Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Jump to: navigation, search Dictionary.png Mercury Vapor Mercury is discharged as a highly volatile vapor during hydrothermal activity and high concentrations in...

2

Mercury Vapor Pressure Correlation  

Science Conference Proceedings (OSTI)

An apparent difference between the historical mercury vapor concentration equations used by the mercury atmospheric measurement community ...

2012-10-09T23:59:59.000Z

3

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

4

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

5

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area...

6

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

7

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Mercury Vapor Activity Date Usefulness not...

8

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

9

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

10

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

11

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

12

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

13

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

14

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

15

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

16

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents (OSTI)

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

17

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Mercury Vapor Activity Date Usefulness useful...

18

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

19

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

20

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

22

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents (OSTI)

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

23

Filter for isotopic alteration of mercury vapor  

DOE Green Energy (OSTI)

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

24

Filter for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

25

Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively  

E-Print Network (OSTI)

Articles Determination of Mercury in Coal by Isotope Dilution Cold-Vapor Generation Inductively developed for high-accuracy determinations of mer- cury in bituminous and sub-bituminous coals. A closed- system digestion process employing a Carius tube is used to completely oxidize the coal matrix

26

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Mercury Vapor Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

27

Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Arsenic (As), mercury (Hg), and carbon dioxide (CO2) all appear in anomalously high concentrations near the hot springs and at the junction of the Fumarole Valley and the HSBV. This indicates either that Hg is being lost from a reservoir due to boiling and steam loss, probably northwest of the junction, or erosion has carried these elements in sediment from the higher elevation manifestations. The presence of such volatiles in

28

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

29

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

30

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

31

Acid effects on the measurement of mercury by cold vapor atomic absorption spectrometry  

Science Conference Proceedings (OSTI)

The influence of nitric, hydrochloric and sulfuric acids on the measurement of mercury by cold vapor atomic absorption spectrometry has been investigated. Small pre-reduction peaks associated with the instability of mercury were observed in solutions containing less than or equal to 12.5, tuna using both of these approaches to overcome the interference problem proved to be successful.

Adeloju, S.B.; Mann, T.F.

1987-07-01T23:59:59.000Z

32

Studies of Mercury in High Level Waste Systems  

Science Conference Proceedings (OSTI)

During nuclear weapons production, nuclear reactor target and fuel rods were processed in F- and H-Canyons. For the target rods, a caustic dissolution of the aluminum cladding was performed prior to nitric acid dissolution of the uranium metal targets in the large canyon dissolvers. To dissolve the aluminum cladding and the U-Al fuel, mercury in the form of soluble mercury (II) nitrate was added as a catalyst to accelerate the dissolution of the aluminum. F-Canyon began to process plutonium-containing residues that were packaged in aluminum cans and thus required the use of mercury as a dissolution catalyst. Following processing to remove uranium and plutonium using the solvent extraction process termed the Plutonium-Uranium Recovery by Extraction (PUREX) process, the acidic waste solutions containing fission products and other radionuclides were neutralized with sodium hydroxide. The mercury used in canyon processing is fractionated between the sludge and supernate that is transferred from the canyons to the tank farm. The sludge component of the waste is currently vitrified in the Defense Waste Processing Facility (DWPF). The vitrified waste canisters are to be sent to the federal repository for High Level Waste. The mercury in the sludge, presumably in an oxide or hydroxide form is reduced to elemental mercury by the chemical additions and high temperatures, steam stripped and collected in the Mercury Collection Tank. The mercury in the dilute supernate is in the form of mercuric ion and is soluble. During evaporation, the mercuric ion is reduced to elemental mercury, vaporizes into the overheads system and is collected as a metallic liquid in the Mercury Removal Tank.

Wilmarth, W.R.

2003-09-03T23:59:59.000Z

33

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

34

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

35

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

36

Controlling the vapor pressure of a mercury lamp  

DOE Patents (OSTI)

The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

Grossman, M.W.; George, W.A.

1988-05-24T23:59:59.000Z

37

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

38

Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target  

SciTech Connect

Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods.

Tutu, N.K.; Greene, G.A.

1994-09-01T23:59:59.000Z

39

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

40

Multicomponent fuel vaporization at high pressures.  

DOE Green Energy (OSTI)

We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

Torres, D. J. (David J.); O'Rourke, P. J. (Peter J.)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

42

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

43

Stabilization of Mercury in High pH Tank Sludges  

Science Conference Proceedings (OSTI)

DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

Spence, R.; Barton, J.

2003-02-24T23:59:59.000Z

44

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium light tubes are recycled. They are made from aluminum and metal. Aluminum is a silver-white metal and is very light in weight and strong. Because aluminum is ductile, it can be drawn into wires or pressed

Ungerleider, Leslie G.

45

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1  

E-Print Network (OSTI)

technologies for mercury control for flue gases of Municipal Waste Combustors (MWCs) not only ecological hydrochloric acid (HCl) and elemental mercury (Hg") under oxidizing conditions of the off-gases downstream to the decreasing gas temperature, the elemental mercury is able to react with other flue gas components. The main

46

Mercury Detection with Gold Nanoparticles  

E-Print Network (OSTI)

R. J. Warmack, Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor, Ieee Trans.N. E. Selin, Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

47

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

48

Mercury Calibration System  

Science Conference Proceedings (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

49

THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE  

Science Conference Proceedings (OSTI)

Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

Sandra Meischen

2004-07-01T23:59:59.000Z

50

Method and apparatus for sampling atmospheric mercury  

DOE Patents (OSTI)

A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

Trujillo, Patricio E. (Santa Fe, NM); Campbell, Evan E. (Los Alamos, NM); Eutsler, Bernard C. (Los Alamos, NM)

1976-01-20T23:59:59.000Z

51

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, Mark W. (Belmont, MA)

1993-01-01T23:59:59.000Z

52

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment  

DOE Patents (OSTI)

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, M.W.

1993-02-16T23:59:59.000Z

53

COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES  

SciTech Connect

The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study open the possibility to apply scientific information obtained from the studies with simple surfaces like HOPG under ideal conditions (UHV) to industrial sorbents under realistic process conditions. HOPG surface can be modified chemically and topologically by plasma oxidation to simulate key features of activated carbon adsorbents.

Radisav D. Vidic

2002-05-01T23:59:59.000Z

54

Mercury | RPC for High-Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

RPC for High-Performance Computing Skip to content Home About Overview Collaborators Downloads Documentation Getting Started Doxygen Publications Support Mailing Lists Bug Reports...

55

High average power magnetic modulator for metal vapor lasers  

DOE Patents (OSTI)

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

56

Publications | Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Afsahi, and R. Ross, Mercury: Enabling Remote Procedure Call for High-Performance Computing, IEEE International Conference on Cluster Computing, Sep 2013. DOIslides...

57

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

58

Method for the removal and recovery of mercury  

DOE Patents (OSTI)

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

59

Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis  

Science Conference Proceedings (OSTI)

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung [National Sun Yat-Sen University, Taiwan (China). Institute of Environmental Engineering

2006-11-15T23:59:59.000Z

60

Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition  

E-Print Network (OSTI)

/IG of the Raman spectra (red line in Fig. 6a) taken from the graphene grown on high purity Cu (99.999%) is above 3Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition determining the growth of high-quality monolayer and bilayer graphene on Cu using chemical vapor deposition

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Preconcentrator with high volume chiller for high vapor pressure particle detection  

Science Conference Proceedings (OSTI)

Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

Linker, Kevin L

2013-10-22T23:59:59.000Z

62

End of an Era: NIST to Cease Calibrating Mercury ...  

Science Conference Proceedings (OSTI)

... Burning of coal is a major source of vaporous mercury released into the atmosphere. Compact fluorescents use less electricity ...

2011-10-03T23:59:59.000Z

63

High temperature vapor pressure and the critical point of potassium  

SciTech Connect

The vapor pressure of potassium was experimentally determined from 2100 deg F up to-its critical temperature. An empirical equation of the form ln P = A + B/T + C ln T + DT/sup 1.5/ was found to best fit the data. A critical pressure of 2378.2 plus or minus 4.0 psia (161.79 plus or minus 0.27 ata) was measured. The corresponding critical temperature, extrapolated from the pressure-- temperature curve, is 4105.4 plus or minus 5 deg R (2280.8 plus or minus 3 deg K). The technique employed was tae pressure tube method developed earlier in this laboratory and used for determining the vapor pressure of rubidium and cesium. This method measures tae critical pressure directly, as well as the vapor pressure st lower temperatures. (4 tables, 6 figures, 26 references) (auth)

Jerez, W.R.; Bhise, V.S.; Das Gupta, S.; Bonilla, C.F.

1973-01-01T23:59:59.000Z

64

Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device  

SciTech Connect

Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

Charles Mones

2006-12-01T23:59:59.000Z

65

Optimal design of a high pressure organometallic chemical vapor deposition reactor  

Science Conference Proceedings (OSTI)

A team composed of material scientists, physicists, and applied mathematicians have used computer simulations as a fundamental design tool in developing a new prototype High Pressure Organometallic Chemical Vapor Deposition (HPOMCVD) reactor for use ...

K. J. Bachmann; H. T. Banks; C. Hpfner; G. M. Kepler; S. Lesure; S. D. Mccall; J. S. Scroggs

1999-04-01T23:59:59.000Z

66

Determination of the Vapor Pressure of Lanthanum Fluoride  

SciTech Connect

Preliminary experiments have been made to determine the vapor pressure of lanthanum fluoride between 0.001 and 0.1 millimeter of mercury by means of the Knudsen effusion method. A tantalum cell for this purpose is described. Only preliminary results were obtained and they were all in a relatively high pressure region. However, a plot of the vapor pressure against the reciprocal of absolute temperature approximates a straight line such as would be predicted from theoretical considerations.

Stone, B. D.

1954-04-07T23:59:59.000Z

67

Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators  

E-Print Network (OSTI)

Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

2009-01-01T23:59:59.000Z

68

The current state of the science related to the re-release of mercury from coal combustion products  

Science Conference Proceedings (OSTI)

The stability of mercury associated with CCPs is an issue that has only recently been under investigation but has become a prominent question as the industry strives to determine if current management options for CCPs will need to be modified. Mercury and other air toxic elements can be present in fly ash, FGD material and bottom ash and boiler slag. Mercury concentrations ranging from {lt} 0.01 to 2.41 ppm in fly ash and from 0.001 to 0.342 ppm in bottom ash have been reported. Stability of mercury must be evaluated by tests that include 1) direct leachability; 2) vapor-phase release at ambient and elevated temperatures; and 3) microbiologically induced leachability and vapor-phase release. The amount of mercury leached from currently produced CCPs is extremely low and does not appear to represent an environmental or re-release hazard. Concentrations of mercury in leachates from fly ashes and FGD material using either the toxicity characteristic leaching procedure (TCLP) or the synthetic groundwater leaching procedure (SGLP) are generally below detection limits. The release of mercury vapor from CCPs resulting from the use of mercury control technologies has been evaluated on a limited basis. Research indicates that mercury bound to the ash or activated carbon is fairly stable. The EERC found that organomercury species were detected at very low levels both in the vapor and leachate generated from the microbiologically mediated release experiments. The current state of the science indicates that mercury associated with CCPs is stable and highly unlikely to be released under most management conditions, including utilisation and disposal. The exception to this is exposure to high temperatures such as those that may be achieved in cement and wallboard production. Therefore, existing CCPs management options are expected to be environmentally sound options for CCPs from systems with mercury control technologies installed. 2 refs., 2 photos.

Debra F. Pflughoeft-Hassett; David J. Hassett; Loreal V. Heebink; Tera D. Buckley [University of North Dakota Energy and Environmental Research Center (EERC) (United States)

2006-07-01T23:59:59.000Z

69

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

70

Mercury and Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

71

Mercury: Enabling Remote Procedure Call for High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Performance Computing (HPC), allows the execution of routines to be delegated to remote nodes, which can be set aside and dedicated to specific tasks. However, existing...

72

Mercury's Protoplanetary Mass  

E-Print Network (OSTI)

Major element fractionation among chondrites has been discussed for decades as ratios relative to Si or Mg. Recently, by expressing ratios relative to Fe, I discovered a new relationship admitting the possibility that ordinary chondrite meteorites are derived from two components, a relatively oxidized and undifferentiated, primitive component and a somewhat differentiated, planetary component, with oxidation state like the highly reduced enstatite chondrites, which I suggested was identical to Mercury's complement of lost elements. Here, on the basis of that relationship, I derive expressions, as a function of the mass of planet Mercury and the mass of its core, to estimate the mass of Mercury's lost elements, the mass of Mercury's alloy and rock protoplanetary core, and the mass of Mercury's gaseous protoplanet. Although Mercury's mass is well known, its core mass is not, being widely believed to be in the range of 70-80 percent of the planet mass. For a core mass of 75 percent, the mass of Mercury's lost elements is about 1.32 times the mass of Mercury, the mass of the alloy and rock protoplanetary core is about 2.32 times the mass of Mercury, and the mass of the gaseous protoplanet of Mercury is about 700 times the mass of Mercury. Circumstantial evidence is presented in support of the supposition that Mercury's lost elements is identical to the planetary component of ordinary chondrite formation.

J. Marvin Herndon

2004-10-01T23:59:59.000Z

73

High-temperature calcium vapor cell for spectroscopy on the P1 intercombination line  

E-Print Network (OSTI)

-power heater or simply by contact with the room- temperature environment to produce an optically thick vapor to rapidly seal water leaks in copper tubing. We found that on a clean piece of copper this tool creates heaters at the locations of the windows and by a high-temperature heat tape wrapped around a cylindrical

Hart, Gus

74

Phytoremediation of Ionic and Methyl Mercury P  

DOE Green Energy (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

75

High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989  

SciTech Connect

One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

Atallah, S.; Shah, J.N.; Peterlinz, M.E.

1990-05-01T23:59:59.000Z

76

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

77

Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps  

SciTech Connect

This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 deg. C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg{sup -1} of mercury reached 6.6 mg kg{sup -1}.

Alves Durao, Walter [Chemistry Department, Federal University of Minas Gerais (UFMG), Cidade Universitaria 30.123-970 Belo Horizonte, MG (Brazil); Andreva de Castro, Camila [Chemistry Engineering Department, Federal University of Minas Gerais (UFMG) (Brazil); Carvalhinho Windmoeller, Claudia [Chemistry Department, Federal University of Minas Gerais (UFMG), Cidade Universitaria 30.123-970 Belo Horizonte, MG (Brazil)], E-mail: claucw@netuno.lcc.ufmg.br

2008-11-15T23:59:59.000Z

78

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents (OSTI)

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

79

High rate chemical vapor deposition of carbon films using fluorinated gases  

DOE Patents (OSTI)

A high rate, low temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be 5 performed at less than 100C, including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 at% fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of 10 refraction, mass density, optical clarity, and chemical resistance are within 15% of those characteristics for pure amorphous carbon films, but the deposition rates are high.

Stafford, B.L.; Tracy, C.E.; Benson, D.K.; Nelson, A.J.

1991-03-15T23:59:59.000Z

80

High rate chemical vapor deposition of carbon films using fluorinated gases  

DOE Patents (OSTI)

A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

Stafford, Byron L. (Arvada, CO); Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Nelson, Arthur J. (Longmont, CO)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-pressure vapor-liquid equilibria in the propane-1-propanol system  

SciTech Connect

High-pressure isothermal vapor liquid equilibrium data were measured for the propane-1-propanol system at 81.6, 105.2, and 120.1 C in a static equilibrium cell with liquid-phase sampling by a piston-driven sampling rod and homogenizing the sample with a static jet mixer. The vapor phase was sampled by releasing it into an evacuated manifold, and the gas chromatograph was calibrated with a new variable volumetric device. Satisfactory modeling was achieved with the combined method using the UNIQUAC equation with equations of sate: the group contribution EOS, Peng-Robinson EOS, or the two-parameter Virial EOS. Differences between the measured and calculated vapor-phase mole fractions, however, were significant for the lower pressure regions of the 81.6 and 120.1 C isotherms. UNIQUAC parameters, hitherto unavailable, with fairly strong temperature dependence in the 81.6 to 120.1 C range are proposed for the system. The covariance matrix indicated a significant correlation among the parameters. The classical mixing rule interaction parameters required for the original Peng-Robinson EOS in the combined method were obtained using the direct method and were temperature-independent for the isotherms for which the propane was supercritical. The possibility of propane/1-propanol immiscibility was theoretically examined according to the criteria of Baker et al. The plots of Gibbs energy of mixing vs. phase mole fractions did not indicate liquid-phase splitting, but the inferences are EOS-dependent and must await visual confirmation. The authors earlier vapor-phase thermodynamic consistency test indicated the data for all three data sets not to be inconsistent.

Muehlbauer, A.L.; Raal, J.D. (Univ. of Natal, Durban (South Africa))

1993-04-01T23:59:59.000Z

82

High efficiency vapor-fed AMTEC system for direct conversion. Final report  

DOE Green Energy (OSTI)

The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lower potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.

Anderson, W.G.; Bland, J.J.

1997-05-23T23:59:59.000Z

83

Vapor-Phase-Deposited Organosilane Coatings as "Hardening" Agents for High-Peak-Power Laser Optics  

Science Conference Proceedings (OSTI)

Multilayer-dielectric (MLD) diffraction gratings are used in high-power laser systems to compress laser-energy pulses. The peak power deliverable on target for these short-pulse petawatt class systems is limited by the laser-damage resistance of the optical components in the system, especially the MLD gratings. Recent experiments in our laboratory have shown that vapor treatment of MLD gratings at room temperature with organosilanes such as hexamethyldisilazane (HMDS) produces an increase in their damage threshold as compared to uncoated MLD grating control samples.

Marshall, K.L.; Culakova, Z.; Ashe, B.; Giacofei, C.; Rigatti, A.L.; Kessler, T.J.; Schmid, A.W.; Oliver, J.B.; Kozlov, A.

2008-01-07T23:59:59.000Z

84

IMPACT OF ELIMINATING MERCURY REMOVAL PRETREATMENT ON THE PERFORMANCE OF A HIGH LEVEL RADIOACTIVE WASTE MELTER OFFGAS SYSTEM  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, while the maximum expected prior to pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg{sub 2}{sup 2-}/Hg{sup 2+} ratio accurately, but some un-oxidized Hg{sup 0} remained. The aqueous model, with the addition of less than 1 mM Cl{sub 2} showed that this remaining Hg{sup 0} would be oxidized such that the final Hg{sub 2}{sup 2+}/Hg{sup 2+} ratios matched the experimental data. The results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of the mercury fed is expected to be chlorinated, mostly as Hg{sub 2}Cl{sub 2}, while the remaining mercury would exist either as elemental mercury (90%) or HgO (4%).

Zamecnik, J; Alexander Choi, A

2009-03-17T23:59:59.000Z

85

High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report  

DOE Green Energy (OSTI)

This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

Anderson, W.G.; Bland, J.J.

1997-05-23T23:59:59.000Z

86

High-speed Photography of Pyrotechnic Materials and Components with a Coppper Vapor Laser  

SciTech Connect

The evaluation of the properties of energetic materials, such as burn rate and ignition energy, is of primary importance in understanding their reactions and the functioning of devices containing them. One method for recording such information is high-speed photography at rates of up to 20,000 images per second. When a copper vapor lazer is synchronized with the camera, laser-illuminated images can be recorded that detail the performance of a material or component in a manner never before possible. Recent results from high-speed photography of several pyrotechnic materials and devices will be presented. These include a pyrotechnic torch, laser ignition of high explosives, and a functioning igniter. Equilibrium chemical computations have recently been begun on the pyrotechnic torch to obtain flame compositions and temperatures. The results of these calculations, and their explanation of the change in torch function with composition, will be discussed.

Dosser, Larry R.; Reed, John W.; Stark, Margaret A.

1978-10-01T23:59:59.000Z

87

DOE Mercury Control Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

88

Analysis of vapor samples from the Organice PISA high level waste tanks  

SciTech Connect

Analyses for organic materials in vapor samples taken from the eight High Level Waste tanks (26F, 33F, 46F, 11H, 22H, 32H, 39H, and 43H) have been completed. Of these tanks, 26F, 33F, and 43H are designated 'organic'' tanks. Samples were collected on solvent desorption (SD) tubes (containing activated charcoal) from various heights above the tank waste. Tank ventilation was stopped for one hour prior to sampling and was not reinitiated until sample collection was complete. The results indicate that the concentration of organic materials is extremely low in all samples. Some organic materials were found in the vapor samples but in nanogram/liter (ng/L) quantities. These materials were present in the samples within the practical quantitation limit (PQL), which represents a practical and routinely achievable detection limit with a relatively good certainty that any reported value is reliable. Because of the low levels and the fact that no field background analysis was run (laboratory background analyses were run), the researchers cannot absolutely determine whether the materials were actually taken from the waste tanks or whether they are from environmental background. In any case, the quantities of material found are several orders magnitude below that which would comprise a flammability concern.

Swingle, R.F. II

2000-06-01T23:59:59.000Z

89

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014  

SciTech Connect

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.-C.; Ebbers, C.; Emanuel, M.; Freitas, B.; Fulkerson, S.; Kanz, K.; Hinz, A.; Marshall, C.; Mills, S.; Nakano, H.; Orth, C.; Rothenberg, J.; Schaffers, K.; Seppala, L.; Skidmore, J.; Smith, L.; Sutton, S.; Telford, S.; Zapata, L.

2000-05-25T23:59:59.000Z

90

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014  

SciTech Connect

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

Bayramian, A; Beach, R; Bibeau, C; Chanteloup, J; Ebbers, C; Emanuel, M; Freitas, B; Fulkerson, S; Kanz, K; Hinz, A; Marshall, C; Mills, S; Nakano, H; Orth, C; Rothenberg, J; Schaffers, K; Seppala, L; Skidmore, I; Smith, L; Sutton, S; Telford, S; Zapata, L

2000-05-23T23:59:59.000Z

91

Characteristics of Gd2-xLaxO3 high-k films by metal-organic chemical vapor deposition  

Science Conference Proceedings (OSTI)

Gd"2"-"xLa"xO"3 high-k films were deposited on (100) Si substrates by low-pressure metal-organic chemical vapor deposition (MOCVD). The metal-organic precursors we used were Gd and La @b-diketonates. The structure, band gap, composition and electrical ... Keywords: Gd2-xLaxO3, High- k, MOCVD

Liu-Ying Huang; Ai-Dong Li; Ying-Ying Fu; Wen-Qi Zhang; Xiao-Jie Liu; Di Wu

2012-06-01T23:59:59.000Z

92

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

93

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

Ernest F. Stine Jr; Steven T. Downey

2002-08-14T23:59:59.000Z

94

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

SciTech Connect

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

95

Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.  

Science Conference Proceedings (OSTI)

Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts

Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

2008-06-30T23:59:59.000Z

96

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. (University of Southern California, Los Angeles, CA (United States))

1993-02-01T23:59:59.000Z

97

Mercury-selenium interactions in the environment  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments of 1990 require the U.S. Environmental Protection Agency (EPA) to consider the need to control emissions of trace elements and compounds emitted from coal combustion, including coal-fired power plants. Concern has been expressed about emissions of mercury and arsenic, for example, since health effects may be associated with exposure to some of these compounds. By and large, effects of trace element emissions have been considered individually, without regard for possible interactions. To the extent that the relevant environmental pathways and health endpoints differ, this mode of analysis is appropriate. For example, arsenic is considered a carcinogen and mercury affects the brain. However, there may be compelling reasons to consider emissions of mercury (Hg) and selenium (Se) together: (1) Both Se and Hg are emitted from power plants primarily as vapors. (2) Hg and Se are both found in fish, which is the primary pathway for Hg health effects. (3) Se has been shown to suppress Hg methylation in aqueous systems, which is a necessary step for Hg health effects at current environmental concentrations. (4) Se is a trace element that is essential for health but that can also be toxic at high concentrations; it can thus have both beneficial and adverse health effects, depending on the dosage. This paper reviews some of the salient characteristics and interactions of the Hg-Se system, to consider the hypothesis that the effects of emissions of these compounds should be considered jointly.

Saroff, L. [Department of Energy, Washington, DC (United States); Lipfert, W.; Moskowitz, P.D. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science

1996-02-01T23:59:59.000Z

98

Mercury Control Update 2010  

Science Conference Proceedings (OSTI)

A February 2008 decision by the U.S. District of Columbia Circuit Court of Appeals remanded the Clean Air Mercury Rule back to the U.S. Environmental Protection Agency, opening the possibility of more stringent federal emission limits similar to those already adopted by some states. To meet these stringent limits, high mercury removals based on Maximum Achievable Control Technology for individual power plants may be needed. To help electric power companies comply with tightening emission standards in a ...

2010-12-31T23:59:59.000Z

99

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

100

Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL  

SciTech Connect

Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

Kalb, P.; Adams, J.; Milian, L.

2001-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development and Evaluation of Low-Cost Sorbents for Removal of Mercury Emissions from Coal Combustion Flue Gas  

Science Conference Proceedings (OSTI)

Determining how physical and chemical properties of sorbents affect vapor-phase mercury adsorption has led to potential approaches for tailoring the properties of sorbents for more effective mercury removal.

1998-10-12T23:59:59.000Z

102

Analysis of Intense Poleward Water Vapor Transports into High Latitudes of Western North America  

Science Conference Proceedings (OSTI)

Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense ...

Alain Roberge; John R. Gyakum; Eyad H. Atallah

2009-12-01T23:59:59.000Z

103

Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range  

E-Print Network (OSTI)

Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

Laverty, W. F.

1964-01-01T23:59:59.000Z

104

Mercury emission control for coal fired power plants using coal and biomass  

E-Print Network (OSTI)

Mercury is a leading concern among the air toxic metals addressed in the 1990 Clean Air Act Amendments (CAAA) because of its volatility, persistence, and bioaccumulation as methylmercury in the environment and its neurological health impacts. The Environmental Protection Agency (EPA) reports for 2001 shows that total mercury emissions from all sources in USA is about 145 tons per annum, of which coal fired power plants contribute around 33% of it, about 48 tons per annum. Unlike other trace metals that are emitted in particulate form, mercury is released in vapor phase in elemental (Hg0) or oxidized (Hg2+, mainly HgCl2) form. To date, there is no post combustion treatment which can effectively capture elemental mercury vapor, but the oxidized form of mercury can be captured in traditional emission control devices such as wet flue gas defulrization (WFGD) units, since oxidized mercury (HgCl2) is soluble in water. The chlorine concentration present during coal combustion plays a major role in mercury oxidation, which is evident from the fact that plants burning coal having high chlorine content have less elemental mercury emissions. A novel method of co-firing blends of low chlorine content coal with high chlorine content cattle manure/biomass was used in order to study its effect on mercury oxidation. For Texas Lignite and Wyoming coal the concentrations of chlorine are 139 ppm and 309 ppm on dry ash free basis, while for Low Ash Partially Composted Dairy Biomass it is 2,691 ppm. Co-firing experiments were performed in a 100,000 BTU/hr (29.3 kWt) Boiler Burner facility located in the Coal and Biomass Energy laboratory (CBEL); coal and biomass blends in proportions of 80:20, 90:10, 95:5 and 100:0 were investigated as fuels. The percentage reduction of Hg with 95:5, 90:10 and 80:20 blends were measured to be 28- 50%, 42-62% and 71-75% respectively. Though cattle biomass serves as an additive to coal, to increase the chlorine concentration, it leads to higher ash loading. Low Ash and High Ash Partially Composted Dairy Biomass have 164% and 962% more ash than Wyoming coal respectively. As the fraction of cattle biomass in blend increases in proportion, ash loading problems increase simultaneously. An optimum blend ratio is arrived and suggested as 90:10 blend with good reduction in mercury emissions without any compromise on ash loading.

Arcot Vijayasarathy, Udayasarathy

2007-12-01T23:59:59.000Z

105

Numerical simulation of transient, incongruent vaporization induced by high power laser  

Science Conference Proceedings (OSTI)

A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

Tsai, C.H.

1981-01-01T23:59:59.000Z

106

Apparatus for control of mercury  

DOE Patents (OSTI)

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

107

Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp  

SciTech Connect

Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-up of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.

Zalach, J.; Franke, St.; Schoepp, H. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Araoud, Z.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, rte de Kairouan, 5019 Monastir (Tunisia); Zissis, G. [Laboratoire Plasma et Conversion d'Energie, 118 rte Narbonne, Bat3R2, 31062 Toulouse (France)

2011-03-15T23:59:59.000Z

108

Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp  

Science Conference Proceedings (OSTI)

This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

Ben Hamida, M. B.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

2012-06-15T23:59:59.000Z

109

LFCM (liquid-fed ceramic melter) processing characteristics of mercury  

SciTech Connect

An experimental-scale liquid-fed ceramic melter was used in a series of tests to evaluate the processing characteristics of mercury in simulated defense waste under various melter operating conditions. This solidification technology had no detectable capacity for incorporating mercury into its borosilicate, vitreous, product, and essentially all the mercury fed to the melter was lost to the off-gas system as gaseous effluent. An ejector venturi scrubber condensed and collected 97% of the mercury evolved from the melter. Chemically the condensed mercury effluent was composed entirely of chlorides, and except in a low-temperature test, mercury chlorides (Hg{sub 2}Cl{sub 2}) was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg{sub 2}Cl{sub 2} residues was capable of saturating the quenched process exhaust with mercury vapor. However, the vapor pressure of mercury in the quenched melter exhaust was easily and predictably controlled with an off-gas stream chiller. 5 refs., 4 figs., 12 tabs.

Goles, R.W.; Sevigny, G.J.; Andersen, C.M.

1990-06-01T23:59:59.000Z

110

ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

Ernie F. Stine

2002-08-14T23:59:59.000Z

111

High temperature vaporization and thermodynamic study of the scandium-- sulfur system  

SciTech Connect

Results of studies on the stoichiometry, structure, vaporization behavior, and thermodynamic properties of the Sc--S system are reported. The thermodynamic results for the stability of ScS(s) are compared with reported results for other transition-metal and rare-earth monosulfides. Various models are discussed in regard to their ability to describe the bonding in these refractory solids. (JRD)

Tuenge, R.T.

1976-01-01T23:59:59.000Z

112

A kinetic investigation of high-temperature mercury oxidation by chlorine  

SciTech Connect

First-stage mercury oxidation reactions typical of coal combustion flue gases were investigated. The present study is a determination of the kinetic and thermodynamic parameters of the bimolecular reactions, Hg + Cl{sub 2}{leftrightarrow} HgCl + Cl, Hg + HCl {leftrightarrow} HgCl + H, and Hg + HOCl {leftrightarrow} HgCl + OH, at the B3LYP/RCEP60 VDZ level of theory over a temperature range of 298.15 to 2000 K at atmospheric pressure. Conventional transition state theory was used to predict the forward and reverse rate constants for each reaction and ab initio based equilibrium constant expressions were calculated as a function of temperature. Reasonable agreement was achieved between the calculated equilibrium constants and the available experimental values.

Wilcox, J. [Stanford University, Stanford, CA (United States). Dept. of Energy Resources Engineering

2009-06-15T23:59:59.000Z

113

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

114

IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

Stone, M; Tommy Edwards, T; David Koopman, D

2009-03-03T23:59:59.000Z

115

Bench-scale studies with mercury contaminated SRS soil  

SciTech Connect

Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na{sub 2}CO{sub 3} and 16 weight percent CaCO{sub 3}. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na{sub 2}S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na{sub 2}S, where it would be converted to Hg{sub 2}S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na{sub 2}S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury.

Cicero, C.A.

1995-12-31T23:59:59.000Z

116

Surface characterizatin of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas  

SciTech Connect

Coal gasification with subsequent cleanup of the resulting fuel gas is a way to reduce the impact of mercury and arsenic in the environment during power generation and on downstream catalytic processes in chemical production, The interactions of mercury and arsenic with PdlAl2D3 model thin film sorbents and PdlAh03 powders have been studied to determine the relative affinities of palladium for mercury and arsenic, and how they are affected by temperature and the presence of hydrogen sulfide in the fuel gas. The implications of the results on strategies for capturing the toxic metals using a sorbent bed are discussed.

Baltrus, J.P.; Granite, E.J.; Pennline, H.W.; Stanko, D.; Hamilton, H.; Rowsell, L.; Poulston, S.; Smith, A.; Chu, W.

2010-01-01T23:59:59.000Z

117

SNAP I MERCURY BOILER DEVELOPMENT, JANUARY 1957 TO JUNE 1959  

SciTech Connect

The mercury-boiler development program was undertaken to develop a system that would utilize the heat of radioisotope decay to boil and superheat mercury vapor for use with a small turbine-generator package. Through the use of a Rankine cycle, the mercury vapor can be provided continuously to power a turbine-driven alternator and produce electricity for extended periods of time. This mercury boiler and the related power-conversion system was planned for a satellite that would orbit the earth. This system design and development program was designated as SNAP-I. Development of the mercury boiler is described and a chronological description of the various mercury-boiler concepts is presented. The applicable results of an extensive literature survey of mercury are included. The mercury-boiler experimental-test-program description provides complete coverage of each experimental boiler and its relation to the system design of that period. A summary of all mercury boilers and their final disposition is also given. (auth)

Jicha, J.; Keenan, J.J.

1960-06-01T23:59:59.000Z

118

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25??4.1 mm...

119

Vapor Characterization  

Science Conference Proceedings (OSTI)

... thermodynamics (that is, vapor liquid equilibrium) as ... of solids and low volatility liquids is extraordinarily ... such situations is the gas saturation method ...

2013-12-10T23:59:59.000Z

120

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

122

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

123

Glossary Term - Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Previous Term (Liquid Nitrogen) Glossary Main Index Next Term (Mole) Mole Mercury Mercury as seen by the Mariner 10 spacecraft on March 24, 1974. Mercury is the...

124

Microsoft Word - Vapor Phase Elemental Sulfur Tech Brief DRAFT bbl 08-24.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

AT A GLANCE AT A GLANCE  eliminates excavation expense  applicable to large or small sites  straightforward deployment  uses heat to distribute sulfur throughout a soil  mercury reacts with sulfur to form immobile and insoluble minerals  patent applied for TechBrief Vapor Phase Elemental Sulfur Amendment for Sequestering Mercury in Contaminated Soil Scientists at the Savannah River National Laboratory (SRNL) have identified a method of targeting mercury in contaminated soil zone by use of sulfur vapor heated gas. Background Mercury contamination in soil is a common problem in the environment. The most common treatment is excavation - a method that works well for small sites where the

125

Mercury cleanup efforts intensify | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

126

Article Removal of Mercury by Foam Fractionation Using Surfactin,  

E-Print Network (OSTI)

Abstract: The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ionsInt. J. Mol. Sci. 2011, 12 8246 was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 CMC, while recovery using SDS required 10 CMC. However, the enrichment of mercury

A Biosurfactant; Hau-ren Chen; Chien-cheng Chen; A. Satyanarayana Reddy; Chien-yen Chen; Wun Rong Li; Min-jen Tseng; Hung-tsan Liu; Wei Pan; Jyoti Prakash Maity; Shashi B. Atla

2011-01-01T23:59:59.000Z

127

CFL Bulbs: Good or Bad for the Environment? Q: I've heard that CFL bulbs contain mercury and that mercury is  

E-Print Network (OSTI)

mercury, a tiny amount primarily in vapor form. It is what makes the bulb give off light determines the color of the light that you see. The amount of mercury involved in a typical CFL bulb is 5, there is nothing "magic" about CFL bulbs in this regard. This is exactly how regular fluorescent light tubes work

128

Mathematical analysis of hydrogen mixing and diffusion in the vapor space of a high-level nuclear waste tank  

DOE Green Energy (OSTI)

This paper presents mathematical analyses of the possible accumulation of radiolytically produced hydrogen in the vapor space in a tank storing liquid high-level radioactive waste. Under normal operating conditions, these tanks are continuously ventilated with air to ensure that the concentration of hydrogen never reaches its lower flammability limit (4%). These scenarios are considered in which it is postulated that hydrogen may accumulate and present a flammability hazard. These scenarios are stratification due to gravity, slow mixing when the ventilation system is operating, and slow mixing when the ventilation system is not operating. In all three cases, the analyses indicate that the accumulation of hydrogen is not likely and thus does not present a flammability problem so long as controls are in place to dilute its concentration to less than 4%.

Bibler, N.E. (ed.); Wallace, R.M.

1991-01-01T23:59:59.000Z

129

High temperature step-flow growth of gallium phosphide by molecular beam epitaxy and metalorganic chemical vapor deposition  

Science Conference Proceedings (OSTI)

Post-growth surface morphologies of high-temperature homoepitaxial GaP films grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) have been studied. Smooth, stepped surface morphologies of MBE-grown layers, measured by atomic force microscopy, were found for a wide range of substrate temperatures and P{sub 2}:Ga flux ratios. A MOCVD-based growth study performed under similar conditions to MBE-grown samples shows a nearly identical smooth, step-flow surface morphology, presenting a convergence of growth conditions for the two different methods. The additional understanding of GaP epitaxy gained from this study will impact its use in applications that include GaP-based device technologies, III-V metamorphic buffers, and III-V materials integration with silicon.

Ratcliff, C. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Grassman, T. J.; Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Institute for Materials Research, Ohio State University, Columbus, Ohio 43210 (United States); Carlin, J. A. [Institute for Materials Research, Ohio State University, Columbus, Ohio 43210 (United States)

2011-10-03T23:59:59.000Z

130

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

131

RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES  

SciTech Connect

Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

Robin M. Stewart

1999-09-29T23:59:59.000Z

132

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

133

The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture  

DOE Green Energy (OSTI)

Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

John Kramlich; Linda Castiglone

2007-06-30T23:59:59.000Z

134

Mercury contamination extraction  

DOE Patents (OSTI)

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

135

Mercury in Nelsons Sparrow Subspecies at Breeding Sites  

E-Print Network (OSTI)

Background: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelsons Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelsons Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies.

Virginia L Winder; Steven D. Emslie

2012-01-01T23:59:59.000Z

136

Evaluation of Sorbent Trap Materials and Methods for Flue Gas Mercury Measurement  

Science Conference Proceedings (OSTI)

Sorbent traps are used as an alternative to continuous mercury monitors (CMM) for measuring vapor phase mercury concentrations in stacks of coal-fired power plants and for relative accuracy test audits (RATAs) of CMMs. EPRI has an ongoing program of research on sorbent trap methods, evaluating the performance of sorbent materials and the methods used to measure mercury on the sorbent traps. This report presents results of two investigations targeted at evaluating the performance of sorbent trap methods f...

2009-02-16T23:59:59.000Z

137

Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System  

Science Conference Proceedings (OSTI)

In this study the high-frequency loss of carbon dioxide (CO2) and water vapor (H2O) fluxes, measured by a closed-path eddy covariance system, were studied, and the related correction factors through the cospectral transfer function method were ...

Ivan Mammarella; Samuli Launiainen; Tiia Gronholm; Petri Keronen; Jukka Pumpanen; llar Rannik; Timo Vesala

2009-09-01T23:59:59.000Z

138

Vapor concentration monitor  

DOE Patents (OSTI)

An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

Bayly, John G. (Deep River, CA); Booth, Ronald J. (Deep River, CA)

1977-01-01T23:59:59.000Z

139

VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS  

DOE Green Energy (OSTI)

This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

Eric M. Suuberg; Vahur Oja

1997-07-01T23:59:59.000Z

140

Sulfur polymer cement stabilization of elemental mercury mixed waste  

SciTech Connect

Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to {approximately}35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL).

Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.  

SciTech Connect

The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250C, the temperature may reach 1600C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

2013-08-01T23:59:59.000Z

142

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2009-03-25T23:59:59.000Z

143

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2010-08-18T23:59:59.000Z

144

Four-well highly strained quantum cascade lasers grown by metal-organic chemical vapor deposition  

E-Print Network (OSTI)

We demonstrate a novel four-well injectorless design with short wavelength (5.5 mum) and room temperature operation utilizing highly strained Ga[subscript 0.35] In[subscript 0.6] As/Al[subscript 0.70] In[subscript 0.30]As ...

Hsu, Allen Long

145

A Remotely Operated Lidar for Aerosol, Temperature, and Water Vapor Profiling in the High Arctic  

Science Conference Proceedings (OSTI)

A RayleighMieRaman lidar has been installed and is operating in the Polar Environment Atmospheric Research Laboratory at Eureka in the High Arctic (7959?N, 8556?W) as part of the Canadian Network for the Detection of Atmospheric Change. The ...

G. J. Nott; T. J. Duck; J. G. Doyle; M. E. W. Coffin; C. Perro; C. P. Thackray; J. R. Drummond; P. F. Fogal; E. McCullough; R. J. Sica

2012-02-01T23:59:59.000Z

146

Recovery of Mercury From Contaminated Liquid Wastes  

SciTech Connect

The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles.

1998-06-12T23:59:59.000Z

147

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

DOE Green Energy (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

148

Demonstration Measurements of Water Vapor, Cirrus Clouds, and Carbon Dioxide Using a High-Performance Raman Lidar  

Science Conference Proceedings (OSTI)

Profile measurements of atmospheric water vapor, cirrus clouds, and carbon dioxide using the Raman Airborne Spectroscopic lidar (RASL) during ground-based, upward-looking tests are presented here. These measurements improve upon any previously ...

David N. Whiteman; Kurt Rush; Igor Veselovskii; Martin Cadirola; Joseph Comer; John R. Potter; Rebecca Tola

2007-08-01T23:59:59.000Z

149

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

150

Strong Lines of Mercury ( Hg )  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Mercury ( Hg ). ...

151

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

152

Mercury: the planet and its orbit  

E-Print Network (OSTI)

The planet closest to the Sun, Mercury, is the subject of renewed attention among planetary scientists, as two major space missions will visit it within the next decade. These will be the first to return to Mercury, after the flybys by NASA's Mariner 10 spacecraft in 1974--5. The difficulties of observing this planet from the Earth make such missions necessary for further progress in understanding its origin, evolution and present state. This review provides an overview of what is known about Mercury and what are the major outstanding issues. Mercury's orbital and rotation periods are in a unique 2:3 resonance; an analysis of the orbital dynamics of Mercury is presented here, as well as Mercury's special role in testing theories of gravitation. These derivations provide a good insight into the complexities of planetary motion in general, and how, in the case of Mercury, its proximity to the Sun can be described and exploited in terms of general relativity. Mercury's surface, superficially similar to that of the Moon, presents intriguing differences, representing a different, and more complex history in which the role of early volcanism remains to be clarified and understood. Mercury's interior presents the most important puzzles: it has the highest uncompressed density among the terrestrial planets, implying a very large, mostly iron core. This does not appear to be the completely solidified yet, as Mariner 10 found a planetary magnetic field that is probably generated by an internal dynamo, in a liquid outer layer of the large iron core. The current state of the core, once established, will provide a constraint for its evolution from the time of the planet's formation. Mercury's environment is highly variable. There is only a tenuous exosphere around Mercury; its sourc...

Andr Balogh; Giacomo Giampieri

2002-01-01T23:59:59.000Z

153

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

154

Sorbents for the oxidation and removal of mercury  

DOE Patents (OSTI)

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

155

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

1983-02-08T23:59:59.000Z

156

Electrolyte vapor condenser  

DOE Patents (OSTI)

A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

1983-01-01T23:59:59.000Z

157

Mercury in the Environment  

Science Conference Proceedings (OSTI)

EPRI periodically issues updates on critical research on environmental mercury, discussing scientific findings of crucial interest for a complete understanding of mercury sources, transport, fate, cycling, human exposure, and health effects. This document is part of that EPRI series, focusing on several critical reviews of mercury sources and impacts.

2007-03-30T23:59:59.000Z

158

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

159

NETL: IEP - Mercury and Air Toxic Element Impacts of CCB Disposal and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization Mercury and Air Toxic Element Impacts of CCB Disposal and Utilization The goal of the proposed effort is to evaluate the impact of mercury and other air toxic elements on the management of CCBs. Supporting objectives are to 1) determine the release potential of selected air toxic elements, including mercury and arsenic, from CCBs under specific environmental conditions; 2) increase the database of information on mercury and other air toxic element releases for CCBs; 3) develop comparative laboratory and field data; and 4) develop appropriate laboratory and field protocols. The specific mechanisms of air toxic element releases to be evaluated will be leaching releases, vapor releases to the atmosphere, and biologically induced leaching and vapor releases.

160

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents (OSTI)

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

162

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

163

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

164

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

165

Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1-1 electrolytes at high concentrations  

SciTech Connect

Precise vapor pressure data for solutions of Et/sub 4/NBr, Bu/sub 4/NBr, Bu/sub 4/Nl, Bu/sub 4/NClO/sub 4/, and Am/sub 4/NBr in methanol at 25/sup 0/C in the concentration range 0.04 < m(mol-(kg of solvent)/sup -1/) < 1.6 are communicated and discussed. Polynomials in molalities are given which may be used for calculating precise vapor pressure depressions of these solutions. Osmotic coefficients are calculated by taking into account the second virial coefficient of methanol vapor. Discussion of the data at low concentrations is based on the chemical model of electrolyte solutions taking into account non-coulombic interactions; ion-pair association constants are compared to those of conductance measurements. Pitzer equations are used to reproduce osmotic and activity coefficient at high concentrations; the set of Pitzer parameters b = 3.2, ..cap alpha../sub 1/ = 2.0 and ..cap alpha../sub 2/ = 20.0 is proposed for methanol solutions.

Barthel, J.; Lauermann, G.; Neueder, R.

1986-10-01T23:59:59.000Z

166

The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process  

Science Conference Proceedings (OSTI)

The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

2008-06-24T23:59:59.000Z

167

Process for low mercury coal  

DOE Patents (OSTI)

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

168

Process for low mercury coal  

SciTech Connect

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

169

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

170

REVIEW ARTICLE Mercury policy and regulations for coal-fired power plants  

E-Print Network (OSTI)

Introduction Mercury is a high-priority regulatory concern because of its persistence and bioaccumulation in the environment and evidence of its having serious adverse effects on the neurological development of children. Discussion Mercury is released into the atmosphere from

Manuela Rallo; M. Antonia Lopez-anton; M. Luisa Contreras; M. Mercedes Maroto-valer

2011-01-01T23:59:59.000Z

171

Atmospheric Mercury Research Update  

Science Conference Proceedings (OSTI)

This report is a summary and analysis of research findings on utility and environmental mercury from 1997 to 2003. The update categorizes and describes recent work on mercury in utility-burned coal and its route through power plants, the measures for its control, and its fate in the environment following emissions from utility stacks. This fate includes atmospheric chemistry and transport, deposition to land and water surfaces, aquatic cycling, the dynamics of mercury in freshwater fish food webs, and th...

2004-03-30T23:59:59.000Z

172

Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

Rey-Raap, Natalia [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I de Castellon, Av. de Vicent Sos Baynat s/n, 12071 Castellon de la Plana, Espana (Spain); Gallardo, Antonio, E-mail: gallardo@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I de Castellon, Av. de Vicent Sos Baynat s/n, 12071 Castellon de la Plana, Espana (Spain)

2012-05-15T23:59:59.000Z

173

PROCESSING OF HIGH-FIRED URANIUM DIOXIDE FUELS BY A REDUCTION-MERCURY EXTRACTION-OXIDATION PROCESS  

DOE Green Energy (OSTI)

A preliminary flowsheet for the purification of uranium dioxide fuels by a magnesium reduction-- mercury extraction-- steam oxidation process is proposed. Feasibility was indicated by laboratory-scale scouting experiments. Data evaluation indicated 100% reduction of uranium dioxide by magnesium although this figure was not demonstrated, chiefly because of poor choice of materials and design of equipment. Steam oxidation of uranlum tetramercuride produced an oxide with an O/U ratio of 2.43. This ratio was decreased to 2.09 by heating the oxide in a hydrogen atmosphere at 900 deg C for 1 hr. The final product had a surface area of 3.5 m/sup 2//g, and 18% of the panticles were < 1 mu diam. A pellet of the oxide sintered at 1750 deg C had a density of 9.76 g/cc, 89% of theoretical. Decontamination factors demonstrated for ruthenium, cesium, and samarium, when present originally in amounts equivalent to 30,000 Mwd/ton fuel burnup and 60 days' decay, were

Messing, A. F.; Dean, O. C.

1960-08-12T23:59:59.000Z

174

Mercury Thermometer Alternatives Training  

Science Conference Proceedings (OSTI)

... tutorials are designed for educating various industrial user groups about the upcoming and current changes that ban the use of mercury products. ...

2013-06-04T23:59:59.000Z

175

MERCURY & DIMETHYLMERCURY EXPOSURE & EFFECTS  

SciTech Connect

This report identifies the dose response data available for several toxic mercury compounds and summarizes the symptoms and health effects associated with each of them.

HONEYMAN, J.O.

2005-12-13T23:59:59.000Z

176

Mercury Risk Assessment II  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency in 2005, will require significant reductions in mercury emissions from coal-fired power plants. In formulating the regulations, a central point of debate...

177

Thermoplastic Composite with Vapor Grown Carbon Fiber.  

E-Print Network (OSTI)

??Vapor grown carbon fiber (VGCF) is a new class of highly graphitic carbon nanofiber and offers advantages of economy and simpler processing over continuous-fiber composites. (more)

Lee, Jaewoo

2005-01-01T23:59:59.000Z

178

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

179

AlGaN/GaN high electron mobility transistors based on InGaN/GaN multi-quantum-well structures with photo-chemical vapor deposition of SiO2 dielectrics  

Science Conference Proceedings (OSTI)

AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) based on InGaN/GaN multi-quantum-well (MQW) structure has been fabricated with SiO"2 dielectric deposited via photo-chemical vapor deposition (PHCVD) using a deuterium lamp ... Keywords: GaN, HEMT, MQW, Photo-chemical vapor deposition, SiO 2

Kai-Hsuan Lee; Ping-Chuan Chang; Shoou-Jinn Chang

2013-04-01T23:59:59.000Z

180

Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent  

Science Conference Proceedings (OSTI)

Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coupling apparatus for a metal vapor laser  

DOE Patents (OSTI)

Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

Ball, D.G.; Miller, J.L.

1993-02-23T23:59:59.000Z

182

Mercury levels in Lake Powell. Bioamplification of mercury in man-made desert reservoir  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield mean mercury levels in ppb of 0.01 in water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Trout were unique in having lower concentrations in muscle than in highly vascularized blood tissues. Concentrations increased with increased body weight and higher levels on the food chain. Muscle of some large fish over 2 kg whole body weight exceeded 500 ppb. Bioamplification of mercury up the food chain and association of mercury with organic matter are demonstrated.

Potter, L.; Kidd, D.; Standiford, D.

1975-01-01T23:59:59.000Z

183

Mercury Control Update 2009  

Science Conference Proceedings (OSTI)

EPRI has been evaluating cost-effective methods for reducing mercury emissions from coal-fired power plants. This report summarizes the current status of mercury control technologies and offers detailed discussion of boiler bromide addition balance-of-plant impacts and activated carbon injection (ACI) tests at selected sites.

2009-12-14T23:59:59.000Z

184

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

185

Calibrated vapor generator source  

DOE Patents (OSTI)

A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

1995-09-26T23:59:59.000Z

186

NETL: Mercury Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

187

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

188

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network (OSTI)

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

189

Amended Silicated for Mercury Control  

Science Conference Proceedings (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

190

Assessment of mercury in the Savannah River Site environment  

SciTech Connect

Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

1994-09-01T23:59:59.000Z

191

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

192

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

193

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

194

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

195

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents (OSTI)

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

196

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

197

Understanding Mercury Chemistry in Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

A pilot combustor has been used successfully to investigate the reaction mechanisms that govern oxidation and sorption onto fly ash of vapor-phase mercury in coal combustion flue gases. This project was designed to gain the understanding necessary to intelligently manipulate conditions leading to increased native capture by the fly ash and/or oxidation for subsequent capture by existing air pollution controls. This report describes parametric tests conducted to determine the relative impact of each varia...

2006-10-11T23:59:59.000Z

198

Current Status of Mercury Measurement at Coal-Fired Sources  

Science Conference Proceedings (OSTI)

The past five years have seen the emergence of federal regulation of mercury (Hg) emissions from coal-fired utility plants. This report provides a synopsis of the state of the science for measuring vapor phase Hg emissions at these plants. It provides a description of the systems currently in use, including information on their vendors and a discussion of lessons learned from recent demonstration projects.

2009-11-02T23:59:59.000Z

199

Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels  

SciTech Connect

The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

2013-01-01T23:59:59.000Z

200

Mercury Risk Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS  

SciTech Connect

The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

Thomas K. Gale

2002-06-01T23:59:59.000Z

202

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

203

Method and apparatus for monitoring mercury emissions  

DOE Patents (OSTI)

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

204

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

205

Mercury Specie and Multi-Pollutant Control  

SciTech Connect

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

Rob James; Virgil Joffrion; John McDermott; Steve Piche

2010-05-31T23:59:59.000Z

206

Method and apparatus for dispensing small quantities of mercury from evacuated and sealed glass capsules  

DOE Patents (OSTI)

A technique is disclosed for opening an evacuated and sealed glass capsule containing a material that is to be dispensed which has a relatively high vapor pressure such as mercury. The capsule is typically disposed in a discharge tube envelope. The technique involves the use of a first light source imaged along the capsule and a second light source imaged across the capsule substantially transversely to the imaging of the first light source. Means are provided for constraining a segment of the capsule along its length with the constraining means being positioned to correspond with the imaging of the second light source. These light sources are preferably incandescent projection lamps. The constraining means is preferably a multiple looped wire support. 6 figs.

Grossman, M.W.; George, W.A.; Pai, R.Y.

1985-08-13T23:59:59.000Z

207

Mercury Oxidation via Catalytic Barrier Filters Phase II  

SciTech Connect

In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

2007-09-30T23:59:59.000Z

208

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network (OSTI)

too much is consumed. This toxic form of mercury is producedfrom inorganic mercury by sulfur- and iron-reducing bacteriadischarge of total mercury and monomethyl mercury to central

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

209

NETL: Mercury Emissions Inactive Mercury Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

210

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

211

XAS Catches the Chemical Form of Mercury in Fish  

NLE Websites -- All DOE Office Websites (Extended Search)

view large image view large image contact info Friday, 29 August 2003 X-ray Absorption Spectroscopy Catches the Chemical Form of Mercury in Fish - SSRL Scientists Reveal New Findings in Science Article The presence of "methyl mercury" in fish is well-known, but until now the detailed chemical identity of the mercury has remained a mystery. In an x-ray absorption spectroscopy study published in the August 29 issue of Science (Science 301, 2003: 1203; Science now: Murky Picture on Fish Mercury), SSRL scientists report that the chemical form of mercury involves a sulfur atom (most likely in a so-called aliphatic form). The study presents significant new knowledge - because the toxic properties of mercury (or any element) are critically dependent upon its chemical form - and represents an important milestone in developing an understanding of how harmful mercury in fish might actually be. The study was carried out by SSRL staff scientists Ingrid Pickering and Graham George and postdoctoral fellow Hugh Harris using SSRL's structural molecular biology beam line 9-3. The very high flux, excellent beam stability and state-of-the-art detector technology allowed the team to measure samples of fish containing micromolar levels of mercury, much lower than had previously been possible.

212

Mercury concentrations in tissues of Florida bald eagles  

Science Conference Proceedings (OSTI)

We collected 48 blood and 61 feather samples from nestling bald eagles at 42 nests and adult feather samples from 20 nests in north and central Florida during 1991-93. We obtained 32 liver, 10 feather, and 5 blood samples from 33 eagle carcasses recovered in Florida during 1987-93. For nestlings, mercury concentrations in blood (GM = 0.16 ppm wet wt) and feather (GM = 3.23 ppm) samples were correlated (r = 0.69, P = 0.0001). Although nestlings had lower mercury concentrations in feathers than did adults (GM = 6.03 ppm), the feather mercury levels in nestlings and adults from the same nest were correlated (r = 0.63, P eagles (GM = 0.23 ppm) was similar to Florida nestlings but some Florida nestlings had blood mercury concentrations up to 0.61 ppm, more than twice as high as captive adults. Feather mercury concentrations in both nestlings and adults exceeded those in captive eagles, but concentrations in all tissues were similar to, or lower than, those in bald eagles from other wild populations. Although mercury concentrations in Florida eagles are below those that cause mortality, they are in the range of concentrations that can cause behavioral changes or reduce reproduction. We recommend periodic monitoring of mercury in Florida bald eagles for early detection of mercury increases before negative effects on reproduction occur. 26 refs., 5 figs., 2 tabs.

Wood, P.B.; Wood, J.M. [Wes Virginia Univ., Morgantown, WV (United States); White, J.H. [Florida Game and Fresh Water Fish Commission, Eustis, FL (United States)] [and others

1996-01-01T23:59:59.000Z

213

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

214

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

215

ORNL DAAC Announces Mercury EOS  

NLE Websites -- All DOE Office Websites (Extended Search)

Announces Mercury EOS Search and Order April 21, 2003: Mercury EOS, the ORNL DAAC's new search and order system that works with NASA's EOS ClearingHouse (ECHO), is now operational....

216

Dynamic Mercury Cycling Model Upgrade  

Science Conference Proceedings (OSTI)

This technical update describes the status of activities to upgrade the Dynamic Mercury Cycling Model (D-MCM), an EPRI simulation model that predicts mercury cycling and bioaccumulation in lakes.

2008-12-17T23:59:59.000Z

217

Mercury emission behavior during isolated coal particle combustion  

E-Print Network (OSTI)

Of all the trace elements emitted during coal combustion, mercury is most problematic. Mercury from the atmosphere enters into oceanic and terrestrial waters. Part of the inorganic Hg in water is converted into organic Hg (CH3Hg), which is toxic and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized Hg (Hg2+). The coal chlorine content and ash composition, gas temperature, residence time and presence of different gases will decide the speciation of Hg into Hg0 and Hg2+. For Wyoming coal the concentrations of mercury and chlorine in coal are 120ppb and 140ppb. In order to understand the basic process of formulation of HgCl2 and Hg0 a numerical model is developed in the current work to simulate in the detail i) heating ii) transient pyrolysis of coal and evolution of mercury and chlorine, iii) gas phase oxidation iv) reaction chemistry of Hg and v) heterogeneous oxidation of carbon during isolated coal particle combustion. The model assumes that mercury and chlorine are released as a part of volatiles in the form of elemental mercury and HCl. Homogenous reaction are implemented for the oxidation of mercury. Heterogeneous Hg reactions are ignored. The model investigates the effect of different parameters on the extent of mercury oxidation; particle size, ambient temperature, volatile matter, blending coal with high chlorine coal and feedlot biomass etc,. Mercury oxidation is increased when the coal is blended with feedlot biomass and high chlorine coal and Hg % conversion to HgCl2 increased from 10% to 90% when 20% FB is blended with coal. The ambient temperature has a negative effect on mercury oxidation, an increase in ambient temperature resulted in a decrease in the mercury oxidation. The percentage of oxidized mercury increases from 9% to 50% when the chlorine concentration is increased from 100ppm to 1000ppm. When the temperature is decreased from 1950 K to 950 K, the percentage of mercury oxidized increased from 3% to 27%.

Puchakayala, Madhu Babu

2006-12-01T23:59:59.000Z

218

Lumex Mercury CEM  

E-Print Network (OSTI)

Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environmental protection by substantially accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high-quality, peer-reviewed data on technology performance to those involved in the design, distribution, financing, permitting, purchase, and use of environmental technologies. ETV works in partnership with recognized standards and testing organizations; with stakeholder groups that consist of buyers, vendor organizations, and permitters; and with the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer-reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and adequate quality are generated and that the results are defensible. The Advanced Monitoring Systems (AMS) Center, one of six technology centers under ETV, is operated by Battelle in cooperation with EPAs National Exposure Research Laboratory. The AMS Center has recently evaluated the performance of continuous emission monitors used to measure mercury in flue gases. This

unknown authors

2001-01-01T23:59:59.000Z

219

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

220

Vapor spill pipe monitor  

DOE Patents (OSTI)

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells. Final technical report, 1 September 1985--30 November 1989  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. [University of Southern California, Los Angeles, CA (United States)

1993-02-01T23:59:59.000Z

222

The Homogeneous Forcing of Mercury Oxidation to Provide Low-Cost Capture  

DOE Green Energy (OSTI)

Oxidized mercury formed in combustors (e.g., HgCl{sub 2}) is much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}) than elemental mercury. This is principally due to the high solubility of the oxidized form in water. Work over the last several years in our laboratory and elsewhere has identified the general outlines of the homogeneous chemistry of oxidation. The goal of the work reported here is to make use of this knowledge of the oxidation mechanism to devise simple and inexpensive ways to promote the oxidation. The hypothesis is that simple fuels such as hydrogen or CO can promote oxidation via the free radicals they generate during their decomposition. These free radicals then promote the formation of Cl from HCl via reactions such as OH+HCl {yields} H{sub 2}O+Cl. The Cl (and Cl{sub 2} derived from Cl recombination) are considered the principal oxidizing species. In our studies, mercury vapor is exposed to HCl under isothermal conditions in a gas containing N{sub 2}, O{sub 2}, and H{sub 2}O. The experiments systematically explore the influence of reaction temperature, HCl concentration, and H{sub 2}O concentration. These baseline conditions are then perturbed by the addition of varying amounts of H{sub 2}, CO, and H{sub 2}/CO added jointly. The following report presents the results of a literature review associated with the dissertation of the student supported by the program. This outlines the state-of-the-art in mercury behavior. It then describes the experimental facilities and the results of tests involving the promotion of the oxidation reaction by H{sub 2}, CO, and H{sub 2}/CO combinations. These results indicate a substantial enhancement of oxidation under isothermal conditions at 900-1000 K, while the additives inhibit oxidation at 1200 K. The next step is to determine whether the existing chemical kinetic models of mercury oxidation are capable of reproducing this behavior. These models can then be used to extrapolate the findings to nonisothermal conditions typical of boiler environments. This would provide guidance on where to inject the oxidation promoters in a practical boiler, and how much promoter is required.

John C. Kramlich; Linda Castiglone

2006-04-01T23:59:59.000Z

223

Gas Mileage of 1994 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

224

Gas Mileage of 1985 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

225

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, First-Year Results  

Science Conference Proceedings (OSTI)

Researchers are conducting field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury. Testing will be conducted at two sites for 14 months at each site. This report summarizes the first year of work on the project, including installation, and four months of testing of the pilot at the first site.

2003-03-17T23:59:59.000Z

226

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

227

Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems  

SciTech Connect

The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

Jost Wendt; Sung Jun Lee; Paul Blowers

2008-09-30T23:59:59.000Z

228

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The...

229

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

230

Water displacement mercury pump  

DOE Patents (OSTI)

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

231

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

232

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

233

SAP for Mercury Control  

Science Conference Proceedings (OSTI)

EPRI and the Illinois State Geological Survey (ISGS) have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas, upstream of the particulate control device, for mercury adsorption. The SAP is designed to help significantly reduce the cost of AC for power plant mercury control. This report summarizes laboratory and Phase 1 field test...

2009-06-17T23:59:59.000Z

234

Mercury Controls Update 2011  

Science Conference Proceedings (OSTI)

In light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011, the requirement to reduce emissions of mercury and other HAPs is one of the key challenges for coal-fired power plants. The proposed MACT ruling limits mercury emissions to 1.2 lb/TBtu at the stack (4.0 lb/TBtu for lignite-fired units), based on a 30-day rolling average including startup and shutdown periods. To help electri...

2011-12-21T23:59:59.000Z

235

Mercury in FGD Byproducts  

Science Conference Proceedings (OSTI)

This report provides interim results from two EPRI co-funded projects that pertain to what happens to mercury in flue gas from coal-fired power boilers when the scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) and by USG Corporation under Cooperative Agreement DE-FC26-04NT42080, "Fate of Mercury in Synthetic Gypsum Used for Wallboard Production." The second project is being co-sponsore...

2005-12-07T23:59:59.000Z

236

Vapor spill monitoring method  

DOE Patents (OSTI)

Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

237

On-Site Calibration for High Precision Measurements of Water Vapor Isotope Ratios Using Off-Axis Cavity-Enhanced Absorption Spectroscopy  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements of atmospheric water vapor (?18Ov and ?2Hv) are scarce relative to those in precipitation. This limitation is rapidly changing due to advances in absorption spectroscopy technology and the development of ...

Joshua Rambo; Chun-Ta Lai; James Farlin; Matt Schroeder; Ken Bible

2011-11-01T23:59:59.000Z

238

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

239

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

240

Gas Mileage of 1986 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas Mileage of 1991 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

242

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

243

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

244

Chemical vapor depositing of metal fluorides  

Science Conference Proceedings (OSTI)

High Purity BeF2 and BeF2AlF3glasses have been deposited by the chemical vapor deposition technique using beryllium and aluminum 1

A. Sarhangi; J. M. Power

1992-01-01T23:59:59.000Z

245

Short-pulse Laser Capability on the Mercury Laser System  

Science Conference Proceedings (OSTI)

Applications using high energy ''petawatt-class'' laser drivers operating at repetition rates beyond 0.01 Hz are only now being envisioned. The Mercury laser system is designed to operate at 100 J/pulse at 10 Hz. We investigate the potential of configuring the Mercury laser to produce a rep-rated, ''petawatt-class'' source. The Mercury laser is a prototype of a high energy, high repetition rate source (100 J, 10 Hz). The design of the Mercury laser is based on the ability to scale in energy through scaling in aperture. Mercury is one of several 100 J, high repetition rate (10 Hz) lasers sources currently under development (HALNA, LUCIA, POLARIS). We examine the possibility of using Mercury as a pump source for a high irradiance ''petawatt-class'' source: either as a pump laser for an average power Ti:Sapphire laser, or as a pump laser for OPCPA based on YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), ideally producing a source approaching 30 J /30 fs /10 Hz--a high repetition rate petawatt. A comparison of the two systems with nominal configurations and efficiencies is shown in Table 1.

Ebbers, C; Armstrong, P; Bayramian, A; Barty, C J; Bibeau, C; Britten, J; Caird, J; Campbell, R; Chai, B; Crane, J; Cross, R; Erlandson, A; Fei, Y; Freitas, B; Jovanovic, I; Liao, Z; Molander, B; Schaffers, K; Stuart, B; Sutton, S; Ladran, T; Telford, S; Thelin, P; Utterback, E

2006-06-22T23:59:59.000Z

246

Low-band-gap, amorphous-silicon-based alloys by chemical vapor deposition: Annual subcontract report, 1 October 1985-31 January 1986  

DOE Green Energy (OSTI)

This research was conducted to determine the potential of photochemical vapor deposition (photo-CVD) for producing high-quality, low-band-gap amorphous silicon germanium alloys for use in high-efficiency, multijunction, thin-film photovoltaic solar cells. A photo-CVD reactor for mercury-sensitized photolysis of silane-germane and disilane-germane mixtures was developed. Alloy thin films of undoped a-Si/sub 1-x/Ge/sub x/:H were deposited using mercury vapor mixed with SiH/sub 4/ or Si/sub 2/H/sub 6/, GeH/sub 4/, and diluent gas of Ar, He, or H/sub 2/. Materials properties were characterized by measurements of Ge content, optical transmission and reflection, and dark and photo-conductivity. Opto-electronic properties of photo-CVD a-Si/sub 1-x/Ge/sub x/:H were found to be comparable to glow discharge and sputtered materials. Moreover, p-i-n solar cells with low-band-gap i-layers were able to be fabricated by photo-CVD.

Baron, B.N.; Jackson, S.C.

1986-12-01T23:59:59.000Z

247

Silicon nucleation and film evolution on silicon dioxide using disilane: Rapid thermal chemical vapor deposition of very smooth silicon at high deposition rates  

SciTech Connect

An investigation of Si{sub 2}H{sub 6} and H{sub 2} for rapid thermal chemical vapor deposition (RTCVD) of silicon on SiO{sub 2} has been performed at temperatures ranging from 590 to 900 C and pressures ranging from 0.1 to 1.5 Torr. Deposition at 590 C yields amorphous silicon films with the corresponding ultrasmooth surface with a deposition rate of 68 nm/min. Cross-sectional transmission electron microscopy of a sample deposited at 625 C and 1 Torr reveals a bilayer structure which is amorphous at the growth surface and crystallized at the oxide interface. Higher temperatures yield polycrystalline films where the surface roughness depends strongly on both deposition pressure and temperature. Silane-based amorphous silicon deposition in conventional systems yields the expected ultrasmooth surfaces, but at greatly reduced deposition rates unsuitable for single-wafer processing. However, disilane, over the process window considered here, yields growth rates high enough to be appropriate for single-wafer manufacturing, thus providing a viable means for deposition of very smooth silicon films on SiO{sub 2} in a single-wafer environment.

Violette, K.E.; Oeztuerk, M.C.; Christensen, K.N.; Maher, D.M. [North Carolina State Univ., Raleigh, NC (United States)

1996-02-01T23:59:59.000Z

248

Removal of mercury from powder river basin coal by low-temperature thermal treatment  

Science Conference Proceedings (OSTI)

This report describes work conducted at Western Research Institute (WRI) to remove mercury from Powder River Basin (PRB) coal as part of the research performed under Task 2.1, Development and Optimization of a Process for the Production of a Premium Solid Fuel from Western US Coals, of the 1993 Annual Project Plan. In the tests minus 16 mesh PRB coal was fed to a bench-scale fluidized-bed reactor where it was heated by contact with carbon dioxide fluidizing gas. A side stream of the gas from the reactor was passed through traps containing activated carbon where mercury driven from the coal was collected. The feed coal (which contains about 0.062 milligrams of mercury/kilogram of coal), the fines elutriated from the reactor, the activated carbon, and the condensed water from the reactor were analyzed for mercury. The solid products were analyzed using cold vapor atomic adsorption spectroscopy (ASTM D3684) while the water was analyzed using US Environmental Protection Agency (EPA) Method 245.1 which is based upon reduction of mercury to elemental form followed by adsorption at a wave length of 253.7 nanometers. The results of these tests show that about 70 to 80 wt % of the mercury is removed from the coal when the temperature is raised from about 300{degree}F (149{degree}C) to about 550{degree}F (288{degree}C). The remaining 20 wt % of the mercury remains in the char at temperatures up to about 1100{degree}F (593{degree}C). About 0.5 wt % of the mercury in the feed coal is condensed with water recovered from the coal. Nearly all of the mercury driven from the coal remains in the gas stream. Fines elutriated from the reactor contain about the same concentration of mercury as the feed coal.

Merriam, N.W.

1993-07-01T23:59:59.000Z

249

Mercury Information Clearinghouse  

SciTech Connect

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

250

Method and apparatus for monitoring the flow of mercury in a system  

DOE Patents (OSTI)

An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

Grossman, Mark W. (Belmont, MA)

1987-01-01T23:59:59.000Z

251

Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates  

SciTech Connect

East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

2010-02-01T23:59:59.000Z

252

Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates  

SciTech Connect

East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

2010-02-01T23:59:59.000Z

253

Gas Mileage of 2008 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

254

Gas Mileage of 1987 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

255

Gas Mileage of 1990 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

256

Gas Mileage of 1999 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1999 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1999 Mercury Cougar 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1999 Mercury Cougar View MPG Estimates Shared By...

257

Gas Mileage of 1984 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1984 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1984 Mercury Capri 18 City 20 Combined 22 Highway 1984...

258

Gas Mileage of 1988 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1988 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1988 Mercury Cougar 18 City 21 Combined 25 Highway 1988...

259

Gas Mileage of 1992 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1992 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1992 Mercury Capri View MPG Estimates Shared By Vehicle...

260

Gas Mileage of 1996 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1996 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1996 Mercury Cougar 17 City 19 Combined 24 Highway 1996...

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas Mileage of 2007 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2007 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2007 Mercury Grand Marquis View MPG Estimates...

262

Gas Mileage of 2002 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

263

Gas Mileage of 1989 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

264

Gas Mileage of 1993 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

265

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

266

Recovery of mercury from acid waste residues  

DOE Patents (OSTI)

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

267

Mercury oxidization in dielectric barrier discharge plasma system  

SciTech Connect

The pronounced volatility of elemental mercury (Hg{sup 0}) and some of its compounds, coupled with their extreme toxicity, makes these substances extremely hazardous. Conversion of Hg{sup 0} to HgO would significantly enhance mercury removal from flue gases. This investigation is focused on studying the effect of some of the constituents such as O{sub 2}, H{sub 2}O, CO{sub 2}, and NOx present in flue gases on elemental mercury oxidation in a dielectric barrier discharge (DBD) reactor. The results show that Hg vapors (6 ppbv) in a stream of 0.1% O{sub 2} and N{sub 2} are effectively oxidized at the energy density of up to 114 J/L. Hg conversion of over 80% is achieved when present in a gas mixture of 8% O{sub 2}, 2% H{sub 2}O, and 10% CO{sub 2} in N{sub 2} balance. The presence of NOx enhanced mercury oxidation in the DBD reactor. The oxidation chemistry is discussed. Studies show that Hg can be simultaneously removed along with the other two major pollutants, NOx and SO{sub 2}, in one DBD reactor followed by a wet scrubber system. This avoids the need of three techniques for the removal of major gaseous pollutants from coal-fired power plants.

Chen, Z.Y.; Mannava, D.P.; Mathur, V.K. [University New Hampshire, Durham, NH (United States). Dept. for Chemical Engineering

2006-08-16T23:59:59.000Z

268

BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

Zamecnik, J.; Koopman, D.

2012-04-09T23:59:59.000Z

269

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

270

Advanced Utility Mercury-Sorbent Field-Testing Program  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

271

Interaction of sodium vapor and graphite studied by ...  

Science Conference Proceedings (OSTI)

The kinetics of the reaction between graphite and sodium vapor is analyzed with support ... High temperature compression test to determine the anode paste...

272

Public Health Guidance Note Mercury  

E-Print Network (OSTI)

Mercury (Hg) occurs in nature as the mineral cinnibar (red mercuric sulfide) and has found widespread use in industry. The commercial

unknown authors

2002-01-01T23:59:59.000Z

273

Total and organic mercury in marine fish of the upper gulf of Thailand  

SciTech Connect

In 1975, the total mercury contents in fish of the gulf of Thailand reportedly ranged from 0 to 0.58 ppM. In a recent study, traces of total mercury were found in the marine food chain, which tend to increase at higher trophic levels and according to the animal's size. As Thailand is one of the countries where the nationwide fish consumption is comparatively high, further study on the contamination of organic mercury in fish is essential.

Cheevaparanapivat, V.; Menasveta, P.

1979-10-01T23:59:59.000Z

274

NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS  

Science Conference Proceedings (OSTI)

Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

DeVore, Joe R [ORNL; Lu, Wei [ORNL; Schwahn, Scott O [ORNL

2013-01-01T23:59:59.000Z

275

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

276

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

277

Apparatus for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

278

PUBLIC HEALTH STATEMENT MERCURY  

E-Print Network (OSTI)

This Public Health Statement is the summary chapter from the Toxicological Profile for Mercury. It is one in a series of Public Health Statements about hazardous substances and their health effects. A shorter version, the ToxFAQs, is also available. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are

unknown authors

1999-01-01T23:59:59.000Z

279

Method for mercury refinement  

DOE Patents (OSTI)

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

280

Mercury Emissions Data Analyses  

Science Conference Proceedings (OSTI)

This report contains the visual materials included in presentations given at Research Triangle Park, North Carolina on April 3, 2002. Participants included representatives from EPRI, DOE, RMB Consulting & Research, and EERC. The MACT Working Group gave a presentation on "Variability in Hg Emissions Based on SCEM Data." The visuals in the report are a set of graphs documenting results of mercury emissions over time, using semi-continuous emissions monitor (SCEM) data. The EPA Utility Working Group gave a ...

2002-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for scavenging mercury  

DOE Patents (OSTI)

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

282

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

283

Method for scavenging mercury  

SciTech Connect

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

284

Gas Mileage of 2001 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

285

Gas Mileage of 1998 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

286

Gas Mileage of 2005 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

287

Gas Mileage of 2000 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

288

Gas Mileage of 2004 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

289

Gas Mileage of 1997 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

290

Gas Mileage of 1995 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

291

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

292

Treatability study for removal of leachable mercury in crushed fluorescent lamps  

SciTech Connect

Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

1996-02-01T23:59:59.000Z

293

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

294

PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code  

SciTech Connect

Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

Iandola, F N; O'Brien, M J; Procassini, R J

2010-11-29T23:59:59.000Z

295

The Clean Air Mercury Rule  

SciTech Connect

Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

Michael Rossler [Edison Electric Institute, Washington, DC (US)

2005-07-01T23:59:59.000Z

296

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions From  

NLE Websites -- All DOE Office Websites (Extended Search)

Risk Assessment of Reduced Mercury Emissions From Coal-Fired Power Plants Risk Assessment of Reduced Mercury Emissions From Coal-Fired Power Plants Given that mercury emissions from coal power plants will almost certainly be limited by some form of national regulation or legislation, Brookhaven National Laboratory (BNL) is performing an assessment of the reduction in human health risk that may be achieved through reduction in coal plant emissions of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk assessment focuses on consumption of fish by women of child-bearing age. Preliminary Risk Assessment A preliminary risk assessment was conducted using a simplified approach based on three major topics: Hg emissions and deposition (emphasizing coal plants), Hg consumption through fish, and dose-response functions for Hg. Using information available from recent literature, dose response factors (DRFs) were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions.

297

Controlling mercury emissions from coal-fired power plants  

Science Conference Proceedings (OSTI)

Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

2009-07-15T23:59:59.000Z

298

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

299

Methods for dispensing mercury into devices  

DOE Patents (OSTI)

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

300

Recovery from Mercury Contamination in the Second Songhua River, China  

E-Print Network (OSTI)

K. , & Rubin, J. R. (2005). Mercury levels and relationshipsJ. , et al. (1999). Mercury in contaminated coastalEnvironmental costs of mercury pollution. Science of the

Zhang, Z. S.; Sun, X. J.; Wang, Q. C.; Zheng, D. M.; Zheng, N.; Lv, X. G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

302

NETL: Health Effects - Risk Assessment of Reduced Mercury Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

of mercury. The primary pathway for mercury exposure is through consumption of fish. The most susceptible population to mercury exposure is the fetus. Therefore, the risk...

303

FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY  

SciTech Connect

In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch. Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study showed that determination of representative BAFs for large rivers requires the collect

Halverson, N

2008-09-30T23:59:59.000Z

304

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

305

Analysis of the transient compressible vapor flow in heat pipe  

SciTech Connect

The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

Jang, J.H.; Faghri, A. [Wright State Univ., Dayton, OH (United States); Chang, W.S. [Wright Research and Development Center, Wright-Patterson, OH (United States)

1989-07-01T23:59:59.000Z

306

NETL: Environmental Research - Fate of Mercury in Synthetic Gypsum Used for  

NLE Websites -- All DOE Office Websites (Extended Search)

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production Fate of Mercury in Synthetic Gypsum Used for Wallboard Production This project will provide information about the fate of mercury in synthetic gypsum produced by wet FGD systems on coal-fired power plants, when used as feedstock for wallboard production. Wet FGD systems play a key role in current and future efforts to limit the air emissions of mercury control from coal-fired plants. Potential emissions of mercury from FGD byproduct gypsum during wallboard production could limit overall mercury control levels achieved by the coal power industry. Furthermore, any adverse effects of elevated mercury levels in wallboard products could undermine the use of FGD gypsum as a feedstock for wallboard plants. Under a Cooperative Agreement with DOE-NETL, USG Corp., a major producer of wallboard, will provide high-quality data on the extent and location of mercury release during the wallboard production process, and provide additional information on the potential for mercury leaching at the end of the wallboard life cycle, when it is disposed in municipal landfills.

307

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

308

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

309

www.mdpi.com/journal/ijerph Communication Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams  

E-Print Network (OSTI)

Abstract: Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS). A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA) has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled.

Claudia P. Peregrino; Myriam V. Moreno; Silvia V. Mir; Alma D. Rubio; Luz O. Leal

2011-01-01T23:59:59.000Z

310

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

311

Mercury Atomic Clock Sets Time-Keeping Record  

Science Conference Proceedings (OSTI)

Mercury Atomic Clock Sets Time-Keeping Record. ... A prototype mercury optical clock originally was demonstrated at NIST in 2000. ...

2013-08-27T23:59:59.000Z

312

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

313

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

314

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

Alex J. Berry; Thomas K. Gale

2005-09-30T23:59:59.000Z

315

Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and RadarRASS  

Science Conference Proceedings (OSTI)

High-resolution water vapor and wind measurements in the lower troposphere within the scope of the Baltic Sea Experiment (BALTEX) are presented. The measurements were performed during a field campaign with a new water vapor differential ...

V. Wulfmeyer

1999-04-01T23:59:59.000Z

316

Water Vapor Transport and the Production of Precipitation in the Eastern Fertile Crescent  

Science Conference Proceedings (OSTI)

The study presented here attempts to quantify the significance of southerly water vapor fluxes on precipitation occurring in the eastern Fertile Crescent region. The water vapor fluxes were investigated at high temporal and spatial resolution by ...

J. P. Evans; R. B. Smith

2006-12-01T23:59:59.000Z

317

Mercury Control Technology Selection Guide  

Science Conference Proceedings (OSTI)

EPRI, the DOE National Energy Technology Laboratory, and various other organizations have undertaken extensive RD programs over the past decade to develop cost-effective methods for reducing mercury emissions from coal-burning power plants. The field tests sponsored by these organizations have produced a significant amount of pilot and full-scale mercury control data for a variety of technologies at power plant sites with different boiler types, firing different coals, and equipped with various air emiss...

2006-09-22T23:59:59.000Z

318

Mercury Stability in FGD Byproducts  

Science Conference Proceedings (OSTI)

A significant fraction of the mercury in coals fired for power generation currently is removed by wet flue gas desulfurization (FGD) systems and incorporated in the byproducts from those systems. This report summarizes the results of an EPRI-sponsored project to measure the stability of mercury in FGD byproducts from coal-fired generating plants under simulated landfill and reuse conditions. The current effort repeated portions of a 2003 project, documented in EPRI report 1004254, to determine whether th...

2004-03-24T23:59:59.000Z

319

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

Lapatovich, Walter P. (Hudson, MA); Keeffe, William M. (Rockport, MA); Liebermann, Richard W. (Danvers, MA); Maya, Jakob (Brookline, MA)

1987-01-01T23:59:59.000Z

320

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

1987-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS  

Science Conference Proceedings (OSTI)

This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

BAKER, D.M.

2004-08-03T23:59:59.000Z

322

Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism  

E-Print Network (OSTI)

AJ (2005) Inorganic mercury dissociates preassembledmetabolize toxicants, such as mercury, differently. RNA wasexpression microarrays. Mercury levels were measured using

2011-01-01T23:59:59.000Z

323

Investigation of modified speciation for enhanced control of mercury  

SciTech Connect

The control of hazardous air pollutant (HAP) emissions was addressed in Title III of the Clean Air Act Amendments of 1990, which provided an initial list of 189 elements and compounds of concern. The combustion of coal has the potential to produce a number of those species, either directly as a result of the trace elements found in coal, or as products of chemical reactions occurring in combustion. However, field studies conducted by the U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and others have shown that the actual emissions are very low and that effective particulate-matter capture can control most of the inorganic species. The most significant exception is mercury, which has also been singled out for particular regulatory attention because of its behavior in the environment (bioaccumulation) and the potential for deleterious health effects. In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. The very small amount of mercury (on the order of a few micrograms per cubic meter) in flue gas, its occurrence in several chemical forms that vary from system to system, the very low solubility of the elemental form, and the fact that it is usually in the vapor phase combine to make the achievement of cost-effective control a challenging task.

Livengood, C.D.; Mendelsohn, M.H.

1997-09-01T23:59:59.000Z

324

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

Science Conference Proceedings (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

325

Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA  

SciTech Connect

As a result of the lithium-isotope separation process used in the production of thermonuclear fusion weapons during the mid-1950s and early 1960s. 150 t of mercury were released into Poplar Creek (via East Fork Poplar Creek) in Oak Ridge, Tennessee, USA. This project was performed as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation to define the nature and extent of mercury contamination in Poplar Creek. Ultraclean sampling techniques and ultrasensitive analytical methods were used to determine methylmercury and inorganic mercury concentrations in surface water, sediment, and pore water from Poplar Creek. Total methylmercury and inorganic mercury concentrations in surface water from reaches downstream from the East Fork Poplar Creek confluence were significantly higher (p < 0.05) than the upstream reference reach. Concentrations in surface water increased with distance downstream from the source (East Fork Poplar Creek), which was opposite of expected results. Sediment methylmercury and inorganic mercury concentrations also increased with the distance downstream from the source and were highest near the mouth of Poplar Creek (1.0--12 ng/g and 630--140,000 ng/g, respectively). High concentrations in surface water and sediment near the mouth of Poplar Creek appear to be a result of sediment deposition and resuspension, apparently caused by the stronger Clinch River current acting as a barrier and its backflow into Poplar Creek as a result of hydropower operations.

Campbell, K.R. [SENES Oak Ridge, Inc., TN (United States). Center for Risk Analysis; Ford, C.J. [Highlands Soil and Water Conservation District, Sebring, FL (United States); Levine, D.A. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

326

Stratified vapor generator  

DOE Patents (OSTI)

A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

2008-05-20T23:59:59.000Z

327

Fuel vapor canister  

SciTech Connect

This paper discusses an improved fuel vapor storage canister for use in a vehicle emission system of the type utilizing an enclosure with an interior communicated with a source of fuel vapor. The improved canister comprises: the enclosure having a mixture including particles of activated charcoal and many pieces of foam rubber, the pieces of foam rubber in the mixture being randomly and substantially evenly dispersed whereby substantially all the charcoal particles are spaced relatively closely to at least one foam rubber piece; the mixture being packed into the enclosure under pressure so that the pieces of foam rubber are compressed enough to tightly secure the charcoal particles one against another to prevent a griding action therebetween.

Moskaitis, R.J.; Ciuffetelli, L.A.

1991-03-26T23:59:59.000Z

328

Profiling Atmospheric Water Vapor by Microwave Radiometry  

Science Conference Proceedings (OSTI)

High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended Kaiman-Bucy filter ...

J. R. Wang; J. L. King; T. T. Wilheit; G. Szejwach; L. H. Gesell; R. A. Nieman; D. S. Niver; B. M. Krupp; J. A. Gagliano

1983-05-01T23:59:59.000Z

329

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

330

Method and apparatus for monitoring the flow of mercury in a system  

DOE Patents (OSTI)

An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

Grossman, M.W.

1987-12-15T23:59:59.000Z

331

Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

Alan Bland; Kumar Sellakumar; Craig Cormylo

2007-08-01T23:59:59.000Z

332

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, M.M.; Yost, F.G.

1986-04-09T23:59:59.000Z

333

Mercury switch with non-wettable electrodes  

DOE Patents (OSTI)

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

334

Gas Mileage of 2009 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2009 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2009 Mercury Grand Marquis FFV Gas 16 City 19 Combined 24 Highway E85 12 City...

335

Gas Mileage of 2010 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2010 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2010 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

336

Gas Mileage of 2011 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Comb Hwy 2011 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2011 Mercury Grand Marquis FFV View MPG Estimates Shared By Vehicle Owners Gas...

337

Gas Mileage of 2003 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2003 Mercury Mountaineer 2WD FFV 6 cyl, 4.0 L, Automatic 5-spd, Regular Gas or E85 Compare 2003 Mercury Mountaineer 2WD FFV Gas 14 City 16 Combined 19 Highway E85 10 City...

338

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

OpenEI by expanding it. Mercury Solar Systems is a company located in New Rochelle, New York . References "Mercury Solar Systems" Retrieved from "http:en.openei.orgw...

339

NETL: Emissions Characterization - Mercury Reactions in Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Reactions in Power Plant Plumes: Bowen Study DOE-NETL is participating in a field study, managed by EPRI, to document the changes in mercury speciation that may be...

340

Gas Mileage of 2006 Vehicles by Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Highway 2006 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2006 Mercury Grand Marquis Gas 15 City 18 Combined 23 Highway E85 11 City 13...

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Critical review of mercury chemistry in flue gas.  

SciTech Connect

Mercury (Hg) and its compounds have long been recognized as potentially hazardous to human health and the environment. Many man-made sources of mercury have been reduced in recent years through process changes and control measures. However, emissions of mercury from coal-fired power plants, while exceedingly dilute by the usual pollution standards, still constitute a major source when considered in the aggregate. Concerns over those emissions and the prospect of impending emissions regulations have led to a wide range of research projects dealing with the measurement and control of mercury in flue gas. This work has made considerable progress in improving the understanding of mercury emissions and their behavior, but inconsistencies and unexpected results have also shown that a better understanding of mercury chemistry is needed. To develop a more complete understanding of where additional research on mercury chemistry is needed, the U.S. Department of Energy (DOE) asked Argonne National Laboratory (Argonne) to conduct a critical review of the available information as reported in the technical literature. The objectives were to summarize the current state of the art of chemistry knowledge, identify significant knowledge gaps, and recommend future research to resolve those gaps. An initial evaluation of potential review topics indicated that the scope of the review would need to be limited and focused on the most important topics relative to mercury control. To aid in this process, Argonne developed a brief survey that was circulated to researchers in the field who could help identify and prioritize the many aspects of the problem. The results of the survey were then used to design and guide a highly focused literature search that identified key papers for analysis. Each paper was reviewed, summarized, and evaluated for the relevance and quality of the information presented. The results of that work provided the basis for conclusions regarding the state of knowledge of mercury chemistry and recommendations for further research. This report begins by summarizing the survey process and describing how the results were used to shape the critical review. Analyses of information obtained from the various publications are presented chronologically, beginning with the earliest relevant publication found and concluding with the end of the review in early 2003. Finally, the conclusions and recommendations for future research are presented. The survey instrument is included in Appendix A, while detailed information on each of the publications reviewed is given in Appendix B.

Mendelsohn, M. H.; Livengood, C. D.

2006-11-27T23:59:59.000Z

342

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

343

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wetflue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

344

Transitioning from Mercury Thermometers to Alternative ...  

Science Conference Proceedings (OSTI)

... methods in the petroleum industry continue to specify mercury- in-glass thermometers. ... Thermometers are available from many commercial sources ...

2013-06-03T23:59:59.000Z

345

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was greater. Catalyst coating of low-pressure-drop screens was of particular interest as this project was being developed. However, it was discovered that URS was already heavily involved in the pursuit of this same technology, being funded by DOE, and reporting significant success. Hence, testing of SCR catalysts became a major focus of the project. Three different commercial SCR catalysts were examined for their ability to oxidize mercury in simulated flue-gas. Similar performance was observed from each of the three commercial catalysts, both in terms of mercury oxidation and SO{sub 3} generation. Ammonia injection hindered mercury oxidation at low HCl concentrations (i.e., {approx}2 ppmv), yet had little impact on mercury oxidation at higher HCl concentrations. On the other hand, SO{sub 2} oxidation was significantly reduced by the presence of ammonia at both low and high concentrations of HCl.

Thomas K. Gale

2006-06-30T23:59:59.000Z

346

Mercury Flux Measurements: An Intercomparison and Assessment: Nevada Mercury Emissions Project (NvMEP)  

Science Conference Proceedings (OSTI)

An understanding of the contribution of natural nonpoint mercury sources to regional and global atmospheric mercury pools is critical for developing emission inventories, formulating environmental regulations, and assessing human and ecological health risks. This report discusses the results of the Nevada Mercury Emissions Project (NvMEP) and takes a close look at the emerging technologies used to obtain mercury flux field data. In specific, it provides an intercomparison of mercury flux measurements obt...

1998-12-14T23:59:59.000Z

347

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

348

Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994  

Science Conference Proceedings (OSTI)

Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1995-02-01T23:59:59.000Z

349

Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO  

DOE Patents (OSTI)

A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

Jadhav, Raja A. (Naperville, IL)

2009-07-07T23:59:59.000Z

350

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury  

Science Conference Proceedings (OSTI)

ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

Wendel, Mark W [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL

2012-01-01T23:59:59.000Z

352

Improved method for removing metal vapor from gas streams  

DOE Patents (OSTI)

This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy.

Ahluwalia, R.K.; Im, K.H.

1994-09-19T23:59:59.000Z

353

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

354

Mercury and platinum abundances in mercury-manganese stars  

E-Print Network (OSTI)

We report new results for the elemental and isotopic abundances of the normally rare elements mercury and platinum in HgMn stars. Typical overabundances can be 4 dex or more. The isotopic patterns do not follow the fractionation model of White et al (1976).

C. M. Jomaron; M. M. Dworetsky; D. A. Bohlender

1998-05-06T23:59:59.000Z

355

Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

1999-10-19T23:59:59.000Z

356

NETL: Mercury Emissions Control Technologies - Evaluation of MerCAP for  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of MerCAP(tm) for Power Plant Mercury Control Evaluation of MerCAP(tm) for Power Plant Mercury Control URS Group and its test team will perform research to further develop the novel Mercury Control via Adsorption Process (MerCAP™). The general MerCAP™ concept is to place fixed structures into a flue gas stream to adsorb mercury and then periodically regenerate them and recover the captured mercury. EPRI has shown that gold-based sorbents can achieve high levels of mercury removal in scrubbed flue gases. URS is proposing tests at two power plants using gold MerCAP™, installed downstream of either a baghouse or wet scrubber, to evaluate mercury removal from flue gas over a period of 6 months. At Great River Energy’s Stanton Station, which burns North Dakota lignite, sorbent structures will be retrofitted into a single compartment in the Unit 10 baghouse enabling reaction with a 6 MWe equivalence of flue gas. At Southern Company Services’ Plant Yates, which burns Eastern bituminous coal, gold-coated plates will be configured as a mist eliminator (ME) located downstream of a 1 MWe pilot wet absorber , which receives flue gas from Unit 1.

357

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network (OSTI)

Long-period forcing of Mercurys libration in longitude.M. : Resonant forcing of Mercurys libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

358

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a CCD camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Bhi, Pascal

2012-01-01T23:59:59.000Z

359

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Pascal Bhi; Philipp Treutlein

2012-07-20T23:59:59.000Z

360

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Control of mercury methylation in wetlands through iron addition  

E-Print Network (OSTI)

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

362

Combined homo- and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases  

SciTech Connect

A new model is developed to predict Hg{sup 0}, Hg{sup +}, Hg{sup 2+}, and Hg{sub p} in the post-combustion zone upstream of a particulate control device (PCD) in pulverized coal-fired power plants. The model incorporates reactions of mercury with chlorinating agents (HCl) and other gaseous species and simultaneous adsorption of oxidized mercury (HgCl{sub 2}) on fly ash particles in the cooling of flue gases. The homogeneous kinetic model from the literature has been revised to understand the effect of the NO + OH + M {longleftrightarrow} HONO + M reaction on mercury oxidation. Because it is a pressure-dependent reaction, the choice of proper reaction rates was very critical. It was found that mercury oxidation reduces from 100 to 0% while going from high- to low-pressure limit rates with 100 ppmv NO. The heterogeneous model describes selective in-duct Langmuir-Hinshelwood adsorption of mercury chloride on ash particles. The heterogeneous model has been built using Fortran and linked to Chemkin 4.0. The final predictions of elemental, oxidized, and particulate mercury were compared to mercury speciation from power plant data. Information collection request (ICR) data were used for this comparison. The model results follow very similar trends compared to those of the plant data; however, quantitative deviation was considerable. These deviations are due to the errors in the measurement of mercury upstream of PCD, lack of adsorption kinetic data, accurate homogeneous reaction mechanisms, and certain modeling assumptions. The model definitely follows a new approach for the prediction of mercury speciation, and further refinement will improve the model significantly. 43 refs., 1 figs., 6 tabs.

Shishir P. Sable; Wiebren de Jong; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

2008-01-15T23:59:59.000Z

363

Method for the generation of variable density metal vapors which bypasses the liquidus phase  

DOE Patents (OSTI)

The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

Kunnmann, Walter (Stony Brook, NY); Larese, John Z. (Rocky Point, NY)

2001-01-01T23:59:59.000Z

364

Photochemical vapor deposition of amorphous silicon photovoltaic devices. Semiannual subcontract report, 1 May 1985-31 October 1985  

DOE Green Energy (OSTI)

Intrinsic, p-type, and n-type hydrogenated amorphous silicon thin-films have been deposited by mercury-sensitized photochemical vapor deposition (photo-CVD) from disilane. The photochemical reactor design includes two chambers separated by a movable uv-transparent Teflon curtain to eliminate deposition on the reactor window. Glass/TCO/p-i-n/metal photovoltaic devices were fabricated by photo-CVD. The efficiency at 87.5 MW/cm/sup 2/(ELH) was 5.1%.

Baron, B.N.; Rocheleau, R.E.; Hegedus, S.S.

1986-06-01T23:59:59.000Z

365

Mercury in Alaskan Eskimo mothers and infants  

E-Print Network (OSTI)

The potential danger of natural mercury accumulation in the diet of the Eskimo is evaluated through mercury levels determined in cord blood, placenta, maternal blood, hair, and milk of 38 maternal-infant pairs from Anchorage and the Yukon-Kuskokwim Delta. Although mercury levels are not discernably dangerous, trends to larger accumulations in maternal and fetal RBC and placental tissue with proximity to the sea and consumption of seals during pregnancy provide the basis for considering possible indicators of neonatal involvement. Mercury level in RBC from cord blood appeared as the best potential indicator of this involvement, although relationships with the mother's diet and level of mercury in the placenta also appear useful. In this area, average and maximal mercury levels in cord blood are 39 and 78 ng/ml, respectively, far below the acknowledged toxic level in infants of these mothers who eat seals or fish every day during their pregnancy.

William A. Galster

1976-01-01T23:59:59.000Z

366

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

367

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

368

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

369

Release of Mercury During Curing of Concrete Containing Fly Ash and Mercury Sorbent Material  

Science Conference Proceedings (OSTI)

This report provides laboratory data on mercury release during the initial curing stage of concrete made with fly ash or mixtures of fly ash and activated carbon containing mercury. These experiments suggest that mercury is not released from these concretes during initial curing.

2002-12-09T23:59:59.000Z

370

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

371

NETL: Mercury Emissions Control Technologies - Non-Thermal Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma Based Removal of Mercury Project Summary Powerspan Corp. will pilot test a multi-pollutant technology that converts mercury into mercuric oxide, nitrogen oxide...

372

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

373

Process for removing mercury from aqueous solutions  

DOE Patents (OSTI)

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

374

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

375

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

376

NETL: Mercury Emissions Control Technologies - Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Integrated Approach to Mercury Control This project will demonstrate a novel multi-pollutant control technology for coal-fired power plants that can reduce...

377

NETL: IEP - Mercury Emissions Control: News Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

News Releases The following are links to various recent news stories related to mercury in the environment. These links are provided strictly as a convenience to the general...

378

NETL: Mercury Emissions Control Technologies - Brominated Sorbents...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPs, and Fly Ash Use in Concrete Sorbent Technology will test two technologies for mercury removal from flue gas. Their concrete safe brominated sorbent will be tested at...

379

Mercury Emission Measurement at a CFB Plant  

DOE Green Energy (OSTI)

In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

John Pavlish; Jeffrey Thompson; Lucinda Hamre

2009-02-28T23:59:59.000Z

380

Establishing Measurement Traceability for Gaseous Mercury ...  

Science Conference Proceedings (OSTI)

... NIST already provides mercury traceability to the SI for many solid- and liquid-matrix materials, including fossil fuels, through the SRM program, but ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

382

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

383

NETL: Mercury Emissions Control Technologies - University of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using SCR and SNCR NOx Control Technologies Determination of the Speciated Mercury Inventory at Four Coal-Fired Boilers Using Continuous Hg Monitors Longer-Term Testing of...

384

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

385

NETL: Mercury Emissions Control Technologies - Field Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

or without performance additives, to reduce mercury emissions from a Texas utility burning either Texas lignite or a blend of Texas lignite and subbituminous coals. Sorbents...

386

NETL: Mercury Emissions Control Technologies - Modifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Jointly funded by DOE and the Electric Power Research Institute (EPRI), this project's purpose is to investigate novel approaches of capturing elemental and...

387

"Seeing" Mercury Methylation in Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury in the environment can easily reach toxic levels. In a process called methylation, Hg is transformed into a form that can be accumulated in the muscle and fatty tissue of fish. Accumulated levels of methylmercury become higher as the fish grow, and levels are magnified up the food web as larger fish eat smaller fish, a process called biomagnification. As a result, mercury concentrations in fish can be millions of times higher than in surrounding waters [1]. Fish advisories have been set to limit consumption of certain fish higher up on the food web, especially for pregnant women and small children (see Figure 1). Mercury in the environment can easily reach toxic levels. In a process called methylation, Hg is transformed into a form that can be accumulated in the muscle and fatty tissue of fish. Accumulated levels of methylmercury become higher as the fish grow, and levels are magnified up the food web as larger fish eat smaller fish, a process called biomagnification. As a result, mercury concentrations in fish can be millions of times higher than in surrounding waters [1]. Fish advisories have been set to limit consumption of certain fish higher up on the food web, especially for pregnant women and small children (see Figure 1). figure 1 Figure 1. Mercury health risks Health advisory from the CALFED Science Program to limit consumption of fish, in order to avoid excessive accumulation of Hg. Methylated Hg is biomagnified up the food chain, attaining high levels in some types of sportfish. http://science.calwater.ca.gov/images/scinews_hg_da_lg.jpg

388

Active current sheets and hot flow anomalies in Mercury's bow shock  

E-Print Network (OSTI)

Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flo...

Uritsky, V M; Boardsen, S A; Sundberg, T; Raines, J M; Gershman, D J; Collinson, G; Sibeck, D; Khazanov, G V; Anderson, B J; Korth, H

2013-01-01T23:59:59.000Z

389

Vapor adsorption process  

SciTech Connect

The removal of undesirable acid components from sour natural gas is often accomplished by a vapor adsorption process wherein a bed of solid adsorbent material is contacted with an inlet gas stream so that desired components contained in the gas stream are adsorbed on the bed, then regenerated by contact with a heated regeneration gas stream. Adsorbed components are desorbed from the bed and the bed is cooled preparatory to again being contacted with the inlet gas stream. By this process, the bed is contacted, during the regeneration cycle, with a selected adsorbable material. This material has the property of being displaced from the bed by the desired components and has a heat of desorption equal to or greater than the heat of adsorption of the desired components. When the bed is contacted with the inlet gas stream, the selected adsorbable material is displaced by the desired components resulting in the temperature of the bed remaining relatively constant, thereby allowing the utilization of the maximum bed adsorption capacity. (4 claims)

Snyder, C.F.; Casad, B.M.

1973-04-24T23:59:59.000Z

390

Atmospheric Water Vapor over China  

Science Conference Proceedings (OSTI)

Chinese radiosonde data from 1970 to 1990 are relatively homogeneous in time and are used to examine the climatology, trends, and variability of Chinas atmospheric water vapor content. The climatological distribution of precipitable water (PW) ...

Panmao Zhai; Robert E. Eskridge

1997-10-01T23:59:59.000Z

391

Controls on Fluxes of Mercury in Aquatic Food Webs: Application of the Dynamic Mercury Cycling Model to Four Enclosure Experiments w ith Additions of Stable Mercury Isotopes  

Science Conference Proceedings (OSTI)

New controls on utility mercury emissions are under consideration in order to limit human exposure to mercury resulting from fish consumption. Evaluation of such measures requires an understanding of how mercury cycles through lakes and streams. This report describes the application of EPRI's Dynamic Mercury Cycling Model (D-MCM) to experiments involving the addition of stable mercury Hg(II) isotopes to four 10-meter-diameter enclosures in a lake.

2001-09-21T23:59:59.000Z

392

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

393

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

394

HEXOSHumidity Exchange Over the Sea A Program for Research on Water-Vapor and Droplet Fluxes from Sea of Air at Moderate to High Wind Speeds  

Science Conference Proceedings (OSTI)

HEXOS is an international program for the study of evaporation and spray-droplet flux from sea to air. The program includes measurements in the field at moderate-to-high wind speeds, wind-tunnel studies, instrument development, boundary-layer ...

Kristina B. Katsaros; Stuart D. Smith; Wiebe A. Oost

1987-05-01T23:59:59.000Z

395

Vapor deposition of hardened niobium  

DOE Patents (OSTI)

A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

1983-04-19T23:59:59.000Z

396

Fly ash properties and mercury sorbent affect mercury release from curing concrete  

Science Conference Proceedings (OSTI)

The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe [State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2009-04-15T23:59:59.000Z

397

Chemical vapor deposition sciences  

SciTech Connect

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

1992-12-31T23:59:59.000Z

398

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

399

Data:54991866-36b9-43eb-8f61-1ee2446254f1 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

400

Data:548ab109-bb95-4b9c-82f8-984a1dd171fa | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data:1168228a-4e41-4952-8201-ba7ab2f08aff | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

402

Data:0e129a41-6138-400e-be60-7742cbe9ab2b | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

403

Data:2aaaf198-bc2b-4f93-b24e-08832c8dabeb | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

404

Data:0a6c2e98-8dea-4cae-866f-00ab1c7eebca | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

405

Data:61e088da-48b3-4281-bdce-f853b04f1158 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

406

Data:8e0f826a-f18e-4268-9546-bbfba87ef44e | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

407

Data:889ea768-5e4c-4971-9181-82a9bbad721a | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

408

Data:626f5c89-8472-46ef-9820-ed97fcd4b993 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

409

Data:130e1e71-8f88-46ee-a6b3-08b8a8a3baef | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

410

Data:4eaf1cf2-f582-4075-b384-7cc106820b25 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

411

Data:5e86a75d-90dd-42c6-89a3-7b0bb24b1a10 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

412

Data:3ec3603d-e52f-446b-b5cf-43b6fbc63a62 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

413

Data:221de333-3873-4734-b181-c11216c90a85 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

414

Data:952570ab-ec99-45bf-8577-d5592104c307 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

415

Data:348ad73a-6234-4eef-bcf9-e533ff0d9c66 | Open Energy Information  

Open Energy Info (EERE)

or a local government or any of their agencies. Applicable only to outdoor lighting ballast-operated vapor lamp fixtures, either mercury vapor (MV), high pressure sodium (HPS)...

416

2006 Mercury Control Technology Conference Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

417

Low-Cost Options for Moderate Levels of Mercury Control  

Science Conference Proceedings (OSTI)

This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

Sharon Sjostrom

2008-02-09T23:59:59.000Z

418

Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers  

E-Print Network (OSTI)

We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at the hotter portion of the interface and condensation at the colder one. The high vapor pressure drives the liquid away and the low one pulls it up. A set of equations describing the temporal evolution of the interface of the liquid-vapor layers is derived. This model neglects the effect of mass loss or gain at the interface and guarantees the mass conservation of the liquid layer. The result of linear stability analysis of the model shows that the presence of the pressure dependence of the local saturation temperature suppresses the growth of long-wave disturbances. We find the stability criterion, which suggests that only slight temperature gradients are sufficient to overcome the stabilizing gravitational effect for a water an...

Kanatani, Kentaro

2008-01-01T23:59:59.000Z

419

DuPont Chemical Vapor Technical Report  

Science Conference Proceedings (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

420

Demonstrations to Support Change to the >260 ppm Mercury Treatment Regulations  

SciTech Connect

The U.S. Department of Energy (DOE) and the U. S. Environmental Protection Agency (EPA) are working together to justify a change in the Land Disposal Restriction for High Mercury (>260 ppm mercury) waste. The present regulation that requires roasting or retorting is based on recovering and recycling the mercury in the waste. However, most of DOEs High Mercury waste is radioactively contaminated, eliminating the possibility of its recycle. The radioactive mercury recovered must be amalgamated and disposed. In addition, concern over fugitive emissions from retorting and roasting operations has raised the question of whether such processing is environmentally sound. A change to the regulation to allow stabilization and disposal would reduce the overall environmental threat, if the stabilization process can reduce the leachability of the mercury to regulatory levels. Demonstrations are underway to gather data showing that the High Mercury waste can be safely stabilized. At the same time, comparison tests are being conducted using an improved form of the baseline retorting technology to better quantify the fugitive emission problem and determine the full capability of thermal desorption systems. A first round of demonstrations stabilizing mercury in soil from Brookhaven National Laboratory (BNL) has been completed. Four groups demonstrated their process on the waste: 1) BNL demonstrated its Sulfur Polymer Stabilization/Solidification process; 2) Nuclear Fuel Services used their DeHg (de-merk) process, 3) Allied Technology Group used chemical stabilization, and 4) Sepradyne demonstrated their vacuum thermal desorption system. All groups were successful in their tests, reaching regulatory levels for mercury leachability. Data for each group will be presented. DOE, EPA, and the University of Cincinnati are presently working on another series of tests involving treatment of surrogate sludge and soil by commercial vendors. Protocols that better determine the waste forms ability to withstand leaching are being used to analyze the stabilized surrogates. Results of these and the previous demonstrations will be used to determine whether the High Mercury treatment regulation can be safely changed.

Hulet, Gregory Albert; Maio, Vincent Carl; Morris, M. I.; Lewis, J.; Randall, P.; Rieser, L.

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury vapor high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.