NGA_EPG0_PNG_YFPT-NUK_DMCF","NGA_EPG0_PNG_YSPL-NUK_DMCF","NGM_EPG0_PNG_YCAM-Z00_DMCF","NGM_EPG0_PNG_YENA-Z00_DMCF","NGM_EPG0_PNG_YFPT-Z00_DMCF","NGM_EPG0_PNG_YNOGS-Z00_DMCF","NGM_EPG0_PNG_YOTAY-Z00_DMCF","NGM_EPG0_PNG_YSPL-Z00_DMCF","NGM_EPG0_PNG_YSWGR-Z00_DMCF"

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_imp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 8:05:08 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS2","MCRIMUS2","MNGIMUS2","MPPIMUS2","MLPIMUS2","MENIMUS2","MEYIMUS2","MPAIM_NUS-Z00_2","MPLIMUS2","MBUIM_NUS-Z00_2","MBYIMUS2","MIIIM_NUS-Z00_2","MIYIMUS2","MOLIMUS2","MOHIMUS2","M_EPOOXXFE_IM0_NUS-Z00_MBBLD","MMTIMUS2","MOOIMUS2","M_EPOOR_IM0_NUS-Z00_MBBLD","MFEIMUS2","M_EPOORDB_IM0_NUS-Z00_MBBLD","M_EPOORDO_IM0_NUS-Z00_MBBLD","M_EPOORO_IM0_NUS-Z00_MBBLD","M_EPOOOXH_IM0_NUS-Z00_MBBLD","MUOIMUS2","MNLIMUS2","MKOIMUS2","MHOIMUS2","MRUIMUS2","MBCIMUS2","M_EPOBGRR_IM0_NUS-Z00_MBBLD","MO5IM_NUS-Z00_2","MO6IM_NUS-Z00_2","MO7IM_NUS-Z00_2","MO9IM_NUS-Z00_2","MBAIMUS2","MTPIMUS2","MGFIMUS2","MGRIMUS2","MG1IM_NUS-Z00_2","MG4IM_NUS-Z00_2","MG5IM_NUS-Z00_2","M_EPM0CAL55_IM0_NUS-Z00_MBBLD","MG6IM_NUS-Z00_2","MGAIMUS2","MKJIMUS2","MKBIMUS2","MK1IMUS2","MKEIMUS2","MDIIMUS2","MD0IM_NUS-Z00_2","MB0IM_NUS-Z00_2","MB5IM_NUS-Z00_2","MD1IM_NUS-Z00_2","MB1IM_NUS-Z00_2","MB6IM_NUS-Z00_2","MDGIMUS2","MD2IM_NUS-Z00_2","MB2IM_NUS-Z00_2","MB7IM_NUS-Z00_2","MD3IM_NUS-Z00_2","MB3IM_NUS-Z00_2","MB8IM_NUS-Z00_2","MREIMUS2","MRXIMUS2","MRYIMUS2","MRZIMUS2","MPFIM_NUS-Z00_2","MNFIMUS2","MOTIMUS2","MNSIMUS2","MLUIMUS2","MWXIMUS2","MCKIMUS2","MAPIMUS2","MMSIMUS2"

440

Baryons with strangeness and charm in a quark model with chromodynamics  

Science Journals Connector (OSTI)

The low-lying spectrum of baryons containing a charmed quark and one or two strange quarks is calculated in a a quark model with chromodynamics.

Kim Maltman and Nathan Isgur

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen like classification for light nonstrange mesons  

E-Print Network (OSTI)

The recent experimental results on the spectrum of highly excited light nonstrange mesons are known to reveal a high degree of degeneracy among different groups of states. We revise some suggestions about the nature of the phenomenon and put the relevant ideas into the final shape. The full group of approximate mass degeneracies is argued to be $SU(2)_f\\times I\\times O(4)$, where $I$ is the degeneracy of isosinglets and isotriplets and O(4) is the degeneracy group of the relativistic hydrogen atom. We discuss the dynamical origin and consequences of considered symmetry with a special emphasis on distinctions of this symmetry from the so-called chiral symmetry restoration scenario.

S. S. Afonin

2008-09-09T23:59:59.000Z

442

Transport properties of a meson gas  

E-Print Network (OSTI)

We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

D. Fernandez-Fraile; A. Gomez Nicola

2007-07-09T23:59:59.000Z

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1973" Monthly","9/2013","1/15/1973" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_neti_a_ep00_imn_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_neti_a_ep00_imn_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 10:47:08 AM" "Back to Contents","Data 1: Net Imports of Total Crude Oil and Products into the U.S. by Country" "Sourcekey","MTTNTUS2","MTTNTUSPG2","MTTNT_NUS-ME0_2","MTTNTUSAG2","MTTNTUSAO2","MTTNTUSEC2","MTTNTUSIR2","MTTNT_NUS-NIZ_2","MTTNTUSKU2","MTTNT_NUS-NLY_2","MTTNTUSNI2","MTTNTUSQA2","MTTNTUSSA2","MTTNTUSTC2","MTTNTUSVE2","MTTNTUSVV2","MTTNT_NUS-NAF_2","MTTNT_NUS-NAL_2","MTTNT_NUS-NAN_2","MTTNT_NUS-NAV_2","MTTNT_NUS-NAC_2","MTTNTUSAR2","MTTNT_NUS-NAE_2","MTTNT_NUS-NAA_2","MTTNTUSAS2","MTTNT_NUS-NAU_2","MTTNT_NUS-NAJ_2","MTTNTUSBF2","MTTNT_NUS-NBA_2","MTTNT_NUS-NBG_2","MTTNT_NUS-NBB_2","MTTNT_NUS-NBO_2","MTTNTUSBE2","MTTNT_NUS-NBH_2","MTTNT_NUS-NBN_2","MTTNT_NUS-NBD_2","MTTNT_NUS-NBL_2","MTTNT_NUS-NBK_2","MTTNTUSBR2","MTTNTUSBX2","MTTNT_NUS-NBU_2","MTTNT_NUS-NBM_2","MTTNT_NUS-NCB_2","MTTNTUSCM2","MTTNTUSCA2","MTTNT_NUS-NCJ_2","MTTNT_NUS-NCD_2","MTTNT_NUS-NCI_2","MTTNTUSCH2","MTTNTUSCO2","MTTNTUSCF2","MTTNTUSCG2","MTTNT_NUS-NCW_2","MTTNT_NUS-NCS_2","MTTNT_NUS-NHR_2","MTTNT_NUS-NCY_2","MTTNT_NUS-NCZ_2","MTTNT_NUS-NDA_2","MTTNT_NUS-NDJ_2","MTTNT_NUS-NDO_2","MTTNT_NUS-NDR_2","MTTNTUSEG2","MTTNT_NUS-NES_2","MTTNT_NUS-NEK_2","MTTNT_NUS-NET_2","MTTNT_NUS-NER_2","MTTNT_NUS-NEN_2","MTTNT_NUS-NFJ_2","MTTNT_NUS-NFI_2","MTTNTUSFR2","MTTNT_NUS-NFP_2","MTTNT_NUS-NFG_2","MTTNTUSGB2","MTTNT_NUS-NGG_2","MTTNTUSBZ2","MTTNT_NUS-NGH_2","MTTNT_NUS-NGI_2","MTTNTUSGR2","MTTNT_NUS-NGL_2","MTTNT_NUS-NGJ_2","M_EP00_IMN_NUS-NGP_2","MTTNTUSGT2","MTTNT_NUS-NGV_2","MTTNT_NUS-NGY_2","MTTNT_NUS-NHA_2","MTTNT_NUS-NHO_2","MTTNT_NUS-NHK_2","MTTNT_NUS-NHU_2","MTTNT_NUS-NIC_2","MTTNTUSIN2","MTTNTUSID2","MTTNT_NUS-NEI_2","MTTNT_NUS-NIS_2","MTTNTUSIT2","MTTNT_NUS-NIV_2","MTTNTUSJM2","MTTNTUSJA2","MTTNT_NUS-NJO_2","MTTNT_NUS-NKZ_2","MTTNT_NUS-NKE_2","MTTNTUSKS2","MTTNT_NUS-NKT_2","MTTNT_NUS-NKG_2","MTTNT_NUS-NLG_2","MTTNT_NUS-NLE_2","MTTNT_NUS-NLI_2","MTTNT_NUS-NLH_2","MTTNT_NUS-NMC_2","MTTNT_NUS-NMK_2","MTTNT_NUS-NMA_2","MTTNTUSMY2","MTTNT_NUS-NMV_2","MTTNT_NUS-NML_2","MTTNT_NUS-NMT_2","MTTNT_NUS-NRM_2","MTTNT_NUS-NMR_2","MTTNT_NUS-NMP_2","MTTNTUSMX2","MTTNT_NUS-NFM_2","MTTNT_NUS-NMQ_2","MTTNT_NUS-NMN_2","MTTNT_NUS-NMD_2","MTTNT_NUS-NMG_2","M_EP00_IMN_NUS-NMJ_2","MTTNT_NUS-NMH_2","MTTNT_NUS-NMO_2","MTTNT_NUS-NMZ_2","MTTNT_NUS-NWA_2","MTTNT_NUS-NNP_2","MTTNTUSNL2","MTTNTUSNA2","MTTNT_NUS-NNC_2","MTTNT_NUS-NNZ_2","MTTNT_NUS-NNU_2","MTTNT_NUS-NNG_2","MTTNT_NUS-NNE_2","MTTNTUSNO2","MTTNTUSMU2","MTTNT_NUS-NPK_2","MTTNTUSPM2","MTTNT_NUS-NPP_2","MTTNT_NUS-NPF_2","MTTNT_NUS-NPA_2","MTTNTUSPE2","MTTNT_NUS-NRP_2","MTTNT_NUS-NPL_2","MTTNT_NUS-NPO_2","MTTNTUSRQ2","MTTNTUSRO2","MTTNT_NUS-NRS_2","MTTNT_NUS-NSC_2","MTTNT_NUS-NST_2","MTTNT_NUS-NSB_2","MTTNT_NUS-NVC_2","MTTNT_NUS-NWS_2","MTTNT_NUS-NSM_2","MTTNT_NUS-NSG_2","MTTNT_NUS-NYI_2","MTTNT_NUS-NSL_2","MTTNT_NUS-NSN_2","MTTNT_NUS-NSK_2","MTTNT_NUS-NSI_2","MTTNT_NUS-NSF_2","MTTNTUSSP2","MTTNT_NUS-NPG_2","MTTNT_NUS-NCE_2","MTTNT_NUS-NNS_2","MTTNT_NUS-NWZ_2","MTTNTUSSW2","MTTNT_NUS-NSZ_2","MTTNTUSSY2","MTTNTUSTW2","MTTNT_NUS-NTZ_2","MTTNTUSTH2","MTTNT_NUS-NTO_2","MTTNT_NUS-NTN_2","MTTNTUSTD2","MTTNT_NUS-NTS_2","MTTNTUSTU2","MTTNT_NUS-NTX_2","MTTNT_NUS-NTK_2","MTTNT_NUS-NUG_2","MTTNT_NUS-NUR_2","MTTNTUSUK2","MTTNT_NUS-NUY_2","MTTNT_NUS-NUZ_2","MTTNT_NUS-NNH_2","MTTNT_NUS-NVM_2","MTTNT_NUS-NVI_2","MTTNTUSVQ2","MTTNTUSYE2","MTTNT_NUS-NYO_2","MTTNTUSWW2"

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

6,"Monthly","9/2013","1/15/1981" 6,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_impcp_a2_r30_ep00_ip0_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcp_a2_r30_ep00_ip0_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 9:12:12 AM" "Back to Contents","Data 1: Gulf Coast (PADD 3) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP31","MTTIPP3PG1","MTTIP_R30-ME0_1","MTTIPP3AG1","MTTIPP3AO1","MTTIPP3EC1","MTTIP_R30-NIZ_1","MTTIPP3KU1","MTTIP_R30-NLY_1","MTTIPP3NI1","MTTIP_R30-NQA_1","MTTIPP3SA1","MTTIPP3TC1","MTTIPP3VE1","MTTIPP3VV1","MTTIP_R30-NAL_1","MTTIPP3AR1","MTTIP_R30-NAA_1","MTTIPP3AS1","MTTIP_R30-NAU_1","MTTIP_R30-NAJ_1","MTTIP_R30-NBF_1","MTTIP_R30-NBA_1","MTTIP_R30-NBO_1","MTTIPP3BE1","MTTIP_R30-NBH_1","MTTIP_R30-NBN_1","MTTIP_R30-NBL_1","MTTIP_R30-NBR_1","MTTIP_R30-NBX_1","MTTIP_R30-NBU_1","MTTIP_R30-NBM_1","MTTIP_R30-NCM_1","MTTIPP3CA1","MTTIP_R30-NCD_1","MTTIP_R30-NCI_1","MTTIP_R30-NCH_1","MTTIPP3CO1","MTTIPP3CF1","MTTIPP3CG1","MTTIP_R30-NCW_1","MTTIP_R30-NCS_1","MTTIP_R30-NHR_1","MTTIP_R30-NCY_1","MTTIP_R30-NCZ_1","MTTIP_R30-NDA_1","MTTIPP3EG1","MTTIP_R30-NES_1","MTTIP_R30-NEK_1","MTTIP_R30-NEN_1","MTTIP_R30-NFI_1","MTTIPP3FR1","MTTIPP3GB1","MTTIP_R30-NGG_1","MTTIP_R30-NGM_1","MTTIP_R30-NGH_1","MTTIP_R30-NGR_1","MTTIP_R30-NGT_1","MTTIP_R30-NGV_1","MTTIP_R30-NHU_1","MTTIP_R30-NIN_1","MTTIPP3ID1","MTTIP_R30-NEI_1","MTTIP_R30-NIS_1","MTTIPP3IT1","MTTIP_R30-NIV_1","MTTIP_R30-NJM_1","MTTIP_R30-NJA_1","MTTIP_R30-NKZ_1","MTTIPP3KS1","MTTIP_R30-NKG_1","MTTIP_R30-NLG_1","MTTIP_R30-NLI_1","MTTIP_R30-NLH_1","MTTIP_R30-NMY_1","MTTIP_R30-NMT_1","MTTIP_R30-NMR_1","MTTIPP3MX1","MTTIP_R30-NMQ_1","MTTIP_R30-NMO_1","MTTIP_R30-NNL_1","MTTIPP3NA1","MTTIP_R30-NNZ_1","MTTIPP3NO1","MTTIP_R30-NMU_1","MTTIP_R30-NPK_1","MTTIP_R30-NPM_1","MTTIP_R30-NPP_1","MTTIP_R30-NPE_1","MTTIP_R30-NRP_1","MTTIP_R30-NPL_1","MTTIP_R30-NPO_1","MTTIP_R30-NPZ_1","MTTIP_R30-NRO_1","MTTIP_R30-NRS_1","MTTIP_R30-NSN_1","MTTIP_R30-NSK_1","MTTIP_R30-NSF_1","MTTIPP3SP1","MTTIPP3SW1","MTTIP_R30-NSZ_1","MTTIPP3SY1","MTTIP_R30-NTW_1","MTTIPP3TH1","MTTIP_R30-NTO_1","MTTIPP3TD1","MTTIP_R30-NTS_1","MTTIP_R30-NTU_1","MTTIP_R30-NTX_1","MTTIP_R30-NUR_1","MTTIPP3UK1","MTTIP_R30-NUY_1","MTTIP_R30-NUZ_1","MTTIP_R30-NVM_1","MTTIPP3VQ1","MTTIPP3YE1"

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Monthly","9/2013","1/15/1981" 2,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_expc_a_ep00_eex_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_expc_a_ep00_eex_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:29:07 AM" "Back to Contents","Data 1: Total Crude Oil and Products Exports by Destination" "Sourcekey","MTTEXUS1","MTTEX_NUS-NAF_1","MTTEX_NUS-NAL_1","MTTEX_NUS-NAG_1","MTTEX_NUS-NAN_1","MTTEX_NUS-NAO_1","MTTEX_NUS-NAV_1","MTTEX_NUS-NAC_1","MTTEXAR1","MTTEX_NUS-NAE_1","MTTEX_NUS-NAA_1","MTTEXAS1","MTTEX_NUS-NAU_1","MTTEX_NUS-NAJ_1","MTTEXBF1","MTTEXBA1","MTTEX_NUS-NBB_1","MTTEX_NUS-NBO_1","MTTEXBE1","MTTEX_NUS-NBH_1","MTTEX_NUS-NBN_1","MTTEX_NUS-NBL_1","MTTEX_NUS-NBK_1","MTTEXBR1","MTTEX_NUS-NBX_1","MTTEX_NUS-NBU_1","MTTEX_NUS-NBM_1","MTTEX_NUS-NBD_1","MTTEX_NUS-NCB_1","MTTEX_NUS-NCM_1","MTTEXCA1","MTTEX_NUS-NCJ_1","MTTEX_NUS-NCD_1","MTTEXCI1","MTTEXCH1","MTTEXCO1","MTTEX_NUS-NCF_1","MTTEX_NUS-NCG_1","MTTEXCS1","MTTEX_NUS-NHR_1","MTTEX_NUS-NCY_1","MTTEX_NUS-NCZ_1","MTTEXDA1","MTTEX_NUS-NDJ_1","MTTEXDO1","M_EP00_EEX_NUS-NDR_1","MTTEXEC1","MTTEXEG1","MTTEXES1","MTTEX_NUS-NEK_1","MTTEX_NUS-NER_1","MTTEX_NUS-NEN_1","MTTEX_NUS-NET_1","MTTEX_NUS-NFJ_1","MTTEXFI1","MTTEXFR1","MTTEX_NUS-NFG_1","MTTEXFP1","MTTEX_NUS-NGB_1","MTTEX_NUS-NGG_1","MTTEXBZ1","MTTEXGH1","MTTEX_NUS-NGI_1","MTTEXGR1","MTTEX_NUS-NGL_1","MTTEX_NUS-NGJ_1","M_EP00_EEX_NUS-NGP_1","MTTEXGT1","MTTEX_NUS-NGV_1","MTTEX_NUS-NGY_1","MTTEX_NUS-NHA_1","MTTEXHO1","MTTEXHK1","MTTEX_NUS-NHU_1","MTTEX_NUS-NIC_1","MTTEXIN1","MTTEXID1","MTTEX_NUS-NIR_1","MTTEX_NUS-NIZ_1","MTTEXEI1","MTTEXIS1","MTTEXIT1","MTTEX_NUS-NIV_1","MTTEXJM1","MTTEXJA1","MTTEX_NUS-NJO_1","MTTEX_NUS-NKZ_1","MTTEX_NUS-NKE_1","MTTEXKS1","MTTEX_NUS-NKN_1","MTTEX_NUS-NKG_1","MTTEX_NUS-NKT_1","MTTEX_NUS-NKU_1","MTTEX_NUS-NLG_1","MTTEX_NUS-NLE_1","MTTEX_NUS-NLI_1","MTTEX_NUS-NLY_1","MTTEX_NUS-NLH_1","MTTEX_NUS-NMC_1","MTTEX_NUS-NMK_1","MTTEX_NUS-NMA_1","MTTEXMY1","MTTEX_NUS-NMV_1","MTTEX_NUS-NML_1","MTTEX_NUS-NMT_1","MTTEX_NUS-NRM_1","MTTEX_NUS-NMR_1","MTTEX_NUS-NMP_1","MTTEXMX1","MTTEX_NUS-NFM_1","MTTEX_NUS-NMQ_1","MTTEX_NUS-NMD_1","MTTEX_NUS-NMN_1","MTTEX_NUS-NMG_1","M_EP00_EEX_NUS-NMJ_1","MTTEX_NUS-NMH_1","MTTEX_NUS-NMO_1","MTTEX_NUS-NMZ_1","MTTEX_NUS-NWA_1","MTTEX_NUS-NNP_1","MTTEXNL1","MTTEXNA1","MTTEX_NUS-NNC_1","MTTEXNZ1","MTTEX_NUS-NNU_1","MTTEX_NUS-NNG_1","MTTEXNI1","MTTEX_NUS-NNE_1","MTTEXNO1","MTTEX_NUS-NMU_1","MTTEX_NUS-NPK_1","MTTEXPM1","MTTEX_NUS-NPP_1","MTTEX_NUS-NPF_1","MTTEX_NUS-NPA_1","MTTEXPE1","MTTEXRP1","MTTEXPL1","MTTEXPO1","MTTEXRQ1","MTTEX_NUS-NQA_1","MTTEX_NUS-NRO_1","MTTEX_NUS-NRS_1","MTTEX_NUS-NSC_1","MTTEX_NUS-NST_1","MTTEX_NUS-NSB_1","MTTEX_NUS-NVC_1","MTTEX_NUS-NWS_1","MTTEX_NUS-NSM_1","MTTEXSA1","MTTEX_NUS-NSG_1","MTTEX_NUS-NYI_1","MTTEX_NUS-NSE_1","MTTEX_NUS-NSL_1","MTTEXSN1","MTTEX_NUS-NSK_1","MTTEX_NUS-NSI_1","MTTEX_NUS-NBP_1","MTTEXSF1","MTTEXSP1","MTTEX_NUS-NPG_1","MTTEX_NUS-NCE_1","MTTEX_NUS-NSU_1","MTTEXNS1","MTTEX_NUS-NWZ_1","MTTEXSW1","MTTEXSZ1","MTTEX_NUS-NSY_1","MTTEXTW1","MTTEX_NUS-NTZ_1","MTTEXTH1","MTTEX_NUS-NTN_1","MTTEX_NUS-NTO_1","MTTEXTD1","MTTEX_NUS-NTS_1","MTTEXTU1","MTTEX_NUS-NTX_1","MTTEX_NUS-NTK_1","MTTEX_NUS-NUG_1","MTTEX_NUS-NUR_1","MTTEXTC1","MTTEXUK1","MTTEXUY1","MTTEX_NUS-NUZ_1","MTTEX_NUS-NNH_1","MTTEXVE1","MTTEX_NUS-NVM_1","MTTEX_NUS-NVI_1","MTTEXVQ1","MTTEX_NUS-NYE_1","MTTEXYO1","MTTEX_NUS-NZA_1"

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_impcp_a2_r10_ep00_ip0_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcp_a2_r10_ep00_ip0_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 9:03:09 AM" "Back to Contents","Data 1: East Coast (PADD 1) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP11","MTTIPP1PG1","MTTIP_R10-ME0_1","MTTIPP1AG1","MTTIPP1AO1","MTTIPP1EC1","MTTIP_R10-NIZ_1","MTTIP_R10-NKU_1","MTTIP_R10-NLY_1","MTTIPP1NI1","MTTIP_R10-NQA_1","MTTIPP1SA1","MTTIP_R10-NTC_1","MTTIPP1VE1","MTTIPP1VV1","MTTIP_R10-NAR_1","MTTIP_R10-NAA_1","MTTIP_R10-NAS_1","MTTIP_R10-NAU_1","MTTIP_R10-NAJ_1","MTTIPP1BF1","MTTIP_R10-NBA_1","MTTIP_R10-NBB_1","MTTIP_R10-NBO_1","MTTIP_R10-NBE_1","MTTIPP1BR1","MTTIP_R10-NBX_1","MTTIP_R10-NBU_1","MTTIPP1CM1","MTTIPP1CA1","MTTIP_R10-NCD_1","MTTIP_R10-NCI_1","MTTIP_R10-NCH_1","MTTIPP1CO1","MTTIP_R10-NCF_1","MTTIPP1CG1","MTTIP_R10-NCS_1","MTTIP_R10-NHR_1","MTTIP_R10-NCY_1","MTTIP_R10-NDA_1","MTTIP_R10-NDR_1","MTTIPP1EG1","MTTIP_R10-NES_1","MTTIP_R10-NEK_1","MTTIP_R10-NEN_1","MTTIP_R10-NFI_1","MTTIPP1FR1","MTTIPP1GB1","MTTIP_R10-NGG_1","MTTIPP1BZ1","MTTIP_R10-NGH_1","MTTIP_R10-NGI_1","MTTIP_R10-NGR_1","MTTIP_R10-NGT_1","MTTIP_R10-NGV_1","MTTIP_R10-NHK_1","MTTIP_R10-NHU_1","MTTIP_R10-NIN_1","MTTIP_R10-NID_1","MTTIP_R10-NEI_1","MTTIP_R10-NIS_1","MTTIPP1IT1","MTTIP_R10-NIV_1","MTTIP_R10-NJM_1","MTTIPP1JA1","MTTIP_R10-NKZ_1","MTTIP_R10-NKS_1","MTTIP_R10-NKG_1","MTTIP_R10-NLG_1","MTTIP_R10-NLI_1","MTTIP_R10-NLH_1","MTTIP_R10-NMY_1","MTTIP_R10-NMT_1","MTTIP_R10-NMR_1","MTTIPP1MX1","MTTIP_R10-NMO_1","MTTIP_R10-NWA_1","MTTIPP1NL1","MTTIPP1NA1","MTTIP_R10-NNE_1","MTTIPP1NO1","MTTIP_R10-NMU_1","MTTIP_R10-NPK_1","MTTIP_R10-NPM_1","MTTIP_R10-NPE_1","MTTIP_R10-NRP_1","MTTIP_R10-NPL_1","MTTIP_R10-NPO_1","MTTIPP1RQ1","MTTIP_R10-NRO_1","MTTIP_R10-NRS_1","MTTIP_R10-NSG_1","MTTIP_R10-NSN_1","MTTIP_R10-NSF_1","MTTIPP1SP1","MTTIP_R10-NWZ_1","MTTIP_R10-NSW_1","MTTIP_R10-NSZ_1","MTTIP_R10-NSY_1","MTTIP_R10-NTW_1","MTTIP_R10-NTH_1","MTTIP_R10-NTO_1","MTTIPP1TD1","MTTIP_R10-NTS_1","MTTIP_R10-NTU_1","MTTIP_R10-NTX_1","MTTIP_R10-NUR_1","MTTIPP1UK1","MTTIP_R10-NUY_1","MTTIP_R10-NVM_1","MTTIPP1VQ1","MTTIP_R10-NYE_1"

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_impcp_a2_r10_ep00_ip0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcp_a2_r10_ep00_ip0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 9:02:39 AM" "Back to Contents","Data 1: East Coast (PADD 1) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP11","MTTIPP1PG1","MTTIP_R10-ME0_1","MTTIPP1AG1","MTTIPP1AO1","MTTIPP1EC1","MTTIP_R10-NIZ_1","MTTIP_R10-NKU_1","MTTIP_R10-NLY_1","MTTIPP1NI1","MTTIP_R10-NQA_1","MTTIPP1SA1","MTTIP_R10-NTC_1","MTTIPP1VE1","MTTIPP1VV1","MTTIP_R10-NAR_1","MTTIP_R10-NAA_1","MTTIP_R10-NAS_1","MTTIP_R10-NAU_1","MTTIP_R10-NAJ_1","MTTIPP1BF1","MTTIP_R10-NBA_1","MTTIP_R10-NBB_1","MTTIP_R10-NBO_1","MTTIP_R10-NBE_1","MTTIPP1BR1","MTTIP_R10-NBX_1","MTTIP_R10-NBU_1","MTTIPP1CM1","MTTIPP1CA1","MTTIP_R10-NCD_1","MTTIP_R10-NCI_1","MTTIP_R10-NCH_1","MTTIPP1CO1","MTTIP_R10-NCF_1","MTTIPP1CG1","MTTIP_R10-NCS_1","MTTIP_R10-NHR_1","MTTIP_R10-NCY_1","MTTIP_R10-NDA_1","MTTIP_R10-NDR_1","MTTIPP1EG1","MTTIP_R10-NES_1","MTTIP_R10-NEK_1","MTTIP_R10-NEN_1","MTTIP_R10-NFI_1","MTTIPP1FR1","MTTIPP1GB1","MTTIP_R10-NGG_1","MTTIPP1BZ1","MTTIP_R10-NGH_1","MTTIP_R10-NGI_1","MTTIP_R10-NGR_1","MTTIP_R10-NGT_1","MTTIP_R10-NGV_1","MTTIP_R10-NHK_1","MTTIP_R10-NHU_1","MTTIP_R10-NIN_1","MTTIP_R10-NID_1","MTTIP_R10-NEI_1","MTTIP_R10-NIS_1","MTTIPP1IT1","MTTIP_R10-NIV_1","MTTIP_R10-NJM_1","MTTIPP1JA1","MTTIP_R10-NKZ_1","MTTIP_R10-NKS_1","MTTIP_R10-NKG_1","MTTIP_R10-NLG_1","MTTIP_R10-NLI_1","MTTIP_R10-NLH_1","MTTIP_R10-NMY_1","MTTIP_R10-NMT_1","MTTIPP1MX1","MTTIP_R10-NMO_1","MTTIP_R10-NWA_1","MTTIPP1NL1","MTTIPP1NA1","MTTIP_R10-NNE_1","MTTIPP1NO1","MTTIP_R10-NMU_1","MTTIP_R10-NPK_1","MTTIP_R10-NPM_1","MTTIP_R10-NPE_1","MTTIP_R10-NRP_1","MTTIP_R10-NPL_1","MTTIP_R10-NPO_1","MTTIPP1RQ1","MTTIP_R10-NRO_1","MTTIP_R10-NRS_1","MTTIP_R10-NSG_1","MTTIP_R10-NSN_1","MTTIP_R10-NSF_1","MTTIPP1SP1","MTTIP_R10-NWZ_1","MTTIP_R10-NSW_1","MTTIP_R10-NSZ_1","MTTIP_R10-NSY_1","MTTIP_R10-NTW_1","MTTIP_R10-NTH_1","MTTIP_R10-NTO_1","MTTIP_R10-NTN_1","MTTIPP1TD1","MTTIP_R10-NTS_1","MTTIP_R10-NTU_1","MTTIP_R10-NTX_1","MTTIP_R10-NUR_1","MTTIPP1UK1","MTTIP_R10-NUY_1","MTTIP_R10-NVM_1","MTTIPP1VQ1","MTTIP_R10-NYE_1"

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

98,"Annual",2012,"6/30/1981" 98,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_impcp_a2_r50_ep00_ip0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcp_a2_r50_ep00_ip0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 9:20:29 AM" "Back to Contents","Data 1: West Coast (PADD 5) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP51","MTTIPP5PG1","MTTIP_R50-ME0_1","MTTIP_R50-NAG_1","MTTIP_R50-NAO_1","MTTIPP5EC1","MTTIP_R50-NIZ_1","MTTIP_R50-NKU_1","MTTIP_R50-NLY_1","MTTIP_R50-NNI_1","MTTIP_R50-NQA_1","MTTIPP5SA1","MTTIP_R50-NTC_1","MTTIPP5VE1","MTTIPP5VV1","MTTIPP5AR1","MTTIP_R50-NAA_1","MTTIPP5AS1","MTTIP_R50-NAJ_1","MTTIP_R50-NBF_1","MTTIP_R50-NBA_1","MTTIP_R50-NBO_1","MTTIP_R50-NBE_1","MTTIP_R50-NBN_1","MTTIP_R50-NBL_1","MTTIP_R50-NBR_1","MTTIP_R50-NBX_1","MTTIP_R50-NCM_1","MTTIPP5CA1","MTTIP_R50-NCD_1","MTTIP_R50-NCI_1","MTTIPP5CH1","MTTIPP5CO1","MTTIPP5CF1","MTTIP_R50-NCG_1","MTTIP_R50-NCS_1","MTTIP_R50-NHR_1","MTTIP_R50-NDA_1","MTTIP_R50-NDR_1","MTTIP_R50-NEG_1","MTTIP_R50-NES_1","MTTIP_R50-NEK_1","MTTIP_R50-NEN_1","MTTIP_R50-NFI_1","MTTIP_R50-NFR_1","MTTIP_R50-NGB_1","MTTIP_R50-NGM_1","MTTIP_R50-NGR_1","MTTIP_R50-NGT_1","MTTIP_R50-NGV_1","MTTIP_R50-NHK_1","MTTIP_R50-NHU_1","MTTIP_R50-NIN_1","MTTIPP5ID1","MTTIP_R50-NIS_1","MTTIP_R50-NIT_1","MTTIP_R50-NIV_1","MTTIP_R50-NJM_1","MTTIP_R50-NJA_1","MTTIP_R50-NKZ_1","MTTIP_R50-NKS_1","MTTIP_R50-NLH_1","MTTIP_R50-NMY_1","MTTIP_R50-NMT_1","MTTIPP5MX1","MTTIP_R50-NMO_1","MTTIP_R50-NNL_1","MTTIP_R50-NNA_1","MTTIP_R50-NNZ_1","MTTIP_R50-NNU_1","MTTIP_R50-NNO_1","MTTIP_R50-NMU_1","MTTIP_R50-NPM_1","MTTIP_R50-NPP_1","MTTIPP5PE1","MTTIP_R50-NRP_1","MTTIP_R50-NPL_1","MTTIP_R50-NPO_1","MTTIP_R50-NRO_1","MTTIP_R50-NRS_1","MTTIPP5SN1","MTTIP_R50-NSF_1","MTTIP_R50-NSP_1","MTTIP_R50-NPG_1","MTTIP_R50-NSW_1","MTTIP_R50-NSY_1","MTTIP_R50-NTW_1","MTTIP_R50-NTH_1","MTTIP_R50-NTD_1","MTTIP_R50-NTS_1","MTTIP_R50-NTU_1","MTTIP_R50-NTX_1","MTTIP_R50-NUR_1","MTTIPP5UK1","MTTIP_R50-NUY_1","MTTIP_R50-NVM_1","MTTIPP5VQ1","MTTIP_R50-NYE_1"

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

1,"Annual",2012,"6/30/1981" 1,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_expc_a_ep00_eex_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_expc_a_ep00_eex_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:28:29 AM" "Back to Contents","Data 1: Total Crude Oil and Products Exports by Destination" "Sourcekey","MTTEXUS1","MTTEX_NUS-NAF_1","MTTEX_NUS-NAL_1","MTTEX_NUS-NAG_1","MTTEX_NUS-NAN_1","MTTEX_NUS-NAO_1","MTTEX_NUS-NAV_1","MTTEX_NUS-NAC_1","MTTEXAR1","MTTEX_NUS-NAE_1","MTTEX_NUS-NAA_1","MTTEXAS1","MTTEX_NUS-NAU_1","MTTEX_NUS-NAJ_1","MTTEXBF1","MTTEXBA1","MTTEX_NUS-NBB_1","MTTEX_NUS-NBO_1","MTTEXBE1","MTTEX_NUS-NBH_1","MTTEX_NUS-NBN_1","MTTEX_NUS-NBL_1","MTTEX_NUS-NBK_1","MTTEXBR1","MTTEX_NUS-NBX_1","MTTEX_NUS-NBU_1","MTTEX_NUS-NBM_1","MTTEX_NUS-NBD_1","MTTEX_NUS-NCB_1","MTTEX_NUS-NCM_1","MTTEXCA1","MTTEX_NUS-NCJ_1","MTTEX_NUS-NCD_1","MTTEXCI1","MTTEXCH1","MTTEXCO1","MTTEX_NUS-NCF_1","MTTEX_NUS-NCG_1","MTTEXCS1","MTTEX_NUS-NHR_1","MTTEX_NUS-NCY_1","MTTEX_NUS-NCZ_1","MTTEXDA1","MTTEX_NUS-NDJ_1","MTTEXDO1","M_EP00_EEX_NUS-NDR_1","MTTEXEC1","MTTEXEG1","MTTEXES1","MTTEX_NUS-NEK_1","MTTEX_NUS-NER_1","MTTEX_NUS-NEN_1","MTTEX_NUS-NET_1","MTTEX_NUS-NFJ_1","MTTEXFI1","MTTEXFR1","MTTEX_NUS-NFG_1","MTTEXFP1","MTTEX_NUS-NGB_1","MTTEX_NUS-NGG_1","MTTEXBZ1","MTTEXGH1","MTTEX_NUS-NGI_1","MTTEXGR1","MTTEX_NUS-NGL_1","MTTEX_NUS-NGJ_1","M_EP00_EEX_NUS-NGP_1","MTTEXGT1","MTTEX_NUS-NGV_1","MTTEX_NUS-NGY_1","MTTEX_NUS-NHA_1","MTTEXHO1","MTTEXHK1","MTTEX_NUS-NHU_1","MTTEX_NUS-NIC_1","MTTEXIN1","MTTEXID1","MTTEX_NUS-NIZ_1","MTTEXEI1","MTTEXIS1","MTTEXIT1","MTTEX_NUS-NIV_1","MTTEXJM1","MTTEXJA1","MTTEX_NUS-NJO_1","MTTEX_NUS-NKZ_1","MTTEX_NUS-NKE_1","MTTEXKS1","MTTEX_NUS-NKN_1","MTTEX_NUS-NKG_1","MTTEX_NUS-NKT_1","MTTEX_NUS-NKU_1","MTTEX_NUS-NLG_1","MTTEX_NUS-NLE_1","MTTEX_NUS-NLI_1","MTTEX_NUS-NLY_1","MTTEX_NUS-NLH_1","MTTEX_NUS-NMC_1","MTTEX_NUS-NMK_1","MTTEX_NUS-NMA_1","MTTEXMY1","MTTEX_NUS-NMV_1","MTTEX_NUS-NML_1","MTTEX_NUS-NMT_1","MTTEX_NUS-NRM_1","MTTEX_NUS-NMR_1","MTTEX_NUS-NMP_1","MTTEXMX1","MTTEX_NUS-NFM_1","MTTEX_NUS-NMQ_1","MTTEX_NUS-NMD_1","MTTEX_NUS-NMN_1","MTTEX_NUS-NMG_1","M_EP00_EEX_NUS-NMJ_1","MTTEX_NUS-NMH_1","MTTEX_NUS-NMO_1","MTTEX_NUS-NMZ_1","MTTEX_NUS-NWA_1","MTTEX_NUS-NNP_1","MTTEXNL1","MTTEXNA1","MTTEX_NUS-NNC_1","MTTEXNZ1","MTTEX_NUS-NNU_1","MTTEX_NUS-NNG_1","MTTEXNI1","MTTEX_NUS-NNE_1","MTTEXNO1","MTTEX_NUS-NMU_1","MTTEX_NUS-NPK_1","MTTEXPM1","MTTEX_NUS-NPP_1","MTTEX_NUS-NPF_1","MTTEX_NUS-NPA_1","MTTEXPE1","MTTEXRP1","MTTEXPL1","MTTEXPO1","MTTEXRQ1","MTTEX_NUS-NQA_1","MTTEX_NUS-NRO_1","MTTEX_NUS-NRS_1","MTTEX_NUS-NSC_1","MTTEX_NUS-NST_1","MTTEX_NUS-NSB_1","MTTEX_NUS-NVC_1","MTTEX_NUS-NWS_1","MTTEX_NUS-NSM_1","MTTEXSA1","MTTEX_NUS-NSG_1","MTTEX_NUS-NYI_1","MTTEX_NUS-NSE_1","MTTEX_NUS-NSL_1","MTTEXSN1","MTTEX_NUS-NSK_1","MTTEX_NUS-NSI_1","MTTEX_NUS-NBP_1","MTTEXSF1","MTTEXSP1","MTTEX_NUS-NPG_1","MTTEX_NUS-NCE_1","MTTEX_NUS-NSU_1","MTTEXNS1","MTTEX_NUS-NWZ_1","MTTEXSW1","MTTEXSZ1","MTTEX_NUS-NSY_1","MTTEXTW1","MTTEX_NUS-NTZ_1","MTTEXTH1","MTTEX_NUS-NTN_1","MTTEX_NUS-NTO_1","MTTEXTD1","MTTEX_NUS-NTS_1","MTTEXTU1","MTTEX_NUS-NTX_1","MTTEX_NUS-NTK_1","MTTEX_NUS-NUG_1","MTTEX_NUS-NUR_1","MTTEXTC1","MTTEXUK1","MTTEXUY1","MTTEX_NUS-NUZ_1","MTTEX_NUS-NNH_1","MTTEXVE1","MTTEX_NUS-NVM_1","MTTEX_NUS-NVI_1","MTTEXVQ1","MTTEX_NUS-NYE_1","MTTEXYO1","MTTEX_NUS-NZA_1"

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

7,"Annual",2012,"6/30/1981" 7,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_impcp_a2_r30_ep00_ip0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_impcp_a2_r30_ep00_ip0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 9:11:43 AM" "Back to Contents","Data 1: Gulf Coast (PADD 3) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP31","MTTIPP3PG1","MTTIP_R30-ME0_1","MTTIPP3AG1","MTTIPP3AO1","MTTIPP3EC1","MTTIP_R30-NIZ_1","MTTIPP3KU1","MTTIP_R30-NLY_1","MTTIPP3NI1","MTTIP_R30-NQA_1","MTTIPP3SA1","MTTIPP3TC1","MTTIPP3VE1","MTTIPP3VV1","MTTIP_R30-NAL_1","MTTIPP3AR1","MTTIP_R30-NAA_1","MTTIPP3AS1","MTTIP_R30-NAU_1","MTTIP_R30-NAJ_1","MTTIP_R30-NBF_1","MTTIP_R30-NBA_1","MTTIP_R30-NBO_1","MTTIPP3BE1","MTTIP_R30-NBH_1","MTTIP_R30-NBN_1","MTTIP_R30-NBL_1","MTTIP_R30-NBR_1","MTTIP_R30-NBX_1","MTTIP_R30-NBU_1","MTTIP_R30-NBM_1","MTTIP_R30-NCM_1","MTTIPP3CA1","MTTIP_R30-NCD_1","MTTIP_R30-NCI_1","MTTIP_R30-NCH_1","MTTIPP3CO1","MTTIPP3CF1","MTTIPP3CG1","MTTIP_R30-NCW_1","MTTIP_R30-NCS_1","MTTIP_R30-NHR_1","MTTIP_R30-NCY_1","MTTIP_R30-NCZ_1","MTTIP_R30-NDA_1","MTTIPP3EG1","MTTIP_R30-NES_1","MTTIP_R30-NEK_1","MTTIP_R30-NEN_1","MTTIP_R30-NFI_1","MTTIPP3FR1","MTTIPP3GB1","MTTIP_R30-NGG_1","MTTIP_R30-NGM_1","MTTIP_R30-NGH_1","MTTIP_R30-NGR_1","MTTIP_R30-NGT_1","MTTIP_R30-NGV_1","MTTIP_R30-NHU_1","MTTIP_R30-NIN_1","MTTIPP3ID1","MTTIP_R30-NEI_1","MTTIP_R30-NIS_1","MTTIPP3IT1","MTTIP_R30-NIV_1","MTTIP_R30-NJM_1","MTTIP_R30-NJA_1","MTTIP_R30-NKZ_1","MTTIPP3KS1","MTTIP_R30-NKG_1","MTTIP_R30-NLG_1","MTTIP_R30-NLI_1","MTTIP_R30-NLH_1","MTTIP_R30-NMY_1","MTTIP_R30-NMT_1","MTTIP_R30-NMR_1","MTTIPP3MX1","MTTIP_R30-NMQ_1","MTTIP_R30-NMO_1","MTTIP_R30-NNL_1","MTTIPP3NA1","MTTIP_R30-NNZ_1","MTTIPP3NO1","MTTIP_R30-NMU_1","MTTIP_R30-NPK_1","MTTIP_R30-NPM_1","MTTIP_R30-NPP_1","MTTIP_R30-NPE_1","MTTIP_R30-NRP_1","MTTIP_R30-NPL_1","MTTIP_R30-NPO_1","MTTIP_R30-NPZ_1","MTTIP_R30-NRO_1","MTTIP_R30-NRS_1","MTTIP_R30-NSN_1","MTTIP_R30-NSK_1","MTTIP_R30-NSF_1","MTTIPP3SP1","MTTIPP3SW1","MTTIP_R30-NSZ_1","MTTIPP3SY1","MTTIP_R30-NTW_1","MTTIPP3TH1","MTTIP_R30-NTO_1","MTTIP_R30-NTN_1","MTTIPP3TD1","MTTIP_R30-NTS_1","MTTIP_R30-NTU_1","MTTIP_R30-NTX_1","MTTIP_R30-NUR_1","MTTIPP3UK1","MTTIP_R30-NUY_1","MTTIP_R30-NUZ_1","MTTIP_R30-NVM_1","MTTIPP3VQ1","MTTIPP3YE1"

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1973" Annual",2012,"6/30/1973" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_neti_a_ep00_imn_mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_neti_a_ep00_imn_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 10:46:04 AM" "Back to Contents","Data 1: Net Imports of Total Crude Oil and Products into the U.S. by Country" "Sourcekey","MTTNTUS2","MTTNTUSPG2","MTTNT_NUS-ME0_2","MTTNTUSAG2","MTTNTUSAO2","MTTNTUSEC2","MTTNTUSIR2","MTTNT_NUS-NIZ_2","MTTNTUSKU2","MTTNT_NUS-NLY_2","MTTNTUSNI2","MTTNTUSQA2","MTTNTUSSA2","MTTNTUSTC2","MTTNTUSVE2","MTTNTUSVV2","MTTNT_NUS-NAF_2","MTTNT_NUS-NAL_2","MTTNT_NUS-NAN_2","MTTNT_NUS-NAV_2","MTTNT_NUS-NAC_2","MTTNTUSAR2","MTTNT_NUS-NAE_2","MTTNT_NUS-NAA_2","MTTNTUSAS2","MTTNT_NUS-NAU_2","MTTNT_NUS-NAJ_2","MTTNTUSBF2","MTTNT_NUS-NBA_2","MTTNT_NUS-NBG_2","MTTNT_NUS-NBB_2","MTTNT_NUS-NBO_2","MTTNTUSBE2","MTTNT_NUS-NBH_2","MTTNT_NUS-NBN_2","MTTNT_NUS-NBD_2","MTTNT_NUS-NBL_2","MTTNT_NUS-NBK_2","MTTNTUSBR2","MTTNTUSBX2","MTTNT_NUS-NBU_2","MTTNT_NUS-NBM_2","MTTNT_NUS-NCB_2","MTTNTUSCM2","MTTNTUSCA2","MTTNT_NUS-NCJ_2","MTTNT_NUS-NCD_2","MTTNT_NUS-NCI_2","MTTNTUSCH2","MTTNTUSCO2","MTTNTUSCF2","MTTNTUSCG2","MTTNT_NUS-NCW_2","MTTNT_NUS-NCS_2","MTTNT_NUS-NHR_2","MTTNT_NUS-NCY_2","MTTNT_NUS-NCZ_2","MTTNT_NUS-NDA_2","MTTNT_NUS-NDJ_2","MTTNT_NUS-NDO_2","MTTNT_NUS-NDR_2","MTTNTUSEG2","MTTNT_NUS-NES_2","MTTNT_NUS-NEK_2","MTTNT_NUS-NET_2","MTTNT_NUS-NER_2","MTTNT_NUS-NEN_2","MTTNT_NUS-NFJ_2","MTTNT_NUS-NFI_2","MTTNTUSFR2","MTTNT_NUS-NFP_2","MTTNT_NUS-NFG_2","MTTNTUSGB2","MTTNT_NUS-NGG_2","MTTNTUSBZ2","MTTNT_NUS-NGH_2","MTTNT_NUS-NGI_2","MTTNTUSGR2","MTTNT_NUS-NGL_2","MTTNT_NUS-NGJ_2","M_EP00_IMN_NUS-NGP_2","MTTNTUSGT2","MTTNT_NUS-NGV_2","MTTNT_NUS-NGY_2","MTTNT_NUS-NHA_2","MTTNT_NUS-NHO_2","MTTNT_NUS-NHK_2","MTTNT_NUS-NHU_2","MTTNT_NUS-NIC_2","MTTNTUSIN2","MTTNTUSID2","MTTNT_NUS-NEI_2","MTTNT_NUS-NIS_2","MTTNTUSIT2","MTTNT_NUS-NIV_2","MTTNTUSJM2","MTTNTUSJA2","MTTNT_NUS-NJO_2","MTTNT_NUS-NKZ_2","MTTNT_NUS-NKE_2","MTTNTUSKS2","MTTNT_NUS-NKT_2","MTTNT_NUS-NKG_2","MTTNT_NUS-NLG_2","MTTNT_NUS-NLE_2","MTTNT_NUS-NLI_2","MTTNT_NUS-NLH_2","MTTNT_NUS-NMC_2","MTTNT_NUS-NMK_2","MTTNT_NUS-NMA_2","MTTNTUSMY2","MTTNT_NUS-NMV_2","MTTNT_NUS-NML_2","MTTNT_NUS-NMT_2","MTTNT_NUS-NRM_2","MTTNT_NUS-NMR_2","MTTNT_NUS-NMP_2","MTTNTUSMX2","MTTNT_NUS-NFM_2","MTTNT_NUS-NMQ_2","MTTNT_NUS-NMN_2","MTTNT_NUS-NMD_2","MTTNT_NUS-NMG_2","M_EP00_IMN_NUS-NMJ_2","MTTNT_NUS-NMH_2","MTTNT_NUS-NMO_2","MTTNT_NUS-NMZ_2","MTTNT_NUS-NWA_2","MTTNT_NUS-NNP_2","MTTNTUSNL2","MTTNTUSNA2","MTTNT_NUS-NNC_2","MTTNT_NUS-NNZ_2","MTTNT_NUS-NNU_2","MTTNT_NUS-NNG_2","MTTNT_NUS-NNE_2","MTTNTUSNO2","MTTNTUSMU2","MTTNT_NUS-NPK_2","MTTNTUSPM2","MTTNT_NUS-NPP_2","MTTNT_NUS-NPF_2","MTTNT_NUS-NPA_2","MTTNTUSPE2","MTTNT_NUS-NRP_2","MTTNT_NUS-NPL_2","MTTNT_NUS-NPO_2","MTTNTUSRQ2","MTTNTUSRO2","MTTNT_NUS-NRS_2","MTTNT_NUS-NSC_2","MTTNT_NUS-NST_2","MTTNT_NUS-NSB_2","MTTNT_NUS-NVC_2","MTTNT_NUS-NWS_2","MTTNT_NUS-NSM_2","MTTNT_NUS-NSG_2","MTTNT_NUS-NYI_2","MTTNT_NUS-NSL_2","MTTNT_NUS-NSN_2","MTTNT_NUS-NSK_2","MTTNT_NUS-NSI_2","MTTNT_NUS-NSF_2","MTTNTUSSP2","MTTNT_NUS-NPG_2","MTTNT_NUS-NCE_2","MTTNT_NUS-NNS_2","MTTNT_NUS-NWZ_2","MTTNTUSSW2","MTTNT_NUS-NSZ_2","MTTNTUSSY2","MTTNTUSTW2","MTTNT_NUS-NTZ_2","MTTNTUSTH2","MTTNT_NUS-NTO_2","MTTNT_NUS-NTN_2","MTTNTUSTD2","MTTNT_NUS-NTS_2","MTTNTUSTU2","MTTNT_NUS-NTX_2","MTTNT_NUS-NTK_2","MTTNT_NUS-NUG_2","MTTNT_NUS-NUR_2","MTTNTUSUK2","MTTNT_NUS-NUY_2","MTTNT_NUS-NUZ_2","MTTNT_NUS-NNH_2","MTTNT_NUS-NVM_2","MTTNT_NUS-NVI_2","MTTNTUSVQ2","MTTNTUSYE2","MTTNT_NUS-NYO_2","MTTNTUSWW2"

452

Low density instabilities in asymmetric nuclear matter within the quark-meson coupling (QMC) model with the {delta} meson  

SciTech Connect

In the present work we include the isovector-scalar {delta} meson in the quark-meson coupling (QMC) model and study the properties of asymmetric nuclear within QMC without and with the {delta} meson. Recent constraints set by isospin diffusion on the slope parameter of the nuclear symmetry energy at saturation density are used to adjust the model parameters. The thermodynamical spinodal surfaces are obtained and the instability region at subsaturation densities within QMC and QMC{delta} models are compared with mean-field relativistic models. The distillation effect in the QMC model is discussed.

Santos, Alexandre M.; Providencia, Constanca; Panda, Prafulla K. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India and Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

2009-04-15T23:59:59.000Z

453

Multi-strange baryon production in pp, p-Pb and Pb-Pb collisions measured with ALICE  

E-Print Network (OSTI)

The production of {\\Xi}$^{-}$ and {\\Omega}$^{-}$ baryons and their anti-particles in pp, p-Pb and Pb-Pb collisions has been measured by the ALICE Collaboration. These hyperons are reconstructed via the detection of their charged weak-decay products, which are identified through their measured ionisation losses and momenta in the ALICE Time Projection Chamber. Comparing the production yields in Pb-Pb and pp collisions, a strangeness enhancement has been measured and found to increase with the centrality of the collision and with the strangeness content of the baryon; moreover, in the comparison with similar measurements at lower energies, it decreases as the centre-of-mass energy increases, following the trend already observed moving from SPS to RHIC. Recent measurement of cascade and {\\Omega} in p-Pb interactions are compared with results in Pb-Pb and pp collisions and with predictions from thermal models, based on a grand canonical approach. The nuclear modification factors for the charged {\\Xi} and {\\Omega}...

Colella, Domenico

2014-01-01T23:59:59.000Z

454

Multi-strange baryon production in pp, p-Pb and Pb-Pb collisions measured with ALICE  

E-Print Network (OSTI)

The production of {\\Xi}$^{-}$ and {\\Omega}$^{-}$ baryons and their anti-particles in pp, p-Pb and Pb-Pb collisions has been measured by the ALICE Collaboration. These hyperons are reconstructed via the detection of their charged weak-decay products, which are identified through their measured ionisation losses and momenta in the ALICE Time Projection Chamber. Comparing the production yields in Pb-Pb and pp collisions, a strangeness enhancement has been measured and found to increase with the centrality of the collision and with the strangeness content of the baryon; moreover, in the comparison with similar measurements at lower energies, it decreases as the centre-of-mass energy increases, following the trend already observed moving from SPS to RHIC. Recent measurement of cascade and {\\Omega} in p-Pb interactions are compared with results in Pb-Pb and pp collisions and with predictions from thermal models, based on a grand canonical approach. The nuclear modification factors for the charged {\\Xi} and {\\Omega}, compared to the ones for the lighter particles, are also presented.

Domenico Colella for the ALICE Collaboration

2014-10-26T23:59:59.000Z

455

Table of Contents Chapter and Content Pages  

E-Print Network (OSTI)

#12;Page 2 Table of Contents Chapter and Content Pages 1. Field Trip Itinerary ................................................................................. 7 4. Geologic Framework of the Netherlands Antilles 5. Coral Reefs of the Netherlands Antilles

Fouke, Bruce W.

456

Production and propagation of mesons in complex nuclei  

SciTech Connect

The propagation of unstable mesons in nuclei is considered with regard to the use of the nucleus as a micro-laboratory. Specific problems considered are those of the nu and the S*/delta systems. 17 refs., 12 figs.

Gibbs, W.R.; Kaufmann, W.B.

1987-01-01T23:59:59.000Z

457

CP-violating polarizations in semileptonic heavy meson decays  

Science Journals Connector (OSTI)

We study the T-violating lepton transverse polarization (Pl?) in three body semileptonic heavy meson decays to pseudoscalar mesons and to vector mesons. We calculate these polarizations in the heavy quark effective limit, which simplifies the expressions considerably. After examining constraints from CP-conserving (including b?s?) and CP-violating processes, we find that in B decays P? of the muon in multi-Higgs-doublet models can be of order 13%, while P? of the ? can even approach unity. In contrast, P?? in D decays is at most 1.5%. We discuss possibilities for detection of Pl? at current and future B factories. We also show that Pl? in decays to vector mesons, unlike in decays to pseudoscalars, can get contributions from left-right models. Unfortunately, Pl? in that case is proportional to WL-WR mixing, and is thus small.

Robert Garisto

1995-02-01T23:59:59.000Z

458

Spin Density Matrix Elements from diffractive $?$ meson production at HERMES  

E-Print Network (OSTI)

Exclusive production of $\\phi$ mesons on hydrogen and deuterium targets is studied in the HERMES kinematic region $1 production. No significant evidence for the contribution of unnatural-parity-exchange amplitudes is found.

HERMES Collaboration; W. Augustyniak; A. Borissov; S. Manayenkov

2008-08-05T23:59:59.000Z

459

Toward the excited isoscalar meson spectrum from lattice QCD  

We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the ?, ?' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qqbar-like spectrum.

Edwards, Robert G. [JLAB; Dudek, Jozef J. [JLAB, Old Dominion U.; Thomas, Christopher Edward [Trinity College, Dublin; Guo, Peng [Indiana U.

2013-11-01T23:59:59.000Z

460

Determination of the X(3872) Meson Quantum Numbers  

E-Print Network (OSTI)

The quantum numbers of the X(3872) meson are determined to be J[superscript PC]=1[superscript ++] based on angular correlations in B[superscript +]?X(3872)K[superscript +] decays, where X(3872)??[superscript +]?[superscript ...

Williams, Michael

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

{phi}-meson production in proton-proton collisions  

SciTech Connect

The production of {phi} mesons in proton-proton collisions is investigated within a relativistic meson-exchange model of hadronic interactions. The experimental prerequisites for extracting the NN{phi} coupling strength from this reaction are discussed. In the absence of a sufficient set of data, which would enable an accurate determination of the NN{phi} coupling strength, we perform a combined analysis, based on some reasonable assumptions, of the existing data for both {omega}- and {phi}-meson production. We find that the recent data from the DISTO Collaboration on the angular distribution of the {phi} meson indicate that the NN{phi} coupling constant is small. The analysis yields values for g{sub NN{phi}} that are compatible with the Okubo-Zweig-Iizuka rule. {copyright} {ital 1999} {ital The American Physical Society}

Nakayama, K.; Durso, J.W.; Haidenbauer, J.; Hanhart, C.; Speth, J. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)] [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Nakayama, K. [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (United States)] [Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (United States); Durso, J.W. [Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075 (United States)] [Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075 (United States); Hanhart, C. [Institut fuer Theoretische Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany)] [Institut fuer Theoretische Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Hanhart, C. [Department of Physics and INT, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics and INT, University of Washington, Seattle, Washington 98195 (United States)

1999-11-01T23:59:59.000Z

462

Magnetic Moments of Negative-Parity Baryons from Lattice QCD  

E-Print Network (OSTI)

We report preliminary results for the magnetic moments of negative-parity baryons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^3\\times 48$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to about 520 MeV, and 1000 configurations. Reasonable signals for the negative-parity states are observed and the sign of their magnetic moments is established. The results are compared to model calculations.

Frank X. Lee; Andrei Alexandru

2010-11-18T23:59:59.000Z

463

Baryonic Bound State of Vortices in Multicomponent Superconductors  

E-Print Network (OSTI)

We construct a bound state of three 1/3-quantized Josephson coupled vortices in three-component superconductors with intrinsic Josephson couplings, which may be relevant with regard to iron-based superconductors. We find a Y-shaped junction of three domain walls connecting the three vortices, resembling the baryonic bound state of three quarks in QCD. The appearance of the Y-junction (but not a Delta-junction) implies that in both cases of superconductors and QCD, the bound state is described by a genuine three-body interaction (but not by the sum of two-body interactions). We also discuss a confinement/deconfinement phase transition.

Muneto Nitta; Minoru Eto; Toshiaki Fujimori; Keisuke Ohashi

2010-11-11T23:59:59.000Z

464

Measurement of $\\psi(2S)$ decays to baryon pairs  

E-Print Network (OSTI)

A sample of 3.95M $\\psi(2S)$ decays registered in the BES detector are used to study final states containing pairs of octet and decuplet baryons. We report branching fractions for $\\psi(2S)\\to p\\bar{p}$, $\\Lambda\\bar{\\Lambda}$, $\\Sigma^0\\bar{\\Sigma}{}^0$, $\\Xi^-\\bar{\\Xi}{}^+$, $\\Delta^{++}\\bar{\\Delta}{}^{--}$, $\\Sigma^+(1385)\\bar{\\Sigma}{}^-(1385 )$, $\\Xi^0(1530)\\bar{\\Xi}{}^0(1530)$, and $\\Omega^-\\bar{\\Omega}{}^+$. These results are compared to expectations based on the SU(3)-flavor symmetry, factorization, and perturbative QCD.

Bai, J Z; Bian, J G; Blum, I K; Chen, A D; Chen, G P; Chen, H F; Chen, H S; Chen, J; Chen Jia Chao; Chen, X D; Chen, Y; Chen, Y B; Cheng Bao Sen; Choi, J B; Cui, X Z; Ding, H L; Dong, L Y; Du, Z Z; Dunwoodie, W M; Gao, C S; Gao, M L; Gao, S Q; Gratton, P; Gu, J H; Gu, S D; Gu, W X; Guo, Y N; Guo, Z J; Han, S W; Han, Y; Harris, F A; He, J; He, J T; He, K L; He, M; Heng, Y K; Hitlin, D G; Hu, G Y; Hu, H M; Hu, J L; Hu, Q H; Hu, T; Huang, G S; Huang, X P; Huang, Y Z; Izen, J M; Jiang, C H; Jin, Y; Jones, B D; Ju, X; Kang, J S; Ke, Z J; Kelsey, M H; Kim, B K; Kim, H J; Kim, S K; Kim, T Y; Kong, D; Lai, Y F; Lang, P F; Lankford, A J; Li, C G; Li, D; Li, H B; Li, J; Li, J C; Li, P Q; Li, W; Li, W G; Li, X H; Li Xiao Nan; Li Xue Qian; Li Zhong Chao; Liu, B; Liu, F; Liu Feng; Liu, H M; Liu, J; Liu, J P; Liu, R G; Liu, Y; Liu, Z X; Lou, X C; Lowery, B; Lu, G R; Lu, F; Lu, J G; Luo, X L; Ma, E C; Ma, J M; Malchow, R L; Mao, H S; Mao, Z P; Meng, X C; Mo, X H; Nie, J; Olsen, S L; Oyang, J Y T; Paluselli, D; Pan, L J; Panetta, J; Park, H; Porter, F; Qi, N D; Qi, X R; Qian, C D; Qiu, J F; Qu, Y H; Que, Y K; Rong, G; Schernau, M; Shao, Y Y; Shen, B W; Shen, D L; Shen, H; Shen, H Y; Shen, X Y; Shi, F; Shi, H Z; Song, X F; Standifird, J; Suh, J Y; Sun, H S; Sun, L F; Sun, Y Z; Tang, S Q; Toki, W; Tong, G L; Varner, G S; Wang, F; Wang, L; Wang, L S; Wang, L Z; Wang, P; Wang, P L; Wang, S M; Wang, Y Y; Wang, Z Y; Weaver, M; Wei, C L; Wu, N; Wu, Y G; Xi, D M; Xia, X M; Xie, Y; Xie, Y H; Xu, G F; Xue, S T; Yan, J; Yan, W G; Yang, C M; Yang, C Y; Yang, H X; Yang, W; Yang, X F; Ye, M H; Ye Shu Wei; Ye, Y X; Yu, C S; Yu, C X; Yu, G W; Yu Yu Hei; Yu, Z Q; Yuan, C Z; Yuan, Y; Zhang Bing Yun; Zhang, C; Zhang, C C; Zhang, D H; De Hong Zhang; Zhang, H L; Zhang, J; Zhang, J W; Zhang, L; Zhang Lei; Zhang, L S; Zhang, P; Zhang, Q J; Zhang, S Q; Zhang, X Y; Zhang, Y Y; Zhao, D X; Zhao, H W; Jia Wei Zhao; Zhao Jia Wei; Zhao, M; Zhao Wei Ren; Zhao, Z G; Zheng Jian Ping; Zheng Lin Sheng; Zheng Zhi Peng; Zhou, B Q; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A

2001-01-01T23:59:59.000Z

465

Quark Phase Transition Parameters and $?$-Meson Field in RMF Theory  

E-Print Network (OSTI)

The deconfinement phase transition from hadronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field (RMF) theory, when also the scalar- isovector $\\delta$-meson effective field is taken into account. To describe a quark phase the MIT bag model is used. The changes of the mixed phase threshold parameters caused by the presence of $\\delta$-meson field are investigated.

G. B. Alaverdyan

2009-07-23T23:59:59.000Z

466

Observation and Properties of the Orbitally Excited Bs2* Meson  

Science Journals Connector (OSTI)

We report the direct observation of the excited L=1 state Bs2* in fully reconstructed decays to B+K-. The mass of the Bs2* meson is measured to be 5839.6±1.1(stat)±0.7(syst)??MeV/c2, and its production rate relative to the B+ meson is measured to be [1.15±0.23(stat)±0.13(syst)]%.

V. M. Abazov et al. (D0 Collaboration)

2008-02-28T23:59:59.000Z

467

Semileptonic and nonleptonic decays of Bc mesons to orbitally excited heavy mesons in the relativistic quark model  

Science Journals Connector (OSTI)

The form factors of weak decays of the Bc meson to orbitally excited charmonium, D, Bs, and B mesons are calculated in the framework of the QCD-motivated relativistic quark model based on the quasipotential approach. Relativistic effects are systematically taken into account. The form factor dependence on the momentum transfer is reliably determined in the whole kinematical range. The form factors are expressed through the overlap integrals of the meson wave functions, which are known from the previous mass spectra calculations within the same model. On this basis, semileptonic and nonleptonic Bc decay rates to orbitally excited heavy mesons are calculated. Predictions for the Bc decays to the orbitally and radially excited 2P and 3S charmonium states are given, which could be used for clarifying the nature of the recently observed charmoniumlike states above the open charm production threshold.

D. Ebert, R. N. Faustov, and V. O. Galkin

2010-08-16T23:59:59.000Z

468

Recent Results for the Baryon Antidecuplet within the Chiral Quark-Soliton Model  

Science Journals Connector (OSTI)

......the results for the magnetic transition N N. Since we have fixed all parameters for the baryon wave functions, we can pro- ceed to determine the magnetic moments and axial-vector constants of the baryon antidecuplet, as done in Refs. 21),26) and......

Ghil-Seok Yang; Hyun-Chul Kim

2010-10-01T23:59:59.000Z

469

Site Content and Metadata  

Science Journals Connector (OSTI)

Metadata is data about data, and is essentially the categorization of the content within a content management system. A good example of metadata is in the classification of documents in a Content Man...

Robert Garrett

2011-01-01T23:59:59.000Z

470

Red Halos of Galaxies - Reservoirs of Baryonic Dark Matter?  

E-Print Network (OSTI)

Deep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be reconciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.

E. Zackrisson; N. Bergvall; C. Flynn; G. Ostlin; G. Micheva; B. Caldwell

2007-08-06T23:59:59.000Z

471

Observation of a New $\\Xi_{b}$ Baryon  

E-Print Network (OSTI)

The observation of a new b baryon via its strong decay into $\\Xi_{b}^- \\pi^+$ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at $\\sqrt{s}$ = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known $\\Xi_b^-$ baryon is reconstructed via the decay chain $\\Xi_{b}^- \\to J/\\psi \\Xi^- \\to \\mu^+ \\mu^- \\Lambda^0 \\pi^-$, with $\\Lambda^0 \\to p \\pi^-$. A peak is observed in the distribution of the difference between the mass of the $\\Xi_{b}^- \\pi^+$ system and the sum of the masses of the $\\Xi_{b}^-$ and $\\pi^+$, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the $J^P=3/2^+$ companion of the $\\Xi_b$.

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard

2012-01-01T23:59:59.000Z

472

Baryon Oscillations and Dark-Energy Constraints from Imaging Surveys  

E-Print Network (OSTI)

Baryonic oscillations in the galaxy power spectrum have been studied as a way of probing dark-energy models. While most studies have focused on spectroscopic surveys at high redshift, large multi-color imaging surveys have already been planned for the near future. In view of this, we study the prospects for measuring baryonic oscillations from angular statistics of galaxies binned using photometric redshifts. We use the galaxy bispectrum in addition to the power spectrum; this allows us to measure and marginalize over possibly complex galaxy bias mechanisms to get robust cosmological constraints. In our parameter estimation we allow for a weakly nonlinear biasing scheme that may evolve with redshift by two bias parameters in each of ten redshift bins. We find that a multi-color imaging survey that probes redshifts beyond one can give interesting constraints on dark-energy parameters. In addition, the shape of the primordial power spectrum can be measured to better accuracy than with the CMB alone. We explore the impact of survey depth, area, and calibration errors in the photometric redshifts on dark-energy constraints.

Derek Dolney; Bhuvnesh Jain; Masahiro Takada

2004-09-20T23:59:59.000Z

473

Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies  

SciTech Connect

A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has nonzero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cut Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.

Arakelyan, G. H., E-mail: argev@mail.yerphi.am [Yerevan Physics Institute, A.I. Alikhanyan National Science Laboratory (Armenia); Merino, C., E-mail: merino@fpaxp1.usc.es; Pajares, C., E-mail: pajares@fpaxp1.usc.es [Departamento de Fisica de Part iculas and Instituto Galego de Fisica de Altas Enerx ias Universidade de Santiago de Compostela (Spain); Shabelski, Yu. M., E-mail: shabelsk@thd.pnpi.spb.ru [RAS, Gatchina, NRC Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

2013-03-15T23:59:59.000Z

474

Caloric content of phytoplankton  

Science Journals Connector (OSTI)

Jul 10, 1972 ... from carbon content, enabling much smaller ... surement of the energy efficiency of primary ... caloric content of the tissues of organisms.

1999-12-27T23:59:59.000Z

475

Electromagnetic Studies of Mesons, Nucleons, and Nuclei  

SciTech Connect

Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

Baker, Oliver K.

2013-08-20T23:59:59.000Z

476

Catalysis of Nuclear Reactions between Hydrogen Isotopes by ?- Mesons  

Science Journals Connector (OSTI)

The mechanism by which negative ? mesons catalyze nuclear reactions between hydrogen isotopes is studied in detail. The reaction rate for the process (p+d+?-?He3+?-+5.5 Mev), observed recently by Alvarez et al., is calculated and found to be in accord with the available data. The ?- meson binds two hydrogen nuclei together in the ?-mesonic analog of the ordinary H2+ molecular ion. In their vibrational motion the nuclei have a finite, although small, probability of penetrating the Coulomb barrier to zero separation where they may undergo a nuclear reaction. The intrinsic reaction rates for other, more probable, reactions are also estimated. The results are ?0.3×106 sec-1 for the observed p-d reaction, ?0.7×1011 sec-1 for the d-d reaction, and ?0.4×1013 sec-1 for the d-t reaction. For the reaction observed by Alvarez rough estimates are made of the partial widths for nonradiative and radiative decay of the excited He3 nucleus. The ejection of the ?- meson by "internal conversion" seems somewhat less likely. Speculations are made on the release of useful amounts of nuclear energy by these catalyzed reactions. The governing factors are not the intrinsic reaction rate once the molecule is formed, but rather the time spent (?10-8 sec) by the ?- meson between the breakup of one molecule and the formation of another and the loss of ?- mesons in "dead-end" processes. These factors are such that practical power production is unlikely. In liquid deuterium, each ?- meson will catalyze only ?10 reactions in its lifetime, while for the d-t process it will induce ?100 disintegrations. A longer lived particle will not be able to catalyze appreciably more reactions.

J. D. Jackson

1957-04-15T23:59:59.000Z

477

Content is not King  

E-Print Network (OSTI)

The Internet is widely regarded as primarily a content delivery system. Yet historically, connectivity

Odlyzko, Andrew

2000-01-01T23:59:59.000Z

478

Measuring baryon acoustic oscillations with future SKA surveys  

E-Print Network (OSTI)

The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this article we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 sq. deg. intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ~ 2. A 30,000 sq. deg. galaxy redshift survey on SKA2 will outperform all other planned experiments for z < 1.4.

Bull, Philip; Raccanelli, Alvise; Blake, Chris; Ferreira, Pedro G; Santos, Mario G; Schwarz, Dominik J

2015-01-01T23:59:59.000Z

479

Study of flavor-tagged baryon production in B decay  

E-Print Network (OSTI)

ARTICLES Study of flavor-tagged baryon production in B decay R. Ammar, 1 P. Baringer, 1 A. Bean, 1 D. Besson, 1 D. Coppage, 1 N. Copty, 1 R. Davis, 1 N. Hancock, 1 S. Kotov, 1 I. Kravchenko, 1 N. Kwak, 1 Y. Kubota, 2 M. Lattery, 2 J. K. Nelson, 2 S..., 4 K. Honscheid, 4 H. Kagan, 4 R. Kass, 4 J. Lee, 4 M. Sung, 4 C. White, 4 R. Wanke, 4 A. Wolf, 4 M. M. Zoeller, 4 X. Fu, 5 B. Nemati, 5 W. R. Ross, 5 P. Skubic, 5 M. Wood, 5 M. Bishai, 6 J. Fast, 6 E. Gerndt, 6 J. W. Hinson, 6 T. Miao, 6 D. H. Miller...

Baringer, Philip S.

1997-01-01T23:59:59.000Z

480

Inclusive photoproduction of strange baryons at 20 GeV  

Science Journals Connector (OSTI)

Cross sections are presented for the inclusive photoproduction of KS0, ?, ?¯, ?-, ?¯ -, ?0, and ?*±(1385) at 20 GeV. An upper limit to ?- production is also given. The data come from 284 000 hadronic events photoproduced in the SLAC 1-m hydrogen-bubble-chamber hybrid facility exposed to a nearly monochromatic, polarized 20-GeV backscattered photon beam. A comparison of the KS0, ?, ?¯, and ?- rates per inelastic event to ?±p data show that ?p rates are consistent with being higher than the ?±p rates, providing evidence of an ss¯ component of the photon. The pair cross sections for KS0KS0, KS0?, KSo?¯, and ??¯ are presented. The xF distributions of the ?, ?¯, and ?- are compared to a quark-diquark fusion model, giving information on strange-baryon photoproduction mechanisms.

K. Abe et al.

1985-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mesons contents baryons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Search for Baryonic Decays of \\psi(3770) and \\psi(4040)  

E-Print Network (OSTI)

By analyzing data samples of 2.9 fb^{-1} collected at \\sqrt s=3.773 GeV, 482 pb^{-1} collected at \\sqrt s=4.009 GeV and 67 pb^{-1} collected at \\sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \\psi(3770) and \\psi(4040) decay to baryonic final states, including \\Lambda\\bar\\Lambda\\pi^+\\pi^-, \\Lambda \\bar\\Lambda\\pi^0, \\Lambda\\bar\\Lambda\\eta, \\Sigma^+ \\bar\\Sigma^-, \\Sigma^0 \\bar\\Sigma^0, \\Xi^-\\bar\\Xi^+ and \\Xi^0\\bar\\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.

Ablikim, M; Albayrak, O; Ambrose, D J; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Becker, J; Bennett, J V; Bertani, M; Bian, J M; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Bytev, V; Cai, H; Cai, X; akir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, Y B; Cheng, H P; Chu, Y P; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; Ding, W M; Ding, Y; Dong, L Y; Dong, M Y; Du, S X; Fang, J; Fang, S S; Fava, L; Feng, C Q; Friedel, P; Fu, C D; Fu, J L; Gao, Y; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, T; Guo, Y P; Han, Y L; Harris, F A; He, K L; He, M; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Huang, G M; Huang, G S; Huang, J S; Huang, L; Huang, X T; Huang, Y; Huang, Y P; Hussain, T; Ji, C S; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L L; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Jing, F F; Kalantar-Nayestanaki, N; Kavatsyuk, M; Kopf, B; Kornicer, M; Kuehn, W; Lai, W; Lange, J S; Larin, P; Leyhe, M; Li, C H; Li, Cheng; Li, Cui; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, K; Li, Lei; Li, Q J; Li, S L; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, X R; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Liao, X T; Lin, D; Liu, B J; Liu, C L; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H; Liu, H B; Liu, H H; Liu, H M; Liu, H W; Liu, J P; Liu, K; Liu, K Y; Liu, Kai; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lu, G R; Lu, H J; Lu, J G; Lu, Q W; Lu, X R; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Ma, C L; Ma, F C; Ma, H L; Ma, Q M; Ma, S; Ma, T; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Moeini, H; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nicholson, C; Nikolaev, I B; Ning, Z; Olsen, S L; Ouyang, Q; Pacetti, S; Park, J W; Pelizaeus, M; Peng, H P; Peters, K; Ping, J L; Ping, R G; Poling, R; Prencipe, E; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Rong, G; Ruan, X D; Sarantsev, A; Schaefer, B D; Shao, M; Shen, C P; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, W M; Song, X Y; Spataro, S; Spruck, B; Sun, D H; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B Q; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, X F; Wang, X L; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z Y; Wei, D H; Wei, J B; Weidenkaff, P; Wen, Q G; Wen, S P; Werner, M; Wiedner, U; Wu, L H; Wu, N; Wu, S X; Wu, W; Wu, Z; Xia, L G; Xia, Y X; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, G M; Xu, Q J; Xu, Q N; Xu, X P; Xu, Z R; Xue, F; Xue, Z; Yan, L; Yan, W B; Yan, Y H; Yang, H X; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yu, S P; Yuan, C Z; Yuan, Y; Zafar, A A; Zallo, A; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, LiLi; Zhang, R; Zhang, S H; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Z P; Zhang, Z Y; Zhang, Zhenghao; Zhao, G; Zhao, H S; Zhao, J W; Zhao, K X; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, S J; Zhao, T C; Zhao, X H; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhu, C; Zhu, K; Zhu, K J; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y M; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H

2013-01-01T23:59:59.000Z

482

Geometrical Effects of Baryon Density Inhomogeneities on Primordial Nucleosynthesis  

E-Print Network (OSTI)

We discuss effects of fluctuation geometry on primordial nucleosynthesis. For the first time we consider condensed cylinder and cylindrical-shell fluctuation geometries in addition to condensed spheres and spherical shells. We find that a cylindrical shell geometry allows for an appreciably higher baryonic contribution to be the closure density ($\\Omega_b h_{50}^2 \\la 0.2$) than that allowed in spherical inhomogeneous or standard homogeneous big bang models. This result, which is contrary to some other recent studies, is due to both geometry and recently revised estimates of the uncertainties in the observationally inferred primordial light-element abundances. We also find that inhomogeneous primordial nucleosynthesis in the cylindrical shell geometry can lead to significant Be and B production. In particular, a primordial beryllium abundance as high as [Be] = 12 + log(Be/H) $\\approx -3$ is possible while still satisfying all of the light-element abundance constraints.

M. Orito; T. Kajino; R N. Boyd; G J. Mathews

1996-09-19T23:59:59.000Z

483

Distribution of Four-Momentum Transfer in Multiple Meson Productions by High Energy Muons  

Science Journals Connector (OSTI)

......Multiple Meson Productions by High Energy Muons S. Higashi T. Kitamura Y. Mishima...Multiple Meson Productions by High Energy Muons S. Higashi, T. Kitamura, Y...production. Provided that the high energy muon-nucleon inter- actions occur......

S. Higashi; T. Kitamura; Y. Mishima; S. Miyamoto; H. Shibata; Y. Watase; K. Daiyasu; K. Kobayakawa; T. Murota; T. Nakano

1964-01-01T23:59:59.000Z

484

E-Print Network 3.0 - alamos meson physics Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

meson physics Search Powered by Explorit Topic List Advanced Search Sample search results for: alamos meson physics Page: << < 1 2 3 4 5 > >> 1 LA-UR-99-6192 Isotope Production...

485

Comparison of models for baryon calculations in a covariant three-body Faddeev approach  

E-Print Network (OSTI)

-preserving truncation. In mesons: Chiral symmetry is formalized by AV-WTI (guarantees massless pions in the chiral limit) Symmetry-preserving truncation. In mesons: Chiral symmetry is formalized by AV-WTI (guarantees massless: Simplest realization of AV-WTI keep only vector part of qg-vertex, µ, Helios Sanchis Alepuz (University

Rossak, Wilhelm R.

486

Properties of L=1 B1 and B2* Mesons  

Science Journals Connector (OSTI)

This Letter presents the first strong evidence for the resolution of the excited B mesons B1 and B2* as two separate states in fully reconstructed decays to B+(*)?-. The mass of B1 is measured to be 5720.6±2.4±1.4??MeV/c2 and the mass difference ?M between B2* and B1 is 26.2±3.1±0.9??MeV/c2, giving the mass of the B2* as 5746.8±2.4±1.7??MeV/c2. The production rate for B1 and B2* mesons is determined to be a fraction (13.9±1.9±3.2)% of the production rate of the B+ meson.

V. M. Abazov et al. (The D0 Collaboration)

2007-10-23T23:59:59.000Z

487

Spin effects in vector meson production at LEP  

E-Print Network (OSTI)

Spin observables may reveal much deeper properties of non perturbative hadronic physics than unpolarized quantities. We discuss the polarization of hadrons produced in $e^+e^-$ annihilation at LEP. We show how final state $q \\bar q$ interactions may give origin to non zero values of the off-diagonal element $\\rho^{\\,}_{1,-1}$ of the helicity density matrix of vector mesons: some predictions are given for $K^*, \\phi, D^*$ and $B^*$ in agreement with recent OPAL data. We also discuss the relative amount of vector and pseudovector meson states and the probability of helicity zero vector states. Similar measurements in other processes are suggested.

Mauro Anselmino

1998-02-26T23:59:59.000Z

488

Meson production in high-energy electron-nucleus scattering  

E-Print Network (OSTI)

Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

Göran Fäldt

2010-06-09T23:59:59.000Z

489

System size and energy dependence of $?$ meson production at RHIC  

E-Print Network (OSTI)

We present a system size and energy dependence of $\\phi$ meson production in Cu+Cu and Au+Au collisions at $\\sqrt{s_{NN}}$=62.4 GeV and 200 GeV measured by the STAR experiment at RHIC. We find that the number of participant scaled $\\phi$ meson yields in heavy ion collisions over that of p+p collisions are larger than 1 and increase with collision energy. We compare the results with those of open-strange particles and discuss the physics implication.

J. H. Chen

2008-04-28T23:59:59.000Z

490

Presence of vector mesons in the Wess-Zumino action  

Science Journals Connector (OSTI)

The Wess-Zumino action is rederived in terms of pseudoscalar fields associated with cosets of a parity-conserving subgroup of chiral symmetry instead of using the usual left-right U matrix. In this reformulation, the vector mesons can be introduced as a replacement for the "pion pair" in all of the anomaly vertices. The complete set of magnetic dipole decays for vector mesons are within the Wess-Zumino action. The numerical agreement between experimental data and predictions given by the anomaly Lagrangian is excellent for the processes ???? and ??2?.

X. Q. Zhu and D. Y. Kim

1989-10-01T23:59:59.000Z

491

From strange to charmed baryons using two-flavour QCD Jaume Carbonella  

E-Print Network (OSTI)

From strange to charmed baryons using two-flavour QCD Jaume Carbonella , Vincent Drachb , Mauro.drach@desy.de (Vincent Drach), mauro.papinutto@lpsc.in2p3.fr (Mauro Papinutto) The inclusion of the strange sea quark

Boyer, Edmond

492

Baryon spectrum using Nf=2+1+1 ensembles of twisted mass fermions  

E-Print Network (OSTI)

We present results on the masses of the low-lying baryons using ten ensembles of gauge configurations with $N_f =2+1+1$ dynamical twisted mass fermions, at three values of the lattice spacing, spanning a pion mass range from about 210 MeV to about 430 MeV. The strange and charm quark masses are tuned to approximately their physical values. We examine isospin symmetry breaking effects on the baryon mass and the dependence on the lattice spacing. After taking the continuum limit we use chiral perturbation theory to extrapolate to the physical vlaue of the pion mass for all forty baryons. We provide predictions for the masses of doubly and triply charmed baryons that have not yet been measured experimentally.

Alexandrou, C; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Koutsou, G

2014-01-01T23:59:59.000Z

493

Nucleons on the light-cone: Theory and phenomenology of baryon distribution amplitudes  

E-Print Network (OSTI)

This is a short review of the theory and phenomenology of baryon distribution amplitudes, including recent applications to the studies of nucleon form factors at intermediate momentum transfers using the light-cone sum rule approach.

V. M. Braun

2006-08-21T23:59:59.000Z

494

First Observation of Inclusive {ital B} Decays to the Charmed Strange Baryons {Xi}{sup 0}{sub {ital c}} and {Xi}{sup +}{sub {ital c}}  

SciTech Connect

Using data collected in the region of the {Upsilon}(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring (CESR), we present the first observation of B mesons decaying into the charmed strange baryons {Xi}{sup 0}{sub c} and {Xi}{sup +}{sub c} . We find 79{plus_minus}27 {Xi}{sup 0}{sub c} and 125{plus_minus}28 {Xi}{sup +}{sub c} candidates from B decays, leading to product branching fractions of B({bar B}{r_arrow}{Xi}{sup 0}{sub c}X)B({Xi}{sup 0}{sub c}{r_arrow}{Xi}{sup {minus}}{pi}{sup +})= (0.144{plus_minus}0.048 {plus_minus}0.021) {times}10{sup {minus}3} and B({bar B}{r_arrow}{Xi}{sup +}{sub c}X)B({Xi}{sup +}{sub C}{r_arrow} {Xi}{sup {minus}}{pi}{sup +}{pi}{sup +}) =(0.453{plus_minus} 0.096{sup +0.085}{sub {minus}0.065}){times} 10{sup {minus}3} . {copyright} {ital 1997} {ital The American Physical Society}

Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States)] [California Institute of Technology, Pasadena, California 91125 (United States); Asner, D.M.; Bliss, D.W.; Brower, W.S.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V. [University of California, San Diego, La Jolla, California 92093 (United States)] [University of California, San Diego, La Jolla, California 92093 (United States); Gronberg, J.; Hill, T.S.; Kutschke, R.; Lange, D.J.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Roberts, D.; Ryd, A.; Witherell, M.S. [University of California, Santa Barbara, California 93106 (United States)] [University of California, Santa Barbara, California 93106 (United States); Balest, R.; Behrens, B.H.; Cho, K.; Ford, W.T.; Park, H.; Rankin, P.; Roy, J.; Smith, J.G. [University of Colorado, Boulder, Colorado 80309-0390 (United States)] [University of Colorado, Boulder, Colorado 80309-0390 (United States); Alexander, J.P.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Dickson, M.; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Elia, R.; Foland, A.D.; Gaidarev, P.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C. [Cornell University, Ithaca, New York 14853 (United States)] [Cornell University, Ithaca, New York 14853 (United States); Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Yelton, J.; Zheng, J. [University of Florida, Gainesville, Florida 32611 (United States)] [University of Florida, Gainesville, Florida 32611 (United States); Brandenburg, G.; Briere, R.A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H. [Harvard University, Cambridge, Massachusetts 02138 (United States)] [Harvard University, Cambridge, Massachusetts 02138 (United States); Browder, T.E.; Li, F.; Li, Y.; Rodriguez, J.L. [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States)] [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D.; Hans, R.M.; Johnson, E.; Karliner, I.; Marsh, M.A.; Palmer, M.; Selen, M.; Thaler, J.J.; and others

1997-11-01T23:59:59.000Z

495

Single spin asymmetries and vector meson production in DIS  

E-Print Network (OSTI)

We discuss possible measurements and origins of single spin asymmetries in DIS and of some unusual spin properties of vector mesons produced in lepton- nucleon, photon-nucleon and photon-photon interactions. Such effects have already been observed in other processes.

Mauro Anselmino; Francesco Murgia

1998-07-14T23:59:59.000Z

496

Magnetic Moment of Vector Mesons in the Background Field Method  

E-Print Network (OSTI)

We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.

Frank X. Lee; Scott Moerschbacher; Walter Wilcox

2007-10-11T23:59:59.000Z

497

Thermal production of the meson in the + -Scott Pratt*  

E-Print Network (OSTI)

Thermal production of the meson in the + - channel Scott Pratt* Department of Physics and Astronomy I. INTRODUCTION One of the most compelling motivations for studying heavy-ion collisions with 99% probability into a + - pair and decays with a small probability into an e+ e- or + - pair

Bauer, Wolfgang

498

The Vector Meson Mass in Chiral Effective Field Theory  

E-Print Network (OSTI)

A brief overview of Quantum Chromodynamics (QCD) as a non-Abelian gauge field theory, including symmetries and formalism of interest, will precede a focused discussion on the use of an Effective Field Theory (EFT) as a low energy perturbative expansion technique. Regularization schemes involved in Chiral Perturbation Theory (\\c{hi}PT) will be reviewed and compared with EFT. Lattices will be discussed as a useful procedure for studying large mass particles. An Effective Field Theory will be formulated, and the self energy of the \\r{ho} meson for a Finite-Range Regulated (FRR) theory will be calculated. This will be performed in both full QCD and the simpler quenched approximation (QQCD). Finite-volume artefacts, due to the finite box size on the lattice, will be quantified. Currently known lattice results will be used to calculate the \\r{ho} meson mass, and the possibility of unquenching will be explored. The aim of the research was to determine whether a stable unquenching procedure for the \\r{ho} meson could be discovered. The results from the original research indicate that there is no such procedure because the \\r{ho} mesons are unstable. Unless additional data involving lighter quark masses is available, an element of modelling is needed for successful unquenching.

Jonathan M M Hall

2014-05-01T23:59:59.000Z

499

Hypercentral Constituent Quark Model with a Meson Cloud  

E-Print Network (OSTI)

The results for the elastic nucleon form factors and the electromagnetic transition amplitudes to the Delta(1232) resonance, obtained with the Hypercentral Constituent Quark Model with the inclusion of a meson cloud correction are briefly presented. The pion cloud effects are explicitly discussed.

D. Y. Chen; Y. B. Dong; M. M. Giannini; E. Santopinto

2006-11-07T23:59:59.000Z

500

Analysis of K-Meson Production by p¯ Annihilation  

Science Journals Connector (OSTI)

K-meson production by p¯ annihilation has been investigated using an isobar model. A comparison of the predictions of this model with the experimental data excludes the assumption of an isobar state of (??) having a mass greater than three pion masses.

T. F. Hoang

1961-03-01T23:59:59.000Z