Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

2

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

3

Effects of Advanced Combustion Technologies on Particulate Matter...  

Broader source: Energy.gov (indexed) [DOE]

Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions...

4

Advanced particulate matter control apparatus and methods  

DOE Patents [OSTI]

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

5

Reduction of Transient Particulate Matter Spikes with Decision...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transient Particulate Matter Spikes with Decision Tree Based Control Reduction of Transient Particulate Matter Spikes with Decision Tree Based Control Using a non-parametric...

6

Investigation of Direct Injection Vehicle Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions This study focuses primarily on particulate matter mass analysis of a gasoline direct injection engine in a test cell with a chassis dynamometer. p-10gibbs.pdf...

7

Desorption of hexachlorobiphenyl from selected particulate matter  

E-Print Network [OSTI]

DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN CARTWRIGHT RORS CHACH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Civil Engineering DESORPTION OF HEXACHLOROBIPHENYL FROM SELECTED PARTICULATE MATTER A Thesis by REAGAN C. RORSCHACH Approved as to style and content by: Robin L. Autenrieth (Chair of Committee...

Rorschach, Reagan Cartwright

1989-01-01T23:59:59.000Z

8

MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

2002-11-01T23:59:59.000Z

9

Fuel-Neutral Studies of Particulate Matter Transport Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

10

Particulate Matter Sampling and Volatile Organic Compound Removal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization...

11

Method for removing particulate matter from a gas stream  

DOE Patents [OSTI]

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

12

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

13

E-Print Network 3.0 - ambient particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ambient particulate matter Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

14

E-Print Network 3.0 - ambient particulate matter-induced Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter-induced Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

15

Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores  

E-Print Network [OSTI]

There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

Beauboeuf, Daniel P

2010-01-01T23:59:59.000Z

16

The effects of secondary air injection on particulate matter emissions  

E-Print Network [OSTI]

An experimental study was performed to investigate the effects of secondary air injection (SAI) on particulate matter (PM) emissions. SAI was developed to reduce hydrocarbon (HC) emissions and has been shown to be effective ...

Pritchard, Joseph James

2014-01-01T23:59:59.000Z

17

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

Minnesota, University of

18

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

Minnesota, University of

19

Modeling of Particulate Matter Emissions from Agricultural Operations  

E-Print Network [OSTI]

State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators...

Bairy, Jnana 1988-

2013-01-02T23:59:59.000Z

20

ORIGINAL ARTICLE Fine Particulate Matter and Mortality  

E-Print Network [OSTI]

landmark cohort studies for estimating the chronic effects of fine particulate air pollution (PM2 that the Medicare files can be used to construct on-going cohorts for tracking the risk of air pollution over time- tory diseases, and also with increased mortality.1­6 Chronic effects of air pollution potentially

Dominici, Francesca

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrically heated particulate matter filter with recessed inlet end plugs  

DOE Patents [OSTI]

A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

Gonze, Eugene V. (Pinckney, MI); Ament, Frank (Troy, MI)

2012-02-21T23:59:59.000Z

22

Inductively heated particulate matter filter regeneration control system  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

2012-10-23T23:59:59.000Z

23

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT  

E-Print Network [OSTI]

REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

Minnesota, University of

24

Biodiesel Fuel Property Effects on Particulate Matter Reactivity  

SciTech Connect (OSTI)

Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

Williams, A.; Black, S.; McCormick, R. L.

2010-06-01T23:59:59.000Z

25

Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues  

E-Print Network [OSTI]

Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate

Short, Daniel

26

The Relationships of Particulate Matter and Particulate Organic Carbon with Hypoxic Conditions Along the Texas-Louisiana Shelf  

E-Print Network [OSTI]

an onboard surface-water flow-through system, CTD casts, and by an undulating towed vehicle. Total particulate matter and particulate organic carbon samples were obtained from Niskin bottles on CTD casts. Samples were also taken to measure dissolved oxygen...

Zuck, Nicole A

2014-08-06T23:59:59.000Z

27

Apparatus for removal of particulate matter from gas streams  

DOE Patents [OSTI]

An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

2000-01-01T23:59:59.000Z

28

Ash reduction system using electrically heated particulate matter filter  

DOE Patents [OSTI]

A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

2011-08-16T23:59:59.000Z

29

Low exhaust temperature electrically heated particulate matter filter system  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

2012-02-14T23:59:59.000Z

30

Elevated exhaust temperature, zoned, electrically-heated particulate matter filter  

DOE Patents [OSTI]

A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

2012-04-17T23:59:59.000Z

31

Wireless zoned particulate matter filter regeneration control system  

DOE Patents [OSTI]

An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

2011-10-04T23:59:59.000Z

32

E-Print Network 3.0 - airborne particulate matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Sciences and Ecology 2 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the...

33

E-Print Network 3.0 - air particulate matter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering ; Renewable Energy 3 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the...

34

Probing into regional ozone and particulate matter pollution in the United States  

E-Print Network [OSTI]

) and fine particulate matter (PM2.5) air pollution and associated health effects have been one of the majorProbing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ-term simulations using the Community Multiscale Air Quality (CMAQ) modeling system and subsequent process analyses

Jacobson, Mark

35

Development of a Low-Cost Particulate Matter Monitor  

E-Print Network [OSTI]

Forward-looking infrared (FLIR) images taken as a singleforward-looking infrared (FLIR) instrumentation. Particulate

White, Richard M.

2010-01-01T23:59:59.000Z

36

Particulate matter and heart disease: Evidence from epidemiological studies  

SciTech Connect (OSTI)

The association between particulate matter and heart disease was noted in the mid-nineties of last century when the epidemiological evidence for an association between air pollution and hospital admissions due to cardiovascular disease accumulated and first hypotheses regarding the pathomechanism were formulated. Nowadays, epidemiological studies have demonstrated coherent associations between daily changes in concentrations of ambient particles and cardiovascular disease mortality, hospital admission, disease exacerbation in patients with cardiovascular disease and early physiological responses in healthy individuals consistent with a risk factor profile deterioration. In addition, evidence was found that annual average PM{sub 2.5} exposures are associated with increased risks for mortality caused by ischemic heart disease and dysrhythmia. Thereby, evidence is suggesting not only a short-term exacerbation of cardiovascular disease by ambient particle concentrations but also a potential role of particles in defining patients' vulnerability to acute coronary events. While this concept is consistent with the current understanding of the factors defining patients' vulnerability, the mechanisms and the time-scales on which the particle-induced vulnerability might operate are unknown.

Peters, Annette [GSF-National Research Center for Environment and Health, Institute of Epidemiology, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany)]. E-mail: peters@gsf.de

2005-09-01T23:59:59.000Z

37

On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines  

SciTech Connect (OSTI)

The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

Hall, Matt; Matthews, Ron

2011-09-30T23:59:59.000Z

38

Errors associated with particulate matter measurements on rural sources: appropriate basis for regulating cotton gins  

E-Print Network [OSTI]

Agricultural operations across the United States are encountering difficulties complying with current air pollution regulations for particulate matter (PM). PM is currently regulated in terms of particle diameters less than or equal to a nominal 10...

Buser, Michael Dean

2004-09-30T23:59:59.000Z

39

Air dispersion modeling of particulate matter from ground-level area sources  

E-Print Network [OSTI]

State Air Pollution Regulatory Agencies (SAPRAs) often use dispersion modeling to predict downwind concentrations of particulate matter (PM) from a facility. As such, a facility may be granted or denied an operating permit based on the results...

Meister, Michael Todd

2000-01-01T23:59:59.000Z

40

VEE-0020- In the Matter of Mercury Fuel Service, Inc.  

Broader source: Energy.gov [DOE]

On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Removal of residual particulate matter from filter media  

DOE Patents [OSTI]

A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

Almlie, Jay C; Miller, Stanley J

2014-11-11T23:59:59.000Z

42

Estimating particulate matter health impact related to the combustion of different fossil fuels  

E-Print Network [OSTI]

Estimating particulate matter health impact related to the combustion of different fossil fuels generated a web map service that allows to access information on fuel dependent health effects due a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated

Paris-Sud XI, Université de

43

DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM  

E-Print Network [OSTI]

DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM JAMES L. COX in the California current system were analyzed for DDT residues. DDT residue concentrations in whole seawater are discussed in relation to mechanisms of land-sea DDT residue transfer. DDT residue concentrations

44

Particulate Matter Science for Policy Makers: A NARSTO Assessment is a concise and  

E-Print Network [OSTI]

Shepherd #12;1 - 2 CHAPTER 1 atmospheric processes, and the resultant atmospheric pollution loadings. Exposure and Impacts: Understanding of cause-effect relationships among atmospheric pollutants, exposures discussion of the current understanding of airborne particulate matter (PM) among atmospheric scientists. Its

Weber, Rodney

45

A FUNCTIONAL DATA ANALYSIS APPROACH FOR EVALUATING TEMPORAL PHYSIOLOGIC RESPONSES TO PARTICULATE MATTER  

E-Print Network [OSTI]

, including air pollutants such as ozone and particulate matter. Bradycardia and hypothermia are often Hypertensive rats (n=35; 8­9/group) were intratracheally instilled with a bolus dose of saline (control that effects between the control and high dose group persisted for at least 48 hr. The applicability of FDA

Lee, Chihoon

46

Development and Demonstration of an Electronic Particulate Matter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Matter Sensor for Both Engine-Out and Post-DPF Exhaust Monitoring Demanding emission legislation has created a need for low-cost, sensitive, accurate, and robust PM...

47

Development of a size-fractionating stack sampler for collection of particulate matter  

E-Print Network [OSTI]

information for the design of a cleaning system. The six major pollutants established by the U. S. Environmental Protection Agency (EPA) are carbon monoxide, nitrogen dioxide, sulfur oxides, hydrocarbons, photochemical oxidants, and particulate matter... descr1bed. In 1971 Monsanto Enviro-Chem Systems, Inc. ( 18) developed a novel cyclone preseparator with an inverted discharge tube for use w1th in- ertial impactors. In 1973, Ancel (19) developed a cyclone preseparator for inert1al impactors...

1983-01-01T23:59:59.000Z

48

Development of a Low-Cost Particulate Matter Monitor  

SciTech Connect (OSTI)

We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.

White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

2008-08-01T23:59:59.000Z

49

Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales  

SciTech Connect (OSTI)

Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel-borne additive, but otherwise its chemical composition reflects compounds of lubricating oil additives. (author)

Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for I.C. Engines, Duebendorf (Switzerland)

2010-09-15T23:59:59.000Z

50

Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces  

SciTech Connect (OSTI)

This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

Aiken, George

2014-10-02T23:59:59.000Z

51

Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon  

SciTech Connect (OSTI)

This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

Hwang, H M; Young, T M; Buchholz, B A

2009-04-16T23:59:59.000Z

52

The distribution of particulate matter in the Equatorial and Subtropical South Atlantic Ocean: evidence for sources, transport and sinks of particles  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Advection and Resuspension Associated with Boundaries. . . . . . . . . . . 71 The Brazil Basin. . 71 The Angola Basin. 74 Particulate Matter Associated with the Oxygen Minimum. . . . . . . . . . . 76 Agreement with Previous Work. . . 80... include primary production, aggregation, dissolution, diffusion, gravitational settling, upwelling, boundary layer mixing, and the resuspension and advection of sediments. For many elements involved in biogeochemical cycles, particulate matter serves...

Berglund, Bret Lawrence

1989-01-01T23:59:59.000Z

53

Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from a Pilot-Scale  

E-Print Network [OSTI]

Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution ratio influences both the coagulation rate and gas-to- particle conversion because of their ability to scatter and absorb light and also because they act as cloud condensation

Stanier, Charlie

54

Demolition of High-Rise Public Housing Increases Particulate Matter Air Pollution in Communities of High-Risk Asthmatics  

E-Print Network [OSTI]

) air pollution, which may ad- versely affect the respiratory health of nearby residents. DemolitionDemolition of High-Rise Public Housing Increases Particulate Matter Air Pollution in Communities of High-Risk Asthmatics Samuel Dorevitch Division of Environmental and Occupational Health Sciences

Illinois at Chicago, University of

55

SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING  

SciTech Connect (OSTI)

During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

2001-01-01T23:59:59.000Z

56

Advanced Hybrid Particulate Collector Project Management Plan  

SciTech Connect (OSTI)

As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

Miller, S.J.

1995-11-01T23:59:59.000Z

57

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect (OSTI)

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

58

Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data  

E-Print Network [OSTI]

1 2 3 4 5 6 7 8 9 Predicting residential indoor concentrations of nitrogen dioxide, fine collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO2) and fine particulate matter (PM2

Paciorek, Chris

59

SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE  

SciTech Connect (OSTI)

The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present for most metals (V, Ni, Zn, etc.). This allowed conclusive identification in the leaching residue of important secondary sulfide and oxide phases, including Ni sulfide, a toxic and carcinogenic phase observed in the leached PM{sub 2.5+} samples. Other significant secondary phases identified included V{sub 2}O{sub 4}, V sulfide, and NiFe{sub 2}O{sub 4}.

Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

2003-07-31T23:59:59.000Z

60

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2008-01-1748 An Analysis of Methods for Measuring Particulate Matter Mass  

E-Print Network [OSTI]

. The particulate organics are typically considered to be derived from diesel fuel and lubrication oil [1 filters (DPFs). Because of this, it is necessary to fully understand the effects that these low emission

Wu, Mingshen

62

How does pulmonary exposure to particulate matter predispose the heart to increased injury after myocardial infarction?  

E-Print Network [OSTI]

One of the most prevalent pollutants in urban cities is diesel exhaust particulate (DEP). Air pollution has been linked with increased risk of recurrent myocardial infarction (MI) and MI related death (Brook, 2008). This ...

Robertson, Sarah

2013-07-06T23:59:59.000Z

63

Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use  

SciTech Connect (OSTI)

Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

1999-12-31T23:59:59.000Z

64

Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter  

DOE Patents [OSTI]

A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

Pinson, P.A.

1998-02-24T23:59:59.000Z

65

Feasibility of the detection of trace elements in particulate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry. Feasibility of the detection of trace elements in particulate matter using online...

66

Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)  

SciTech Connect (OSTI)

Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement/lime, iron/steel, and gasoline/diesel factors, while associations with the sludge incineration factor and components were less consistent. In winter, increases in HR were associated with a refinery factor and its components. CAPs-associated HR decreases in winter were linked to sludge incineration, cement/lime, and coal/secondary factors and the majority of their associated components. Specific relationships for increased rMSSD in winter were difficult to determine due to lack of consistency between factors and associated constituents. In Steubenville, we observed significant changes in HR (both increases and decreases), SDNN, and rMSSD in the summer, but not in the winter. We examined associations between individual source factors/PM components and HRV metrics segregated by predominant wind direction (NE or SW). Changes in HR (both increases and decreases) were linked with metal processing, waste incineration, and iron/steel factors along with most of their associated elemental constituents. Reductions in SDNN were associated with metal processing, waste incineration, and mobile source factors and the majority of elements loading onto these factors. There were no consistent associations between changes in rMSSD and source factors/components. Despite the large number of coal-fired power plants in the region, and therefore the large contribution of secondary sulfate to overall PM mass, we did not observe any associations with the coal/secondary factor or with the majority of its associated components. There were several inconsistencies in our results which make definitive conclusions difficult. For example, we observed opposing signs of effect estimates with some components depending on season, and with others depending on wind direction. In addition, our extensive dataset clearly would be subject to issues of multiple comparisons, and the 'true' significant results are unknown. Overall, however, our results suggest that acute changes in cardiac function were most strongly associated with local industrial sources. Results for coal-fired power plant-derived PM were

Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

2010-06-30T23:59:59.000Z

67

Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

Lipfert, F.W.

1997-03-01T23:59:59.000Z

68

Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

69

Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels  

SciTech Connect (OSTI)

The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

Strzelec, Andrea [ORNL

2009-12-01T23:59:59.000Z

70

Contribution of vehicle emissions to ambient carbonaceous particulate matter: A review and synthesis of the available data in the South Coast Air Basin. Final report  

SciTech Connect (OSTI)

Table of Contents: Executive Summary; Introduction; Ambient Carbonaceous Particulate Matter in the South Coast Air Basin; Measurements of Emissions from In-Use Motor Vehicles in the South Coast Air Basin; Integration of Emissions Measurements into Comprehensive Emissions Inventories; Relating Emissions fom Motor Vehicles to Particulate Air Quality; Synthesis: The Combined Effect of All Vehicle-Related Source Contributions Acting Together; Trends in More Recent Years; Opportunities for Further Research; References; Appendix A: Detailed Mass Emissions Rates for Organic Compounds from Motor Vehicle Exhaust; and Appendix B: Organic Compounds Emitted from Tire Dust, Paved Road Dust, and Brake Lining Wear Dust.

Cass, G.R.

1997-02-01T23:59:59.000Z

71

Absorption Properties of Dissolved and Particulate Matter in Turbid Productive Inland Lakes  

E-Print Network [OSTI]

of solar energy: colored dissolved organic matter (subscript CDOM), suspended non-algal particles of North America (Nebraska, USA). STUDY AREA Data were collected in eastern Nebraska during 2002 and 2003 as freshwater supplies and recreational areas. Optical properties of lakes may provide for example the time

Gitelson, Anatoly

72

Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites  

SciTech Connect (OSTI)

Understanding particle dynamics in the 'Twilight Zone' is critical to prediction of the ocean's carbon cycle. As part of the VERTIGO (VERtical Transformations In the Global Ocean) project, this rarely sampled regime extending from the base of the euphotic layer to 1000 m, was characterized by double-paired day/night Multiple Unit Large Volume in-situ Filtration System (MULVFS) deployments and by {approx}100 high-frequency CTD/transmissometer/turbidity sensor profiles. VERTIGO studies lasting three weeks, contrasted oligotrophic station ALOHA (22.75{sup o}N 158{sup o}W), sampled in June-July 2004, with a biologically productive location (47{sup o}N 161{sup o}E) near station K2 in the Oyashio, occupied July-August 2005. Profiles of major and minor particulate components (C{sub org}, N, P, Ca, Si, Sr, Ba, Mn) in <1, 1-51, and >51 {micro}m size fractions, in-water optics, neutrally buoyant sediment trap (NBST) fluxes, and zooplankton data were intercompared. MULVFS total C{sub org} and C-Star particle beam attenuation coefficient (C{sub P}) were consistently related at both sites with a 27 {micro}M m{sup -1} conversion factor. 26 At K2, C{sub P} profiles further showed a multitude of transient spikes throughout the water column and spike abundance profiles closely paralleled the double peaked abundance profiles of zooplankton. Also at K2, copepods contributed {approx}40% and 10%, night and day, respectively to >51 {micro}m C{sub org} of MULVFS samples in the mixed layer, but few copepods were collected in deeper waters; however, non-swimming radiolarians were quantitatively sampled. A recent hypothesis regarding POC differences between pumps and bottles is examined in light of these results. Particulate >51 {micro}m C{sub org}, N, and P at both ALOHA and K2 showed strong attenuation with depth at both sites. Notable at ALOHA were unusually high levels of >51 {micro}m Sr (up to 4 nM) in the mixed layer, a reflection of high abundances of SrSO{sub 4} precipitating Acantharia. Notable at K2 were major changes in water column inventories of many particulate components to 700 m over 10 days. Carbon mass balance, with the consideration of particle inventory changes included, indicated that over 98% and 96% of primary produced C{sub org} was remineralized shallower than 500 m at ALOHA and K2, respectively. Production of CaCO3 was estimated to be {approx}0.06, 0.89 and 0.02 mmols m{sup -2} d{sup -1} at ALOHA and at K2 during two separate week long study periods, respectively. Similarly, Si production was estimated to be {approx}0.08, 10.7, and 4.2 mols m{sup -2} d{sup -1}. An estimated 50% and 65% of produced Si was remineralized by 500m at ALOHA and K2, respectively. Little carbonate dissolution was seen in the upper 500 m at ALOHA, a reflection of 400% super saturation of surface waters and the 700 m deep saturation horizon. Over 92% of produced CaCO{sub 3} was dissolved shallower than 500 m at K2 and biological enhancement of dissolution was readily apparent in waters above the 200 m calcite saturation horizon.

Bishop, James K.B.; Wood, T.J.

2008-03-25T23:59:59.000Z

73

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

DOE; ORNL; NREL; EMA; MECA

1999-11-15T23:59:59.000Z

74

Evaluation of the modified Anderson sampler for determining particle size distributions and respirable concentrations of particulate matter present in the working environment of cottonseed oil mills  

E-Print Network [OSTI]

EVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE DISTRIBUTIONS AND RESPIRABLE CONCENTRATIONS OF PARTICULATE MATTER PRESENT IN THE WORKING ENVIRONMENT OF COTTONSEED OIL MILLS A Thesis by STANLEY WAYNE MATLOCK Submitted... to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Agricultural Engineering FVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE...

Matlock, Stanley Wayne

1976-01-01T23:59:59.000Z

75

Apparatus for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

76

Method for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

77

Method for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

78

Apparatus for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

79

Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants  

E-Print Network [OSTI]

fine particulates and nitrogen dioxide in the elderly withS.and Jerrett M. Nitrogen dioxide prediction in Southernto particles and nitrogen dioxide in Santiago, Chile.

McKone, Thomas E.

2008-01-01T23:59:59.000Z

80

Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants  

SciTech Connect (OSTI)

Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal exposure modeling. However, emerging research reveals that the greatest progress comes from integration among two or more of these efforts.

McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint  

SciTech Connect (OSTI)

The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

2011-02-01T23:59:59.000Z

82

Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City  

SciTech Connect (OSTI)

This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen dioxide. Deployment of the Aerodyne mobile laboratory, equipped with instruments from five collaborating laboratories, at the T0 urban supersite, four downwind sites and the Tula industrial area yielded unique trace gas and fine PM data sets during the March 2006 MAXMex/MILAGRO campaign. In addition, on-road measurements as the mobile laboratory moved between sites provided extensive data on 2006 MCMA fleet averaged vehicle emissions. Analyses of 2006 data sets have yielded the identification of a close correlation between the rate of production of SOA and Odd Oxygen (O3 + NO2) and primary organic PM with CO in the MCMA urban plume, a more sophisticated understanding of the interplay between nitrogen oxide speciation and ozone production, the identification of significant vehicular emission sources of HCN and CH3CN (usually associated with biomass burning), characterization of the aging of primary carbonaceous PM, and updated 2006 MCMA fleet on-road trace gas and fine PM emissions. Results from analyses of 2002/2003 and 2006 emissions and ambient measurements have conveyed to Mexican air quality managers who are using these data to devise and assess air quality management strategies. All data sets and published analyses are available to DOE/ASP researchers evaluating the impact of urban emissions on regional climate.

Dr. Charles E. Kolb

2008-03-31T23:59:59.000Z

83

Particulate matter exposure during pregnancy is associated with birth weight, but not gestational age, 1962-1992: a cohort study  

E-Print Network [OSTI]

HS, Maynard RL: Air pollution and health London: Academic;the effects of air pollution on health in the United KingdomD: Particulate air pollution and fetal health: a systematic

2012-01-01T23:59:59.000Z

84

Electrically heated particulate filter restart strategy  

DOE Patents [OSTI]

A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2011-07-12T23:59:59.000Z

85

Particulate Matter Aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific Northwest NationaltoParking

86

Electrically heated particulate filter propagation support methods and systems  

DOE Patents [OSTI]

A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2011-06-07T23:59:59.000Z

87

Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

Steven Derenne; Robin Stewart

2009-09-30T23:59:59.000Z

88

Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area  

SciTech Connect (OSTI)

This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a complex urban environment; identification of a close correlation between

Luisa T. Molina, Rainer Volkamer, Benjamin de Foy, Wenfang Lei, Miguel Zavala, Erik Velasco; Mario J. Molina

2008-10-31T23:59:59.000Z

89

MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM  

SciTech Connect (OSTI)

In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

V.K. Mathur

2003-02-01T23:59:59.000Z

90

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends  

E-Print Network [OSTI]

The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0 C to 40 C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

Dimou, Iason

91

E-Print Network 3.0 - air particulate analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air particulate analysis Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: and the composition of...

92

E-Print Network 3.0 - ambient particulate matterpm10 Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matterpm10 Page: << < 1 2 3 4 5 > >> 1 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Ambient Air Quality Standards...

93

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

94

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

95

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-07-30T23:59:59.000Z

96

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Steven T. Derenne

2006-04-28T23:59:59.000Z

97

Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production  

SciTech Connect (OSTI)

Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the turbine for NO{sub x} control. Iron-containing particles are expected to be scale from ferrous metals. A commercial photoelectric aerosol sensor was used to measure PAH adsorbed on particles in the exhaust from the steam generator and the rich-burn engine. The conversion of the instrument readings to PAH concentrations is dependent upon the specific distribution of PAH species present. Using the typical calibration factor recommended by the instrument manufacturer, the estimated average concentration of particle-bound PAH was below the instrument detection limit (3--10 ng/m{sup 3}) in the stack gas from the steam generator, and was estimated to be 0.045--0.15 {micro}g/m{sup 3} in the exhaust from the rich-burn engine. Particle mass concentrations estimated from number concentrations determined using the particle counting and sizing instrument were only small fractions of the concentrations measured using Method 5. This is thought to be due primarily to the limited range over which size was quantified (0.1 to 7.5 {micro}m) and the poor efficiency with which the sampling system transferred large particles.

D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

1998-12-10T23:59:59.000Z

98

Air Pollution Control Regulations: No. 13 - Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Regulations Provider Department of Environmental Management The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

99

active fine particulates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology Websites Summary: Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from complex because the dilution...

100

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mercury Thermometer Replacement Alternatives Thermometer Description Non-Mercury Non-Mercury Non-Mercury  

E-Print Network [OSTI]

Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury Non-Mercury Range / Division VWR-Enviro-Safe® Fisherbrand® Brooklyn Thermometer Company Inc. Total/A #12;Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non

102

Airborne Particulate Threat Assessment  

SciTech Connect (OSTI)

Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.

Patrick Treado; Oksana Klueva; Jeffrey Beckstead

2008-12-31T23:59:59.000Z

103

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network [OSTI]

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

104

The effect of lubricant derived ash on the catalytic activity of diesel particulate filters  

E-Print Network [OSTI]

A diesel particulate filter (DPF) is an aftertreatment device used to remove hazardous particulate matter (PM) from diesel engine exhaust. Modem emission restrictions have limited the acceptable amount of PM output by ...

Murray, Timothy Quinn

2014-01-01T23:59:59.000Z

105

Shielded regeneration heating element for a particulate filter  

DOE Patents [OSTI]

An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2011-01-04T23:59:59.000Z

106

Method for fixating sludges and soils contaminated with mercury and other heavy metals  

DOE Patents [OSTI]

The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

2005-06-28T23:59:59.000Z

107

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides  

E-Print Network [OSTI]

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate in the environment is partly controlled by the bioavailability of inorganic divalent mercury (Hg(II)) to anaerobic matter to form chemical species that include organic-coated mercury sulfide nanoparticles as reaction

108

E-Print Network 3.0 - airborne particulates european Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de mathmatiques Collection: Mathematics 12 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the Study of...

109

E-Print Network 3.0 - airborne particulates impact Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

public health threat of air pollution Summary: . Currently there are six "criteria pollutants" for air pollution: PM10 (defined as particulate matter... a more specific human...

110

E-Print Network 3.0 - airborne particulate samples Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the harm caused by airborne... heart and lung problems associated with airborne pollutants, concerns about the negative effects of bad... particulate matter at individual...

111

E-Print Network 3.0 - airborne fine particulate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particulate matter otherwise known as aerosols. However health risks from these pollutants... Airborne Pollution In urban environments What are the real health effects of...

112

E-Print Network 3.0 - airborne particulates Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Environmental Sciences and Ecology 2 Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Summary: Statistical Issues in the...

113

COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY  

SciTech Connect (OSTI)

Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

Robinson P. Khosah; John P. Shimshock

2003-04-30T23:59:59.000Z

114

Mercury contamination extraction  

DOE Patents [OSTI]

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

115

2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction  

E-Print Network [OSTI]

2008-01-0333 Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species of Wisconsin-Madison Copyright 2008 SAE International ABSTRACT Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective

Wu, Mingshen

116

Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil  

SciTech Connect (OSTI)

Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract3.9, 7.5, or 15.0 mg/kg body weight (BW)or with casearin X0.3, 0.25, or 1.2 mg/kg BWafter which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ? We assessed DNA protection of C. sylvestris ethanolic extract. ? We assessed DNA protection of casearin X. ? We used Tradescantia pallida micronucleus test as screening. ? We used comet assay and micronucleus test in mice. ? The compounds protected DNA against sugar cane burning pollutants.

Prieto, A.M. [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionrios do Brasil, 1621, Araraquara (Brazil)] [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionrios do Brasil, 1621, Araraquara (Brazil); Santos, A.G. [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil)] [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil); Csipak, A.R.; Caliri, C.M.; Silva, I.C. [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionrios do Brasil, 1621, Araraquara (Brazil)] [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionrios do Brasil, 1621, Araraquara (Brazil); Arbex, M.A. [UNIFESP Federal University of So Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, So Paulo (Brazil)] [UNIFESP Federal University of So Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, So Paulo (Brazil); Silva, F.S.; Marchi, M.R.R. [UNESP Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil)] [UNESP Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Cavalheiro, A.J.; Silva, D.H.S.; Bolzani, V.S. [UNESP Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil)] [UNESP Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Soares, C.P., E-mail: soarescp@hotmail.com [UNESP Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionrios do Brasil, 1621, Araraquara (Brazil)

2012-12-15T23:59:59.000Z

117

Developing an accelerated aging system for gasoline particulate filters and an evaluation test for effects on engine performance  

E-Print Network [OSTI]

Stringent regulations worldwide will limit the level of particulate matter (PM) emitted from gasoline engines equipped with direct fuel injection. Gasoline particulate filters (GPFs) present one strategy for meeting PM ...

Jorgensen, James E. (James Eastman)

2014-01-01T23:59:59.000Z

118

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect (OSTI)

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

119

Particulate hot gas stream cleanup technical issues  

SciTech Connect (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

120

Advanced Utility Mercury-Sorbent Field-Testing Program  

SciTech Connect (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for immobilizing particulate materials in a packed bed  

DOE Patents [OSTI]

The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

Even, Jr., William R. (Livermore, CA); Guthrie, Stephen E. (Livermore, CA); Raber, Thomas N. (Livermore, CA); Wally, Karl (Lafayette, CA); Whinnery, LeRoy L. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1999-01-01T23:59:59.000Z

122

Method for immobilizing particulate materials in a packed bed  

DOE Patents [OSTI]

The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.

Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.

1999-02-02T23:59:59.000Z

123

Airborne particulate discriminator  

DOE Patents [OSTI]

A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

2009-08-11T23:59:59.000Z

124

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Bioaccumulation of Mercury in Sharks Part 1 b After you finish the video and the above questions Resources: EPA General Info on Mercury - http://www.epa.gov/mercury/about.htm FDA Mercury Levels in Seafood.htm World Health Organization Key Facts on Mercury - http://www.who.int/mediacentre/factsheets/fs361

Miami, University of

125

Face crack reduction strategy for particulate filters  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

Gonze, Eugene V [Pinckney, MI

2012-01-31T23:59:59.000Z

126

Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury deposition come from?  

E-Print Network [OSTI]

1 Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury of the Mercury Working Group, Office of Air Quality, Indiana Department of Environmental Management (IDEM) April 21, 2005 #12;2 For mercury, how important is atmospheric deposition relative to other loading

127

Particulate contamination removal from wafers using plasmas and mechanical agitation  

DOE Patents [OSTI]

Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

Selwyn, G.S.

1998-12-15T23:59:59.000Z

128

Mercury Calibration System  

SciTech Connect (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

129

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

130

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

131

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

R. J. Warmack, Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor, Ieee Trans.N. E. Selin, Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

132

Sandia National Laboratories: reduce particulate matter pollution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskite oxide

133

A survey of mercury in the Gulf of Mexico  

E-Print Network [OSTI]

' artificial levels of mercury, which have accumulated as the result of man's activities. In keeping with this philosophy or concept, an oxidation procedure must then be adopted which would be effective enough to digest all organic matter including...A SURVEY OF MERCURY IN TIU' GULF OF MEXICO A Thesis GEORGE LOUIS CUSTODI Sutznitted to the Graduate Colic. e cf Texas Ac";-. M Univer. sit;, in partial fulfillment of' the quirement fo-, . MASTER OF SCIENCE Decor@her 1971 Major Suh, ject...

Custodi, George Louis

1971-01-01T23:59:59.000Z

134

Radiant zone heated particulate filter  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

135

Mercury Chamber Considerations  

E-Print Network [OSTI]

Mercury Chamber Considerations V. Graves IDS-NF Target Studies July 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Considerations, July 2011 Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment

McDonald, Kirk

136

E-Print Network 3.0 - aox total nitrogen Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appropriate environmental controls been applied? Summary: to the environment of sulfur dioxide, nitrogen oxides, total particulate matter, mercury, absorbable organic...

137

Catalysts for oxidation of mercury in flue gas  

DOE Patents [OSTI]

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

138

Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for  

E-Print Network [OSTI]

Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for Strong and Weak Binding and Competition by Dissolved Organic Matter Released from the Peat R . T O D D D R E X E L , M A R K U S H A I 80309 The binding of mercury(II) to two peats from Florida Everglades sites with different rates

Illinois at Chicago, University of

139

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network [OSTI]

matter and char, and cold-end air pollution control devices. There is also evidence that boiler is equipped with hot and cold precipitators and a tubular air preheater. A strategy for mercury control designated hazardous air pollutants by the US Environmental Protection Agency (EPA), mercury (Hg) has

Li, Ying

140

Neutrino Factory Mercury Vessel  

E-Print Network [OSTI]

Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Target · Separates functionality, provides double mercury containment, simplifies design and remote handling · Each

McDonald, Kirk

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mercury in the environment  

ScienceCinema (OSTI)

Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

Idaho National Laboratory - Mike Abbott

2010-01-08T23:59:59.000Z

142

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

143

Mercury Jet Studies Tristan Davenne  

E-Print Network [OSTI]

Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting mercury target and reported a radial velocity at surface of mercury jet due to proton beam is 36m/s #12;Numerical simulation of Sievers & Pugnat Result Click on image above to watch video of 2cm mercury target

McDonald, Kirk

144

Mercury Effects, Sources and Control Measures  

E-Print Network [OSTI]

Mercury Effects, Sources and Control Measures Prepared by Alan B. Jones, Brooks Rand, Ltd., Seattle ................................................................................................................................1 MERCURY SOURCES....................................................................................................................................................................................8 Mercury dumping from naval vessels

145

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

146

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

147

Advanced Particulate Filter Technologies for Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

148

Thief process for the removal of mercury from flue gas  

DOE Patents [OSTI]

A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

2003-02-18T23:59:59.000Z

149

Low-Cost Options for Moderate Levels of Mercury Control  

SciTech Connect (OSTI)

On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progress to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.

Sharon Sjostrom

2006-03-31T23:59:59.000Z

150

Mercury Oxidation via Catalytic Barrier Filters Phase II  

SciTech Connect (OSTI)

In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

2007-09-30T23:59:59.000Z

151

FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY  

SciTech Connect (OSTI)

In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch. Methylmercury ranged from 0.002 ng/l in Upper Three Runs to 2.60 ng/l in Tims Branch. Total mercury in the Savannah River ranged from 0.62 ng/l to 43.9 ng/l, and methylmercury ranged from 0.036 ng/l to 7.54 ng/l. Both total and methylmercury concentrations were consistently high in the river near the mouth of Steel Creek. Total mercury was positively correlated with methylmercury (r = 0.88). Total mercury bound to particulates ranged from 41% to 57% in the river and from 28% to 90% in the streams. Particulate methylmercury varied from 9% to 37% in the river and from 6% to 79% in the streams. Small temporary pools in the Savannah River swamp area near and around Fourmile Branch had the highest concentrations observed in the Savannah River watershed, reaching 1,890 ng/l for total mercury and 34.0 ng/l for methylmercury. The second study developed a mercury bioaccumulation factor (BAF) for the Savannah River near SRS. A BAF is the ratio of the concentration of mercury in fish flesh to the concentration of mercury in the water. BAFs are important in the TMDL process because target concentrations for mercury in water are computed from BAFs. Mercury BAFs are known to differ substantially among fish species, water bodies, and possibly seasons. Knowledge of such variation is needed to determine a BAF that accurately represents average and extreme conditions in the water body under study. Analysis of fish tissue and aqueous methylmercury samples collected at a number of locations and over several seasons in a 110 km (68 mile) reach of the Savannah River demonstrated that BAFs for each species under study varied by factors of three to eight. Influences on BAF variability were location, habitat and season-related differences in fish mercury levels and seasonal differences in methylmercury levels in the water. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 10{sup 6} for largemouth bass, 1.4 x 10{sup 6} for sunfishes, and 2.5 x 10{sup 6} for white catfish. This study showed that determination of representative BAFs for large rivers requires the collect

Halverson, N

2008-09-30T23:59:59.000Z

152

CEC-500-2010-FS-017 Volatility of Ultrafine Particulate  

E-Print Network [OSTI]

. Limited research has been done to characterize compressed natural gas mass emissions and practically-volatile and semi-volatile fractions of ultrafine particulate matter emissions from compressed natural gas vehicles compressed natural gas, and emission control technologies that will best protect human health

153

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

154

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

155

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

156

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

157

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

158

Method and apparatus for monitoring mercury emissions  

DOE Patents [OSTI]

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

159

Method and apparatus for monitoring mercury emissions  

DOE Patents [OSTI]

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

160

Mercury CEM Calibration  

SciTech Connect (OSTI)

The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

John F. Schabron; Joseph F. Rovani; Susan S. Sorini

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electrically heated particulate filter with reduced stress  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

162

INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL  

SciTech Connect (OSTI)

This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

1998-10-01T23:59:59.000Z

163

Regenerable particulate filter  

DOE Patents [OSTI]

A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

2009-05-05T23:59:59.000Z

164

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

165

Mercury CEM Calibration  

SciTech Connect (OSTI)

Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The outputs of mercury generators are compared to one another using a nesting procedure which allows direct comparison of one generator with another and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define generator performance as affected by variables such as pressure, temperature, line voltage, and shipping. WRI is focusing efforts to determine actual generator performance related to the variables defined in the qualification portion of the interim protocol. The protocol will then be further revised by EPA based on what can actually be achieved with the generators. Another focus of the study is to evaluate approaches for field verification of generator performance. Upcoming work includes evaluation of oxidized mercury calibration generators, for which a separate protocol will be prepared by EPA. In addition, the variability of the spectrometers/analyzers under various environmental conditions needs to be defined and understood better. A main objective of the current work is to provide data on the performance and capabilities of elemental mercury generator/calibration systems for the development of realistic NIST traceability protocols for mercury vapor standards for continuous emission CEM calibration. This work is providing a direct contribution to the enablement of continuous emissions monitoring at coal-fired power plants in conformance with the CAMR. EPA Specification 12 states that mercury CEMs must be calibrated with NIST-traceable standards (Federal Register 2005). The initial draft of an elemental mercury generator traceability protocol was circulated by EPA in May 2007 for comment, and an interim protocol was issued in August 2007 (EPA 2007). Initially it was assumed that the calibration and implementation of mercury CEMs would be relatively simple, and implementation would follow the implementation of the Clean Air Interstate Rule (CAIR) SO{sub 2} and NO{sub x} monitoring, and sulfur emissions cap and trade. However, mercury has proven to be significantly more difficult

John Schabron; Joseph Rovani; Mark Sanderson

2008-02-29T23:59:59.000Z

166

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

167

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

168

Mercury-Related Materials Studies  

E-Print Network [OSTI]

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury of Cavitation Resistant Modifications to Type 316LN Stainless Steel in a Mercury Thermal Convection Loop," OakMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010

McDonald, Kirk

169

Mercury-Related Materials Studies  

E-Print Network [OSTI]

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

170

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Bioaccumulation of Mercury in Sharks Part 2 a Using a subset of data collected on RJD shark research trips, you will analyze the mercury levels found in the Florida Sharks we catch. Based on your analysis, you will be able to conclude which species have the highest levels of mercury contamination

Miami, University of

171

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

172

Water displacement mercury pump  

DOE Patents [OSTI]

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

173

Water displacement mercury pump  

DOE Patents [OSTI]

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

174

Particle Number & Particulate Mass Emissions Measurements on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...

175

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

176

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

177

Mercury Information Clearinghouse  

SciTech Connect (OSTI)

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

178

Mercury control in 2009  

SciTech Connect (OSTI)

Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C. [ADA Environmental Solutions, Littleton, CO (United States)

2009-07-15T23:59:59.000Z

179

Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

Jim Butz; Terry Hunt

2005-11-01T23:59:59.000Z

180

Biosequence Similarity Search on the Mercury System  

E-Print Network [OSTI]

Biosequence Similarity Search on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster, "Biosequence Similarity Search on the Mercury on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang

Chamberlain, Roger

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

182

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

183

Achieving very low mercury levels in refinery wastewater by membrane filtration.  

SciTech Connect (OSTI)

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

2012-05-15T23:59:59.000Z

184

Mercury Strategic Plan Outfall 200 Mercury Treatment Facility  

Office of Environmental Management (EM)

Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

185

Microwave mode shifting antenna system for regenerating particulate filters  

DOE Patents [OSTI]

A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

2011-04-26T23:59:59.000Z

186

DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

Leonard Levin

2006-06-01T23:59:59.000Z

187

Innovative Mercury Treatment Benefits Stream, Fish | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mercury Treatment Benefits Stream, Fish Innovative Mercury Treatment Benefits Stream, Fish October 1, 2012 - 12:00pm Addthis Oak Ridge scientists Kelly Roy, left, and Trent Jett...

188

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

189

MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS  

SciTech Connect (OSTI)

Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

Christopher R. McLaron

2004-12-01T23:59:59.000Z

190

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

samples by cold vapor-atomic absorption spectrometry, J.S. Gucer, Direct atomic absorption determination of mercuryL. A. Vasilieva, Direct atomic absorption determination of

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

191

Electrical diesel particulate filter (DPF) regeneration  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

192

Overlap zoned electrically heated particulate filter  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

2011-07-19T23:59:59.000Z

193

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

194

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

195

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

196

Low-Cost Options for Moderate Levels of Mercury Control  

SciTech Connect (OSTI)

This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

Sharon Sjostrom

2008-02-09T23:59:59.000Z

197

Investigations of release phenomenon of volatile organic compounds and particulates from residual storage chip piles  

SciTech Connect (OSTI)

This paper outlines the method for estimating Particulate Matter and Volatile Organic Compounds (VOCs) emissions from wood handling and storage operations at a pulp mill. Fugitive particulate matter emissions from wood handling and storage operations are due to material load/dropout operations, wind erosion from storage piles and vehicular traffic on paved roads. The particulate matter emissions are a function of a number of variables like windspeed, surface moisture content, material silt content, and number of days of precipitation. Literature review attributes VOC emissions to biological, microbiological, chemical, and physical processes occurring in wood material storage pile. The VOC emissions are from the surface of these piles and the VOC released during retrieval of chips from the pile. VOC emissions are based on the chip throughput, number of turnovers, moisture content and surface area of the pile. The emission factors with the requisite calculation methodology to be utilized for quantifying VOC emissions from chip piles has been discussed in this paper.

Mohan, S.; Nagarkatti, M. [Trinity Consultants, Inc., Baton Rouge, LA (United States)

1996-12-31T23:59:59.000Z

198

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

199

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY  

E-Print Network [OSTI]

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY Mercury is a pollutant of high the information most urgently needed by managers to find remedies to the Bay's mercury problem. The focus of total mercury in the Bay are expected to slowly decline over coming decades. The premise

200

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Particulate Filters...

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Stanford University Mercury Thermometer Replacement  

E-Print Network [OSTI]

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

202

Atmospheric Mercury: Emissions, Transport/Fate,  

E-Print Network [OSTI]

, global...) Is "emissions trading" workable and ethical? Is the recently promulgated Clean Air Mercury

203

Mercury Speciation in the Presence of Polysulfides  

E-Print Network [OSTI]

Mercury Speciation in the Presence of Polysulfides J E N N Y A Y L A J A Y , * , F R A N C¸ O I Environmental mercury methylation appears modulated by sulfide concentrations, possibly via changes in mercury, there has been much recent interest in quantifying the chemical speciation and lipid solubility of mercury

Morel, François M. M.

204

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

205

Mercury and the Gold Country Angler Survey  

E-Print Network [OSTI]

#12;#12;Mercury and the Gold Rush #12;#12;#12;#12;#12;#12;#12;#12;#12;Gold Country Angler Survey A Pilot Study to Assess Mercury Exposure from Sport Fish Consumption in the Sierra Nevada Carrie Monohan, Ph.D. #12;Mercury and the Gold Rush Deer Creek 1908 Greenhorn Creek 2011 Mercury was used during

206

Mercury Pollution in the Marine Environment  

E-Print Network [OSTI]

Mercury Pollution in the Marine Environment The Coastal and Marine Mercury Ecosystem Research stakeholders to form C-MERC, the Coastal and Marine Mercury Ecosystem Research Collaborative. The goal was to review current knowledge--and knowledge gaps--relating to a global environmental health problem, mercury

Shepherd, Simon

207

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

208

Mercury Spill Information and Response Guidance  

E-Print Network [OSTI]

Mercury Spill Information and Response Guidance Background Information Mercury can be found, plumbing traps and vacuum pumps. When mercury is spilled, it forms beads or droplets that can accumulate mercury vapors can be very dangerous, depending on the amount inhaled and the length of exposure

Holland, Jeffrey

209

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network [OSTI]

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

210

Fluorescent sensor for mercury  

DOE Patents [OSTI]

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

211

Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho  

SciTech Connect (OSTI)

Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 0.9 ng m-3) and RGM (8.1 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 0.3 ng m-3, 3.2 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 0.032, 0.043 0.040, 0.00084 0.0017 and 0.00036 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 0.39, 0.40 0.31, 0.51 0.43 and 0.76 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 3.3 g m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

Michael L. Abbott; Jeffrey J. Einerson

2007-12-01T23:59:59.000Z

212

Durability of Diesel Particulate Filters - Bench Studies on Cordierite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Development of Advanced Diesel Particulate Filtration (DPF) Systems fundamental...

213

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

214

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

215

Mercury's moment of inertia from spin and gravity data  

E-Print Network [OSTI]

2006), Evolution of Mercurys obliquity, Icarus, 181, 327longitude librations of Mercury, Icarus, 207, 11 of 11The free librations of Mercury and the size of its inner

2012-01-01T23:59:59.000Z

216

7, 1569315721, 2007 Particulate PAH  

E-Print Network [OSTI]

of sources and15 ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH-to-black carbon mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8

Boyer, Edmond

217

Mercury in the Anthropocene Ocean  

E-Print Network [OSTI]

The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

Lamborg, Carl

218

In situ mercury stabilization  

SciTech Connect (OSTI)

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

Fuhrmann, M.; Kalb, P.; Adams, J.

2004-09-01T23:59:59.000Z

219

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients with Parkinson''s Diseases Disease  

E-Print Network [OSTI]

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients's Disease EvaluationEvaluation Mercury ArchitectureMercury Architecture Mercury is a wireless sensor network and disconnections Node Behavior Hardware PlatformHardware Platform Usage Scenario InternetInternet http://fiji.eecs.harvard.edu/Mercury

Chen, Yiling

220

Lignin biomarkers as tracers of mercury sources in lakes water column  

E-Print Network [OSTI]

Lignin biomarkers as tracers of mercury sources in lakes water column Jean-Franc¸ois Ouellet ? Marc the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signa- tures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous

Long, Bernard

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers  

E-Print Network [OSTI]

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric by bringing in contact two small (3 ? 10-3 cm2) mercury drop electrodes in a 5-20% (v/v) hexadecane solution incorporating alkanethiolate-type monolayer films. The results reported below convince us that the mercury

Majda, Marcin

222

Mercury Methylation in Mine Wastes Collected from Abandoned Mercury Mines in the USA  

SciTech Connect (OSTI)

Mercury mines contain highly elevated Hg contents, but more problematic environmentally are elemental Hg and soluble Hg salts produced during ore retorting that remain in wastes at mine sites. Under certain conditions, these inorganic Hg compounds convert to bioavailable, highly toxic organic Hg forms. Speciation and transformation of Hg was studied in wastes collected from abandoned Hg mines at McDermitt, NV, and Terlingua, TX, which are moderate size on an international scale and produced about 10,000 and 5,000 t of elemental Hg, respectively. In waste samples, we measured total Hg and methyl-Hg contents, identified various Hg compounds using Hg-thermo-desorption pyrolysis, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Pyrolysis analysis of mine wastes showed variable amounts of cinnabar, metacinnabar, Hg salts, elemental Hg, and elemental Hg sorbed onto particulates such as clay and Fe-oxides. Mine wastes with the highest methyl-Hg contents correspond to those with elemental Hg and particulate-sorbed elemental Hg, and also produced the highest laboratory-estimated potential Hg methylation rates, as much as 4.8%/day. Samples containing dominantly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Both mines are located in semiarid climates, and during this study, streambeds below the mines were dry. Total Hg contents in stream sediment collected below the mines show significant dilution, and methyl-Hg contents were typically below the limit of determination. Methylation of Hg downstream from Hg mines is probably lower in arid climates due to lack of mine-water runoff and lower microbial activity. The correspondence of mine wastes containing elemental Hg and high methyl-Hg contents suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

Gray, John E. (U.S. Geological Survey); Hines, Mark E. (Massachusetts, Univ Of); Biester, Harald (Heidelberg College); Lasorsa, Brenda K. (BATTELLE (PACIFIC NW LAB))

2003-05-01T23:59:59.000Z

223

Zoned electrical heater arranged in spaced relationship from particulate filter  

DOE Patents [OSTI]

A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-11-15T23:59:59.000Z

224

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

225

Mercury switch with non-wettable electrodes  

DOE Patents [OSTI]

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

226

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

227

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

228

Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism  

SciTech Connect (OSTI)

In this study, the model response in terms of simulated mercury concentration and deposition to boundary condition (BC), initial condition (IC), model grid resolution (12 km versus 36 km), and two alternative Hg(II) reduction mechanisms, was investigated. The model response to the change of gaseous elemental mercury (GEM) concentration from 0 to 2 ngm3 in IC/BC is found to be very linear (r240.99) based on the results of sensitivity simulations in July 2001. An increase of 1 ngm3 of GEM in BC resulted in an increase of 0.81 ngm3 in the monthly average of total mercury concentration, and 1270 ngm2 in the monthly total deposition. IC has similar but weaker effects compared to those of BC. An increase of 1 ngm3 of GEM in IC resulted in an increase of 0.14 ngm3 in the monthly average of total mercury concentration, and 250 ngm2 in the monthly total deposition. Varying reactive gaseous mercury (RGM) or particulate mercury (PHg) in BC/IC has much less significant impact. Simulation results at different grid resolutions show good agreement (slope 0.950 1.026, r 0.816 0.973) in mercury concentration, dry deposition, and total deposition. The agreement in wet deposition is somewhat weaker (slope 0.770 0.794, r 0.685 0.892) due to the difference in emission dilution and simulated precipitation that subsequently change reaction rates in the aqueous phase. Replacing the aqueous Hg(II)-HO2 reduction by either RGM reduction by CO (51018cm3 molecule1 s1) or photoreduction of RGM (1105 s1) gives significantly better model agreement with the wet deposition measured by Mercury Deposition Network (MDN). Possible ranges of the reduction rates are estimated based on model sensitivity results. The kinetic estimate requires further verification by laboratory studies.

Lin, Che-Jen [ORNL; Pongprueksa, Pruek [Lamar University; Lindberg, Steven Eric [ORNL; Jang, Carey [U.S. Environmental Protection Agency, Raleigh, North Carolina; Braverman, Thomas [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bullock, Russell O [NOAA; Ho, Thomas [ORNL; Chu, Hsing-Wei [Lamar University

2008-03-01T23:59:59.000Z

229

Mercury bioaccumulation in Lavaca Bay, Texas  

E-Print Network [OSTI]

(waves), and human activities (dredging and shrimping) can potentially release mercury to the overlying water (LINDBERG and HARRISS, 1977; CRANSTON, 1976). The solubility, reactivity, and toxicity of mercury is dependent on its form. Divalent mercury... MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1992 Major...

Palmer, Sally Jo

1992-01-01T23:59:59.000Z

230

2003 Mercury Computer Systems, Inc. Data Reorganization  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC Mercury Computer Systems, Inc. Status update for the DRI-1.0 standard since Sep. 2002 publication Outline

Kepner, Jeremy

231

3, 35253541, 2003 Modelling of Mercury  

E-Print Network [OSTI]

ACPD 3, 3525­3541, 2003 Modelling of Mercury with the Danish Eulerian Hemispheric Model J. H and Physics Discussions Modelling of mercury with the Danish Eulerian Hemispheric Model J. H. Christensen, J Correspondence to: J. H. Christensen (jc@dmu.dk) 3525 #12;ACPD 3, 3525­3541, 2003 Modelling of Mercury

Paris-Sud XI, Université de

232

Constraining Mercury Oxidation Using Wet Deposition  

E-Print Network [OSTI]

Constraining Mercury Oxidation Using Wet Deposition Noelle E. Selin and Christopher D. Holmes mercury oxidation [Selin & Jacob, Atmos. Env. 2008] 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150 30 Influences on Mercury Wet Deposition · Hg wet dep = f(precipitation, [Hg(II)+Hg(P)]) Correlation (r2) between

Selin, Noelle Eckley

233

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network [OSTI]

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury Noelle Eckley Selin *Reprinted from Mercury in the Environment: Pattern and Process (Chapter 5) pp. 73-80 Copyright © 2012 with kind, and Biogeochemistry of Mercury NOELLE ECKLEY SELIN and their distribution in the atmosphere. This includes

234

Mercury: Recovering Forgotten Passwords Using Personal Devices  

E-Print Network [OSTI]

Mercury: Recovering Forgotten Passwords Using Personal Devices Mohammad Mannan1 , David Barrera2, and to allow forgotten passwords to be securely restored, we present a scheme called Mercury. Its primary mode and revealed to the user. A prototype implementation of Mercury is available as an Android application. 1

Van Oorschot, Paul

235

2003 Mercury Computer Systems, Inc. Delivered Performance  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Delivered Performance Predictions and Trends for RISC Applications Luke Cico (lcico@mc.com) Mark Merritt (mmerritt@mc.com) Mercury Computer Systems, Inc. Chelmsford, MA 01824 #12;© 2003 Mercury Computer Systems, Inc. Goals of PresentationGoals of Presentation

Kepner, Jeremy

236

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!  

E-Print Network [OSTI]

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK! Did you know, mercury from broken thermometers to the local environment, if broken thermometers in sinks eventually end at the sanitary sewer plant. Broken mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other

237

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect (OSTI)

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

238

Assessing Exposures to Particulate Matter and Manganese in Welding Fumes  

E-Print Network [OSTI]

titanium and zinc; non-metal constituents such as fluorides and silica; and gases such as carbon monoxide

LIU, SA

2010-01-01T23:59:59.000Z

239

Abatement of Air Pollution: Control of Particulate Matter and...  

Broader source: Energy.gov (indexed) [DOE]

Savings Category Fuel Cells Photovoltaics Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These...

240

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov (indexed) [DOE]

Planned request for FY15 - 200K Barriers addressed for enabling of high-efficiency engine technology: B. Lack of cost-effective emission control C. Lack of modeling capability...

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emission factors for ammonia and particulate matter from broiler Houses  

E-Print Network [OSTI]

of ammonia will probably result in the emission of other odorants (e. g. volatile fatty acids. volatile amines, indole, phenol, sulfur-containing compounds). Ammonia is produced from the microbial breakdown of uric acid in poultry manure. The decomposition... sulfate (Barthelmie and Pryor, 1998). Additionally, ammonia is an odorant and conditions conducive to the production of ammonia will probably result in the emission of other odorants (e. g. volatile fatty acids, volatile amines, indole, phenol, sulfur...

Redwine, Jarah Suzanne

2001-01-01T23:59:59.000Z

242

Engineering analysis of fugitive particulate matter emissions from cattle feedyards  

E-Print Network [OSTI]

with designated symbols ........................................................................................10 Figure 2 Illustration of the ISCST3 layout of the feedyard with the various sources indicated...............................................................................................20 Figure 3 July 2003 average TSP concentration measurements from the 10 m tower designated by a data point for each test period....................................30 Figure 4 Hourly concentrations measured by the TEOM located at the North...

Hamm, Lee Bradford

2006-04-12T23:59:59.000Z

243

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov (indexed) [DOE]

80 100 120 HighLoad HighLoadTD HighloadEvch MedLoad MedLoadTD MedLoadEvCh Vacuum Aerodynamic Diameter nm Joint experiments at U of Wisc ERC - Results (4) Only exception was...

244

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov (indexed) [DOE]

APM (select by particle mass - new in second round tests) SPLAT-II (measures aerodynamic size, mass spectrum for each particle) Huge number of particles (O10 6 ) Real time...

245

Fuel-Neutral Studies of Particulate Matter Transport Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace056stewart2012o.pdf More Documents & Publications...

246

Assessing Exposures to Particulate Matter and Manganese in Welding Fumes  

E-Print Network [OSTI]

465. SappME. AHistoryofWelding:fromHepheastustowhistoryfolder/welding/index.html. SaricM,Markicevic,be retrieved from American Welding Society publications. The

LIU, SA

2010-01-01T23:59:59.000Z

247

Analysis and Prediction of Particulate Matter in Graz  

E-Print Network [OSTI]

mortality rate · heart-/lung diseases PM10 · dyspnea · allergic coryza · acute respiratory disease · COPD PM in Graz. · low wind velocities · low precipitation · many days with temperature inversion (i

Stadlober, Ernst

248

Effects of Advanced Combustion Technologies on Particulate Matter...  

Broader source: Energy.gov (indexed) [DOE]

Selective capture of semi-volatiles (C10-C18) GCMS speciation Engine: 4 cylinder 1.7L turbo DI Exhaust 6 Managed by UT-Battelle for the Department of Energy Pre-mixed Charge...

249

Concentrations and Size Distributions of Particulate Matter Emissions...  

Broader source: Energy.gov (indexed) [DOE]

& Organic Carbon - PAHs and n-PAHs - Elemental Compounds - Ionic Species - Carbonyls - Dioxins and Furans - Bioassays Sampling System Diluted Exhaust 1 0 11 6 7 8 a 8 b 3 4 BXDX...

250

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

251

atmospheric particulate matters: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

252

atmospheric particulate matter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the Norton Sound Lease Area (Sale No. 57) in order to facilitate the preparation of BLM's...

253

Development of a Low-Cost Particulate Matter Monitor  

E-Print Network [OSTI]

and air mover ii. Thermophoretic deposition module iii.Figure 6. Microfabricated thermophoretic heaters and theirand characteristics of thermophoretic deposition Figure 6.

White, Richard M.

2010-01-01T23:59:59.000Z

254

Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges AnDepartmentof Energy

255

Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges AnDepartmentof

256

Concentrations and Size Distributions of Particulate Matter Emissions from  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating Solar

257

Abatement of Air Pollution: Control of Particulate Matter and Visible  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office of FossilMembershipoftheManagementHasdecDioxide BudgetEmissions

258

Particulate Matter Characteristics for Highly Dilute Stoichiometric GDI  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1ofDepartmentb.Sensor for

259

Particulate Matter Sampling and Volatile Organic Compound Removal for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr.presentationsParticipantParticles

260

Accelerated Extraction of Diesel Particulate Matter SOF | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergyDeployment

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development and Demonstration of an Electronic Particulate Matter Sensor  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacityof Energy Prototypefor

262

Optical Backscatter Probe for Sensing Particulate Matter - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunningOperations TwoSchizandraInnovation

263

Effects of Advanced Combustion Technologies on Particulate Matter Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECMWear |Characteristics | Department of

264

Reduction of Transient Particulate Matter Spikes with Decision Tree Based  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofofDepartment ofof

265

Investigation of Direct Injection Vehicle Particulate Matter Emissions |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary FuelPresentation from theDepartment of

266

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Broader source: Energy.gov (indexed) [DOE]

characterization with single-cylinder test engines, guided by industry Barrier: Lack of cost-effective emission control Objective: Seek to shorten development time of filtration...

267

Zone heated diesel particulate filter electrical connection  

DOE Patents [OSTI]

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

268

Diesel particulate filter with zoned resistive heater  

SciTech Connect (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

269

Methods of separating particulate residue streams  

DOE Patents [OSTI]

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

270

Advanced Particulate Filter Technologies for Direct Injection...  

Broader source: Energy.gov (indexed) [DOE]

Public * Continuing efforts for further CO 2 and PN reduction create a challenging environment for vehicles equipped with DI gasoline engines * Gasoline particulate filters...

271

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature Materials Laboratory (HTML) User Program Dr. Amit Shyam, ORNL Sponsored by U.S. Department...

272

Diesel Particulate Filtration (DPF) Technology: Success stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Success stories at the High Temperature Materials Laboratory (HTML) User Program Diesel Particulate Filtration (DPF) Technology: Success stories at the High Temperature...

273

Electrically-Assisted Diesel Particulate Filter Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

274

Electrically heated particulate filter using catalyst striping  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

275

Electrically heated particulate filter embedded heater design  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

276

Particulate residue separators for harvesting devices  

SciTech Connect (OSTI)

A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

2010-06-29T23:59:59.000Z

277

Apparatus for control of mercury  

DOE Patents [OSTI]

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

278

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

279

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

280

Combustor for fine particulate coal  

DOE Patents [OSTI]

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network [OSTI]

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

282

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

283

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect (OSTI)

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

284

An assessment of methyl mercury and volatile mercury in land-applied sewage sludge  

SciTech Connect (OSTI)

In 1993, the US Environmental Protection Agency issued regulations covering the land-application of municipal sewage sludge. These regulations established maximum pollutant concentrations and were based upon a risk assessment of human exposure. Mercury, assumed to be inorganic and non-volatile, was one pollutant evaluated. From April, 1995 through February, 1996, the authors studied the species of mercury contaminating municipal sludge applied to land, and the potential for volatilization of mercury from land-applied sludge. Methyl mercury was found at 0.1% of total mercury concentrations and was emitted from land-applied sludge to the atmosphere. Elemental mercury (Hg) was formed in land-applied sludge via the reduction of oxidized mercury and was also emitted to the atmosphere. Hg emission from land-applied sludge was significantly elevated over background soil emission. Methyl mercury is more toxic and more highly bioaccumulated than inorganic mercury, and warrants assessment considering these special criteria. Additionally, mercury emission from sludge-amended soil may lead to the contamination of other environmental media with significant concentrations of the metal. Although these pathways were not evaluated in the regulatory risk assessment, they are an important consideration for evaluating the risks from mercury in land-applied sludge. This presentation will summarize the results of a re-assessment of US EPA regulations regarding the land-application of municipal sewage sludge using data on methyl mercury toxicity and mercury transport in the atmosphere.

Carpi, A. [Cornell Univ., Ithaca, NY (United States); Lindberg, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

285

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

286

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network [OSTI]

Long-period forcing of Mercurys libration in longitude.M. : Resonant forcing of Mercurys libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

287

Measuring PM Distribution in a Catalyzed Particulate Filter using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PM Distribution in a Catalyzed Particulate Filter using a Terahertz Wave Scanner Measuring PM Distribution in a Catalyzed Particulate Filter using a Terahertz Wave Scanner...

288

Emissions and Durability of Underground Mining Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given...

289

Durability of Diesel Engine Particulate Filters (Agreement ID...  

Broader source: Energy.gov (indexed) [DOE]

Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

290

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filters Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA)...

291

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems Development of...

292

Non-Destructive Neutron Imaging to Analyze Particulate Filters...  

Broader source: Energy.gov (indexed) [DOE]

Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being...

293

Local Soot Loading Distribution in Cordierite Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

294

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24,...

295

Value Analysis of Alternative Diesel Particulate Filter (DPF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Value Analysis of Alternative Diesel Particulate Filter (DPF) Substrates for Future Diesel Aftertreatment Systems Value Analysis of Alternative Diesel Particulate Filter (DPF)...

296

New Cordierite Diesel Particulate Filters for Catalyzed and Non...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications New Cordierite Diesel Particulate Filters for Catalyzed and Non-Catalyzed Applications 2003 DEER...

297

CARB Verification of Catalyzed Diesel Particulate Filters for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

298

A New CFD Model for understanding and Managing Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CFD Model for understanding and Managing Diesel Particulate Filter Regeneration A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration...

299

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

300

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Characterization of Pre-Commercial Gasoline Engine Particulates...  

Broader source: Energy.gov (indexed) [DOE]

Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods...

302

Detailed Assessment of Particulate Characteristics from Low-Temperatur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion...

303

Vehicle Technologies Office Merit Review 2014: Particulate Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems for GDI Engines Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration...

304

CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS  

SciTech Connect (OSTI)

There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to absorption from ambient surroundings. Mercury loss of 18-26% was detected after 3 and 6 months at 100 F and 140 F from samples of the fixated FGD sludge. Water samples were collected from existing ground water monitoring wells around an active FGD disposal site (8 wells) and an active fly ash slurry impoundment (14 wells). These were wells that the plants have installed to comply with ground water monitoring requirements of their permits. Mercury was not detected in any of the water samples collected from monitoring wells at either site. A literature review concluded that coal combustion byproducts can be disposed of in properly designed landfills that minimize the potentially negative impacts of water intrusion that carries dissolved organic matter (DOM). Dissolved organic matter and sulfate-reducing bacteria can promote the transformation of elemental or oxidized mercury into methyl mercury. The landfill should be properly designed and capped with clays or similar materials to minimize the wet-dry cycles that promote the release of methylmercury.

J.A. Withum; J.E. Locke; S.C. Tseng

2005-03-01T23:59:59.000Z

305

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

306

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network [OSTI]

Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

307

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network [OSTI]

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

308

Control of mercury methylation in wetlands through iron addition  

E-Print Network [OSTI]

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

309

Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.  

SciTech Connect (OSTI)

The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

2003-01-01T23:59:59.000Z

310

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network [OSTI]

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

311

Amended Silicated for Mercury Control  

SciTech Connect (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

312

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

313

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network [OSTI]

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

Verdú, Sergio

314

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

315

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

316

Mercury Geochemical, Groundwater Geochemical, And Radiometric...  

Open Energy Info (EERE)

Prospects In Northern Nevada Abstract Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction...

317

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

1.1.5 Mercury detection Atomic absorption 19 and atomicsacrifices in simplicity. Atomic absorption or fluorescencedown to low nanogram masses. Atomic absorption/fluorescence

James, Jay Zachary

2012-01-01T23:59:59.000Z

318

Apparatus for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

319

Mercury concentrations in Maine sport fishes  

SciTech Connect (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States)] [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)] [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

320

Electrically heated particulate filter enhanced ignition strategy  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

Gonze, Eugene V; Paratore, Jr., Michael J

2012-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect (OSTI)

The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the chelating mercury adsorbent to achieve in situ oxidation on the adsorbent, and the use of a separate titania-supported manganese oxide catalyst upstream of the oxidized mercury adsorbent. Both approaches met with some success. It was demonstrated that the concept of in situ oxidation on the adsorbent is viable, but the future challenge is to raise the operating capacity beyond the achieved limit of 2.7 mg Hg/g adsorbent. With regard to the manganese dioxide catalyst, elemental mercury was very efficiently oxidized in the absence of sulfur dioxide. Adequate resistance to sulfur dioxide must be incorporated for the approach to be feasible in flue gas. A preliminary benefits analysis of the technology suggests significant potential economic and environmental advantages.

Neville G. Pinto; Panagiotis G. Smirniotis

2006-03-31T23:59:59.000Z

322

An improved visualization of diesel particulate filter/  

E-Print Network [OSTI]

The prevalence of diesel particulate filters (DPF) is increasing as emissions standards worldwide evolve to match current technologies. Since the first application of DPFs in the 1980's, PM trapping effectiveness has ...

Boehm, Kevin (Kevin W.)

2011-01-01T23:59:59.000Z

323

SOUTHERN FINE PARTICULATE MONITORING PROJECT  

SciTech Connect (OSTI)

This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

Unknown

2002-04-01T23:59:59.000Z

324

Integrated exhaust and electrically heated particulate filter regeneration systems  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

Gonze, Eugene V.; Paratore, Jr., Michael J.

2013-01-08T23:59:59.000Z

325

Increased Mercury Bioaccumulation Follows Water Quality Improvement  

SciTech Connect (OSTI)

Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

1999-09-15T23:59:59.000Z

326

Mercury Chamber NF-IDS Meeting  

E-Print Network [OSTI]

-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 Starting Point: Coil and Shielding Concept IDS120H #12;3 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 · Penetrations (ports) into chamber ­ Nozzle ­ Hg drains (overflow and maintenance) ­ Vents (in and out) ­ Beam

McDonald, Kirk

327

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

328

Thursday, March 15, 2007 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 15, 2007 POSTER SESSION II: MERCURY 6:30 p.m. Fitness Center Dombard A. J. Hauck S. A. II Despinning Plus Global Contraction and the Orientation of Lobate Scarps on Mercury [#2026] We thermal models of Mercury. King S. D. A Possible Connection Between Convection in Mercury's Mantle

Rathbun, Julie A.

329

2003 Mercury Computer Systems, Inc. Optimizing System Compute  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Optimizing System Compute Density for Deployed HPEC Electronics Engineering Mercury Computer Systems, Inc. rbanton@mc.com Richard Jaenicke, Director, Product Marketing Mercury Computer Systems, Inc. rjaenicke@mc.com #12;2 © 2002 Mercury Computer Systems, Inc.© 2003

Kepner, Jeremy

330

Laser Altimeter Observations from MESSENGER's First Mercury Flyby  

E-Print Network [OSTI]

REPORT Laser Altimeter Observations from MESSENGER's First Mercury Flyby Maria T. Zuber,1 * David E Barnouin-Jha,8 John K. Harmon10 A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part

Hauck II, Steven A.

331

Mercury capture by aerosol transformation in combustion environments. Appendix 5  

SciTech Connect (OSTI)

Aerosol transformation of elemental mercury by oxidizing mercury in the air is investigated in this study by varying temperature and residence time. The experimental results show that mercury oxidation is not important at the temperature range and time scale studied. The rate of mercury oxidation is too slow that the capture of mercury vapor by transforming it into mercury oxide in aerosol phase is not practical in real systems. Studies are needed for alternative approaches to capture mercury vapor such as the use of sorbent materials.

NONE

1997-02-01T23:59:59.000Z

332

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.  

E-Print Network [OSTI]

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm. Figure 3: The layout of multiple proton beam entry directions relative to mercury jet at z=-75 cm. A PION of a free liquid mercury jet with an intense proton beam. We study the variation of meson production

McDonald, Kirk

333

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network [OSTI]

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

334

Treatment of mercury containing waste  

DOE Patents [OSTI]

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

335

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDCDFJ Mercury Jump to:

336

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

SciTech Connect (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

337

Development of an electromagnetically actuated mercury microvalve  

SciTech Connect (OSTI)

The development of microscale fluid handling components has been recognized as a crucial element in the design of microscale chemical detection systems. Recently, work has been undertaken at Sandia National Laboratories to construct a valve that uses a small mercury droplet to control the flow of gas through capillary passages. Electromagnetic forces that are provided by small permanent magnets and a current supply are used to drive the mercury into position. Driving the mercury droplet into a tapered passage halts gas flow through a capillary, while surface tension forces prevent the mercury from passing through the passage. Models have been developed to describe the movement of the mercury droplet and the sealing of the gas passage, and millimeter-scale units have been tested to explore design options. Predictions from the model show that a valve with 10 micron sized features can seal against pressures up to 1.5 atmospheres. Experiments have highlighted the promise of mercury valves and demonstrated problems that can arise from contamination of the mercury.

Adkins, D.R.; Wong, C.C.

1998-08-01T23:59:59.000Z

338

Fish mercury distribution in Massachusetts, USA lakes  

SciTech Connect (OSTI)

The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheads (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.

Rose, J.; Hutcheson, M.S.; West, C.R.; Pancorbo, O.; Hulme, K.; Cooperman, A.; DeCesare, G.; Isaac, R.; Screpetis, A.

1999-07-01T23:59:59.000Z

339

Evaluating Mercury Concentrations in Midwest Fish in Relationship to Mercury Emission Sources  

E-Print Network [OSTI]

International Energy Outlook estimates that world usage of coal will grow from 132 quadrillion British Thermal Units (BTU) in 2008 to over 202 quadrillion BTU in 2030 (USDOE, 2008). Even with improved mercury controls on power plants, this increase..., it is worthwhile to further examine the relationships between local sources of mercury and elevated concentrations of mercury in fish since these relationships may better inform control strategies, siting concerns, and overall energy policies. The author...

Robichaud, Jeffery

2008-12-19T23:59:59.000Z

340

Particulate Matter: What is it and Why does it Matter to Agriculture?  

E-Print Network [OSTI]

for PM and other pollutants. As the EPA and state regulatory agencies refine their regulations, it is important to recognize that not all PM is the same. Most of the PM in urban environments is fine, while most agricultural PM is larger than...

Mukhtar, Saqib; McGee, Russell

2009-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for dispersing catalyst onto particulate material  

DOE Patents [OSTI]

A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

342

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

343

10.1177/0270467603259787ARTICLEBULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / October 2003Roe / FISHING FOR IDENTITY Fishing for Identity: Mercury Contamination  

E-Print Network [OSTI]

of mercury in the United States. During 1999, total mercury emis- sions from power plant emissions exceeded (HG0 ), inorganic mercury (HG2+ ), and methyl mercury (MeHg), methyl mercury poses the greatest threat

Delaware, University of

344

Modeling of Particulate Behavior in Pinhole Breaches  

SciTech Connect (OSTI)

A model is presented for calculating depressurization time for and particulate release from used nuclear fuel dry storage containers that have developed a pinhole breach. Particular attention is given to particulate deposition and transmission within the breach pathway. The model is modular in nature and is developed in a way that allows for more advanced treatments of internal temperature, internal component geometry, or aerosol flow to be readily incorporated. The model can be treated as a basis for addressing concerns associated with monitoring and verification efforts during long-term dry cask storage

Casella, Andrew M.; Loyalka, Sudarshan K.; Hanson, Brady D.

2014-04-01T23:59:59.000Z

345

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

346

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 4: Diesel Particulate Filters -- Final Report  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This is the fourth and final report for the DPF test program and covers the effect of diesel sulfur level on: a catalyzed diesel particulate filter (CDPF), and a continuously regenerating diesel particulate filter (CR-DPF).

DOE; ORNL; NREL; EMA; MECA

2000-01-15T23:59:59.000Z

347

Durability of Diesel Engine Particulate Filters CRADA No. ORNL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc....

348

In Vitro Genotoxicity of Particulate and Semi-Volatile Organic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate and Semi-Volatile Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30F In Vitro Genotoxicity of Particulate...

349

Future trends in environmental mercury concentrations: implications  

E-Print Network [OSTI]

Future trends in environmental mercury concentrations: implications for prevention strategies interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended

350

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

351

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

352

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

353

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

354

Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site  

SciTech Connect (OSTI)

A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level fish, as a surrogate for all of the underlying transport and transformation processes in a complex ecosystem, has declined as a direct result of the elimination of inorganic mercury inputs. Inorganic tin released to the ecosystem has been found in compartments where particles accumulate with notable levels measured in biofilms.

Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Mathews, Teresa J [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Jett, Robert T [ORNL; Smith, John G [ORNL

2012-03-01T23:59:59.000Z

355

Electrically heated particulate filter preparation methods and systems  

SciTech Connect (OSTI)

A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

Gonze, Eugene V [Pinckney, MI

2012-01-31T23:59:59.000Z

356

Symplectic Integrator Mercury: Bug Report  

E-Print Network [OSTI]

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

357

Detection of concealed mercury with thermal neutrons  

SciTech Connect (OSTI)

In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D&D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them.

Bell, Z.W.

1994-08-18T23:59:59.000Z

358

Dark Matters  

ScienceCinema (OSTI)

One of the greatest mysteries in the cosmos is that it is mostly dark. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe. I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

Joseph Silk

2010-01-08T23:59:59.000Z

359

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network [OSTI]

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

L, Jiangning

2011-01-01T23:59:59.000Z

360

Nested-grid simulation of mercury over North America  

E-Print Network [OSTI]

Chemistry and Physics Nested-grid simulation of mercury overY. Zhang et al. : Nested-grid simulation of mercury overand Chen, S. -Y. : Plume-in-grid modeling of atmospheric

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

362

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

363

Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons  

SciTech Connect (OSTI)

An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium)] [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium)] [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium)] [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium)] [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium) [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium)] [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium)] [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium)] [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium)] [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium) [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

2012-08-15T23:59:59.000Z

364

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage  

Broader source: Energy.gov [DOE]

WASHINGTON The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

365

Optical frequency standards based on mercury and aluminum ions  

E-Print Network [OSTI]

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

366

Mercury: Supporting Scalable Multi-Attribute Range Queries  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe Mukesh Agrawal 15213 Abstract This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range- based searches. Mercury differs from previous range-based query systems in that it supports mul

Keinan, Alon

367

Mercury/Waterfilling for Fixed Wireless OFDM Angel Lozano  

E-Print Network [OSTI]

Mercury/Waterfilling for Fixed Wireless OFDM Systems Angel Lozano Bell Labs (Lucent Technologies- mation is then given by the more general mercury/waterfilling policy. This paper illustrates the usance of mercury/waterfilling on frequency-selective OFDM channels with QAM constellations and it quantifies

Verdú, Sergio

368

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

369

Powering Mercury's dynamo J.-P. Williams,1  

E-Print Network [OSTI]

Powering Mercury's dynamo J.-P. Williams,1 O. Aharonson,1 and F. Nimmo2 Received 6 July 2007 magnetic field of Mercury has implications for the interior structure of the planet and its thermal (2007), Powering Mercury's dynamo, Geophys. Res. Lett., 34, L21201, doi:10.1029/ 2007GL031164. 1

Nimmo, Francis

370

2003 Mercury Computer Systems, Inc. Session 5: Current &  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Session 5: Current & Emerging Standards Session 5: Current & Emerging Standards Craig Lund, Chief Technology Officer Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 2003 #12;© 2003 Mercury Computer Systems, Inc. Agenda

Kepner, Jeremy

371

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY  

E-Print Network [OSTI]

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY: A GLOBAL PERSPECTIVE. T. MESSENGER's Newly Global Perspective on Mercury: Some Implications for Interior Evolution [#1750] MESSENGER's first two flybys of Mercury have revealed a planet with a richer history of magmatism

Rathbun, Julie A.

372

Exploring Mercury: Scientific Results from the MESSENGER Mission  

E-Print Network [OSTI]

#12;Exploring Mercury: Scientific Results from the MESSENGER Mission Larry R. Nittler Carnegie-Cahill · MESSENGER Science Team, Engineers, Mission Operations (APL) #12;Mars Mercury · Naked-eye planet, but very difficult to observe due to proximity to Sun May 12, 2011, from NZ (M. White, Flickr) Mercury Venus Jupiter

Rhoads, James

373

2003 Mercury Computer Systems, Inc. Beamforming for Radar  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Beamforming for Radar Systems on COTS Heterogeneous ComputingHeterogeneous Computing PlatformsPlatforms Jeffrey A. Rudin Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 23, 2003 #12;2© 2003 Mercury Computer Systems, Inc. Outline

Kepner, Jeremy

374

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from a global 3D land.S. National Science Foundation Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since

Selin, Noelle Eckley

375

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2nd Princeton-Oxford High Power Target Meeting 6-7 November-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump design from NUFACT

McDonald, Kirk

376

Mercury Concentrations in Fish from the San Francisco Bay Area  

E-Print Network [OSTI]

Mercury Concentrations in Fish from the San Francisco Bay Area San Francisco Bay Regional Water on composite samples · Some mercury analysis on individual largemouth bass · Size targets #12;Tomales Bay Study chemical analyses (Hg and organics) conducted on composite samples · Some mercury analysis on individual

377

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network [OSTI]

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

378

Mercury exosphere I. Global circulation model of its sodium component  

E-Print Network [OSTI]

Mercury exosphere I. Global circulation model of its sodium component Francois Leblanc a,*, R 2010 Accepted 27 April 2010 Available online 5 May 2010 Keywords: Mercury, Atmosphere Aeronomy a b s t r a c t Our understanding of Mercury's sodium exosphere has improved considerably in the last 5

Johnson, Robert E.

379

Mercury warning given to north state anglers By Ryan Sabalow  

E-Print Network [OSTI]

Mercury warning given to north state anglers By Ryan Sabalow Monday, June 7, 2010 A new study the highest levels of mercury contamination in the state. Although anglers arent being warned to wean,905 fish in 272 of Californias popular lakes and reservoirs for mercury, PCBs, DDT and other contaminants

380

Mercury reuses several external software tools developed by ORNL  

E-Print Network [OSTI]

Mercury reuses several external software tools developed by ORNL DAAC and other organizations-on,canopychemistryaccpclimatecollectionseoslandvalidationFIFEFIFEfollow-on fluxnethydroclimatologycollectionsmodelarchivenetprimaryproductivityNPPNBIIMAST- DCUSANPNIABINDataONEWENDI Mercury's architecture includes 1) a harvesting engine was packaged in such a way that all the Mercury projects will use the same harvester scripts, but each project

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mercury and Freon: Temperature Emulation and Management for Server Systems  

E-Print Network [OSTI]

Mercury and Freon: Temperature Emulation and Management for Server Systems Taliver Heath Dept by simulators and real measurements. In this paper, we introduce Mercury, a soft- ware suite that avoids data. Most importantly, Mercury runs the entire software stack natively, enables repeatable experiments

Bianchini, Ricardo

382

Thursday, March 26, 2009 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 26, 2009 POSTER SESSION II: MERCURY 6:30 p.m. Town Center Exhibit Area Gómez-Perez N. Wicht J. Magnetic Field at Mercury: Effects of External Sources on Planetary Dynamos [#1634] In Mercury, magnetospheric currents induce a magnetic field at the top of the core. We study dynamo

Rathbun, Julie A.

383

Mercury: Supporting Scalable Multi-Attribute Range Ashwin R. Bharambe  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe ashu Carnegie Mellon University Pittsburgh, PA 15213 ABSTRACT This paper presents the design of Mercury, a scalable pro- tocol for supporting multi-attribute range-based searches. Mercury differs from previous

Krishnamurthy, Arvind

384

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1st joint meeting of EUROnu WP2 (Superbeam) and NF-IDS target 15-17 December-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump

McDonald, Kirk

385

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from global modeling Noelle Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since industrialization Major anthropogenic

Selin, Noelle Eckley

386

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY  

E-Print Network [OSTI]

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY 7:00 p.m. Fitness Center Helbert J. Moroz L. V for the MERTIS Instrument on the ESA BepiColombo Mission to Mercury [#1662] The MERTIS instrument on BepiColombo will study the surface of Mercury in the TIR. We will present a list of analog material compiled to support

Rathbun, Julie A.

387

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from Global Modeling Noelle #12;MERCURY IN THE ENVIRONMENT: OUTLINE 1. Deposition to the United States results from a mix of local and global sources, depending on the location 2. Historical and present releases of mercury will continue

Selin, Noelle Eckley

388

MESSENGER observations of magnetopause structure and dynamics at Mercury  

E-Print Network [OSTI]

MESSENGER observations of magnetopause structure and dynamics at Mercury Gina A. DiBraccio,1 James December 2012; accepted 10 January 2013; published 1 March 2013. [1] On 18 March 2011, MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) became the first spacecraft to orbit Mercury

Salzman, Daniel

389

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

SciTech Connect (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

390

Environmental and health aspects of lighting: Mercury  

SciTech Connect (OSTI)

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

391

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

392

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

SciTech Connect (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

393

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle*  

E-Print Network [OSTI]

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle-1062 The absorption of elemental Hg vapor into aqueous solution containing Hg(II) was measured in a stirred cell at 25 °C. For mercury absorption in Hg(II) obtained by HgCl2 injection, the presence of HNO3 greatly

Rochelle, Gary T.

394

Geochemical, Genetic, and Community Controls on Mercury  

SciTech Connect (OSTI)

The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

Wall, Judy D.

2014-11-10T23:59:59.000Z

395

Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion  

SciTech Connect (OSTI)

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

Andrew Lucero

2005-04-01T23:59:59.000Z

396

Atmospheric particulate emissions from dry abrasive blasting using coal slag  

SciTech Connect (OSTI)

Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

2006-08-15T23:59:59.000Z

397

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

2014-09-02T23:59:59.000Z

398

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

399

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

400

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

402

Mercury emissions control technologies for mixed waste thermal treatment  

SciTech Connect (OSTI)

EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)

1997-12-31T23:59:59.000Z

403

Global change and mercury cycling: Challenges for implementing a global mercury treaty  

E-Print Network [OSTI]

The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their ...

Selin, Noelle Eckley

404

Diesel particulate filter regeneration via resistive surface heating  

SciTech Connect (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V; Ament, Frank

2013-10-08T23:59:59.000Z

405

Atmospheric particulates in a semi-rural environment  

E-Print Network [OSTI]

OF TABLES LIST OF FIGURES CHAPTER Page Vli1 iX I INTRODUCTION Air pollution ? general Air pollution ? historical perspective Scope of research Importance of atmospheric particulates Particulates and climatology Particulates and human health 14... of the best definitions of an air pollutant is given by Huschke (1968), "with respect to the atmosphere, any substance within it that is foreign to the 'natural' atmosphere or that exceeds its 'natural' concentration in the atmosphere. The universal...

Klein, Thomas Kelly

1974-01-01T23:59:59.000Z

406

Method of forming particulate materials for thin-film solar cells  

DOE Patents [OSTI]

A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.

Eberspacher, Chris; Pauls, Karen Lea

2004-11-23T23:59:59.000Z

407

DOI: 10.1002/chem.200701895 A Highly Selective Colorimetric Aqueous Sensor for Mercury  

E-Print Network [OSTI]

to methyl mercury, adding this potent neuro- toxin to the food chain.[4­6] Mercury poisoning causes serious Mercury poisoning remains a significant threat to human health, yet global mercury emissions continue of mercury poisoning requires new methods of detection that are sen- sitive and selective. Here we report

Tew, Gregory N.

408

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp!  

E-Print Network [OSTI]

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp! ABSTRACT Mercury not significantly altered the mercury content of the high seas where most tunas are captured. Mercury compounds importance of these pathways in tunas is unknown. Mercury occurs in tuna principally in the form

409

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents  

E-Print Network [OSTI]

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents the Mercury Exchange Program. This is a great program that enables laboratories to exchange their intact mercury thermometers, manometers, and other mercury-containing devices for non-mercury devices at no cost. The key

Duchowski, Andrew T.

410

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future  

E-Print Network [OSTI]

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future with unusually severe and widespread mercury contamination due to extensive mercury and gold mining in the 1800s. Mercury monitoring in California sport sh began in 1969. Since that time, a substantial amount of mercury

411

Development of SCR on Diesel Particulate Filter System for Heavy...  

Broader source: Energy.gov (indexed) [DOE]

172012 Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Mojghan Naseri, Daniel Kucheruck, Hai-Ying Chen , Sougato Chatterjee DEER Conference 2012...

412

Partitioning of Volatile Organics in Diesel Particulate and Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Exhaust Partitioning of Volatile Organics in Diesel Particulate and Exhaust Evaluation of how sampling details affect the measurement of volatile organic compounds in...

413

Development of Advanced Diesel Particulate Filtration (DPF) Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

414

Failure Stress and Apparent Elastic Modulus of Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics Three established mechanical test specimen geometries and test methods for brittle materials are adapted to DPF...

415

Improvement and Simplification of Diesel Particulate Filter System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvement and Simplification of Diesel Particulate Filter System using a Ceria-Based Fuel-Borne Catalyst in Serial Applications Improvement and Simplification of Diesel...

416

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Broader source: Energy.gov (indexed) [DOE]

Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

417

Effect of Biodiesel Blends on Diesel Particulate Filter Performance  

SciTech Connect (OSTI)

Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

2006-11-01T23:59:59.000Z

418

Electrically heated particulate filter regeneration using hydrocarbon adsorbents  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V [Pinckney, MI

2011-02-01T23:59:59.000Z

419

Characterization of Pre-Commercial Gasoline Engine ParticulatesThrough...  

Broader source: Energy.gov (indexed) [DOE]

Pre-commercial Gasoline Engine Particulates Through Advanced Aerosol Methods Alla Zelenyuk, Paul Reitz, Mark Stewart Pacific Northwest National Laboratory Paul Loeper, Cory Adam,...

420

Characterization of Particulate Emissions from GDI Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly...

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

422

Final Report: Particulate Emissions Testing, Unit 1, Potomac...  

Broader source: Energy.gov (indexed) [DOE]

were completed while Unit 1 was operating at 90% of full load (84MW) or greater. Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

423

Particulate Produced from Advanced Combustion Operation in a...  

Broader source: Energy.gov (indexed) [DOE]

Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1 Particulate Produced From Advanced Combustion Operation in a Compression Ignition Engine P-1...

424

Diesel Particulate Oxidation Model: Combined Effects of Fixed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research...

425

Impacts of Natural Organic Matter on Perchlorate Removal by an Advanced Reduction Process  

E-Print Network [OSTI]

experiments were conducted to obtain data on the impacts of natural organic matter and light intensity on destruction of perchlorate by the ARPs that use sulfite activated by ultraviolet light produced by low-pressure mercury lamps or KrCl excimer lamps...

Duan, Yuhang

2012-10-19T23:59:59.000Z

426

A NASA Discovery Mission Mercury Orbit Insertion  

E-Print Network [OSTI]

major systems provide critical backup. Passive thermal design utilizing ceramic-cloth sunshade requires. Custom solar arrays produce power at safe operating temperatures near Mercury. MESSENGER is designedMercuryandextendedfrom before the end of heavy bombardment to the second half of solar system history

427

Mercury Nozzle Status V.B. Graves  

E-Print Network [OSTI]

. DEPARTMENT OF ENERGY Hg Jet Design Meeting 15 Nov 2004 Flow Issues High flow in small diameter thin-wall 15 Nov 2004 Design Issues Desire mechanically attached nozzle for changeout during cold testingMercury Nozzle Status V.B. Graves Hg Jet Design Meeting Princeton University Nov 15, 2004 #12;OAK

McDonald, Kirk

428

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents [OSTI]

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

429

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

430

Trends in Particulate Nanostructure | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel27, 2008,Inc. | DepartmentParticulate

431

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

432

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Jean Bustard

2004-04-27T23:59:59.000Z

433

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-10-01T23:59:59.000Z

434

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-06T23:59:59.000Z

435

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the fifteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--Final Reports for the two remaining plants are being written (Salem Harbor and Brayton Point). (2) Technology Transfer--Technical information about the project was presented to a number of organizations during the quarter including members of congress, coal companies, architect/engineering firms, National Mining Association, the North Carolina Department of Air Quality, the National Coal Council and EPA.

Jean Bustard; Richard Schlager

2004-08-03T23:59:59.000Z

436

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eleventh reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Final reports for Gaston and Pleasant Prairie are complete and have been issued; and Ongoing data and sample analysis is nearly complete as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at the MEGA Symposium in Washington DC.

Richard Schlager; Tom Millar

2003-07-01T23:59:59.000Z

437

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-31T23:59:59.000Z

438

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventeenth reporting quarter, progress was made on the project in the following areas: Test Sites--The Topical Report for the Salem Harbor Station was issued during the quarter. The Topical Report for the Brayton Point Station testing is in preparation; and Technology Transfer--Technical information about the project was presented at PowerGen and at an A&WMA Rocky Mountain States Section meeting.

Jean Bustard; Richard Schlager

2005-01-03T23:59:59.000Z

439

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the twelfth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at Air Quality IV in Washington D.C.

Richard Schlager; Tom Millar

2003-11-04T23:59:59.000Z

440

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Richard Schlager

2002-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2002-01-07T23:59:59.000Z

442

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the sixteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--The Topical Report for the Salem Harbor Station testing was completed during the quarter and will be issued early next quarter. The Topical Report for the Brayton Point Station testing is in preparation. (2) Technology Transfer--Technical information about the project was presented to a chemistry workshop during the quarter.

Jean Bustard; Richard Schlager

2004-10-25T23:59:59.000Z

443

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the thirteenth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter.

Richard Schlager; Tom Millar

2003-03-02T23:59:59.000Z

444

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the tenth reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Ongoing data and sample analysis as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. One paper was presented at the American Coal Council Workshop and one at the EUCE Conference.

Richard Schlager; Tom Millar

2003-04-28T23:59:59.000Z

445

MERCURY SPECIATION SAMPLING AT NEW CENTURY ENERGY'S VALMONT STATION  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the ''Mercury Study Report to Congress'' and ''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units''. The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam electric generating units. Although these reports did not state that mercury controls on coal-fired electric power stations would be required given the current state of the art, they did indicate that the EPA views mercury as a potential threat to human health. Therefore, it was concluded that mercury controls at some point may be necessary. EPA also indicated that additional research/information was necessary before any definitive statement could be made. In an effort to determine the amount and types of mercury being emitted into the atmosphere by coal-fired power plants, EPA in late 1998 issued an information collection request (ICR) that required all coal-fired power plants to analyze their coal and submit the results to EPA on a quarterly basis. In addition, about 85 power stations were required to measure the speciated mercury concentration in the flue gas. These plants were selected on the basis of plant configuration and coal type. The Valmont Station owned and operated by New Century Energy in Boulder, Colorado, was selected for detailed mercury speciation of the flue gas as part of the ICR process. New Century Energy, in a tailored collaboration with EPRI and the U.S. Department of Energy, contracted with the Energy & Environmental Research Center (EERC) to do a study evaluating the behavior of mercury at the Valmont Station. The activities conducted at the Valmont Station by the EERC not only included the sampling needed to meet the requirements of the ICR, but involved a much more extensive mercury research program. The following objectives for the sampling at New Century Energy's Valmont Station were accomplished: (1) Successfully complete all of the mercury sampling and reporting requirements of the ICR. (2) Determine the variability in mercury concentrations at the stack using mercury continuous emission monitors (CEMs). (3) Calculate mercury mass balances and emission rates. (4) Determine the mercury concentration in the fly ash as a function of particle size. (5) Determine the impact of a fabric filter on mercury emissions for a western bituminous coal.

Dennis L. Laudal

2000-04-01T23:59:59.000Z

446

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

SciTech Connect (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

447

Influences on Mercury Bioaccumulation Factors for the Savannah River  

SciTech Connect (OSTI)

Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

Paller, M.H.

2003-05-06T23:59:59.000Z

448

Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration  

E-Print Network [OSTI]

Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as ...

Wang, Yujun, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

449

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-  

E-Print Network [OSTI]

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed Oak Creek, Wisconsin (center). (All photographs by the authors.) #12;Total Mercury, Methylmercury.E., 2008, Total mercury, methylmercury, methylmercury production potential, and ancillary streambed

450

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network [OSTI]

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

451

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network [OSTI]

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

452

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

453

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

454

Process for off-gas particulate removal and apparatus therefor  

DOE Patents [OSTI]

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

Carl, Daniel E. (Orchard Park, NY)

1997-01-01T23:59:59.000Z

455

E-Print Network 3.0 - air particulate samples Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air particulate samples Page: << < 1 2 3 4 5 > >> 1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via...

456

Matter Field, Dark Matter and Dark Energy  

E-Print Network [OSTI]

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2009-03-24T23:59:59.000Z

457

Mercury Emissions Control Technologies (released in AEO2006)  

Reports and Publications (EIA)

The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

2006-01-01T23:59:59.000Z

458

Characteristics of mercury desorption from sorbents at elevated temperatures  

SciTech Connect (OSTI)

This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. Elemental mercury and mercuric chloride were tested with activated carbon and bauxite. The experimental results indicated that mercury desorption from sorbents was strongly affected by the desorption temperature and the mercury-sorbent pair. Elemental mercury was observed to desorb faster than mercuric chloride and activated carbon appeared to have higher desorption limits than bauxite at low temperatures. A kinetic model considering the mechanisms of surface equilibrium, pore diffusion and external mass transfer was proposed to simulate the observed desorption profiles. The model was found to describe reasonably well the experimental results.

Ho, T.C.; Yang, P.; Kuo, T.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering

1998-12-31T23:59:59.000Z

459

Mercury control for coal-fired power plants  

SciTech Connect (OSTI)

On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

Haase, P.

2005-06-30T23:59:59.000Z

460

E-Print Network 3.0 - advanced mercury control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Francisco Estuary Institute Collection: Environmental Sciences and Ecology 3 MERCURY POLLUTION PREVENTION IN MINNESOTA Emily Ray Moore Summary: applications Mercury in glass...

Note: This page contains sample records for the topic "mercury particulate matter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - aquatic mercury assessment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sea Grant Institute in consultation with the panel chairs. Summary: the assessment of fish-mercury responses to changes in mercury loadings. High net methylation rates in...

462

E-Print Network 3.0 - air pollution mercury Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mercury Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution mercury Page: << < 1 2 3 4 5 > >> 1 Environment, Health and Safety...

463

Thief carbon catalyst for oxidation of mercury in effluent stream  

SciTech Connect (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

464

The development and field testing of a passive mercury dosimeter  

E-Print Network [OSTI]

there is a need for me- (1) th d o s for monicoring mercury exposutes, and a number of methods have been devised. These sampling methods may be divided into two classifi- cations, active and passive, based upon the system used to move the air..., and a suitable means of analysis is used to determine the amount of mercury collected. From this information the mercury in air concentration is readily calculated. Collection media used include glass tubes packed with hopcalite, ( activated charcoal...

Zahray, Robert Karl

1982-01-01T23:59:59.000Z

465

ORNL research reveals new challenges for mercury cleanup | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

466

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

467

EIS-0423: Storage and Management of Elemental Mercury | Department...  

Energy Savers [EERE]

for managing and storing elemental mercury at seven candidate locations (i.e., Colorado, Idaho, Missouri, Nevada, South Carolina, Texas, and Washington). The U.S....

468

anthropogenic mercury emissions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marine boundary layer Palmer, Paul 25 MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT University of California eScholarship Repository Summary: Effluents for...

469

Laser induced thermophoresis and particulate deposition efficiency  

SciTech Connect (OSTI)

The interaction of laser radiation and an absorbing aerosol in a tube flow has been considered. The aerosol is produced by external heating of reactants as in the MCVD (Modified Chemical Vapor Deposition) process to produce submicron size particles in the manufacture of optical fiber preforms. These are subsequently deposited by thermophoretic forces on the inner wall of the tube as they are convected by a Poiseuille velocity profile. Axial laser radiation in the tube interacts with the absorbing particles, and the laser heating of the gas induces additional thermophoretic forces that markedly increase the efficiency of particulate deposition. A particle concentration dependent absorption coefficient that appears in the energy equation couples the energy equation to the equation of particle conservation, so that a non-linear set of coupled partial integrodifferential equations must be solved. Numerical solutions for aerosol particle trajectories, and thus deposition efficiencies, have been obtained. It is shown that laser enhanced thermophoresis markedly improves the deposition efficiency.

Cipolla, J.; Morse, T.F.; Wang, C.Y.

1983-07-01T23:59:59.000Z

470

An evaluation of elemental mercury vapor exposure to children due to silver-mercury dental amalgam restorations  

E-Print Network [OSTI]

AN EVALUATION OF ELEMENTAL MERCURY VAPOR EXPOSURE TO CHILDREN DUE TO SILVER-MERCURY DENTAL AMALGAM RESTORATIONS A Thesis By RONALD DALE TAYLOR Submitted to the Office of Graduate Studies College Texas A&M University in partial fulfillment.... . . . . 1X LIST OF FIGURES. I. INTRODUCTION. II ' LITERATURE REVIEW Dental Mercury Toxicology Body Burden. Inhalation Exposure. Childhood Exposure III. METHODOLOGY. . . . 3 5 . . . 8 . . . 10 . . . 14 . 16 Human Research Committee...

Taylor, Ronald Dale

1989-01-01T23:59:59.000Z

471

Mercury Specie and Multi-Pollutant Control  

SciTech Connect (OSTI)

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutan