Sample records for mesa mill utah

  1. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    SciTech Connect (OSTI)

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26T23:59:59.000Z

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  2. A macrofossil analysis of materials recovered from Hovenweep National Monument, Cajon Mesa, Colorado and Utah

    E-Print Network [OSTI]

    Chapman, Donna Ruth

    1979-01-01T23:59:59.000Z

    baceous speci s i 1 ding ~0 ~ zo is sp. , ~sti a ccmata, Salsola sp. , E odium cic ta i m, ul bilis li ea i . ph elis c~o u ata and ~S ha al e sp. Shadscale ls adapt d t e i o ditio s b th mo pho- 1 ogically and physiologically. Sarcobatus vermiculatus... Mirabilis Oryzopsis Ph'rsalis P I flux Pc pulus Sails SphaeralCea Sclanum Pxlus tea Mays Figure S. Percentage of Species Recovered Relative to Time 35 percentage of a given sample, adding all percentages from all samples from the mesa...

  3. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  4. Radiological survey of the inactive uranium-mill tailings at Green River, Utah

    SciTech Connect (OSTI)

    Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Lorenzo, D.; Shinpaugh, W.H.

    1980-03-01T23:59:59.000Z

    The uranium-mill tailings at Green River, Utah, are relatively low in /sup 226/Ra content and concentration (20 Ci and 140 pCi/g, respectively) because the mill was used to upgrade the uranium ore by separating the sand and slime fractions; most of the radium was transported along with the slimes to another mill site. Spread of tailings was observed in all directions, but near-background gamma exposure rates were reached at distances of 40 to 90 m from the edge of the pile. Water erosion of the tailings is evident and, since a significant fraction of the tailings pile lies in Brown's Wash, the potential exists for repetition of the loss of a large quantity of tailings such as occurred during a flood in 1959. In general, the level of surface contamination was low at this site, but some areas in the mill site, which were being used for nonuranium work, have gamma-ray exposure rates up to 143 ..mu..R/hr.

  5. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  6. Proposed ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This document presents the US DOE water resources protection strategy for the Green River, Utah mill tailings disposal site. The modifications in the original plan are based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. All aspects are discussed in this report.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  8. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01T23:59:59.000Z

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  9. Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7

    SciTech Connect (OSTI)

    Ludlam, J.R.

    1985-01-01T23:59:59.000Z

    This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  12. Comparison of risk for pre- and post-remediation of uranium mill tailings from vicinity properties in Monticello, Utah

    SciTech Connect (OSTI)

    Espegren, M.L.; Pierce, G.A.; Halford, D.K. [Oak Ridge National Laboratory, TN (United States)

    1996-04-01T23:59:59.000Z

    Pre- and post-remedial action dose rates were calculated on 101 Monticello, Utah, properties included in the Monticello Vicinity Property Remedial Action Project. Dose rates were calculated using the RESRAD computer code, which indicated that 98% of the effective dose equivalent was contributed by external gamma radiation and radon emanation. Radium concentrations in pCig{sup {minus}1} were averaged for pre- and post-remedial action measurements: point sources were not included in the averages. The volume of the deposit was also used in the dose calculation. In all cases the dose was reduced, and at 77 properties the dose was reduced to 0.30 mSv y{sup {minus}1} (Department of Energy ALARA recommendation). A paired t-test showed a significant reduction (p < 0.05) between the pre- and post-remedial action dose rates. The average cost of remedial action, number of persons per household, number of properties remediated, and the reduction of cancer mortalities through remediation resulted in an approximate cost of $11,000,000 per life saved by remediation of mill tailings. 13 refs., 2 tabs.

  13. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01T23:59:59.000Z

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  14. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  15. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect (OSTI)

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L. [Environmental Sciences Laboratory, Grand Junction, CO (United States); Benson, C.H. [University of Wisconsin, Madison, WI (United States); Albright, W.H. [Desert Research Institute, Reno, NV (United States); Mushovic, P.S. [U.S. Environmental Protection Agency, Denver, CO (United States)

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  17. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect (OSTI)

    N /A

    2005-08-05T23:59:59.000Z

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

  18. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  19. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    None

    1986-12-01T23:59:59.000Z

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  20. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  1. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  2. Completion of the Five-Year Reviews for the Monticello, Utah...

    Energy Savers [EERE]

    Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively...

  3. Modifications to the remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Modifications to the water resources protection strategy detailed in the remedial action plan for the Green River, Utah, disposal site are presented. The modifications are based on new information, including ground water quality data collected after remedial action was completed and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The modifications will result in compliance with the U.S. EPA proposed ground water standards (52 FR 36000 (1987)).

  4. Uncompahgre Mesas Forest Restoration Project

    E-Print Network [OSTI]

    March 2010 Uncompahgre Mesas Forest Restoration Project Collaboration Case Study #12;Uncompahgre Mesas Forest Restoration Project 1 1 Colorado Forest Restoration Institute Collaboration Case Study at Colorado State University, to conduct case studies of two collaborative forest health efforts

  5. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01T23:59:59.000Z

    This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

  6. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan.

  7. Sandia National Laboratories: Mesa del Sol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesa del Sol Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy,...

  8. Sandia Energy - Mesa del Sol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa del Sol Project Is

  9. Red Sky with Red Mesa

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  10. Microsystems & Engineering Sciences Applications (MESA)

    E-Print Network [OSTI]

    adversaries maintaining the safety, security, and use control of our nuclear stockpile. MESA will produce over-qualified MicroElectroMechanical Systems (MEMS) to control the temperature of nanosatellites while functioning of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 2012-4739P

  11. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  12. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to:HidroflotMesa Jump

  13. Red Mesa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRed Bank, New Jersey:Mesa Jump to:

  14. MESA Other GFP.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, In this3,Office ofMENTORJuly 25,MESA

  15. Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report

    SciTech Connect (OSTI)

    NONE

    1989-01-01T23:59:59.000Z

    This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

  16. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  17. MESA Products, Inc. MESA Products, Inc. is a small, privately held business

    E-Print Network [OSTI]

    Magee, Joseph W.

    MESA Products, Inc. MESA Products, Inc. is a small, privately held business that designs in underground and submerged structures, such as pipelines and tanks. MESA sells products and materials and production facility are based in Tulsa, Okla.; branch offices are in Houston, Texas; Tallahassee, Fla

  18. University of Utah Tutoring Services

    E-Print Network [OSTI]

    Tipple, Brett

    Advisor in the ESS department. classes are arranged with the ESS department. Rm 200 (HPER North Bldg) rachel.bonnett@hsc.utah.edu Instructor through our peer www.health.utah.edu/ess/ 801-587-3374 tutoring class ESS 4921 if needed. Wendy McKenney, Academic Advisor wendy.mckenney@hsc.utah.edu 801-581-7586 #12

  19. Reclamation and groundwater restoration in the uranium milling industry: An assessment of UMTRCA, title II

    SciTech Connect (OSTI)

    Collins, J.D.

    1996-12-31T23:59:59.000Z

    In 1978, Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) to regulate the disposal and reclamation of uranium mill tailings.This article examines the implementation of this legislation through eight cases of uranium mills in New Mexico, Wyoming, and Utah now being reclaimed. The eight cases examined here make up an important part of the total reclamation picture in the uranium milling industry.

  20. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  1. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  2. Monday Tuesday Wednesday Thursday Friday Kenigson Hartman Hartman Mesa Kenigson

    E-Print Network [OSTI]

    Rider, Brian

    Havasi Purkis Hower Mesa Limburg Shannon Scherer Nishikawa Liu Stein Pelfrey Blakestad Hower Pelfrey

  3. COMMERCIALIZATIONOFFICE THE UNIVERSITY OF UTAH

    E-Print Network [OSTI]

    Funding Programs TECHNOLOGY COMMERCIALIZATIONOFFICE THE UNIVERSITY OF UTAH #12;Funding Programs Fueling research and moving ideas forward The University of Utah can help you recieve funding to take your idea to the next level. Funding for small prototypes, supplemental research and new business

  4. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  5. Utah_j_keeler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler, Manti Site - Utah

  6. Utah_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUserHadoopon-packageSystem

  7. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. Annotated geothermal bibliography of Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01T23:59:59.000Z

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  9. Chupadera Mesa, New Mexico, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORD OFChupadera Mesa, New

  10. Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolar AGVaporMerlinAurora,Mesa,

  11. Sandia Energy » Mesa del Sol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergyTeachesSandia'sMesa del

  12. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment of Energy| Department of Energy

  13. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,CraftyChair'sAnnounces DatesWIPP | Department of|

  14. Utah School Children “Help Utah Out, Turn off the Spout!”

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utah is working to ensure the resiliency of its future water and energy systems with funding from the Energy Department’s State Energy Program. In fact, the state developed its own Water Energy in Action educational program –in conjunction with the National Energy Foundation – to educate K-12 students and teachers about the many uses of water.

  15. Sandia National Laboratories: Mesa del Sol Project Is Finalist...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Partnership, Photovoltaic, Renewable Energy, SMART Grid, Solar, Systems Analysis, Systems Engineering The microgrid powers Mesa del Sol's Aperture...

  16. Utah Economic and Business Review

    E-Print Network [OSTI]

    unknown authors

    • The jump in oil prices over the past several years and concurrent rise in the price of gasoline have refocused attention on oil shale resources in Colorado, Utah, and Wyoming. Past exploration has indicated that oil shale deposits in these three states contain 1.5 trillion barrels of oil

  17. Local Option- Industrial Facilities and Development Bonds (Utah)

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  18. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tiarravt043erickson2010p.pdf More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation...

  19. The University of Utah Police Department Internship

    E-Print Network [OSTI]

    Simons, Jack

    The University of Utah Police Department Internship The University we would like to meet with you. Internship description and Qualifications: Excellent communication

  20. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    SciTech Connect (OSTI)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01T23:59:59.000Z

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.

  1. Utah Science, Technology, and Research (USTAR)

    E-Print Network [OSTI]

    Tipple, Brett

    companies in billion-dollar emerging industries and secure Utah's economic future. More than 180 Utah's Economy New Economy Strategies Endorsement Letter Summary Proposal Planning Process Summary Contributors to the USTAR Study USTAR Economic Development Initiative Planning Proposal Figure I. USTAR Economic Development

  2. Utah Natural Gas Processed in Utah (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)ReservesYearUtah (Million Cubic

  3. additional east mesa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring 2011 Purpose: This research project. The case project for this evaluation is a 1970's barn on the northeast side of Rio Mesa Center. Methods: This research will include...

  4. Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data

    SciTech Connect (OSTI)

    Freiburger, R.M.

    1984-09-01T23:59:59.000Z

    This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

  5. Geological control of springs and seeps in the Farmington Canyon Complex, Davis County, Utah

    E-Print Network [OSTI]

    Skelton, Robyn Kaye

    1991-01-01T23:59:59.000Z

    of the Precambrian (Eardley, 1939). Hintze (1982) divided the Phanerozoic into six phases as illustrated in Figure 7. By the end of the Precambrian, the Northern Utah Highland was uplifted north and northwest of present day Salt Lake City (Figure 8). According... Ho ro tt lbrook Canyon 4 esslons e? Gt e. bbte ci o \\ Creek City SALT LAKE COUNTY Mrs Mill Creek I 5 10 KILOMETERS Figure 1. Geography of Wasatch Mountains (from Bryant, 1988). of the snowpack to remain high. Once melting started, high...

  6. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  7. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  8. Alternative Fuels Data Center: Utah Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Utah, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  9. Utah Commission on Aging June 6, 2007

    E-Print Network [OSTI]

    Tipple, Brett

    Institutions Norma Matheson Chair Anne Peterson University of Utah Mayor JoAnn Seghini Midvale City Sara to the Commission for consideration. · Aging SMART: Denise Brooks distributed Aging SMART Sourcebook. Website is up

  10. Utah

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe

  11. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07T23:59:59.000Z

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  12. >3healthsciences.utah.edu/innovation University of Utah Health Sciences @utahinnovationinnovation 2012

    E-Print Network [OSTI]

    Feschotte, Cedric

    block, a profound physician shortage is looming, and the political discussion around health care reform.utah.edu/innovationUniversity of Utah Health Sciences innovation 2012 Clearly, times are tough for health care in the U.S. every year, we spend trillions of dollars on health care, exponentially more than what other countries spend

  13. Mesa Top Photovoltaic Array SyStem SpecificationS

    E-Print Network [OSTI]

    Mesa Top Photovoltaic Array SyStem SpecificationS System size: 750 kW (DC, estimated) Characteristics: Single axis tracker photovoltaics, ground mounted Annual output: 1,200 MWh Location: Top of South Table Mountain; NREL Campus; Golden, Colorado Start of operation: Spring 2008 financial terms System

  14. Sri Gomathy Mills Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine: EnergyUtah:RayalseemaGomathy Mills

  15. Estimating the Economic Contributions Utah Science Technology and Research

    E-Print Network [OSTI]

    Tipple, Brett

    Estimating the Economic Contributions of the Utah Science Technology and Research Initiative (USTAR Stambro Senior Research Economist Bureau of Economic and Business Research David Eccles School of Business University of Utah February 2012 © 2012 Bureau of Economic and Business Research, University of Utah #12

  16. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    Fiscal Policy and Utah's Oil and Gas Industry Michael T. Hogue, Research Analyst Introduction for oil and gas extraction firms. A recent review by the Government Accountability Office indicates features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil

  17. DOE and Colorado Mesa University Education Agreement Expands...

    Broader source: Energy.gov (indexed) [DOE]

    in 1994; the rest of the cell remains open until it is filled to capacity with Uranium Mill Tailings Radiation Control Act radioactive waste or until 2023, whichever comes first....

  18. Uranium Mill Tailings Management

    SciTech Connect (OSTI)

    Nelson, J.D.

    1982-01-01T23:59:59.000Z

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

  19. Influence of the Blue Mesa Reservoir on the Red Creek Landslide, Colorado

    E-Print Network [OSTI]

    Influence of the Blue Mesa Reservoir on the Red Creek Landslide, Colorado SCOTT R. WALKER URS of the Blue Mesa Reservoir submerged approximately 50 percent of the paleolandslide. Some clay layers within of the paleolandslide. Seasonal rapid drawdown of the Blue Mesa Reservoir acts as the trigger for movement, and large

  20. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  1. Utah’s 2012 Legislature Holds Its Course – with What Foresight?

    E-Print Network [OSTI]

    Huefner, Robert Paul

    2013-01-01T23:59:59.000Z

    Finance, Summer 32(2):1–24. Montero, David (2012a) “It wasLake Tribune, February 9. Montero, David (2012b) “Utah Seeksfor Legislature” (Montero 2012a). But legislators denied

  2. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H. (comp.)

    1983-07-01T23:59:59.000Z

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  3. University of Utah PETTY CASH FUND

    E-Print Network [OSTI]

    University of Utah PETTY CASH FUND REQUEST/CHANGE FORM INSTRUCTIONS: To request a creation of a NEW-21 of the University Policy and Procedures Manual, and hereby approve issuance of a petty cash fund to the above named PETTY CASH FUND, complete sections 1, 2, & 4 below. To MAKE CHANGES to an existing petty cash fund

  4. Utah Commission on Aging April 1, 2008

    E-Print Network [OSTI]

    Tipple, Brett

    Cherie Brunker Health Care Gary Kelso for Sara Sinclair Long Term Care Representative Steven Mascaro Utah helped to develop this survey that looks at the awareness level of officers regarding laws on elder abuse, and their general perceptions of the elderly. Education and intervention could increase attention to elder abuse

  5. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. (comp.) comp.

    1983-07-01T23:59:59.000Z

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  6. Very low threshold InGaAsP mesa laser

    SciTech Connect (OSTI)

    Chen, T.R.; Chiu, L.C.; Hasson, A.; Koren, U.; Margalit, S.; Yariv, A.; Yu, K.L.

    1983-05-01T23:59:59.000Z

    Very low threshold currents InGaAsP/InP terrace mesa (T-ME) lasers with an unpassivated surface have been fabricated on semi-insulating (SI) InP substrates. Fabrication of the lasers involves a single-step liquid phase epitaxial (LPE) growth and a simple etching process. Lasers operating in the fundamental transverse mode with threshold currents as low as 6.3 mA (for a cavity length of 250 ..mu..m) have been obtained. Comparison between the unpassivated lasers and those passivated using the mass transport technique is described.

  7. La Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEE Jump to:LNJLXEJolla,Marque,Mesa,

  8. San Juan Mesa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSan FranciscoWindMesa Wind

  9. City of Mesa, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville, VirginiaMeade,Mesa, Arizona

  10. South Trent Mesa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History ViewHolt WindTrent Mesa

  11. Costa Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |Costa Mesa, California: Energy

  12. East Mesa geothermal pump test facility (EMPTF). Final report

    SciTech Connect (OSTI)

    Olander, R.G.; Roberts, G.K.

    1984-11-28T23:59:59.000Z

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  13. East Mesa geothermal pump test facility (EMPTF). Final report

    SciTech Connect (OSTI)

    Olander, R.G.; Roberts, G.K.

    1984-11-28T23:59:59.000Z

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  14. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    SciTech Connect (OSTI)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

    2003-02-27T23:59:59.000Z

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

  15. Monticello Mill Tailings Site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report contains information pertaining to environmental activities conducted during calendar year 1992 at and near the inactive uranium millsite in Monticello, Utah. Environmental activities conducted at the Monticello Mill Tailings Site (MMTS) during 1992 included those associated with remedial action and compliance monitoring. Compliance monitoring consisted of both radiological and nonradiological monitoring of air, surface water, and ground water. Radiological and nonradiological air monitoring at the MMTS included measurements of atmospheric radon, particulate matter, and gamma radiation. Air particulate monitoring for radiological and nonradiological constituents was conducted at one location on and two locations off the millsite with high-volume particulate samplers. The maximum airborne concentrations of radium-226, thorium-230, and total uranium at all locations were several orders of magnitude below the regulatory limits specified by DOE Order 5400.5. Surface water monitoring included water quality measurements within Montezuma Creek. During 1992, maximum levels of selenium; gross alpha, gross beta, total dissolved solids, and iron exceeded their respective state standards in one or more samples collected from upstream, on-site, and downstream locations. Ground-water monitoring was conducted for two aquifers underlying the millsite. The shallow aquifer is contaminated by leached products of uranium mill tailings. During 1992, Uranium Mill Tailings Radiation Control Act and state of Utah ground-water standards for arsenic, barium, nitrate, chromium, lead, selenium, molybdenum, uranium-234 and -238, gross alpha particle activity, and radium-226 and -228 were exceeded in one or more alluvial wells. This well will continue to be sampled to determine if the presence of these constituents was anomalous or if the measurements represented contamination in the aquifer.

  16. D. M. Mills* Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    110 Apr il 11, 1 988 Feasibility Study into the Use of Mechanical Choppers to Alter the Natural Time Structure of the APS D. M. Mills* Introduction The prospect of extending...

  17. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  18. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2003-01-01T23:59:59.000Z

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling programs have been successfully employed to enhance oil production from the Jurassic Nugget Sandstone (the major thrust belt oil-producing reservoir) in Wyoming's Painter Reservoir and Ryckman Creek fields. At Painter Reservoir field a tertiary, miscible nitrogen-injection program is being conducted to raise the reservoir pressure to miscible conditions. Supplemented with water injection, the ultimate recovery will be 113 million bbls (18 million m{sup 3}) of oil (a 68 percent recovery factor over a 60-year period). The Nugget reservoir has significant heterogeneity due to both depositional facies and structural effects. These characteristics create ideal targets for horizontal wells and horizontal laterals drilled from existing vertical wells. Horizontal drilling programs were conducted in both Painter Reservoir and Ryckman Creek fields to encounter potential undrained compartments and increase the overall field recovery by 0.5 to 1.5 percent per horizontal wellbore. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation to the Wyoming State Geological Survey, and two publications. A project home page was set up on the Utah Geological Survey Internet web site.

  19. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  20. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is...

  1. Pitt Mill Demonstration

    SciTech Connect (OSTI)

    Oder, R.R.; Borzone, L.A.

    1990-05-01T23:59:59.000Z

    Results of a technical and economic evaluation of application of the Pitt Mill to fine coal grinding are presented. The Pitt Mill is a vertically oriented, batch operated, intermediate energy density (0. 025 kW/lb media), stirred ball mill. The mill grinds coal from coarse sizes (typically 3/16 inch or 4 mesh topsize) to the 10 micron to 20 micron mean particle diameter size range in a single step using a shallow grinding bed containing inexpensive, readily available, course grinding media. Size reduction is efficient because of rapid product circulation through the grinding bed caused by action of a novel circulation screw mounted on the agitator shaft. When a dispersant is employed, the grinding can be carried out to 50% to 60% solids concentration. Use of coarse grinding media offers the possibility of enhanced mineral liberation because size reduction is achieved more by impact shattering than by attrition. The batch method offers the possibility of very close control over product particle size distribution without overproduction of fines. A two- phase program was carried out. In the first phase, Grinding Studies, tests were run to determine a suitable configuration of the Pitt Mill. Machine design parameters which were studied included screw configuration, media type, agitator RPM, time, media size, and slurry chamber aspect ratio. During the last part of this phase of the program, tests were carried out to compare the results of grinding Pocahontas seam, Pittsburgh {number sign}8, and East Kentucky Mingo County coals by the Pitt Mill and by a two-stage grinding process employing a Netzsch John mill to feed a high energy density (0.05 kW/Lb media) disc mill. 22 refs., 25 tabs.

  2. Cleanup of inactive Uranium Mill Tailings Sites in the Navajo Nation

    SciTech Connect (OSTI)

    Martin, B.

    1994-12-31T23:59:59.000Z

    The U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 to address potential and significant radiation health hazards to the public from active and inactive mill operations. Title I to the UMTRCA identified sites to be designated for remedial action. These include four uranium mill tailings remedial action (UMTRA) sites in the Navajo Nation. These sites are located in Shiprock, New Mexico; Tuba City, Arizona; Cane Valley, Arizona; and Halchita, Utah. The U.S. Department of Energy (DOE) was directed to select and execute a plan of remedial action that provides long-term stabilization and control of radioactive materials and satisfies the U.S. Environmental Protection Agency standards and other applicable laws and regulations.

  3. Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions

    E-Print Network [OSTI]

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B; Bildsten, Lars; Cantiello, Matteo; Dessart, Luc; Farmer, R; Hu, H; Langer, N; Townsend, R H D; Townsley, Dean M; Timmes, F X

    2015-01-01T23:59:59.000Z

    We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of ma...

  4. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  5. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  6. Archaeological investigations on the Buckboard Mesa Road Project

    SciTech Connect (OSTI)

    Amick, D.S.; Henton, G.H.; Pippin, L.C.

    1991-10-01T23:59:59.000Z

    In 1986, the Desert Research Institute (DRI) conducted an archaeological reconnaissance of a new alignment for the Buckboard Mesa Road on the Nevada Test Site for the Department of Energy (DOE). During this reconnaissance, several archaeological sites of National Register quality were discovered and recorded including a large quarry, site 26Ny4892, and a smaller lithic scatter, site 26Ny4894. Analysis of the debitage at 26Ny4892 indicates that this area was used primarily as a quarry for relatively small cobbles of obsidian found in the alluvium. Lithic reduction techniques used here are designed for efficiently reducing small pieces of toolstone and are oriented towards producing flake blanks from small cores and bifacially reducing exhausted cores. Projectile point cross references indicate that the area has seen at least casual use for about 10,000 years and more sustained use for the last 3,000 years. Initial obsidian hydration measurements indicate sustained use of the quarry for about the last 3,000 years although the loci of activities appear to change over time. Based on this study, the DRI recommends that quarrying activities in the area of 26Ny4892 are sufficiently sampled and that additional investigations into that aspect of prehistoric activity in the area are not necessary. This does not apply to other aspects of prehistoric use. DRI recommends that preconstruction surveys continue to identify nonquarrying, prehistoric utilization of the area. With the increased traffic on the Buckboard Mesa Road, there is a greater potential for vandalism to sites of National Register-quality located near the road. The DRI recommends that during the orientation briefing the workers at the Test Site be educated about the importance of cultural resources and the need for their protection. 202 refs., 41 figs., 52 tabs.

  7. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  8. Math Circle, an outreach program at the University of Utah

    E-Print Network [OSTI]

    Cavalieri, Renzo

    Department of Mathematics 155 South 1400 East University of Utah Salt Lake City, Utah 84112­0090 October 12 of faculty, postdocs and graduate students with high school students exhibits the vertical integration. Several other American institutions have Math Circles, notably Berkeley and Harvard. The experience

  9. Computational Engineering and Science Program at the University of Utah

    E-Print Network [OSTI]

    Utah, University of

    Computational Engineering and Science Program at the University of Utah Carleton DeTar , Aaron L Lake City, Utah 84112. Computational Engineering and Science Program The grand computational challenges use of modern computers in scientific and engineering research and development over the last three

  10. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    GEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY ­ 1:750,000 scale map, showing geology; thermal wells, springs, and geothermal areas; and locations available sources including the Southern Methodist University Geothermal Laboratory, U.S. Geological Survey

  11. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-Print Network [OSTI]

    Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

  12. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  13. A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project

    E-Print Network [OSTI]

    A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa Reservoir" Project June 2005 #12;2 RECLAMATION A synthesis of the "Ecological Effects of Reservoir Operations at Blue Mesa), happy angler with a nice catch of kokanee (B. Johnson), CSU students doing vertical gill net survey (B

  14. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas Categorical Exclusion Determinations: Texas LocationUtah

  15. Energy Incentive Programs, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs, Texas Updated June 2015 WhatUtah

  16. Utah Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFactEnergy Bob UnderYourUtah

  17. Fairfield, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis EnergyRanch,Electric Coop, IncUtah: Energy

  18. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry2009 2010

  19. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry2009

  20. Utah Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah

  1. Kamas, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu,KaizenKalkaskaKamas, Utah:

  2. Highland, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, searchCounty, Virginia: EnergyUtah: Energy

  3. Woodland, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill GasUtah: Energy

  4. PacifiCorp (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003,PUDPacifiCorp (Utah)

  5. Payson, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw,Paxton,Facility | OpenUtah:

  6. PacifiCorp (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1PacifiCorp (Utah) Jump

  7. Springville, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine: EnergyUtah: Energy Resources Jump

  8. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh UniversityMirage,Reno,Elaine,Elberta, Utah:

  9. Oakley, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and FeesOaklawn-Sunview,Utah: Energy

  10. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy Resources Jump to:Utah: Energy

  11. Midway, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnight PointMidway, Utah:

  12. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware:Midwest,Center,Utah: Energy

  13. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_mapNevadaMississippiWashingtonUtah

  14. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources11-DNADaly City,Danbury,DaneDaniel, Utah:

  15. Alpine, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,Energy Information JumpCore ComplexUtah: Energy

  16. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 - PublicUtah

  17. Utah Antidegradation Review Implementation Guidance | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 - PublicUtahInformation

  18. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtah Municipal

  19. Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plans for facilityUtah:

  20. Vineyard, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energy Resources Jump to: navigation, search

  1. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper, Utah: Energy Resources

  2. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS

    SciTech Connect (OSTI)

    Paxton, Bill; Cantiello, Matteo; Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brown, Edward F. [Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, and Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48864 (United States); Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Mankovich, Christopher [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Montgomery, M. H. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Stello, Dennis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Townsend, Richard, E-mail: matteo@kitp.ucsb.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-09-15T23:59:59.000Z

    We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M{sub Sun} stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

  3. Mořller polarimetry with polarized atomic hydrogen at MESA

    SciTech Connect (OSTI)

    Bartolomé, P. Aguar; Aulenbacher, K.; Tyukin, V. [Institut für Kernphysik, Johannes Gutenberg-University, D-55099 Mainz (Germany)

    2013-11-07T23:59:59.000Z

    A new generation of parity violation (PV) electron scattering experiments are planned to be carried out at the Institut für Kernphysik in Mainz. These experiments will be performed at low energies of 100-200 MeV using the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator). One of the main challenges of such experiments is to achieve an accuracy in beam polarization measurements that must be below 0.5%. This very high accuracy can be reached using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Mo/ller scattering. Electron spin-polarized atomic hydrogen can be stored at high densities of 10{sup 16} cm{sup ?2}, over relatively long time periods, in a high magnetic field (8T) and at low temperatures (0.3K). The gradient force splits the ground state of the hydrogen into four states with different energies. Atoms in the low energy states are trapped in the strong magnetic field region whereas the high energy states are repelled and pumped away. The physics of ultra-cold atomic hydrogen in magnetic traps and the status of the Mainz Hydro-Mo/ller project will be presented.

  4. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  5. Evaluation of End Mill Coatings

    SciTech Connect (OSTI)

    L. J. Lazarus; R. L. Hester,

    2005-08-01T23:59:59.000Z

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

  6. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  7. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    economic growth and reduce petroleum use in Utah by increasing the number of CNG, LNG, Hybrid, and biodiesel vehicles on the road, creating an I-15 corridor for alternative...

  8. Microsoft Word - utah_wind_speed_summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02 - 110502) 10.6 mph Overall Average (120101 - 110502) 7.8 mph Dean Davis Site Spanish Fork, Utah Average Wind Speeds Site 0009 (66 ft. (20m) tower, data started on 1101...

  9. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  10. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  11. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  12. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  13. MAJOR PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Craig D. Morgan; Thomas C. Chidsey

    2003-11-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional Castle Peak interval, (3) conventional Travis interval, (4) conventional Monument Butte interval, (5) conventional Beluga interval, and (6) conventional Duchesne interval fractured shale/marlstone. We are currently conducting basin-wide correlations to define the limits of the six subplays. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. Outcrop analogs for each subplay except the Travis interval are found in Indian and Nine Mile Canyons. During this quarter, the project team members submitted an abstract to the American Association of Petroleum Geologists for presentation at the 2004 annual national convention in Dallas, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  14. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30T23:59:59.000Z

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  15. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  16. Offsite Construction Comparative Study of Panelized and Modular Construction for Rio Mesa Facilities

    E-Print Network [OSTI]

    Tipple, Brett

    Offsite Construction Comparative Study of Panelized and Modular Construction: This research is to evaluate the opportunities of prefabricated construction for remote the logistics of prefab construction on the Rio Mesa site, we hope that this project

  17. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural Gas

  18. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    SciTech Connect (OSTI)

    Cooper, Clay A [DRI] [DRI; Hershey, Ronald L [DRI] [DRI; Healey, John M [DRI] [DRI; Lyles, Brad F [DRI] [DRI

    2013-07-01T23:59:59.000Z

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

  19. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01T23:59:59.000Z

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2/sup 0/ Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium.

  20. Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident Assessment

    E-Print Network [OSTI]

    Tipple, Brett

    Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident of Utah Rule R432-31 (http://health.utah.gov/hflcra/forms.php) This is a physician order sheet based be effectively managed at current setting. ___ Limited additional interventions: Includes care above. May also

  1. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

  2. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)Peteforsyth JumpWzeng Jump to:QualityUtahUtah

  3. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtahUtah

  4. Utah Public Lands Policy Coordination Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOfficeUtah

  5. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2FullInformationUtahUtah

  6. Superfund record of decision (EPA Region 8): Monticello Mill Tailings (USDOE), Operable Unit 3, Monticello, UT, September 29, 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    This decision document presents the selected interim remedial action for Operable Unit (OU) 3 surface water and ground water at the Monticello Mill Tailings Site (MMTS) in San Juan County, Utah. The selected alternative for the interim remedial action for OU 3 surface water runoff, continuation of ongoing monitoring efforts, and evaluation of a permeable reactive treatment (PeRT) wall through the use of a pilot-scale treatability study. If monitoring results indicate that the interim remedial action is not achieving the objectives of preventing exposure to and reducing contaminants in contaminated ground water, other alternatives will be evaluated from the OU 3 feasibility study.

  7. Sandia Energy - Mesa del Sol Project Is Finalist for International Smart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa del Sol Project

  8. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  9. Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress).

  10. Cd diffused mesa-substrate buried heterostructure InGaAsP/InP laser

    SciTech Connect (OSTI)

    Yi, M.B.; Lu, L.T.; Kapon, E.; Rav-Noy, Z.; Margalit, S.; Yariv, A.

    1985-02-15T23:59:59.000Z

    A new type of buried heterostructure InGaAsP/InP lasers grown by a single-step liquid phase epitaxy on Cd diffused mesa substrate is described. These lasers exhibit excellent current and optical confinement. Threshold currents as low as 15 mA are achieved for a laser with a 2-..mu..m-wide active region.

  11. Ryan E. Smith, Associate Professor of Architecture Research Director, Rio Mesa Center

    E-Print Network [OSTI]

    Tipple, Brett

    Ryan E. Smith, Associate Professor of Architecture Research Director, Rio Mesa Center ARCH 6360 1 in architecture and engineering, and science students in biology will evaluate organisms' response to collaborate with other disciplines in order to innovate and invent sustainable and potentially marketable

  12. A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA

    E-Print Network [OSTI]

    Brunk, Timothy J.

    2011-08-08T23:59:59.000Z

    Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral...

  13. Two Milling Stone Inventories from Northern San Diego County, California

    E-Print Network [OSTI]

    True, D. L; Beemer, Eleanor

    1982-01-01T23:59:59.000Z

    1982). Two Milling Stone Inventories from Northern San DiegoRincon 301. MILLING STONE INVENTORIES FROM SAN DIEGO COUNTYRincon 301. MILLING STONE INVENTORIES FROM SAN DIEGO COUNTY

  14. Geothermal studies at the University of Utah Research Institute

    SciTech Connect (OSTI)

    None

    1988-07-01T23:59:59.000Z

    The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

  15. healthcare.utah.edu/radiology What is Nuclear Medicine?

    E-Print Network [OSTI]

    Feschotte, Cedric

    expensive diagnostic tests or surgery. Tissues such as intestines, muscles, and blood vessels are difficulthealthcare.utah.edu/radiology Radiology What is Nuclear Medicine? Nuclear Medicine is a specialized to visualize on a standard X-ray. In Nuclear Medicine, a radioactive tracer is used so the tissue is seen more

  16. University of Utah Payroll Department Stop Payment -Replacement Form

    E-Print Network [OSTI]

    Provancher, William

    University of Utah Payroll Department Stop Payment - Replacement Form Affidavit to request replacement of a lost, stolen, or damaged, payroll check. Please note that it takes 5 to 7 days to process is given to induce a replacement check for one originally issued. 3. I agree to indemnify and hold

  17. Office of Global Public Health www.globalhealth.utah.edu

    E-Print Network [OSTI]

    Tipple, Brett

    and Global Clinical Care" Catherine deVries, M.D. Professor, Surgery and Public Health Director, CenterOffice of Global Public Health www.globalhealth.utah.edu Global Public Health Grand Rounds, PhD Chief and Associate Professor Division of Public Health "Integrating Global Public Health

  18. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  19. UNIVERSITY OF UTAH GRADUATE SCHOOL GRADUATE STUDENT TRAVEL ASSISTANCE APPLICATION

    E-Print Network [OSTI]

    Simons, Jack

    and must be supported with a dollar-for-dollar match from university funds. Matching support must be from university funding sources, e.g., development, operation, service, research, etc. One award only will be made37 ` UNIVERSITY OF UTAH ­ GRADUATE SCHOOL GRADUATE STUDENT TRAVEL ASSISTANCE APPLICATION

  20. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  1. The mesa merging oxidation method for creating low-loss dielectrics and transmission lines on low-resistivity silicon

    E-Print Network [OSTI]

    Bowers, John

    The mesa merging oxidation method for creating low-loss dielectrics and transmission lines on low.1088/0960-1317/21/6/065020 The mesa merging oxidation method for creating low-loss dielectrics and transmission lines on low steps to create high aspect ratio coplanar waveguide (hicoplanar) transmission lines. The large SiO2

  2. Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New stratigraphy; Coal; Maceral analysis; Microlithotype Abstract The Campanian rocks of the Mesa Verde Group units, i.e. intermediate term cycles. The continental facies consist of coastal-plain deposits (coals

  3. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  4. Paleoclimatic data applications: Long-term performance of uranium mill tailings repositories

    SciTech Connect (OSTI)

    Waugh, W.J. [Environmental Sciences Lab., Grand Junction, CO (United States); Petersen, K.L. [Washington State Univ., Richland, WA (United States)

    1995-09-01T23:59:59.000Z

    Abandoned uranium mill tailings sites in the Four Corners region are a lasting legacy of the Cold War. The U.S. Department of Energy (DOE) is designing landfill repositories that will isolate hazardous constituents of tailings from biological intrusion, erosion, and the underlying aquifer for up to 1,000 years. With evidence of relatively rapid past climate change, and model predictions of global climatic variation exceeding the historical record, DOE recognizes a need to incorporate possible ranges of future climatic and ecological change in the repository design process. In the Four Corners region, the center of uranium mining and milling activities in the United States, proxy paleoclimatic records may be useful not only as a window on the past, but also as analogs of possible local responses to future global change. We reconstructed past climate change using available proxy data from tree rings, packrat middens, lake sediment pollen, and archaeological records. Interpretation of proxy paleoclimatic records was based on present-day relationships between plant distribution, precipitation, and temperature along a generalized elevational gradient for the region. For the Monticello, Utah, uranium mill tailings site, this first approximation yielded mean annual temperature and precipitation ranges of 2 to 10{degrees} C, and 38 to 80 cm, respectively, corresponding to late glacial and Altithermal periods. These data are considered to be reasonable ranges of future climatic conditions that can be input to evaluations of groundwater recharge, radon-gas escape, erosion, frost penetration, and biointrusion in engineered earthen barriers designed to isolate tailings.

  5. Name Title E-mail Address Phone Jane Scott Purchasing Card Manager jscott@purchasing.utah.edu (801) 581-6622

    E-Print Network [OSTI]

    Tipple, Brett

    @purchasing.utah.edu (801) 587-7859 Heidi Slack Purchasing Card Auditor hslack@purchasing.utah.edu (801) 581-7945 Ashley://fbs.admin.utah.edu/pcard/ Resources Other Resources #12;3 Contents Resources

  6. Design of a human powered maize mill

    E-Print Network [OSTI]

    Salinas, Melvin Gustavo

    2014-01-01T23:59:59.000Z

    The process of milling corn into flour in many rural communities of East Africa has remained a traditional mortar and pestle process for centuries. Milling machines have failed in these communities largely due to poor ...

  7. Uranium mill tailings and radon

    SciTech Connect (OSTI)

    Hanchey, L A

    1981-01-01T23:59:59.000Z

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  8. Superfund Record of Decision (EPA Region 8): Monticello Mill Tailings site, San Juan County, UT. (First remedial action), August 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-22T23:59:59.000Z

    The 300-acre Monticello Mill Tailings site is comprised of a 78-acre inactive uranium and vanadium milling operation and affected peripheral properties in Monticello, San Juan County, Utah. Surrounding land use is rural residential and agricultural. Milling of ore began in 1942, and a vanadium/uranium sludge product was produced onsite from 1943 to 1944. The mill was permanently closed in 1960, and the tailings piles were covered and vegetated. In 1972, 15,000 cubic yards of contaminated soil were excavated and disposed of on the onsite tailings piles. Site investigations from 1989 to 1990 identified the presence of onsite and offsite radioactively-contaminated soil and ground water, and elevated concentrations of metals within the tailings piles. The Record of Decision (ROD)addresses remediation of two Operable Units (OUs): the 78-acre Millsite area (OU1), and the 240-acres of peripheral properties (OU2). The primary contaminants of concern affecting the soil and debris are metals including arsenic, chromium, and lead; and radioactive materials including radium-226 and radon.

  9. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  10. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIĂ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  11. Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations

    SciTech Connect (OSTI)

    Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

    1993-11-01T23:59:59.000Z

    The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa.

  12. InGaAsP/InP undercut mesa laser with planar polyimide passivation

    SciTech Connect (OSTI)

    Koren, U.; Chen, T.R.; Harder, C.; Hasson, A.; Yu, K.L.; Chiu, L.C.; Margalit, S.; Yariv, A.

    1983-03-01T23:59:59.000Z

    An undercut mesa laser is fabricated on an n/sup +/-InP substrate using a single step liquid phase epitaxy growth process and a planar structure is obtained by using a polyimide filling layer. The lasers operate at fundamental transverse mode due to a scattering loss mechanism. Threshold currents of 18 mA and stable single transverse mode operating at high currents are obtained.

  13. Variation in the annual average radon concentration measured in homes in Mesa County, Colorado

    SciTech Connect (OSTI)

    Rood, A.S.; George, J.L.; Langner, G.H. Jr.

    1990-04-01T23:59:59.000Z

    The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

  14. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01T23:59:59.000Z

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  15. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Completion Report for Well ER-20-4 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-04-30T23:59:59.000Z

    Well ER-20-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site, Nye County, Nevada. The well was drilled in August and September 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to investigate the possibility of radionuclide transport from up-gradient underground nuclear tests conducted in central Pahute Mesa. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will help reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model.

  17. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  18. Radiological survey of the inactive uranium-mill tailings at Gunnison, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Jacobs, D.G.; Hubbard, H.M. Jr.; Ellis, B.S.; Shinpaugh, W.H.

    1980-03-01T23:59:59.000Z

    The findings of a radiological survey of the inactive uranium-mill site at Gunnison, Colorado, conducted in May 1976, are presented. Results of surface soil sample analyses and direct gamma radiation measurements indicate limited spread of tailings off the site. The only significant above background measurements off the site were obtained in an area previously covered by the tailings pile. There was little evidence of contamination of the surface or of unconfined groundwater in the vicinity of the tailings pile; however, the hydrologic conditions at the site indicate a potential for such contamination. The concentration of /sup 226/Ra in all water samples except one from the tailings pile was well below the concentration guide for drinking water. The subsurface distribution of /sup 226/Ra in 14 bore holes located on and around the tailings pile was calculated from gamma ray monitoring data obtained jointly with Ford, Bacon and Davis Utah Inc.

  19. Student Competition: Siting Potential Dams at Camp Del Webb, Utah

    E-Print Network [OSTI]

    Wamser, William Kyle

    2007-11-14T23:59:59.000Z

    Siting Potential Dams at Camp Del Webb, Utah Presented By: Kyle Wamser Problem ? Camp Del Webb is Lacking an Onsite Lake ? High Adventure Bases generally need aquatics ? Large lake nearby, but transportation is required ? Possible Solution... hillshade ? Finding Possible Lake Locations ? Added three potential dam sites ? Calculated watersheds ? Extended dams through terrain to prevent runoff on the sides ? Calculated watershed dam elevation, which identified lakes Results...

  20. Arsenic distribution in soils surrounding the Utah copper smelter

    SciTech Connect (OSTI)

    Ball, A.L. (Univ. of Utah Coll. of Engineering, Salt Lake City); Rom, W.N.; Glenne, B.

    1983-05-01T23:59:59.000Z

    We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

  1. Welcome to Mills Memorial Library

    E-Print Network [OSTI]

    Haykin, Simon

    -monthly) ­ online only #12;Journals defined · Journals are often "academic" or "scholarly" because the articles Books & Articles: Scholarly Information at Your Fingertips! Peggy Findlay Liaison Librarian Mills books 2. Databases: finding articles Questions? Any time during the session! #12;Before you start

  2. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  3. Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-04-30T23:59:59.000Z

    Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

  4. A PLAUSIBLE TWO-DIMENSIONAL VERTICAL MODEL OF THE EAST MESA GEOTHERMAL FIELD, CALIFORNIA, U.S.A

    E-Print Network [OSTI]

    Goyal, K.P.

    2013-01-01T23:59:59.000Z

    report on East Mesa and Cerro Prieto Geothermal Fields, LA-of core samples from the Cerro Prieto Geothermal Field:L, x 10 cal/ cm~sec~ K in the Cerro Prieto geothermal field,

  5. Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-05-31T23:59:59.000Z

    Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

  6. Facies, depositional environments, and reservoir properties of the Shattuck sandstone, Mesa Queen Field and surrounding areas, southeastern New Mexico

    E-Print Network [OSTI]

    Haight, Jared

    2004-09-30T23:59:59.000Z

    The Shattuck Sandstone Member of the Guadalupian age Queen Formation was deposited in back-reef environments on a carbonate platform of the Northwest Shelf (Permian Basin, New Mexico, USA) during a lowstand of sea level. At Mesa Queen Field...

  7. University of Utah Strategic Vision: Seven Core Commitments of the New U

    E-Print Network [OSTI]

    Tipple, Brett

    1 University of Utah Strategic Vision: Seven Core Commitments of the New U The University of Utah States in 2010 by the Creative Class Group, based on U.S. Census and Labor Statistics data. Along) engaging communities locally as well as globally. To achieve these goals, the New U maintains seven core

  8. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect (OSTI)

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01T23:59:59.000Z

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  9. Continuous Commissioning® of the Matheson Courthouse in Salt Lake City, Utah

    E-Print Network [OSTI]

    Turner, W. D.; Deng, S.; Hood, J.; Butler, M.; Healy, R. K.

    2003-01-01T23:59:59.000Z

    Commissioning® 1 of the Matheson Courthouse in Salt Lake City, Utah. The Matheson Courthouse is a relatively new building, well-run, with a modern controls system. It is one of the most efficient buildings in Utah, averaging only $1.08 per square foot per year...

  10. MEDIA RELEASE --John Herbert, Head of Digital Technologies, J. Willard Marriott Library, University of Utah,

    E-Print Network [OSTI]

    Capecchi, Mario R.

    MEDIA RELEASE Contacts: --John Herbert, Head of Digital Technologies, J. Willard Marriott Library Maps at the University of Utah's J. Willard Marriott Library. The library has completed digitization Marriott Library, 801-585-9391, walter.jones@utah.edu --Dale Snyder, External Relations Director, J

  11. Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site

    SciTech Connect (OSTI)

    Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

    2007-12-17T23:59:59.000Z

    The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

  12. Sandia Energy - Mesa del Sol Unveils First Smart Grid in the Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMary CrawfordMesa del Sol

  13. The Misplaced Role of “Utilitarianism” in John Stuart Mill’s Utilitarianism

    E-Print Network [OSTI]

    Wright, David

    2012-10-19T23:59:59.000Z

    This thesis aims to provide the appropriate historical context for interpreting John Stuart Mill's Utilitarianism. The central question considered here concerns two views of Mill's intentions for Utilitarianism, and whether the work should be read...

  14. A new Cambrian arthropod, Emeraldella brutoni, from Utah

    E-Print Network [OSTI]

    Stein, Martin; Church, Stephen B.; Robison, Richard A.

    2011-09-29T23:59:59.000Z

    and comput- ers. Palaeontologia Electronica 3:1–14. Brett, C. E., P. A. Allison, M. K. DeSantis, W. D. Liddell, & A. Kramer. 2009. Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin... of southern Germany and Lebanon. Palaeontologia Electronica 12:12 p. Hintze, L. F., & R. A. Robison. 1975. Middle Cambrian stratigraphy of the House, Wah Wah, and adjacent ranges in western Utah. Geological Society of America Bulletin 86:881–891. Hou X., & J...

  15. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear(MillionKansasUtah

  16. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide PermitInformationIsland: Energy Resources Jump to:956°,Utah:

  17. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: EnergyMountain, Utah: Energy Resources

  18. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde:ConnectionsUtah: Energy

  19. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChangeOklahoma:OpenSalley,County, Utah:

  20. San Juan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC Jump to: navigation, searchJuanUtah:

  1. Sanpete County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky,Sanpete County, Utah: Energy

  2. Sevier County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlersSevern,SevierUtah:

  3. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural GasCubic Feet)

  4. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry Natural

  5. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry

  6. Utah Lease Condensate Proved Reserves, Reserve Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962 90

  7. Utah Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962

  8. Utah Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) Utah Dry200962Year

  9. Utah Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion Cubic Feet) UtahCommercial

  10. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)Peteforsyth JumpWzeng Jump to:QualityUtah

  11. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)PeteforsythUtah/Wind Resources/Full Version

  12. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtilityInformation WaiverShoals,Wasatch County, Utah:

  13. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem Geothermal Power PlantUtah: Energy

  14. Kane County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota: Energy ResourcesUtah:

  15. Piute County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiute County, Utah: Energy Resources

  16. City of Manti, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont,City ofManning,Manti, Utah

  17. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake Electric Assn Inc (Utah) Jump to:

  18. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) |Park, Utah:

  19. Utah State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFactEnergy Utah State Historic

  20. Elk Ridge, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVaultStationGroveRidge, Utah:

  1. Summit County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside Wind Farm JumpSummitUtah:

  2. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts RegionsPaulShades of(SC)ScienceOffice ofUtah

  3. South Utah Valley Electric Service District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouthNew Jersey:South Utah

  4. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwestern ElectricSpain:Fork, Utah:

  5. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | DepartmentDepartment of Energy LewisDepartment ofofBarbara |Pembroke |Utah

  6. DOE - Office of Legacy Management -- University of Utah Medical Research

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntownUnitedCenter - UT 02 Utah

  7. Morgan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello,Oklahoma:In3661344°,04285°,Utah:

  8. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,South Carolina:Utah: Energy Resources Jump to:

  9. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet)ReservesYearUtah (Million

  10. Town of Paragonah, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station JumpOpenEITownTown ofTown of Paragonah, Utah

  11. Utah Associated Mun Power Sys | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser page EditUsina SantaUsinaUsinas+Utah

  12. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <Utah < RAPID‎ |

  13. RAPID/BulkTransmission/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontanaMontanaUtah < RAPID‎ |

  14. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |HawaiiUtah <

  15. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas < RAPID‎ |Utah <

  16. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field <New Mexico <TexasUtah

  17. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page Jump to:Utah)

  18. Garfield County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGangNebraska: Energy ResourcesUtah:

  19. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 -permitCommerceUtahQuality

  20. Utah Nonpoint Source Pollution Management Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtah

  1. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOffice of

  2. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2FullInformationUtah

  3. Bridger Valley Elec Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridger Valley Elec Assn, Inc (Utah) Jump

  4. Testing eccentricity pumping mechanisms to model eccentric long period sdB binaries with MESA

    E-Print Network [OSTI]

    Vos, Joris; Marchant, Pablo; Van Winckel, Hans

    2015-01-01T23:59:59.000Z

    Hot subdwarf-B stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts those objects to be circularised before the onset of Roche-lobe overflow (RLOF). We aim to find binary-evolution mechanisms that can explain these eccentric long-period orbits, and reproduce the currently observed period-eccentricity diagram. Three different processes are considered; tidally-enhanced wind mass-loss, phase-dependent RLOF on eccentric orbits and the interaction between a circumbinary disk and the binary. The binary module of the stellar-evolution code MESA (Modules for Experiments in Stellar Astrophysics) is extended to include the eccentricity-pumping processes. The effects of different input parameters on the final period and eccentricity of a binary-evolution model are tested with MESA. The end products of models with only tidally-enhanced wind mass-loss can indeed be eccentric, but these models need to lose too much mass, and invariably end up with a helium ...

  5. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  6. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01T23:59:59.000Z

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  7. 01243_UofUtah | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) - Energy Innovation Portal Advanced Materialsj o n p430/05Clean

  8. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01T23:59:59.000Z

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).

  9. Summary of the engineering assessment of inactive uranium mill tailings: Falls City site, Falls City, Texas

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    Ford, Bacon and Davis Utah Inc. has reevaluated the Falls City site in order to update the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranum mill tailings at Falls City, Texas. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrolgy and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.5 million tons of tailings at the Falls City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,700,000 for stabilization in place, to about $35,100,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Falls City tailings were examined: heap leaching; treatment at an existing mill; reprocessing at a new conventional mill constructed for tailings reprocessing. The tailings piles are presently being rewashed for uranium recovery by Solution Engineering, Inc. The cost for further reprocessing would be about $250/lb of U/sub 3/O/sub 8/. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery does not appear to be economically attractive for the foreseeable future.

  10. Retsch PM400 ball mill Nanoparticle preparation

    E-Print Network [OSTI]

    Anderson, Scott L.

    the presence of a low binding energy boride species (CexBy) XPS Catalyst Coated, Unoxidized Boron NanoparticlesRetsch PM400 ball mill pump Nanoparticle preparation Ball Milling Method Physically grind micron are coated with various ligands/capping agents to promote suspension in a variety of fuels and/or to protect

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  12. AUGUST 31 (VS. UTAH STATE) Nailing Andrew Jackson: The President and

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    AUGUST 31 (VS. UTAH STATE) Nailing Andrew Jackson: The President and His Papers Daniel M. Feller, Professor Department of History SEPTEMBER 6 (VS. ARKANSAS STATE) Marvels of Matter All Around Us Norman

  13. The Madeleine Choir School (Salt Lake City, Utah): A Contemporary American Choral Foundation

    E-Print Network [OSTI]

    Tappan, Lucas Matthew

    2014-05-31T23:59:59.000Z

    This document chronicles the work of the Madeleine Choir School, founded in 1996 by Gregory Glenn as a ministry of the Cathedral of the Madeleine in Salt Lake City, Utah. The school teaches children in pre-kindergarten ...

  14. Thermal and Structural Constraints on the Tectonic Evolution of the Idaho-Wyoming-Utah Thrust Belt

    E-Print Network [OSTI]

    Chapman, Shay Michael

    2013-08-09T23:59:59.000Z

    The timing of motion on thrust faults in the Idaho-Wyoming-Utah (IWU) thrust belt comes from synorogenic sediments, apatite thermochronology and direct dating of fault rocks coupled with good geometrical constraints of the subsurface structure...

  15. E-Print Network 3.0 - area utah characterization Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Awards to Members of the University Community 1. University of Utah Health... Care is the No. 1 health care system in the Salt Lake City metro area, according to ......

  16. INTERNSHIP OPPORTUNITY Agency Utah Department of Health, Office of Health Disparities

    E-Print Network [OSTI]

    Tipple, Brett

    INTERNSHIP OPPORTUNITY Agency Utah Department of Health, Office of Health Disparities Duration will be accepted. Description Office of Health Disparities interns will comprise the Outreach Team responsible for conducting the "Bridging Communities & Clinics" program, which provides free health screenings, clinic

  17. Miocene unroofing of the Canyon Range during extension along the Sevier Desert Detachment, west central Utah

    E-Print Network [OSTI]

    Stockli, Daniel F.; Linn, Jonathan K.; Walker, J. Douglas; Dumitru, Trevor A.

    2001-06-01T23:59:59.000Z

    Apatite fission track results from Neoproterozoic and Lower Cambrian quartzites collected from the Canyon Range in west central Utah reveal a significant early to middle Miocene cooling event (?19–15 Ma). Preextensional temperatures estimated from...

  18. Digital outcrop mapping of a reservoir-scale incised valley fill, Sego Sandstone, Book Cliffs, Utah

    E-Print Network [OSTI]

    Fey, Matthew F.

    2009-06-02T23:59:59.000Z

    methodologies are demonstrated by mapping rock variations and stratal geometries within several kilometers-long, sub-parallel exposures of the Lower Sego Sandstone in San Arroyo Canyon, Book Cliffs, Utah. The digital outcrop model of the Lower Sego Sandstone...

  19. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  20. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Low-Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  1. Utah. Code. Ann. § 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  2. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Utah Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Remediation of inactive mining and milling sites

    SciTech Connect (OSTI)

    Mao, H.; Pan, Y.; Li, R.

    1993-12-31T23:59:59.000Z

    The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

  4. Advanced Oxidation Technology for Pulp Mill Effluent

    E-Print Network [OSTI]

    Hart, J. R.

    ADVANCED OXIDATION TECHNOLOGY FOR PULP MILL EFFLUENT J. ROBERT HART, MANAGER, EPRI PULP & PAPER OFFICE, ATLANTA, GA ABSTRACT The composition of effluent from various pulping processes can exhibit a wide range of physical and chemical... an oxidation and photolysis process. AOP FEASIBILITY STUDY The application of AOP for the treatment of pulp mill effluent was demonstrated in an EPRI Co-funded Project (1). This Project had the industrial support of about twenty companies and utilities...

  5. www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO PASCUCCI (LLNL),

    E-Print Network [OSTI]

    Utah, University of

    www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL (LLNL) E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO

  6. Characterization and potential utilization of Whiterocks (Utah) tar sand bitumen

    SciTech Connect (OSTI)

    Tsai, C.H.; Deo, M.D.; Hanson, F.V.; Oblad, A.G. (Lab. of Coal Science, Synthetic Fuels and Catalysis, Dept. of Fuels Engineering, Univ. of Utah, Salt Lake City, UT (US))

    1991-01-01T23:59:59.000Z

    This paper reports on the native Whiterocks (Utah) tar sand bitumen that was separated into several boiling range fractions for detailed analysis and characterization. The lighter fraction (477-617 K) was evaluated for use as a transportation fuel and the residues ({gt}617 K and {gt}728 K) were evaluated for use as road asphalts. The 617 K plus residue from the Whiterocks bitumen can be classified as a viscosity grade AC-10 asphalt whereas the 728 K plus residue failed to meet asphalt specifications. Apart from the asphalt specification tests, several sophisticated techniques were used to characterize these fractions. The detailed structure of the low molecular weight portions of Whiterocks bitumen (477-617 K and 617-728 K) was determined by combined GC-MS. Several physical properties were also measured to evaluate the potential of the 477-617 K fraction as a high density/energy aviation turbine fuel. This lower molecular weight fraction of the bitumen contained predominantly naphthenic hydrocarbons and lesser concentrations of aromatic hydrocarbons. This was confirmed by the FTIR spectra and by the GC-MS analyses. As a result, the 477-617 K fraction appeared to be an excellent candidate as a feedstock for the production of high density, aviation turbine fuels following mild hydrotreating.

  7. Paleogeographic and paleotectonic development of Laramide basins of SW Utah

    SciTech Connect (OSTI)

    Goldstrand, P.M. (Oak Ridge National Lab., TN (United States))

    1993-04-01T23:59:59.000Z

    Initial Laramide-style deformation in SW Utah began in latest Cretaceous (late Campanian or Maastrichtian) time during deposition of the conglomeratic Canaan Peak Formation (TKcp) which thins onto a broad arch located on the northern Paunsaugunt Plateau (Paunsaugunt upwarp). This NNE-SSW trending upward affected sediment dispersal patterns during the early Paleocene and was the southern basin margin for braided fluvial sediments of the Grand Castle Formation (Tgc). These sediments were shed SE, from the inactive Sevier highlands, as far east as the Table Cliff Plateau. Laramide deformation increased during the late( ) Paleocene, after deposition of the Tgc, with the formation of at least two closed basins. During the late( ) Paleocene, the Johns Valley and Upper Valley anticlines, and Circle Cliff Uplift developed with sediment being shed to the SE, E, and SW into the Pine Hollow basin. During initial development of the Pine Hollow basin, the underlying TKcp and Tgc were reworked into the basal Pine Hollow Formation. Small alluvial fans bounded the basin, grading laterally into low-energy fluvial, playa mudflat, and ephemeral lacustrine environments. The basal Claron Formation represents a broad, closed basin that initially developed during the later Paleocene to the SW of the Pine Hollow basin. The Claron basin was bordered by low relief uplands, fluvial floodplains, and calcrete paleosols to the north and moderate relief uplands to the west and east. Shallow lacustrine deposition occurred to the south. Lacustrine onlap of Laramide structures by middle Eocene suggests cessation of Laramide deformation by this time.

  8. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect (OSTI)

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29T23:59:59.000Z

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  9. Completion Report for Well ER-EC-13 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-05-31T23:59:59.000Z

    Well ER-EC-13 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in October 2010 as part of the Pahute Mesa Phase II drilling program. A main objective was to provide detailed hydrogeologic information for the Fortymile Canyon composite unit hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. This well may also be used as a long-term monitoring well.

  10. US Geological Survey research on the environmental fate of uranium mining and milling wastes

    SciTech Connect (OSTI)

    Landa, E.R.; Gray, J.R. [Geological Survey, Reston, VA (United States)

    1995-07-01T23:59:59.000Z

    Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and reaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 ({sup 226}Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of {sup 226}Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in {sup 226}Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as {sup 226}Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can {sup 226}Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides form uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico. 48 refs., 6 figs., 4 tabs.

  11. Recording experiment on Rainier Mesa in conjunction with a reflection survey

    SciTech Connect (OSTI)

    Johnson, L.R.

    1994-06-01T23:59:59.000Z

    The chemical explosion of the NPE was recorded on the surface of Rainier Mesa along the same line which had previously been the site of a high resolution reflection survey. Six three-component accelerometer stations where distributed along the 550 meter line, which was offset about 600 meters from the epicenter of the explosion. The bandwidth of the acceleration data extends to 100 Hz. Even though the separations of the stations was only about 100 meters, the waveforms and the amplitudes exhibited considerable variability, especially for the transverse component of motion. The maximum accelerations ranged between 0.27 g and 1.46 g, with the maximums of the average traces being 0.57 g on the radial component, 0.28 on the transverse component, and 0.50 g on the vertical component. Using the results of the reflection survey to help constrain the velocity model, the acceleration data were inverted to obtain a preliminary estimate of the seismic moment tensor of the NPE. This result is a strong diagnostic for the NPE being an explosion, showing a somewhat asymmetric extensional source with very small shear components. When interpreted in terms of a spectral model and scaling relationships, the isotropic moment tensor indicates a yield of 1.4 kt, an elastic radius of 116 meters and a cavity radius of 15.5 meters. This interpretation includes a source time function which contains appreciable overshoot, and, if shown to be reliable, this feature of the explosion could have a significant effect upon the analyses of other types of seismic data.

  12. USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN REGION

    E-Print Network [OSTI]

    Tarboton, David

    USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN on a distributed version of the Utah Energy Balance (UEB) snowmelt model, referred to as UEBGrid, which was adapted: glacier and snow melt, Energy balance, model, remote sensing) INTRODUCTION Countries in Hindu Kush

  13. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors ­ Ms. Judy for Geology Emphasis, Geoscience Major ­ Prof. Brenda Bowen (email: brenda.bowen@ utah.edu, office: 341 FASB

  14. MEDIA RELEASE --Myron Willson, Sustainability Director, office 801-585-3173, Myron.willson@sustainability.utah.edu

    E-Print Network [OSTI]

    MEDIA RELEASE Contacts: -- Myron Willson, Sustainability Director, office 801-585-3173, Myron.willson@sustainability.purser@utah.edu U Home to First LEED-Certified Residence Hall in Utah New building sets the standard for sustainable using Leadership in Energy and Environmental Design standards, making it the first LEED

  15. Moab Mill Tailings Removal Project Celebrates 5 Years of Success...

    Office of Environmental Management (EM)

    Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is...

  16. Milling Machine Replacement Project (4587), 5/11/2012

    Broader source: Energy.gov (indexed) [DOE]

    by E-mail The proposed action is to replace two large milling machines with two new medium sized CNC milling machines. The new machines will be connected to the digital...

  17. Einstein-Yang-Mills-Lorentz Black Holes

    E-Print Network [OSTI]

    Jose A. R. Cembranos; Jorge Gigante Valcarcel

    2015-01-28T23:59:59.000Z

    Different black hole solutions of the coupled Einstein-Yang-Mills equations are well known from long time. They have attracted much attention from mathematicians and physicists from their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.

  18. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01T23:59:59.000Z

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  19. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01T23:59:59.000Z

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  20. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2003-08-01T23:59:59.000Z

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  1. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2004-02-01T23:59:59.000Z

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  2. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH’S UINTA BASIN

    SciTech Connect (OSTI)

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01T23:59:59.000Z

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

  3. The effect of conditioning rice during the laboratory milling process on the quality of the milled sample

    E-Print Network [OSTI]

    Childers, Roy Eugene

    1972-01-01T23:59:59.000Z

    THE EFFECT OF CONDITIONING RICE DURING THE LABORATORY MILLING PROCESS ON THE QUALITY OF THE MILLED SAMPLE A Thesis by ROY EUGENE CHILDERS, JR. Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1972 Major Subject: Agricultural Engineering THE EFFECT OF CONDITIONING RICE DURING THE LABORATORY MILLING PROCESS ON THE I1UALITY OF THE MILLED SAMPLE A Thesis by ROY EUGENE CHILDERS, JR...

  4. Mill Designed Bio bleaching Technologies

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2004-01-30T23:59:59.000Z

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current generation of laccase has a broad spectrum of operating parameters. Nonetheless, the development of future genetically engineered laccases with enhanced temperature, pH and redox potentials will dramatically improve the overall process. A second challenge for LMS bleaching technologies is the need to develop effective, catalytic mediators. From the literature we already know this is feasible since ABTS and some inorganic mediators are catalytic. Unfortunately, the mediators that exhibit catalytic properties do not exhibit significant delignification properties and this is a challenge for future research studies. Potential short-term mill application of laccase has been recently reported by Felby132 and Chandra133 as they have demonstrated that the physical properties of linerboard can be improved when exposed to laccase without a chemical mediator. In addition, xxx has shown that the addition of laccase to the whitewater of the paper machine has several benefits for the removal of colloidal materials. Finally, this research program has presented important features on the delignification chemistry of LMS{sub NHA} and LMS{sub VA} that, in the opinion of the author, are momentous contributions to the overall LMS chemistry/biochemistry knowledge base which will continue to have future benefits.

  5. Kieffer Paper Mill's Recycled Fiber Mill and PSI Energy's High Efficiency Motors Plan

    E-Print Network [OSTI]

    Myers, J. A.

    efficiency would yield significant energy savings. PSI Energy was able to help Kieffer examine the economics of high efficiency motors, and through the PSI Energy High Efficiency Motors Plan encouraged Kieffer Paper Mills to purchase energy efficient motors...

  6. Wind Mill Pattern Optimization using Evolutionary Algorithms

    E-Print Network [OSTI]

    Wind Mill Pattern Optimization using Evolutionary Algorithms Charlie Vanaret ENAC , IRIT 7 av Ed 31062 Toulouse Cedex 9, France jean-marc.alliot@irit.fr ABSTRACT When designing a wind farm layout, we a grid, we can gain up to 3% of energy output on simple exam- ples of wind farms dealing with many

  7. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05T23:59:59.000Z

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  8. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    SciTech Connect (OSTI)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

    2002-09-01T23:59:59.000Z

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  9. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    Simons, Jack

    to change without notice--Updated 08/2014 The Masters of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2014-2015 Program information is subject

  10. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    to change without notice--Updated 07/2012 The Master's of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2013-2014 Program information is subject

  11. University of Utah, College of Education Master of Education in Special Education with

    E-Print Network [OSTI]

    Tipple, Brett

    to change without notice--Updated 06/2014 The Masters of Education in Special Education with Elementary1 University of Utah, College of Education Master of Education in Special Education with Elementary Licensure through the Urban Institute for Teacher Education 2014-2015 Program information is subject

  12. Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact Professor Richard Laboratory for Scientists and Engineers I, II (1, 1) E. Chemistry, Geology Emphasis Core courses, plus: CHEM to Earth Systems (3) GEO 1115 Laboratory for Introduction to Earth Systems (1) GEO 3060 Structural Geology

  13. Department of Geology and Geophysics, University of Utah Spring 2002 down to earth

    E-Print Network [OSTI]

    Johnson, Cari

    1 Department of Geology and Geophysics, University of Utah Spring 2002 down to earth Message From of Bill Parry and Duke Picard resulted in openings in both Geological Engineer- ing and Sedimentary Geology. Our search for their replacements has been successful and we are once again at full strength

  14. University Health Care Plus University of Utah Employee Health Plan Healthy U -Medicaid

    E-Print Network [OSTI]

    Tipple, Brett

    University Health Care Plus ­ University of Utah Employee Health Plan Healthy U - Medicaid NOTICE for Treatment, Payment and Health Care Operations The following categories describe the ways that the UUHP for the treatment activities of a health care provider. #12;Payment: We may use or disclose your personal

  15. Production of bitumen-derived hydrocarbon liquids from Utah's tar sands: Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Hanson, F.V.

    1988-07-01T23:59:59.000Z

    In previous work done on Utah's tar sands, it had been shown that the fluidized-bed pyrolysis of the sands to produce a bitumen-derived hydrocarbon liquid was feasible. The research and development work conducted in the small-scale equipment utilized as feed a number of samples from the various tar sand deposits of Utah elsewhere. The results from these studies in yields and quality of products and the operating experience gained strongly suggested that larger scale operation was in order to advance this technology. Accordingly, funding was obtained from the State of Utah through Mineral Leasing Funds administered by the College of Mines and Earth Sciences of the University of Utah to design and build a 4-1/2 inch diameter fluidized-bed pilot plant reactor with the necessary feeding and recovery equipment. This report covers the calibration and testing studies carried out on this equipment. The tests conducted with the Circle Cliffs tar sand ore gave good results. The equipment was found to operate as expected with this lean tar sand (less than 5% bitumen saturation). The hydrocarbon liquid yield with the Circle Cliffs tar sand was found to be greater in the pilot plant than it was in the small unit at comparable conditions. Following this work, the program called for an extensive run to be carried out on tar sands obtained from a large representative tar sand deposit to produce barrel quantities of liquid product. 10 refs., 45 figs., 11 tabs.

  16. University of Utah Financial & Business Services UMarket Step by Step Guide

    E-Print Network [OSTI]

    University of Utah Financial & Business Services UMarket Step by Step Guide UMarket Shopping Cart this Step by Step Guide as a supplement to the online UMarket training. Contact Income Accounting..........................................................................13 Appendix A: AVS, CVN, & Response Codes................15 Appendix B: UMarket Contact Information

  17. ACCOUNT REQUEST FORM Submit the completed form to adsystems@sa.utah.edu.

    E-Print Network [OSTI]

    Tipple, Brett

    from a student's educational record only with the student's written consent, except to school officials Records Access and Management Act, Utah Code Ann. § 63-2-101 et seq. I will not disclose any information: ________________________________ Department Official Verifying New User Eligibility (Please Print): First Name

  18. Features PRINT THIS PAG E NOW University of Utah: C-SAFE Uses Linux

    E-Print Network [OSTI]

    Utah, University of

    Features PRINT THIS PAG E NOW University of Utah: C-SAFE Uses Linux HPCC in Fire Research 2 for delivering computational power to CPU-hungry scientific applications. A cluster consists of several commodity Simulation and Computing Program (ASCP), formerly ASCI, to form the Center for the Simulation of Accidental

  19. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah

    E-Print Network [OSTI]

    Hacke, Uwe

    Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah Uwe G. Hacke capability of the xylem. This is due to drought-induced cavitation. We used the centrifuge method to measure the vulnerability of root and stem xylem to cavitation in six native shrub species. The shrubs fall into three

  20. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  1. Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada 2002-05.

    SciTech Connect (OSTI)

    Guy A. DeMeo; Alan L. Flint; Randell J. Laczniak; Walter E. Nylund

    2006-12-28T23:59:59.000Z

    Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002/August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

  2. Beneficial uses of paper mill residuals for New York State`s recycled-paper mills. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This report evaluates the New York paper mill industry in terms of the productive management and treatment of solid wastes. It identifies current efforts by recycling mills to beneficially use paper mill residuals (often called sludge) and suggests additional options that should be considered by the industry in general and individual mills in particular. It also examines the regulations and economics affecting the mills and suggests actions that could improve the industry`s ability to convert wastes to value-added products. The report recommends that the mills should continue measures to reduce fiber and filler clay losses, promote the transfer of usable fiber and clay to mills able to use them, upgrade sludge dewatering capabilities, and take a more regional approach to solid waste disposal problems. State agencies are urged to support these efforts, encourage the development and commercialization of new beneficial use technologies, and reduce regulatory barriers whenever possible.

  3. Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    None

    2013-03-05T23:59:59.000Z

    Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and 709.6 m of Tertiary volcanic rocks. The stratigraphy and general lithology were not as expected due to the position of Well ER-EC-14 relative to the buried caldera margins of the Timber Mountain caldera complex. The well is located inside the Rainier Mesa caldera, but outside the younger Ammonia Tanks caldera. On November 5, 2012, a preliminary fluid level in the shallow piezometer string was measured at the depth of 311.8 m. This water level depth was taken before installation of the bridge plug (to be placed within the main completion casing to separate the two slotted zones). Well development, hydrologic testing, and sampling, will be conducted at a later date. No tritium above levels detectable by field methods were encountered in this hole. All Fluid Management Plan (FMP) requirements for Well ER-EC-14 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-EC-14 met the FMP criteria for discharge to an unlined sump or designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.

  4. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah

    E-Print Network [OSTI]

    Lyubomirsky, Ilya

    Formation, House Range, Utah Robert R. Gainesa,*, Martin J. Kennedyb , Mary L. Droserb a Geology Department of nonmineralized tissues provides unparalleled anatomical and ecological information (Allison and Briggs, 1991

  5. Geothermal Mill Redevelopment Project in Massachusetts

    SciTech Connect (OSTI)

    Vale, A.Q.

    2009-03-17T23:59:59.000Z

    Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (“DOE”) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

  6. Watershed characteristics contributing to the 1983-84 debris flows in the Wasatch Range, Davis County, Utah

    E-Print Network [OSTI]

    Coleman, William Kevin

    1991-01-01T23:59:59.000Z

    WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 3. 983-84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY ?UTAH A Thesis by WILLIAM KEVIN COLEMAN Submitted to Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Geology WATERSHED CHARACTERISTICS CONTRIBUTING TO THE 1. 983 ? 84 DEBRIS FLOWS IN THE WASATCH RANGE, DAVIS COUNTY, UTAH A Thesis by WILLIAM KEVIN COLEMAN Approved...

  7. John Stuart Mill's Sanction Utilitarianism: A Philosophical and Historical Interpretation

    E-Print Network [OSTI]

    Wright, David

    2014-04-24T23:59:59.000Z

    ..................................................................................................... 271 1 CHAPTER I INTRODUCTION This dissertation will argue that John Stuart Mill (hereafter Mill) is best interpreted as a sanction utilitarian. To support this claim, I will provide arguments that that are both philosophical... Utilitarianism. Third, I will outline the dissertation as a whole in order to describe how each chapter supports the claim that Mill is best interpreted as a sanction utilitarian. Basic terminology and the varieties of utilitarianism As is common...

  8. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    SciTech Connect (OSTI)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21T23:59:59.000Z

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  9. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01T23:59:59.000Z

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  10. Exterior Differential Systems for Yang-Mills Theories

    E-Print Network [OSTI]

    Frank B. Estabrook

    2008-12-05T23:59:59.000Z

    Exterior differential systems are given, and their Cartan characters calculated, for Maxwell and SU(2)-Yang-Mills equations in dimensions from three to six.

  11. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Broader source: Energy.gov (indexed) [DOE]

    DOE energy assessment and implementing recommendations to improve the efficiency of its steam system. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings (May 2008)...

  12. attritor mill fy06: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Zernicka-Goetz, Magdalena 46 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  13. assisted mechanical milling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Zernicka-Goetz, Magdalena 172 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  14. americana mill var: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Zernicka-Goetz, Magdalena 110 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  15. americana mill sobre: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Zernicka-Goetz, Magdalena 64 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  16. Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-02-28T23:59:59.000Z

    Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

  17. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    SciTech Connect (OSTI)

    Asubar, Joel T., E-mail: joel@rciqe.hokudai.ac.jp; Yatabe, Zenji; Hashizume, Tamotsu [Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Information Science and Technology, Hokkaido University, Sapporo (Japan); Japan Science and Technology Agency (JST), CREST, 102-0075 Tokyo (Japan)

    2014-08-04T23:59:59.000Z

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8?K-mm/W at ambient temperature of ?350?K and power dissipation of ?9?W/mm. This value compares well to 4.1?K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  18. A probabilistic investigation of slope stability in the Wasatch Range, Davis County, Utah

    E-Print Network [OSTI]

    Eblen, James Storey

    1991-01-01T23:59:59.000Z

    . LISA (Level I Stability Analysis), a U. S. Forest Service probabilistic, slope stability model, and a deterministic model, dLISA, will be used in this study. The applicability of the two models will be established as follows: 1) Establish parametric... processes. Keaton (1988) developed a probabilistic model to evaluate hazards that are associated with alluvial fan sedimentation in Davis County, Utah. Keaton concluded that most of the canyons which yielded large volumes of sediment in 1983 and 1984 had...

  19. Bedrock structure, lithology and ground water: influences on slope failure initiation in Davis County, Utah

    E-Print Network [OSTI]

    Ala, Souren Nariman

    1990-01-01T23:59:59.000Z

    , for his input. The Salt Lake City office of Dames and Moore generously provided for me to print the results of my Viii geophysical surveys. Mr. Roger Fallon of Salt Lake City did us a great service by flying us around the Wasatch Front canyons; much... Complex between Farmington and Stone Creeks. . . . . . . . . . . . pocket INTRODUCTION Rapid population growth in the urban area along the eastern border of the Great Salt Lake, Utah, has led to residential development in the western foothills...

  20. EIS-0450: TransWest Express Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  1. Vegetative covers: Special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to (1) evaluate the feasibility of using vegetative covers on UMTRA Project piles, (2) define the advantages and disadvantages of vegetative covers, and (3) develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites (Shiprock, New Mexico; Burrell, Pennsylvania; and Clive, Utah) where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions.

  2. DESIGN, PERFORMANCE, AND SUSTAINABILITY OF ENGINEERED COVERS FOR URANIUM MILL TAILINGS

    SciTech Connect (OSTI)

    Waugh, W. Jody

    2004-04-21T23:59:59.000Z

    Final remedies at most uranium mill tailings sites include engineered covers designed to contain metals and radionuclides in the subsurface for hundreds of years. Early cover designs rely on compacted soil layers to limit water infiltration and release of radon, but some of these covers inadvertently created habitats for deep-rooted plants. Root intrusion and soil development increased the saturated hydraulic conductivity several orders of magnitude above design targets. These covers may require high levels of maintenance to sustain long-term performance. Relatively low precipitation, high potential evapotranspiration, and thick unsaturated soils favor long-term hydrologic isolation of buried waste at arid and semiarid sites. Later covers were designed to mimic this natural soil-water balance with the goal of sustaining performance with little or no maintenance. For example, the cover for the Monticello, Utah, Superfund site relies on a thick soil-sponge layer overlying a sand-and-gravel capillary barrier to store precipitation while plants are dormant and on native vegetation to dry the soil sponge during the growing season. Measurements of both off-site caisson lysimeters and a large 3-ha lysimeter built into the final cover show that drainage has been well below a U.S. Environmental Protection Agency target of less than 3.0 mm/yr. Our stewardship strategy combines monitoring precursors to failure, probabilistic riskbased modeling, and characterization of natural analogs to project performance of covers for a range of possible future environmental scenarios. Natural analogs are needed to understand how ecological processes will influence cover performance, processes that cannot be predicted with short-term monitoring and existing numerical models.

  3. Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Walter, W R

    2008-07-01T23:59:59.000Z

    On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

  4. Mille Lacs Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii:Mille Lacs County,

  5. Gary Mills | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahomaStatus o f t heMills Curriculum

  6. Colony Mills Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur dColmar,US ForestPark,Colony Mills

  7. Analysis of infiltration through a clay radon barrier at an UMTRA disposal cell. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    An infiltration study was initiated in January 1988 to assess the percent saturation in, and infiltration through, clay radon barriers of typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Predicting infiltration through the radon barrier is necessary to evaluate whether the disposal cell will comply with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (40 CFR 192). The groundwater standards require demonstrating that tailings seepage will not cause background concentrations or maximum concentration limits (MCLs) to be exceeded at the downgradient edge of the disposal facility (the point of compliance, or POC). This demonstration generally consists of incorporating the predicted seepage flux and the concentration of the specific hazardous constituents into a contaminant transport model, and predicting the resultant concentrations at the POC. The infiltration study consisted of a field investigation to evaluate moisture conditions in the radon barrier of the completed Shiprock, New Mexico, UMTRA Project disposal cell and previously completed UMTRA Project disposal cells at Clive, Utah, and Burrell, Pennsylvania. Coring was conducted to measure percent saturation profiles in the radon barriers at these disposal cells. In addition, a detailed investigation of the Shiprock radon barrier was conducted to establish the effects of meteorological stresses on moisture conditions in the filter layer and radon barrier. The Shiprock infiltration study was also intended to characterize hydraulic gradients and operational unsaturated hydraulic conductivities in the radon barrier.

  8. An analysis of mobile feed milling operations in Texas

    E-Print Network [OSTI]

    Cunningham, William Carroll

    1962-01-01T23:59:59.000Z

    or lf it is inoperative due to repairs. We operator who owned twc mobilss vas considering the pxacticality of removing one of the rills frvz its truck chasis and operating it as a stationary mill at his feed store, Another operator operates his mill...

  9. Triple Tangent Flank Milling of Ruled Cornelia Menzel1

    E-Print Network [OSTI]

    Mann, Stephen

    has 88% less under cutting than the Bedi et al. method. Key words: 5-axis machining, flank milling, machine simulation, tool path generation 1 Introduction In this paper, we present a method for flank. Therefore, flank milling is especially well suited for applications like impellers and turbine blades. Since

  10. Grinding media oscillation: effect on torsional vibrations in tumble mills

    E-Print Network [OSTI]

    Toram, Kiran Kumar

    2005-11-01T23:59:59.000Z

    of oscillation of grinding media on torsional vibrations of the mill. A theoretical model was developed to determine the oscillating frequency of the grinding media. A 12" (0.3 m) diameter tumble mill test rig was built with a 0.5 hp DC motor. The rig is tested...

  11. Appendix IV. Risks Associated with Conventional Uranium Milling Introduction

    E-Print Network [OSTI]

    ", uranium is removed from the processed ore with sulfuric acid. Sodium chlorate is also addedAppendix IV. Risks Associated with Conventional Uranium Milling Operations Introduction Although uranium mill tailings are considered byproduct materials under the AEA and not TENORM, EPA's Science

  12. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  13. Maerz, N. H., and Palangio, 2000. Online fragmentation analysis for grinding and crushing control. Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp.

    E-Print Network [OSTI]

    Maerz, Norbert H.

    . Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp. 109

  14. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    SciTech Connect (OSTI)

    Jasoni, Richard L [DRI; Larsen, Jessica D [DRI; Lyles, Brad F. [DRI; Healey, John M [DRI; Cooper, Clay A [DRI; Hershey, Ronald L [DRI; Lefebre, Karen J [DRI

    2013-04-01T23:59:59.000Z

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started collecting data in March 2011.

  15. Department of Geology and Geophysics-Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics- Frederick A. Sutton Building to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Fill out and sign

  16. Completion Report for Well ER-20-7: Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-04-28T23:59:59.000Z

    Well ER-20-7 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June 2009 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to further investigate migration of radionuclides from the nearby, up-gradient TYBO and BENHAM underground nuclear tests, which originally was discovered at Well Cluster ER-20-5. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model. The main 44.45-centimeter hole was drilled to a depth of 681.8 meters and cased with 33.97-centimeter casing to 671.7 meters. The hole diameter was then decreased to 31.12 centimeters, and the well was drilled to total depth of 894.9 meters. The completion string, set to the depth of 890.0 meters, consists of 14.13-centimeter stainless-steel casing hanging from 19.37-centimeter carbon-steel casing. The 14.13-centimeter stainless-steel casing has one continuous slotted interval open to the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, sidewall core samples from 20 depth intervals, various geophysical logs, water quality (primarily tritium) measurements, and water level measurements. The well penetrated 894.9 meters of Tertiary volcanic rock, including two saturated welded-tuff aquifers. A fluid level measurement was obtained during open-hole geophysical well logging for the upper, Tiva Canyon, aquifer at the depth of 615.7 meters on June 19, 2009. The fluid level measured in the open hole on June 27, 2009,after the total depth was reached and the upper aquifer was cased off, was also at the depth of 615.7 meters. Preliminary field measurements indicated 1.5 to 4.5 million picocuries per liter of tritium in the Tiva Canyon aquifer and 20 to 61 million picocuries per liter in the underlying Topopah Spring aquifer.

  17. Modification No. 2 to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah: Final

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    Portions of the final Remedial Action Plan (RAP) for the Green River site, Volumes 1 and 2, Appendix B of the Cooperative Agreement No. DE-FC04-81AL16257, March 1991 (DOE, 1991) have been modified. The changes to the RAP are designated as RAP Modification No. 2. These changes have been placed in a three-ring binder that will supplement the original RAP (DOE, 1991), and include the following: addendum to the Executive Summary; Section 3.5 (Ground Water part of the Site Characterization Summary); Section 4.0 (Site Design); Section5.0 (Water Resources Protection Strategy Summary); Appendix D.5 (Ground Water Hydrology); and Appendix E (Ground Water Protection Strategy). In addition to these revisions, there have been editorial changes that clarify the text, but do not change the meaning. Also, certain sections of the document, which are included in the submittal for ease of review and continuity, have been updated to reflect the final ground water protection standards and the current UMTRA Project format and content of RAPs.

  18. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    SciTech Connect (OSTI)

    NONE

    1993-02-01T23:59:59.000Z

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  19. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  20. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    SciTech Connect (OSTI)

    Pippin, L.C.

    1998-06-01T23:59:59.000Z

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  1. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  2. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  3. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01T23:59:59.000Z

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  4. Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

  5. Utah Division of Forestry, Fire and State Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2 -permitCommerceUtah

  6. Utah Proof of Beneficial Use of Water Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools |UC 54-2Full Proof ofUtahOffice

  7. Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements

    E-Print Network [OSTI]

    Sammut, Claude

    Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements and Chambers (1968) to a large-scale, real-world problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made

  8. Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills

    E-Print Network [OSTI]

    Chen, Ying

    Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills Atomic and Molecular solar energy production Evaluating, forecasting, and managing suburb-scale distributed solar electricity production My research applies physics to a range of problems in planetary, atmospheric, and environmental

  9. Running Coupling in SU(3) Yang-Mills Theory

    E-Print Network [OSTI]

    Ulli Wolff

    1993-11-23T23:59:59.000Z

    We report about our ongoing computation of running coupling constants in asymptotically free theories using the recursive finite size scaling technique. The latest results for the SU(3) Yang-Mills theory are presented.

  10. alstom bowl mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 141 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  11. aspen pulp mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 161 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  12. asbestos composite mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 101 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  13. Moab Mill Tailings Removal Project Plans to Resume Train Shipments...

    Broader source: Energy.gov (indexed) [DOE]

    Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough....

  14. 1 Compiled by Suzanne Darais, SJ Quinney Law Library, Univ. of Utah. If you have any suggestions for additions, please email me at suzanne.darais@law.utah.edu. Thanks.

    E-Print Network [OSTI]

    Capecchi, Mario R.

    links to free federal and state case opinions on the web. Can search Utah state cases back to 1996://www.washlaw.edu) ­ A one-stop shop to free web sites for federal, state and foreign cases, statutes, regulations and other legal material. Cornell LII (http://www4.law.cornell.edu/uscode/) ­ Contains links to hundreds of web

  15. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  16. The rhetoric of economic inquiry in Smith, Whately, and Mill

    E-Print Network [OSTI]

    Gore, David Charles

    2005-08-29T23:59:59.000Z

    THE RHETORIC OF ECONOMIC INQUIRY IN SMITH, WHATELY, AND MILL A Dissertation by DAVID CHARLES GORE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2005 Major Subject: Speech Communication THE RHETORIC OF ECONOMIC INQUIRY IN SMITH, WHATELY, AND MILL A Dissertation by DAVID CHARLES GORE Submitted to Texas...

  17. Dust size distribution and concentrations with cottonseed oil mills

    E-Print Network [OSTI]

    Wiederhold, Lee Roy

    1976-01-01T23:59:59.000Z

    DUST SIZE DISTRIBUTION AND CONCENTRATIONS WITHIN COTTONSEED OIL MILLS A Thesis by LEE ROY WIEDERHOLD, JR. / I Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1976 Major Subject: Aqricultural Engineering DUST SIZE DISTRIBUTION AND CONCENTRATIONS WITHIN COTTONSEED OIL MILLS A Thesis by LEE ROY WIEDERHOLD, JR. Approved as to style and content by: Chairman of Committee ~Hd fdp t Member ber...

  18. Completion Report for Well ER-EC-11 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-12-01T23:59:59.000Z

    Well ER-EC-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2009 as part of the Pahute Mesa Phase II drilling program. A main objective was to investigate radionuclide migration down-gradient from Well Cluster ER-20-5 and Well ER-20-7 and across the northern Timber Mountain moat structural zone into the area referred to as the Bench, between Pahute Mesa and the Timber Mountain caldera complex. A secondary purpose of the well was to provide detailed hydrogeologic information for the shallow- to intermediate-depth Tertiary volcanic section in the Bench area. This well also provided detailed hydrogeologic information in the Tertiary volcanic section to reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model (Bechtel Nevada, 2002). The main 52.1-centimeter hole was drilled to a depth of 507.5 meters and then opened to a diameter of 66.0 centimeters. It was cased with 50.8-centimeter casing to 504.9 meters. The hole diameter was then decreased to 47.0 centimeters, and drilling continued to a total depth of 979.3 meters. It was then cased with 34.0-centimeter casing set at 965.5 meters. The hole diameter was then decreased to 31.1 centimeters and the borehole was drilled to a total depth of 1,264.3 meters. The completion casing string, set to the depth of 1,262.5 meters, consists of 19.4-centimeter stainless-steel casing hanging from 19.4-centimeter carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Tiva Canyon and Topopah Spring aquifers. Four piezometer strings were installed in Well ER-EC-11. A string of carbon-steel 6.0-centimeter tubing with one slotted interval was inserted outside the 50.8-centimeter casing, within the 66.0-centimeter borehole for access to the Timber Mountain aquifer, and landed at 475.3 meters. A second string of 6.0-centimeter tubing with one slotted interval was inserted outside the 34.0-centimeter casing, within the 47.0-centimeter borehole for access to the Benham aquifer, and landed at 911.7 meters. A third piezometer string consists of 7.3-centimeter stainless-steel tubing that hangs from 6.0-centimeter carbon-steel tubing via a crossover sub. This string was landed at 1,029.5 meters to monitor the Tiva Canyon aquifer. The deepest string of 7.3-centimeter tubing was landed at 1,247.8 meters to monitor the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, 67 percussion gun and rotary sidewall core samples, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 1,264.3 meters of Tertiary volcanic rock, including three saturated welded-tuff aquifers and one saturated lava-flow aquifer. A water level was measured in the Timber Mountain aquifer at 449.6 meters, during open-hole geophysical logging on September 20, 2009. The fluid level measured after the total depth was reached and the upper aquifer was cased off was 450.0 meters when measured in the open borehole on October 17, 2009. Measurements on samples taken from the undeveloped well indicated that tritium levels averaging approximately 12,430 picocuries per liter (less than Safe Drinking Water Act levels) were encountered within the Benham aquifer. Tritium was below the minimum detectable activity concentration for samples collected from the Tiva Canyon aquifer and the Topopah Spring aquifer.

  19. Replacing chemicals in recycle mills with mechanical alternatives

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2002-07-01T23:59:59.000Z

    A high-intensity spark fired underwater decomposes a small amount of the water into hydroxyl radicals, which are strong oxidants. These are able to oxidize contaminants such as glue and wood pitch that enter paper recycling mills as a part of the incoming furnish and cost the industry several hundred million dollars. The sparking technique is safe, inexpensive, and is capable of treating large volumes of water, which makes it attractive for mill applications. Several mill trials were run. Sparking caused a decrease in the tack of the deposits in one case. Lower bleach use occurred in two other mills; sparking reduced the degree of ink reattachment to fiber. The payback for either application is attractive. Sparking induced deposition of contaminants in another mill, which is a positive development--if it can be controlled. The technique is also able to degas water and to oxidize odor-causing sulfur compounds. Although one unit has been purchased by a mill, second-order effects caused by the technology needs to be defined further before the technology can be broadly applied.

  20. LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU, UTAH / ARIZONA BORDER)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU that are undercut by wind abrasion. In the photos above and to the left, note the microbially darkened rock surface Bedforms: Direct Evidence for Eolian Abrasion Arizona Utah wind wind wind wind wind wind The Wave "The Wave

  1. This article was downloaded by: [University of Utah], [Sarah Bush] On: 31 January 2012, At: 12:16

    E-Print Network [OSTI]

    Clayton, Dale H.

    This article was downloaded by: [University of Utah], [Sarah Bush] On: 31 January 2012, At: 12://www.tandfonline.com/loi/taca20 New host and locality records for Ixodes simplex Neumann and Ixodes vespertilionis Koch (Acari Available online: 31 Jan 2012 To cite this article: Sarah E. Bush & Richard G. Robbins (2012): New host

  2. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    SciTech Connect (OSTI)

    Not Available

    1981-10-15T23:59:59.000Z

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  3. Cash Management Pool Guidelines The Cash Management Pool was established by the University of Utah as a pooled fund for

    E-Print Network [OSTI]

    by the University of Utah as a pooled fund for the investment of State and other Public Funds. State and other Public Funds are funds that are derived from the operating revenue of the University, such as tuition with the University Investment Policies (Policy 3-050). B. Eligible Investments State and other Public Funds shall

  4. How to set up WebAssign The class key for this course is utah 6162 8688

    E-Print Network [OSTI]

    Singh, Anurag

    How to set up WebAssign The class key for this course is utah 6162 8688 What to purchase: The text. Regardless of whether you do this, you must purchase Enhanced WebAssign (EWA), which will be used for homework, and additionally gives you many resources alongside the book. The textbook/WebAssign can

  5. Measurements of uranium mill tailings consolidation characteristics

    SciTech Connect (OSTI)

    Fayer, M J

    1985-02-01T23:59:59.000Z

    A series of experiments were conducted on uranium mill tailings from the tailings pile in Grand Junction, Colorado, to determine their consolidation characteristics. Three materials (sand, sand/slimes mix, slimes) were loaded under saturated conditions to determine their saturated consolidated behavior. During a separate experiment, samples of the slimes material were kept under a constant load while the pore pressure was increased to determine the partially saturated consolidation behavior. Results of the saturated tests compared well with published data. Sand consolidated the least, while slimes consolidated the most. As each material consolidated, the measured hydraulic conductivity decreased in a linear fashion with respect to the void ratio. Partially saturated experiments with the slimes indicated that there was little consolidation as the pore pressure was increased progressively above 7 kPa. The small amount of consolidation that did occur was only a fraction of the amount of saturated consolidation. Preliminary measurements between pore pressures of 0 and 7 kPa indicated that measurable consolidation could occur in this range of pore pressure, but only if there was no load. 13 references, 13 figures.

  6. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  7. Unclassified Source Term and Radionuclide Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    McCord, John

    2004-08-01T23:59:59.000Z

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Central and Western Pahute Mesa: Corrective Action Units (CAUs) 101 and 102.

  8. Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring

    SciTech Connect (OSTI)

    Arabasz, W J; Pechmann, J C

    2001-03-01T23:59:59.000Z

    Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

  9. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  10. Integrating Facies Analysis, Terrestrial Sequence Stratigraphy, and the First Detrital Zircon (U-Pb) Ages of the Twist Gulch Formation, Utah, USA: Constraining Paleogeography and

    E-Print Network [OSTI]

    Seamons, Kent E.

    Formation of central Utah was deposited in the active Arapien sub-basin of the Western Cordillera foreland of alluvial deposits, while in Salina Canyon (SC) the Twist Gulch Formation is comprised of a mix of alluvial

  11. De vous moi 119 lemangeur-ocha.com -Bessis, Sophie (sous la direction de). Mille et une bouches. Cuisines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    De vous ŕ moi 119 lemangeur-ocha.com - Bessis, Sophie (sous la direction de). Mille et une bouches dic-, #12;120 Mille et une bouches lemangeur-ocha.com - Bessis, Sophie (sous la direction de). Mille

  12. SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

    2003-12-01T23:59:59.000Z

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  13. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15T23:59:59.000Z

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  14. Nitrogen addition to bcc-Fe by attrition milling

    SciTech Connect (OSTI)

    Rawers, J.; Krabbe, R.; Cook, D.

    1999-01-01T23:59:59.000Z

    To enhance the nitrogen solubility in bcc-Fe, iron powder and blends of iron and iron nitride powders were attrition-milled in nitrogen gas. X-ray diffraction and Moessbauer spectroscopy were used to characterize the milled microstructure and to characterize the nitrogen distribution. After processing for 150 hours, the infused nitrogen was determined to be interstitial (locally deforming the bcc-Fe lattice to a bct-Fe lattice) and associated with the outer layer of the bcc-Fe nanograin. Nitrogen stabilized the milled grain structure but at elevated temperatures rapidly came to thermodynamical equilibrium, transforming from bcc-Fe(N) to bcc-Fe and Fe{sub 4}N.

  15. Stabilization and restoration of an uranium mill site in Spain

    SciTech Connect (OSTI)

    Santiago, J.L.; Estevez, C.P. [ENRESA, Madrid (Spain)

    1995-12-31T23:59:59.000Z

    In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill tailings site has been remediated in place. Mill equipment, buildings and process facilities have been dismantled and demolished and 06q the resulting metal wastes and debris have been placed in the tailings pile. The tailings mass has been reshaped by flattening the sideslopes to improve stability and a cover system has been placed over the pile. Remedial action works started in February 1991 and were completed by April 1994. This paper describes the remediation works for the closure of the Andujar mill site and in particular discusses the approaches used for the dismantling and demolition of the processing facilities and the stabilization of the tailings pile.

  16. Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-27T23:59:59.000Z

    Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

  17. Cosmological Models with Nonlinearity of Scalar Field Induced by Yang-Mills Field

    E-Print Network [OSTI]

    V. K. Shchigolev; M. V. Shchigolev

    2000-11-24T23:59:59.000Z

    The exact solutions of Einstein - Yang - Mills and interacting with SO (3) - Yang-Mills field nonlinear scalar field equations in a class of spatially homogeneous cosmological Friedmann models are obtained.

  18. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  19. Advanced Powerhouse Controls Save Pulp Mill $500 in Purchased Energy in First Month

    E-Print Network [OSTI]

    Morrison, R.; Hilder, S.

    2004-01-01T23:59:59.000Z

    This case study describes the application of advanced regulatory and supervisory controls to powerhouse operations at a large pulp mill in central British Columbia. Substantial reductions in mill operating costs were achieved by actively managing...

  20. Utah Economic P r e P a r e d b y t h e U t a h e c o n o m i c c o U n c i l

    E-Print Network [OSTI]

    Tipple, Brett

    Utah Economic Outlook P r e P a r e d b y t h e U t a h e c o n o m i c c o U n c i l 2014;#12;BUREAU OF ECONOMIC AND BUSINESS RESEARCH 2014 Utah Economic Outlook i For the past three years, the Utah Economic Outlook has served as a companion piece to the Economic Report to the Governor that has been

  1. Yang-Mills Radiation in Ultra-relativistic Nuclear Collisions

    E-Print Network [OSTI]

    Miklos Gyulassy; Larry McLerran

    1997-04-16T23:59:59.000Z

    The classical Yang-Mills radiation computed in the McLerran-Venugopalan model is shown to be equivalent to the gluon bremsstrahlung distribution to lowest order in pQCD. The classical distribution is also shown to match smoothly onto the conventional pQCD mini-jet distribution at a scale characteristic of the initial parton transverse density of the system. The atomic number and energy dependence of that scale is computed from available structure function information. The limits of applicability of the classical Yang-Mills description of nuclear collisions at RHIC and LHC energies are discussed.

  2. Advanced Modeling and Materials in Kraft Pulp Mills

    SciTech Connect (OSTI)

    Keiser, J.R.; Gorog, J.P.

    2002-05-15T23:59:59.000Z

    This CRADA provided technical support to the Weyerhaeuser Company on a number of issues related to the performance and/or selection of materials at a number of locations in a pulp and paper mill. The studies related primarily to components for black liquor recovery boilers, but some effort was directed toward black liquor gasifiers and rolls for paper machines. The purpose of this CRADA was to assist Weyerhaeuser in the evaluation of materials exposed in various paper mill environments and to provide direction in the selection of alternate materials, when appropriate.

  3. 5D Yang-Mills instantons from ABJM Monopoles

    E-Print Network [OSTI]

    N. Lambert; H. Nastase; C. Papageorgakis

    2012-02-08T23:59:59.000Z

    In the presence of a background supergravity flux, N M2-branes will expand via the Myers effect into M5-branes wrapped on a fuzzy three-sphere. In previous work the fluctuations of the M2-branes were shown to be described by the five-dimensional Yang-Mills gauge theory associated to D4-branes. We show that the ABJM prescription for eleven-dimensional momentum in terms of magnetic flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory on the sphere, giving an M-theory interpretation for these instantons.

  4. Uranium Mill Tailings Radiation Control Act of 1978

    SciTech Connect (OSTI)

    Magee, J.

    1980-01-01T23:59:59.000Z

    The long-term environmental effects of the Uranium Mill Tailings Radiation Control Act of 1978 address the public health hazards of radioactive wastes and recognize the significance of this issue to public acceptance of nuclear energy. Title I of the Act deals with stabilizing and controlling mill tailings at inactive sites and classifies the sites by priority. It represents a major Federal commitment. Title II changes and strengthens Nuclear Regulatory Commission authority, but it will have little overall impact. It is not possible to assess the Act's effect because there is no way to know if current technology will be adequate for the length of time required. 76 references. (DCK)

  5. Equivariance on Discrete Space and Yang-Mills-Higgs Model

    E-Print Network [OSTI]

    Ikemori, Hitoshi; Matsui, Yoshimitsu; Otsu, Hideharu; Sato, Toshiro

    2015-01-01T23:59:59.000Z

    We introduce the basic equivariant quantity $Q$ in the gauge theory on the noncommutative descrete $Z_{2}$ space, which plays an important role for the equivariant dimensional reduction. If the gauge configuration of the ground state on the extra dimensional space is described by the equivariant $Q$, then the extra dimensional space is invisible. Especially, using the equivariance principle, we show that the Yang-Mills theory on $R^{2}\\times Z_{2}$ space is equivalent to the Yang-Mills-Higgs model on $R^{2}$ space. It can be said that this model is the simplest model of this type.

  6. Equivariance on Discrete Space and Yang-Mills-Higgs Model

    E-Print Network [OSTI]

    Hitoshi Ikemori; Shinsaku Kitakado; Yoshimitsu Matsui; Hideharu Otsu; Toshiro Sato

    2015-04-07T23:59:59.000Z

    We introduce the basic equivariant quantity $Q$ in the gauge theory on the noncommutative descrete $Z_{2}$ space, which plays an important role for the equivariant dimensional reduction. If the gauge configuration of the ground state on the extra dimensional space is described by the equivariant $Q$, then the extra dimensional space is invisible. Especially, using the equivariance principle, we show that the Yang-Mills theory on $R^{2}\\times Z_{2}$ space is equivalent to the Yang-Mills-Higgs model on $R^{2}$ space. It can be said that this model is the simplest model of this type.

  7. Fermentation and chemical treatment of pulp and paper mill sludge

    DOE Patents [OSTI]

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02T23:59:59.000Z

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  8. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The purpose, scope, history, requirements, and management organization of the UMTRA Program are summarized in the Introduction. The remainder of the report describes progress made during the past year (F 1980) and discusses future plants and activities. Early emphasis has been on the four highest-priority sites because of their proximity to population centers. These sites are: (1) Canonsburg, Pennsylvania; (2) Salt Lake City, Utah; (3) Durango, Colorado; and (4) Shiprock, New Mexico (Navajo Reservation). To date, twenty-five vicinity properties near the Canonsburg site and two such properties near the Salt Lake City site have been designated for remedial action. A research effort was undertaken at a major vicinity property, the Mountain States Supply Company in Salt Lake City, to study the effects of heating-and-ventilating-system modification on indoor radon-daughter concentrations. A cooperative agreement was executed between DOE and the Commonwealth of Pennsylvania. A similar agreement with the State of Utah is expected to be executed in early FY 1981. Further, it is expected that additional cooperative agreements will be negotiated during FY 1981 with the States of Colorado and Wyoming and the Navajo Nation. It is expected that the processing site at Canonsburg, PA (the Canonsburg Industrial Park) will be acquired during FY 1981. Draft Environmental Impact Statements for the four highest-priority sites will be completed during FY 1981.

  9. The effect of temperature and time on the mechanical properties of lightly milled rice

    E-Print Network [OSTI]

    Maa, Tsorng-Jong

    1974-01-01T23:59:59.000Z

    MATERIALS AND EQUIPMENT Test Apparatus Dynamic Relative Humidity System PROCEDURE Milling and Equilibrating the R1ce Grain Compression Experiments Tension Experiments 10 10 12 14 15 16 Determination of Strength during Noisture Adsorption... TENSION LOADING OF BLUEBELLE LIGHTLY MILLED RICE 2 RESULTS FROM COMPRESSION LOADING OF BLUEBELLE LIGHTLY MILLED RICE 3 RESULTS FROM LOADING OF BLUEBELLE LIGHTLY MILLED RICE IN DIFFERENT POSITIONS 27 28 47 LIST OF FIGURES Figure Page Arrangement...

  10. Earthquake hazards in the Intermountain U.S.: Issues relevant to uranium mill tailings disposal

    E-Print Network [OSTI]

    Ivan G. Wong; Susan S. Olig; Bruce W. Hassinger; Richard E. Blubaugh

    . Consequently, the seismic safety of U.S. uranium mill tailings sites, which are located almost exclusively in

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS

    SciTech Connect (OSTI)

    Rogers, B.; Loveland, K.

    2003-02-27T23:59:59.000Z

    Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

  14. Seismic Moment Tensor Report for the 06 Aug 2007, M3.9 Seismic Event in Central Utah

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Walter, W R; Hellweg, M; Urhammer, R

    2007-08-15T23:59:59.000Z

    We have performed a complete moment tensor analysis (Minson and Dreger, 2007) of the seismic event, which occurred on Monday August 6, 2007 at 08:48:40 UTC, 21 km from Mount Pleasant, Utah. The purpose of this report is to present our scientific results, making them available to other researchers working on seismic source determination problems, and source type identification. In our analysis we used complete, three-component seismic records recorded by stations operated by the USGS, the University of Utah and EarthScope. The results of our analysis show that most of the seismic wave energy is consistent with an underground collapse, however the cause of the mine collapse is still unknown.

  15. Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites AKASH milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare out in a high-energy ball mill, and it involves repeated deformation, cold-welding, fractur- ing

  16. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON modeling of gasifier/gas turbine pulp-mill cogeneration systemsusing gasifier designs under commercial gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a net

  17. Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont

    E-Print Network [OSTI]

    Fleskes, Joe

    Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

  18. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect (OSTI)

    Blackett, R.E.

    1994-07-01T23:59:59.000Z

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  19. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    SciTech Connect (OSTI)

    Klauk, R.H.; Budding, K.E.

    1984-07-01T23:59:59.000Z

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  20. Triple tangent flank milling of ruled surfaces Cornelia Menzel1

    E-Print Network [OSTI]

    Waterloo, University of

    . The resulting surface has 88% less under cutting than the method of Bedi et al. q 2004 Elsevier Ltd. All rights reserved. Keywords: Five-axis machining; Flank milling; Machine simulation; Tool path generation 1 for applications like impellers and turbine blades. Since for these parts, performance is particularly dependent

  1. Detection of instabilities and transition in milling operation using wavelets

    E-Print Network [OSTI]

    Khurjekar, Parag Padmakar

    2000-01-01T23:59:59.000Z

    and undesirable due to their detrimental effects. Chatter is one such type of instability and is characterized by the violent relative vibration between the workpiece and tool. The objective of this research is to detect the onset of instabilities in milling...

  2. Energy Change Institute Cockcroft Building 58, Mills Road

    E-Print Network [OSTI]

    Energy Change Institute Cockcroft Building 58, Mills Road Canberra ACT 0200 Australia T 02 6125 at the ANU covers a complete spectrum ­ from energy science, engineering, efficiency and technology 4702 (direct) T 02 6125 0633 (administrator) F 02 6125 2452 E energy.change@anu.edu.au W www.energy

  3. Hamilton approach to Yang-Mills theory in Coulomb gauge

    E-Print Network [OSTI]

    Reinhardt, H; Epple, D; Feuchter, C

    2007-01-01T23:59:59.000Z

    The vacuum wave functional of Coulomb gauge Yang-Mills theory is determined within the variational principle and used to calculate various Green functions and observables. The results show that heavy quarks are confined by a linearly rising potential and gluons cannot propagate over large distances. The 't Hooft loop shows a perimeter law and thus also indicates confinement.

  4. Mills Memorial Library Directory http://library.mcmaster.ca

    E-Print Network [OSTI]

    Thompson, Michael

    Mills Memorial Library Directory http://library.mcmaster.ca 2011 Lower Level Archives & Research Collections Bertrand Russell Archives Preservation 1st Floor Library Services (Circulation, Reserve, Interlibrary Loan, Research Help) Bertrand Russell Research Centre L111 Connections Centre L113 Digital Lab L

  5. Mills Memorial Library Directory http://library.mcmaster.ca

    E-Print Network [OSTI]

    Thompson, Michael

    Mills Memorial Library Directory http://library.mcmaster.ca 2010 Lower Level Archives & Research Collections Bertrand Russell Archives Preservation 1st Floor Library Services (Circulation, Reserve, Interlibrary Loan, Research Help) Bertrand Russell Research Centre L111 Connections Centre L113 Digital Lab L

  6. Einstein-Yang-Mills theory : I. Asymptotic symmetries

    E-Print Network [OSTI]

    Glenn Barnich; Pierre-Henry Lambert

    2013-10-10T23:59:59.000Z

    Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four dimensional asymptotically flat case.

  7. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  8. Lattice Gauge Fields and Discrete Noncommutative Yang-Mills Theory

    E-Print Network [OSTI]

    J. Ambjorn; Y. M. Makeenko; J. Nishimura; R. J. Szabo

    2000-04-21T23:59:59.000Z

    We present a lattice formulation of noncommutative Yang-Mills theory in arbitrary even dimensionality. The UV/IR mixing characteristic of noncommutative field theories is demonstrated at a completely nonperturbative level. We prove a discrete Morita equivalence between ordinary Yang-Mills theory with multi-valued gauge fields and noncommutative Yang-Mills theory with periodic gauge fields. Using this equivalence, we show that generic noncommutative gauge theories in the continuum can be regularized nonperturbatively by means of {\\it ordinary} lattice gauge theory with 't~Hooft flux. In the case of irrational noncommutativity parameters, the rank of the gauge group of the commutative lattice theory must be sent to infinity in the continuum limit. As a special case, the construction includes the recent description of noncommutative Yang-Mills theories using twisted large $N$ reduced models. We study the coupling of noncommutative gauge fields to matter fields in the fundamental representation of the gauge group using the lattice formalism. The large mass expansion is used to describe the physical meaning of Wilson loops in noncommutative gauge theories. We also demonstrate Morita equivalence in the presence of fundamental matter fields and use this property to comment on the calculation of the beta-function in noncommutative quantum electrodynamics.

  9. 618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001 Robust Stabilization of a Nonlinear Cement Mill Model

    E-Print Network [OSTI]

    Bastin, Georges

    of a Nonlinear Cement Mill Model F. Grognard, F. Jadot, L. Magni, G. Bastin, R. Sepulchre, and V. Wertz Abstract--Plugging is well known to be a major cause of instability in in- dustrial cement mills. A simple nonlinear model- troller can be designed in order to fully prevent the mill from plugging. Index Terms--Cement mill

  10. University of Utah ASC site review. August 24-25, 2006

    SciTech Connect (OSTI)

    Hertel, Eugene S., Jr. (.,; .)

    2007-02-01T23:59:59.000Z

    This report is a review of progress made by the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) at the University of Utah, during the ninth year (Fiscal 2006) of its existence as an activity funded by the Department of Energy's Advanced Simulation and Computing Program (ASC). The ten-member Review Team composed of the TST and AST spent two days (August 24-25, 2006) at the University, reviewing formal presentations and demonstrations by the C-SAFE researchers and conferring privately. The Review Team found that the C-SAFE project administrators and staff had prepared well for the review. C-SAFE management and staff openly shared extensive answers to unexpected questions and the advance materials were well prepared and very informative. We believe that the time devoted to the review was used effectively and hope that the recommendations included in this 2006 report will provide helpful guidance to C-SAFE personnel and ASC managers.

  11. Department of Geology and Geophysics Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102 (801) 581-7162 FAX (801) 581-7065

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics ­ Frederick A. Sutton Building 115 South 1460 East, Room 383/2012 Deed of Gift to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Filled out and sign

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  13. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  14. Global symmetries of Yang-Mills squared in various dimensions

    E-Print Network [OSTI]

    Anastasiou, A; Hughes, M J; Nagy, S

    2015-01-01T23:59:59.000Z

    Tensoring two on-shell super Yang-Mills multiplets in dimensions $D\\leq 10$ yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) $\\mathbb{D}$ with each dimension $3\\leq D\\leq 10$ we obtain formulae for the algebras $\\mathfrak{g}$ and $\\mathfrak{h}$ of the U-duality group $G$ and its maximal compact subgroup $H$, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.

  15. Statistical mechanics of Yang-Mills classical mechanics

    SciTech Connect (OSTI)

    Bannur, Vishnu M. [Department of Physics, University of Calicut, Kerala-673 635 (India)

    2005-08-01T23:59:59.000Z

    Statistical mechanics (SM) of Yang-Mills classical mechanics is studied by using a toy model that resembles chaotic quartic oscillators. This nonlinear system attains the thermodynamic equilibrium not by collisions, which is generally assumed in SM, but by chaotic dynamics. This is a new mechanism of thermalization that may be relevent to the quark-gluon plasma (QGP) formation in relativistic heavy-ion collisions because the interactions governing QGP involve quantum chromodynamics (QCD), which is a Yang-Mills theory [SU(3)]. The thermalization time is estimated from the Lyapunov exponent. The Lyapunov exponent is evaluated using the recently developed monodromy matrix method. We also discuss the physical meaning of thermalization and SM in this system of few degrees in terms of chromo-electric and chromomagnetic fields. One of the consequence of thermalization, such as equipartition of energy and dynamical temperature, is also numerically verified.

  16. Biogeochemistry of uranium mill wastes program overview and conclusions

    SciTech Connect (OSTI)

    Dreesen, D.R.

    1981-05-01T23:59:59.000Z

    The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of /sup 222/Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes.

  17. Vacuum Structure of Yang-Mills Theory in Curved Spacetime

    E-Print Network [OSTI]

    Samuel J. Collopy

    2009-08-31T23:59:59.000Z

    The stability of the chromomagnetic Savvidy vacuum in QCD under the influence of positive Riemannian curvature is studied. The heat traces of the operators relevant to SO(2) gauge-invariant Yang-Mills fields and Faddeev-Popov ghosts are calculated on product spaces of S^2 and S^1 \\times S^1. It is shown that the chromomagnetic vacuum with covariantly constant chromomagnetic field is stable in a certain set of radii and field strengths.

  18. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  19. Influence of attrition milling on nano-grain boundaries

    SciTech Connect (OSTI)

    Rawers, J.; Cook, D.

    1999-03-01T23:59:59.000Z

    Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which, as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.

  20. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect (OSTI)

    NONE

    1981-05-01T23:59:59.000Z

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  1. EIS-0355: DOE Notice of Availability of the Final Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill...

  2. EIS-0355: EPA Notice of Availability of the Final Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill...

  3. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30T23:59:59.000Z

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

  4. EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, being prepared jointly by DOE’s Western Area Power Administration and the Department of the Interior’s Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project. Additional information is available at http://www.blm.gov/wy/st/en/info/NEPA/documents/hdd/transwest.html.

  5. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17T23:59:59.000Z

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  6. An evaluation of the potential end uses of a Utah tar sand bitumen. [Tar sand distillate

    SciTech Connect (OSTI)

    Thomas, K.P.; Harnsberger, P.M.; Guffey, F.D.

    1986-09-01T23:59:59.000Z

    To date the commercial application of tar sand deposits in the United States has been limited to their use as paving materials for county roads, parking lots, and driveways because the material, as obtained from the quarries, does not meet federal highway specifications. The bitumen in these deposits has also been the subject of upgrading and refining studies to produce transportation fuels, but the results have not been encouraging from an economic standpoint. The conversion of tar sand bitumen to transportation fuels cannot compete with crude oil refining. The purposes of this study were two-fold. The first was to produce vacuum distillation residues and determine if their properties met ASTM asphalt specifications. The second was to determine if the distillates could serve as potential feedstocks for the production of aviation turbine fuels. The bitumen used for this study was the oil produced during an in situ steamflood project at the Northwest Asphalt Ridge (Utah) tar sand deposit. Two distillation residues were produced, one at +316/sup 0/C and one at +399/sup 0/C. However, only the lower boiling residue met ASTM specifications, in this case as an AC-30 asphalt. The original oil sample met specifications as an AC-5 asphalt. These residue samples showed some unique properties in the area of aging; however, these properties need to be investigated further to determine the implications. It was also suggested that the low aging indexes and high flow properties of the asphalts may be beneficial for pavements that require good low-temperature performance. Two distillate samples were produced, one at IBP-316/sup 0/C and one at IBP-399/sup 0/C. The chemical and physical properties of these samples were determined, and it was concluded that both samples appear to be potential feedstocks for the production of aviation turbine fuels. However, hydrogenation studies need to be conducted and the properties of the finished fuels determined to verify the prediction. 14 refs., 12 tabs.

  7. Drunkard`s wash project: Coalbed methane production from Ferron coals in east-central Utah

    SciTech Connect (OSTI)

    Lemarre, R.A. [Texaco Exploration and Production, Inc., Denver, CO (United States); Burns, T.D. [River Gas Corporation, Northport, AL (United States)

    1996-12-31T23:59:59.000Z

    The Drunkard`s Wash Project produces dry, coalbed methane gas from coals within the Ferron Sandstone Member of the Mancos Shale. The project covers 120,000 acres on the western flank of the San Rafael Uplift in east-central Utah. Gas was first produced into the sales line in January 1993. The field is being developed on 160 acre spacing with 73 wells currently producing 32.2 MMCFD for an average of 437 MCFD/well. Thirty three of those wells have been producing for 32 months and now average 637 MCFD/well. Most of the wells show a classic coalbed methane negative decline curve with increasing gas rates as the reservoir pressure declines due to production of water. Daily water production is 14,500 BPD, for an average of 199 BWPD/well. Total coal thickness ranges from 7 ft. to 48 ft., with an average of 24 ft. The coals occur in 3 to 6 seams at depths of 1350 to 2450 ft. The coal rank is high volatile A&B bituminous. We can not yet see a correlation between total coal thickness and current production. All wells are cased and hydraulically stimulated and most require pumping units to handle the large volumes of water. However, 22 wells do not require pumps and flow unassisted to the surface. The structure consists of monoclinal westward dip. A thin tonstein layer in the bottom coal seam serves as an excellent datum for mapping. Enhanced production is encountered along a southwest-plunging nose that probably formed additional fracture permeability within the coals. Northeast-trending reverse faults with small displacement appear to compartmentalize the reservoir. The Ferron coals were deposited in a river-dominated deltaic system that prograded to the east and southeast during Turonian-Coniacian (Upper Cretaceous) time. The Ferron Sandstone Member represents an eastward-thinning elastic wedge that was deposited during regression of the Western Interior Cretaceous seaway.

  8. Subsidence and infilling patterns during deposition of Upper Cretaceous Mancos Shale, northwest Colorado and northeast Utah

    SciTech Connect (OSTI)

    Johnson, R.C. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    The Upper Cretaceous Mancos Shale of northwest Colorado and northeast Utah was deposited during the Coniacian through the late Campanian in an offshore environment within a broad U-shaped embayment along the western margin of the Cretaceous epeiric seaway. A detailed study of the Mancos using geophysical logs and surface observations reveals several major and minor shifts in source direction. The Coniacian and Santonian part of the Mancos consists of overlapping lobate shale wedges that generally thin and grade to the east and southeast into calcareous shales equivalent to the Niobrara Formation. The shoreline during this period was about 100 to 150 mi west and northwest of the study area. A southern source was a major influence during the early Campanian, when silty and sandy shale sediments, which formed the highly gas-productive Mancos B interval prograded to the north across the study area. The Mancos B interval contains well-developed clinoforms having 400-600 ft of relief, and this unit may represent a prograding shelf edge contemporaneous with the Point Lookout regression occurring about 100 mi to the south. The Mancos B ends abruptly in the northwest part of the study area against a nonprograding, northwest-thickening shale buildup, which may represent the stationary shelf edge along the northwest margin of the embayment. The sandiest part of the Mancos B occurs adjacent to this shale buildup. The supply of southerly derived sediment decreased near the end of the early Campanian, and the younger Mancos section was apparently derived largely from the northwest. This source area shift corresponds roughly to the onset of the Iles regression along the northwest margin of the embayment and the onset of the Lewis transgression along the southwest margin.

  9. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01T23:59:59.000Z

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  10. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01T23:59:59.000Z

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  11. Energy Analysis of a Kraft Pulp Mill: Potential for Energy Efficiency and Advanced Biomass Cogeneration

    E-Print Network [OSTI]

    Subbiah, A.; Nilsson, L. J.; Larson, E. D.

    to be energy self-sufficent (with excess energy as a potentially important by-product for export) requires , Permanent address: Departmenl of Environmental and Energy Systems Studies, Lund University, Lund, Sweden. " To whom all correspondence should... identified significant savings potentials. For example, one mill in Sweden uses 13-14 MMBtu per ADST of steam and has a process (;onfiguration similar to the mill studied here (23). Despite the already low steam consumption at the Swedish mill, a pin...

  12. Low energy milling method, low crystallinity alloy, and negative electrode composition

    DOE Patents [OSTI]

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16T23:59:59.000Z

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  13. Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India

    E-Print Network [OSTI]

    Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

    2005-01-01T23:59:59.000Z

    and  the  high  price  of  biomass, paper mills are paying only as long as the price of biomass remains  high.    A 

  14. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect (OSTI)

    Hussain, Zuhailawati; Nur Hawadah, M. S. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-06T23:59:59.000Z

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  15. amorphous ball-milled powders: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , and thermal properties of Nafion powders prepared by high-energy ball milling of pellets is given. Nafion powders prepared in this manner exhibit thermal behavior similar...

  16. Prediction of Burr Formation during Face Milling Using an Artificial Neural Network with Optimized Cutting Conditions

    E-Print Network [OSTI]

    Lee, S H; Dornfeld, D A

    2007-01-01T23:59:59.000Z

    Appli- cation of artificial neural network in laser weldingwith minimal heights. Artificial neural network and non-milling using an artificial neural network with optimized

  17. armoring uranium-mill tailings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 15, 1989). Current Standards 18 URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION CiteSeer Summary: Sequoyah Fuels Corporation (SFC) describes previous...

  18. Longest-Serving Active Paper Mill in the Western United States...

    Broader source: Energy.gov (indexed) [DOE]

    MMBtu and 379,000 annually after receiving a DOE energy assessment and implementing steam system improvement recommendations. Longest-Serving Active Paper Mill in the Western...

  19. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    SciTech Connect (OSTI)

    Brian A. Ebel; John R. Nimmo

    2009-09-11T23:59:59.000Z

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

  20. Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

  1. Uranium mine and mill tailings - Liabilities in the European Union

    SciTech Connect (OSTI)

    Hilden, Wolfgang; Murphy, Simon [European Commission, Maison de l'Europe, L-2920 (Luxembourg); Vrijen, Jan [KARUWEEG BV, Leliendaalsedreef 9, 4333 JZ Middelburg (Netherlands)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Uranium mining and milling has taken place on large scale in the Member States of the European Union (EU) for some 60 years. Although, compared to mining, milling activities are normally concentrated in fewer locations, this can still result in a relatively large number of disposal sites for the tailings, compared to other radioactive wastes. In addition these sites are also quite large, in terms of both volume and surface area. Coupled with the residual uranium in the tailings together with other radionuclides, heavy metals, chemicals etc this results in an environmental legacy continuing far into the future. Often during production no or little provision has been made for the closure, remediation and future supervision of such sites. In 1996 the European Commission funded an inventory of uranium mining and milling liabilities in nine Central and Eastern European Countries. Additionally, pilot projects were funded to carry out remediation activities at several sites. Almost ten years later the Commission has identified the need to address the situation of these large liabilities in all EU Member States and to assess the progress made in remediation of the sites, especially in view of the closure of almost all mining activities in Europe. The Commission study has identified the current tailings liabilities in Europe, their status, the future plans for these sites and the hazards that continue to be associated with them. It is clear that although considerable progress has been made in recent years, much work remains to be carried out in the areas of remediation, and ensuring the long-term safety of many of the identified objects. The paper presents the main findings of the study, as well as the challenges identified to ensure long-term safety of these wastes. (authors)

  2. Mine-to-Mill Optimization of Aggregate Production

    SciTech Connect (OSTI)

    Greg Adel; Toni Kojovic; Darren Thornton

    2006-06-01T23:59:59.000Z

    Mine-to-Mill optimization is a total systems approach to the reduction of energy and cost in mining and mineral processing operations. Developed at the Julius Krutschnitt Mineral Research Centre (JKMRC) in Queensland, Australia, the Mine-to-Mill approach attempts to minimize energy consumption through the optimization of all steps in the size reduction process. The approach involves sampling and modeling of blasting and processing, followed by computer simulation to optimize the operation and develop alternatives. The most promising alternatives are implemented, and sampling is conducted to quantify energy savings. In the current project, the primary objective is to adapt the JKMRC Mine-to-Mill technology to the aggregates industry. The second phase of this project is being carried out at the Pittsboro Quarry located south of Chapel Hill, North Carolina. This quarry is owned by 3M Corporation and operated by Luck Stone. Based on lessons learned from the first phase work, long-term monitoring ({approx} three months) of all quarry operations is being carried out to minimize the impact of geological changes during the mining process. To date, the blasting and processing operations have been audited and modeled, the long-term monitoring of current Luck Stone practice has been completed, and a modified blasting approach has been implemented based on the results of simulations using JKSimBlast and JKSimPlant. The modified blasting approach is expected to increase the primary throughput by 15% and the secondary throughput by approximately 6%, with an overall specific energy reduction of around 1%. Long-term monitoring is currently underway to evaluate the impact the modified blasting approach. This report summarizes the current status of work at the Pittsboro Quarry.

  3. Environmental, genetic, and ecophysiological variation of western and Utah juniper and their hybrids: A model system for vegetation response to climate change. Final report

    SciTech Connect (OSTI)

    Nowak, R.S. [Univ. of Nevada, Reno, NV (United States). Dept. of Environmental and Resource Sciences; Tausch, R.J. [Forest Service, Reno, NV (United States). Rocky Mountain Research Station

    1998-11-01T23:59:59.000Z

    This report focuses on the following two research projects relating to the biological effects of climate change: Hybridization and genetic diversity populations of Utah (Juniperus osteosperma) and western (Juniperus occidentalis) juniper: Evidence from nuclear ribosomal and chloroplast DNA; and Ecophysiological patterns of pinyon and juniper.

  4. (Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah

    E-Print Network [OSTI]

    58 GALLIUM (Data in kilograms of gallium content unless otherwise noted) Domestic Production 98% of domestic gallium consumption. About 67% of the gallium consumed was used in integrated and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah recovered

  5. (Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2005. One company in Utah

    E-Print Network [OSTI]

    66 GALLIUM (Data in kilograms of gallium content unless otherwise noted) Domestic Production, [(703) 648-7719, dkramer@usgs.gov, fax: (703) 648-7975] #12;67 GALLIUM Consolidation of companies and Use: No domestic primary gallium recovery was reported in 2005. One company in Utah recovered

  6. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01T23:59:59.000Z

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  7. TechnologyVenture Development | 105 Fort Douglas, Bldg. 604 | Salt Lake City, UT 84113 | (801) 587-3836 www.techventures.utah.edu

    E-Print Network [OSTI]

    Projects to identify the economic impact of the University's sponsored research spending on the Utah not capture the full economic contribution of the University's research efforts. Many technologies developed effects of sponsored research spending are considered, the total annual impact in FY08 was $525.3 million

  8. Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail-end of the weekend, I'm sitting down to write

    E-Print Network [OSTI]

    Bardsley, John

    Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail the week following UM's graduation, and reserving backcountry camp sites in Canyonlands' Salt Creek Canyon. The itinerary would take us from the south end of Salt Creek Canyon to the Needles' District visitor center

  9. ASDSO/FEMA Specialty Workshop on Risk Assessment for Dams. Invited paper in the Proceedings of the 2001 ASDSO 21st Annual Conference, Snowbird, Utah. September 2001.

    E-Print Network [OSTI]

    Bowles, David S.

    , as identified by workshop participants. A possible integrated approach to addressing both the technology and Environmental Engineering and Director, Institute for Dam Safety Risk Management, Utah Water Research Laboratory of decision that affects any aspect of dam safety, including monitoring and instrumentation, reservoir

  10. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  11. Dry milling properties of selected sorghum grain varieties

    E-Print Network [OSTI]

    Krishnaprasad, Mittur Nanjappa

    1970-01-01T23:59:59.000Z

    abrasive grinding, sifting and air flotation techniques. Milling was accomplished with a Strong ? Scott laboratory barley peatier which was modified by sub- stitut?ng a wire brush for the carborundum wheel. T??e wire brush was 6 inches in diameter and 2... seconds in the Strong-Scott barley pearler equipped wi. th a carborundum wheel. The hardness value was the per- cent of sample retained on a U. S. No. 12 Sieve. Test weight of all varieties was determined using standard equipment and procedures (24...

  12. Consistent perturbative light front formulation of Yang-Mills theories

    SciTech Connect (OSTI)

    Morara, M.; Soldati, R. [Dipartimento di Fisica 'A. Righi', Universita di Bologna (Italy); McCartor, G. [Department of Physics, SMU, Dallas, Texas (United States)

    1999-11-22T23:59:59.000Z

    It is shown how to obtain the consistent light front form quantization of a non-Abelian pure Yang-Mills theory (gluondynamics) in the framework of the standard perturbative approach. After a short review of the previous attempts in the light cone gauge A{sub -}=0, it is explained how the difficulties can be overcome after turning to the anti light cone gauge A{sub +}=0. In particular, the generating functional of the renormalized Green's functions turns out to be the same as in the conventional instant form approach, leading to the Mandelstam-Leibbrandt prescription for the free gluon propagator.

  13. Super-Yang-Mills theories on S4 x R

    E-Print Network [OSTI]

    Jungmin Kim; Seok Kim; Kimyeong Lee; Jaemo Park

    2014-07-04T23:59:59.000Z

    We construct super-Yang-Mills theories on S4 x R, S4 x S1 and S4 x interval with the field content of maximal SYM, coupled to boundary degrees in the last case. These theories provide building blocks of the `5d uplifts' of gauge theories on S4, obtained by compactifying the 6d (2,0) theory. We pay special attention to the N=2* theory on S4. We also explain how to construct maximal SYM on S5 x R, and clarify when SYM theories can be put on S^n x R.

  14. Fusion hierarchies for N = 4 superYang-Mills theory

    E-Print Network [OSTI]

    A. V. Belitsky

    2008-04-12T23:59:59.000Z

    We employ the analytic Bethe Anzats to construct eigenvalues of transfer matrices with finite-dimensional atypical representations in the auxiliary space for the putative long-range spin chain encoding anomalous dimensions of all composite single-trace gauge invariant operators of the maximally supersymmetric Yang-Mills theory. They obey an infinite fusion hierarchy which can be reduced to a finite set of integral relations for a minimal set of transfer matrices. This set is used to derive a finite systems of functional equations for eigenvalues of nested Baxter polynomials.

  15. Fate of Yang-Mills black hole in early Universe

    SciTech Connect (OSTI)

    Nakonieczny, Lukasz; Rogatko, Marek [Institute of Physics Maria Curie-Sklodowska University 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)

    2013-02-21T23:59:59.000Z

    According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.

  16. Classical paths for Yang-Mills field with fixed energy

    E-Print Network [OSTI]

    Michael Kuchiev

    2009-04-19T23:59:59.000Z

    A new classical solution for the SU(2) Yang-Mills theory, in which the Euclidean energy plays a role of a parameter is found. A correspondence between this solution and the known selfdual multi-instanton configuration, which has the topological charge N, is discussed, the number of parameters governing the new solution is found to be 8N+1. For negative energies the new solution is periodic in Euclidean time, for positive energies it exhibits the effect of localization, which states that the solution is completely described within a finite interval of time, for zero energy the found solution is reduced to a selfdual one.

  17. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  18. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  19. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  20. Uranium Mill Tailings Radiation Control Act Sites Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet Uranium Mill Tailings

  1. From: Mills, Pamela To: Congestion Study Comments Cc: Strack, Jan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2Jessi O"BannonMaryellenOctober 28,Mills,

  2. West Coast Paper Mills Ltd WCPML | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio:Wendel,Brooklyn, Illinois:Chatham,Paper Mills Ltd

  3. Cedar Mill, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy ResourcesMill, Oregon:

  4. Kemp Mill, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,KaolinKelleysKemp Mill, Maryland:

  5. Mills County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Name: MidwestTreatyMills County,

  6. Spring Mills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: EnergyIndiana: EnergyMills, Pennsylvania:

  7. Mille Lacs County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii:Mille Lacs County, Minnesota:

  8. DOE - Office of Legacy Management -- Monticello Mill Site - UT 03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CT 0-01 FUSRAPMonsanto ChemicalMill Site

  9. Lake Mills Light & Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng Wind PowerMills

  10. DOE - Office of Legacy Management -- Uravan Mill Site - CO 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntownUnitedCenter - UTUravan Mill

  11. Roger Mills County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:Rockwall County,Ridge,Roger Mills County,

  12. Gang Mills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills, New York: Energy

  13. Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt

    2012-04-15T23:59:59.000Z

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies â?? it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains â?? and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream is diverted for aquifer recharge or other uses. To better understand the rapidly evolving field of conjunctive use, this Topical Report begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. We contrast Utahâ??s approach with efforts undertaken in neighboring states and by the federal government. We then relate conjunctive use to the unconventional fuel industry and discuss how conjunctive use can help address pressing challenges. While conjunctive management cannot create water where none exists, it does hold promise to manage existing resources in a more efficient manner. Moreover, conjunctive management reflects an important trend in western water law that could provide benefit to those contemplating activities that require large-scale water development.

  14. Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases

    SciTech Connect (OSTI)

    Rawal, Dipendra Singh, E-mail: dsrawal15@gmail.com; Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India)

    2014-05-15T23:59:59.000Z

    GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2??m/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

  15. Radiological survey and evaluation of the fallout area from the Trinity test: Chupadera Mesa and White Sands Missile Range, New Mexico

    SciTech Connect (OSTI)

    Hansen, W.R.; Rodgers, J.C.

    1985-06-01T23:59:59.000Z

    Current radiological conditions were evaluated for the site of the first nuclear weapons test, the Trinity test, and the associated fallout zone. The test, located on White Sands Missile Range, was conducted as part of the research with nuclear materials for the World War II Manhattan Engineer District atomic bomb project. Some residual radioactivity attributable to the test was found in the soils of Ground Zero on White Sands Missile Range and the areas that received fallout from the test. The study considered relevant information including historical records, environmental data extending back to the 1940s, and new data acquired by field sampling and measurements. Potential exposures to radiation were evaluated for current land uses. Maximum estimated doses on Chupadera Mesa and other uncontrolled areas are less than 3% of the DOE Radiation Protection Standards (RPSs). Radiation exposures during visits to the US Army-controlled Ground Zero area are less than 1 mrem per annual visit or less than 0.2% of the RPS for a member of the public. Detailed data and interpretations are provided in appendixes. 14 figs., 45 tabs.

  16. Timber Mills Closures and Procurement Zones Characteristics: Is there a Link?

    E-Print Network [OSTI]

    Gray, Matthew

    .S. Forest Products Economic Importance China, Russia, 10% Brazil, 6% World's Major Industrial Roundwood Sustainable Timber Supply to existing Mills · Procurement zone characteristics ­ Landownership1, 2, 9 ­ Level, 2, 10 ­ Distance to mills8, 13 · Increased demand products & services ­ New industry (biofuels)4

  17. Prediction of the tool displacement for robot milling applications using coupled models of an industrial

    E-Print Network [OSTI]

    Stryk, Oskar von

    . INTRODUCTION The major fields of machining applications for industrial robots are automated pre- machining an industrial robot for milling applications inaccuracies of the serial robot kinematic, the low structuralPrediction of the tool displacement for robot milling applications using coupled models

  18. A Mossbauer spectroscopy study of nanoscale GeSn dispersions prepared by ball milling

    E-Print Network [OSTI]

    Boolchand, Punit

    A Mo¨ssbauer spectroscopy study of nanoscale Ge­Sn dispersions prepared by ball milling P by 119 Sn Mo¨ssbauer spectroscopy. The Mo¨ssbauer measurements in general reveal two sites for the Sn of the Sn was detected by Mo¨ssbauer spectroscopy at Sn-poor concentrations (x # 0.10) when the milling vial

  19. Vol. 82, No. 4, 2005 431 Phosphorus Concentrations and Flow in Maize Wet-Milling Streams

    E-Print Network [OSTI]

    gluten meal (CGM) and corn gluten feed (CGF) is important to the maize wet-milling industry. High [CGM]). CGF is produced from mixing heavy steep- water with maize fiber (Fig. 1); it has high fiber and CGM is important to the economic viability of the wet-milling industry because it partially offsets

  20. Sociologically imagined: the decentering of C. Wright Mills, the postmodern cowboy

    E-Print Network [OSTI]

    Kerr, Keith Thomas

    2009-05-15T23:59:59.000Z

    SOCIOLOGICALLY IMAGINED: THE DECENTERING OF C. WRIGHT MILLS, THE POSTMODERN COWBOY A Dissertation by KEITH KERR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2007 Major Subject: Sociology SOCIOLOGICALLY IMAGINED: THE DECENTERING OF C. WRIGHT MILLS, THE POSTMODERN COWBOY A Dissertation by KEITH KERR Submitted...