National Library of Energy BETA

Sample records for mercury geochemical groundwater

  1. Mercury Geochemical, Groundwater Geochemical, And Radiometric...

    Open Energy Info (EERE)

    at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts second) were also recorded at each soil sample station. At the...

  2. Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Rifle Processing Site, Colorado | Department of Energy and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado

  3. Geochemical, Genetic, and Community Controls on Mercury

    SciTech Connect (OSTI)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  4. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect (OSTI)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  5. Evaluation of Groundwater Movement in the Frenchman Flat CAU Using Geochemical and Isotopic Analysis

    SciTech Connect (OSTI)

    R. Hershey; J. Thomas; T. Rose; J. Paces; I. Farnham; C. Benedict, Jr.

    2005-03-01

    The principal pathway for radionuclide migration from underground tests in Frenchman Flat, on the Nevada Test Site, to the accessible environment is groundwater flow. Two potential pathways for radionuclide transport via groundwater have been identified from hydrologic data: (1) radionuclide transport downward from the alluvial and volcanic aquifers into the underlying carbonate aquifer; and (2) radionuclide transport laterally to the carbonate aquifer surrounding Frenchman Flat. This report presents an evaluation of geochemical and environmental isotopic data to test these potential pathways and to identify other groundwater flowpaths in, and out of, Frenchman Flat.

  6. Coupled Geochemical Impacts of Leaking CO2 and Contaminants from Subsurface Storage Reservoirs on Groundwater Quality

    SciTech Connect (OSTI)

    Shao, Hongbo; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Brown, Christopher F.

    2015-07-07

    The leakage of CO2 and the concomitant saline solutions from deep storage reservoirs to overlying groundwater aquifers is considered one of the major potential risks associated with geologic CO2 sequestration (GCS). Batch and column experiments were conducted to determine the fate of trace metals in groundwater in the scenarios of CO2 and metal contaminated brine leakage. The sediments used in this work were collected from an unconsolidated sand and gravel aquifer in Kansas, and contained 0-4 wt% carbonates. Cd and As were spiked into the reaction system to represent potential contaminants from the reservoir brine that could intrude into groundwater aquifers with leaking CO2 at initial concentrations of 114 and 40 ppb, respectively. Through this research we demonstrated that Cd and As were adsorbed on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. Cd concentrations were well below its MCL in both batch and column studies, even for sediment samples without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent were also significantly lower than influent concentration, suggesting that the sediments tested have the capacity to mitigate the coupled adverse effects of CO2 leakage and brine intrusion. However, the mitigation capacity of sediment is a function of its geochemical properties [e.g., the calcite content; the presence of adsorbed As(III); and the presence of P in the natural sediment]. The competitive adsorption between phosphate and arsenate may result in higher concentrations of As in the aqueous phase.

  7. Mercury Vapor (Kooten, 1987) | Open Energy Information

    Open Energy Info (EERE)

    DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury...

  8. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  9. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  10. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  11. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  12. Groundwater geochemical modeling and simulation of a breached high-level radioactive waste repository in the northern Tularosa Basin, New Mexico

    SciTech Connect (OSTI)

    Chappell, R.W.

    1989-01-01

    The northern Tularosa Basin in south-central New Mexico was ranked favorably as a potential location for a high-level radioactive waste repository by a US Geological Survey pilot screening study of the Basin and Range Province. The favorable ranking was based chiefly on hydrogeologic and descriptive geochemical evidence. A goal of this study was to develop a methodology for predicting the performance of this or any other basin as a potential repository site using geochemical methods. The approach involves first characterizing the groundwater geochemistry, both chemically and isotopically, and reconstructing the probable evolutionary history of, and controls on the ground water chemistry through modeling. In the second phase of the approach, a hypothetically breached repository is introduced into the system, and the mobility of the parent radionuclide, uranium, in the groundwater is predicted. Possible retardation of uranium transport in the downgradient flow direction from the repository by adsorption and mineral precipitation is then considered. The Permian Yeso Formation, the primary aquifer in the northern Tularosa Basin, was selected for study, development and testing of the methodology outlined above. The Yeso Formation contains abundant gypsum and related evaporite minerals, which impart a distinctive chemical signature to the ground water. Ground water data and solubility calculations indicate a conceptual model of irreversible gypsum and dolomite dissolution with concomitant calcite precipitation. Recharge areas are apparent from temperature, {delta}{sup 18}O and {delta}{sup 2} H, and {sup 3}H trends in the aquifer. Corrected {sup 14}C ages range between modern and 31,200 years, and suggest an average ground water velocity of 0.83 m/yr.

  13. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If

  14. Computed solid phases limiting the concentration of dissolved constituents in basalt aquifers of the Columbia Plateau in eastern Washington. Geochemical modeling and nuclide/rock/groundwater interaction studies

    SciTech Connect (OSTI)

    Deutsch, W.J.; Jenne, E.A.; Krupka, K.M.

    1982-08-01

    A speciation-solubility geochemical model, WATEQ2, was used to analyze geographically-diverse, ground-water samples from the aquifers of the Columbia Plateau basalts in eastern Washington. The ground-water samples compute to be at equilibrium with calcite, which provides both a solubility control for dissolved calcium and a pH buffer. Amorphic ferric hydroxide, Fe(OH)/sub 3/(A), is at saturation or modestly oversaturated in the few water samples with measured redox potentials. Most of the ground-water samples compute to be at equilibrium with amorphic silica (glass) and wairakite, a zeolite, and are saturated to oversaturated with respect to allophane, an amorphic aluminosilicate. The water samples are saturated to undersaturated with halloysite, a clay, and are variably oversaturated with regard to other secondary clay minerals. Equilibrium between the ground water and amorphic silica presumably results from the dissolution of the glassy matrix of the basalt. The oversaturation of the clay minerals other than halloysite indicates that their rate of formation lags the dissolution rate of the basaltic glass. The modeling results indicate that metastable amorphic solids limit the concentration of dissolved silicon and suggest the same possibility for aluminum and iron, and that the processes of dissolution of basaltic glass and formation of metastable secondary minerals are continuing even though the basalts are of Miocene age. The computed solubility relations are found to agree with the known assemblages of alteration minerals in the basalt fractures and vesicles. Because the chemical reactivity of the bedrock will influence the transport of solutes in ground water, the observed solubility equilibria are important factors with regard to chemical-retention processes associated with the possible migration of nuclear waste stored in the earth's crust.

  15. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  16. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect (OSTI)

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsurface sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  17. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal...

  18. Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox...

    Open Energy Info (EERE)

    groundwater can be a useful geochemical indicator for geothermal exploration when other water chemistry techniques are ambiguous. This research was useful for locating some areas...

  19. HBH-GEOCHEM-GEOPHY

    Energy Science and Technology Software Center (OSTI)

    003015WKSTN00 Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

  20. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recharge | Stanford Synchrotron Radiation Lightsource Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge Monday, February 29, 2016 Managed aquifer recharge (MAR) is an increasingly used water enhancement strategy, which involves subsurface storage of water supplies in groundwater aquifers. While MAR projects have the potential to alleviate water deficits, they can also adversely impact groundwater quality by altering the native geochemistry of the aquifer and

  1. Soil Sampling At Reese River Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  2. Radiometrics At Reese River Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  3. Soil Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  4. Field Mapping At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  5. Field Mapping At Reese River Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  6. Radiometrics At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    References William R. Henkle Jr., Wayne C. Gundersen, Thomas D. Gundersen (2005) Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three...

  7. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  8. Geochemical Modeling Of Aqueous Systems

    Energy Science and Technology Software Center (OSTI)

    1995-09-07

    EQ3/6 is a software package for geochemical modeling of aqueous systems. This description pertains to version 7.2b. It addresses aqueous speciation, thermodynamic equilibrium, disequilibrium, and chemical kinetics. The major components of the package are EQ3NR, a speciation-solubility code, and EQ6 a reaction path code. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits, and determining whether certain reactions are in states of equilibrium or disequilibrium. It also initializes EQ6 calculations. EQ6 models themore » consequences of reacting an aqueous solution with a specified set of reactants (e.g., minerals or waste forms). It can also model fluid mixing and the effects of changes in temperature. Each of five supporting data files contain both standard state and activity coefficient-related data. Three support the use of the Davies or B-dot equations for the activity coefficients; the other two support the use of Pitzer''s equations. The temperature range of the thermodynamic data on the data files varies from 25 degrees C only to 0-300 degrees C.« less

  9. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Groundwater Monitoring LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge

  10. Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from LM Monitoring Wells | Department of Energy Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells AS&T Ancillary Work Plan (AWP) Final Well Redevelopment Evaluation Report Evaluation of Pre- and Post-Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells (3.25 MB) More Documents & Publications Analysis and Geochemical Modeling

  11. Field-deployable, nano-sensing approach for real-time detection of free mercury, speciation and quantification in surface stream waters and groundwater samples at the U.S. Department of Energy contaminated sites

    SciTech Connect (OSTI)

    Campiglia, Andres D.; Hernandez, Florencio E.

    2014-08-28

    The detrimental effects on human health caused by long-term exposure to trace contamination of toxic metals have been documented in numerous epidemiological and toxicological studies. The fact that metals are non-biodegradable and accumulate in the food chain poses a severe threat to the environment and human health. Their monitoring in drinking water, aquatic ecosystems, food and biological fluids samples is then essential for global sustainability. While research efforts employing established methodology continue to advance conceptual/computational models of contaminant behavior, the increasing awareness and public concern with environmental and occupational exposure to toxic metals calls for sensing devices capable to handle on-site elemental analysis in short analysis time. Field analysis with potable methodology prevents unnecessary scrutiny of un-contaminated samples via laboratory-bound methods, reduces analysis cost and expedites turnaround time for decision making and remediation purposes. Of particular toxicological interest are mercury and its species. Mercury is recognized as a major environmental pollution issue. The field-portable sensor developed in this project provides a unique and valuable tool for the on-site, real-time determination of inorganic mercury in surface waters. The ability to perform on-site analysis of mercury should prove useful in remote locations with difficult accessibility. It should facilitate data collection from statistically meaningful population sizes for a better understanding of the dose-effect role and the water-soil-plant-animal-human transfer mechanisms. The acquired knowledge should benefit the development of efficient environmental remediation processes, which is extremely relevant for a globally sustainable environment.

  12. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report describes and assesses the aging process and related environmental aspects that may provide useful insights toward postponing some of the inevitable effects of aging. Although the Panel on Aging and the Geochemical Environment is convinced that the geochemical environment is associated with aging, it of course recognizes that other factors may also be significant or, perhaps, more important. Accordingly, the report is intended to enhance the awareness of biomedical and geochemical research scientists, decision makers in related areas, and the lay public interested in an understanding of the relation of the geochemical environment to senescence.

  13. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  14. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  15. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  16. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  17. Groundwater Database

    Broader source: Energy.gov [DOE]

    DOE has one of the largest ground water contamination problems and subsequent cleanup responsibilities for a single entity in the world, in terms of the sheer volume of affected groundwater, number...

  18. NNSS Groundwater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Devils Hole meeting puts focus on NNSS groundwater. See page 8. See page 7. Moniz Confirmed Energy Secretary; Replaces Chu Dr. Ernest Moniz was officially sworn in as the 13th ...

  19. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Technique Subcategories This category has only the following subcategory. G + Geochemical Data Analysis (2 categories) 4 pages Pages in category "Geochemical...

  20. Novel Coupled Thermochronometric and Geochemical Investigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical ...

  1. EM Mercury Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Plan to Address the EM Mercury Challenge FEBRUARY 2016 Table of Contents SUMMARY 1 1. BACKGROUND 2 1.1 OAK RIDGE RESERVATION'S MERCURY CHALLENGE 2 1.2 SAVANNAH RIVER SITE'S MERCURY CHALLENGE 3 2. APPROACH 4 3. OREM'S 2014 TECHNOLOGY DEVELOPMENT PLAN 5 4. RESEARCH AND TECHNOLOGY DEVELOPMENT AREAS FOR OAK RIDGE 6 4.1 MERCURY DETECTION AND MEASUREMENT 6 4.2 Y-12 SITE CLEANUP 7 4.3 EAST FORK POPLAR CREEK REMEDIATION 9 4.4 MODELING 10 5. RESEARCH AND TECHNOLOGY DEVELOPMENT AREAS FOR THE

  2. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect (OSTI)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  3. Mercury in the environment

    ScienceCinema (OSTI)

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  4. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as...

  5. Groundwater Screen

    Energy Science and Technology Software Center (OSTI)

    1993-11-09

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources and release to percolation ponds. The code calculates the limiting soil concentration or effluent release concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: Contaminant release from a source volume, contaminant transport inmore » the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. Concentration as a function of time at a user specified receptor point and maximum concentration averaged over the exposure interval are also calculated. In addition, the code calculates transport and impacts of radioactive progeny. Input to GWSCREEN is through one, free format ASCII file. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.« less

  6. Mercury Metadata Toolset

    Energy Science and Technology Software Center (OSTI)

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additionalmore » metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  11. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  12. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  13. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  14. Mercury Strategic Plan Outfall 200 Mercury Treatment Facility

    Office of Environmental Management (EM)

    more than 20 million pounds of mercury were used at Y-12 in a process that separated lithium isotopes for weapons production *Approximately 2 million pounds of mercury were ...

  15. FINAL REPORT ON THE AQUATIC MERCURY ASSESSMENT STUDY

    SciTech Connect (OSTI)

    Halverson, N

    2008-09-30

    In February 2000, the United States Environmental Protection Agency (EPA) Region 4 issued a proposed Total Maximum Daily Load (TMDL) for total mercury in the middle and lower Savannah River. The initial TMDL, which would have imposed a 1 ng/l mercury limit for discharges to the middle/lower Savannah River, was revised to 2.8 ng/l in the final TMDL released in February 2001. The TMDL was intended to protect people from the consumption of contaminated fish, which is the major route of mercury exposure to humans. The most bioaccumulative form of mercury is methylmercury, which is produced in aquatic environments by the action of microorganisms on inorganic mercury. Because of the environmental and economic significance of the mercury discharge limits that would have been imposed by the TMDL, the Savannah River Site (SRS) initiated several studies concerning: (1) mercury in SRS discharges, SRS streams and the Savannah River, (2) mercury bioaccumulation factors for Savannah River fish, (3) the use of clams to monitor the influence of mercury from tributary streams on biota in the Savannah River, and (4) mercury in rainwater falling on the SRS. The results of these studies are presented in detail in this report. The first study documented the occurrence, distribution and variation of total and methylmercury at SRS industrial outfalls, principal SRS streams and the Savannah River where it forms the border with the SRS. All of the analyses were performed using the EPA Method 1630/31 ultra low-level and contaminant-free techniques for measuring total and methylmercury. Total mercury at National Pollutant Discharge Elimination System (NPDES) outfalls ranged from 0.31-604 ng/l with a mean of 8.71 ng/l. Mercury-contaminated groundwater was the source for outfalls with significantly elevated mercury concentrations. Total mercury in SRS streams ranged from 0.95-15.7 ng/l. Mean total mercury levels in the streams varied from 2.39 ng/l in Pen Branch to 5.26 ng/l in Tims Branch

  16. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The report describes and assesses the aging process and related environmental aspects. Specific geographic areas of increased and decreased longevity were identified and geochemically characterized in terms of surface rocks, drinking water quality, soils, and abnormal absorption of trace elements by plants. Environmental factors that may be related to increased longevity are discussed. 11 references, 32 figures, 8 tables. (ACR)

  17. Water displacement mercury pump

    DOE Patents [OSTI]

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  18. Follow that mercury!

    SciTech Connect (OSTI)

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  19. Water displacement mercury pump

    DOE Patents [OSTI]

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  20. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater monitoring network Map of LANL's groundwater monitoring network

  1. Method and apparatus for sampling atmospheric mercury

    DOE Patents [OSTI]

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  2. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    SciTech Connect (OSTI)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants in the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched

  3. Groundwater - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Richland Operations Office Richland Operations Office River Corridor Central Plateau Groundwater PHOENIX Groundwater Annual Reports Mission Support Newsroom Groundwater Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 200WPumpandTreat 200 West Pump and Treat The groundwater treatment project includes a number of injection and extraction wells feeding five pump and treat facilities in the 100 Area near the reactors, as well as a state-of-the-art

  4. Mercury Information Clearinghouse

    SciTech Connect (OSTI)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  5. Mercury control in 2009

    SciTech Connect (OSTI)

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  6. H-Area Seepage Basins groundwater monitoring report. First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992.

  7. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method.more » Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium) were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  8. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  9. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  10. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  11. Optimizing parameters for predicting the geochemical behavior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of discrete fracture networks in geothermal systems Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal ...

  12. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  13. Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    Information Provided by Technique Lithology: StratigraphicStructural: Hydrological: Thermal: Dictionary.png Geochemical Data Analysis: No definition has been provided for...

  14. Novel Coupled Thermochronometric and Geochemical Investigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in a well-characterized structural context (permeability and alteration) in order to ... and geochemical data integration and model Innovative approach combining structural ...

  15. Geothermal Exploration Using Surface Mercury Geochemistry | Open...

    Open Energy Info (EERE)

    Surface Mercury Geochemistry Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Abstract...

  16. Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A.

    SciTech Connect (OSTI)

    Denham, Miles; Millings, Margaret; Noonkester, Jay

    2005-09-22

    To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and other geochemical parameters. Sediments cored from near the well screens were also sampled to examine any relationship between sediment properties and radium concentration in the groundwater. Elevated radium concentrations only occurred in groundwater with low electrical conductivity and pH values below 6.3. The adsorption edge for radium on hematite--a major surface active mineral in these aquifers--is at a pH value of about 6. Near this value, small changes in pH can result in significant adsorption or desorption of radium. In groundwater with initially low alkalinity, small intermittent decreases in partial pressure of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The result is intermittent elevated radium concentrations.

  17. Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    hydrothermal system. Other definitions:Wikipedia Reegle Introduction Mercury is a natural byproduct of mantle or deep-crustal derived fluids, high concentrations can be...

  18. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  19. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, Shou-Heng; Liu, Zhao-Rong; Yan, Naiqiang

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  20. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  1. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  2. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  3. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  4. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  5. Mercury removal sorbents

    DOE Patents [OSTI]

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  6. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    SciTech Connect (OSTI)

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; Tringe, Susannah G.; Fields, Matthew W.; Rubin, Edward M.; Tiedje, James M.; Hazen, Terry C.; Arkin, Adam P.; Zhou, Jizhong

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, the pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.

  7. Comparative metagenomics reveals impact of contaminants on groundwater microbiomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hemme, Christopher L.; Tu, Qichao; Shi, Zhou; Qin, Yujia; Gao, Weimin; Deng, Ye; Nostrand, Joy D. Van; Wu, Liyou; He, Zhili; Chain, Patrick S. G.; et al

    2015-10-31

    To understand patterns of geochemical cycling in pristine versus contaminated groundwater ecosystems, pristine shallow groundwater (FW301) and contaminated groundwater (FW106) samples from the Oak Ridge Integrated Field Research Center (OR-IFRC) were sequenced and compared to each other to determine phylogenetic and metabolic difference between the communities. Proteobacteria (e.g., Burkholderia, Pseudomonas) are the most abundant lineages in the pristine community, though a significant proportion ( >55%) of the community is composed of poorly characterized low abundance (individually <1%) lineages. The phylogenetic diversity of the pristine community contributed to a broader diversity of metabolic networks than the contaminated community. In addition, themore » pristine community encodes redundant and mostly complete geochemical cycles distributed over multiple lineages and appears capable of a wide range of metabolic activities. In contrast, many geochemical cycles in the contaminated community appear truncated or minimized due to decreased biodiversity and dominance by Rhodanobacter populations capable of surviving the combination of stresses at the site. In conclusion, these results indicate that the pristine site contains more robust and encodes more functional redundancy than the stressed community, which contributes to more efficient nutrient cycling and adaptability than the stressed community.« less

  8. The Hanford Story: Groundwater

    Broader source: Energy.gov [DOE]

    This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

  9. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  10. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  11. Book Review - Geochemical Exploration 1982 | Open Energy Information

    Open Energy Info (EERE)

    Book Review - Geochemical Exploration 1982 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Review: Book Review - Geochemical Exploration 1982 Author R. A....

  12. Computer Modeling of Chemical and Geochemical Processes in High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer modeling of chemical and geochemical processes in high ionic strength solutions ... in brine Computer modeling of chemical and geochemical processes in high ionic ...

  13. Application Of Geochemical Methods In The Search For Geothermal...

    Open Energy Info (EERE)

    Geochemical Methods In The Search For Geothermal Fields Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geochemical Methods In...

  14. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  15. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  16. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  17. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  18. Fluorescent sensor for mercury

    DOE Patents [OSTI]

    Wang, Zidong; Lee, Jung Heon; Lu, Yi

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  19. Geochemical information for sites contaminated with low-level radioactive wastes: I. Niagara Falls Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1984-11-01

    The Niagara Falls Storage Site (NFSS) became radioactively contaminated as a result of wastes that were being stored from operations carried out to recover uranium from pitchblende ore in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the NFSS. This report describes the results of geochemical investigations performed to help provide a quantitative evaluation of the effects of various options. NFSS soil and groundwater samples were characterized; and uranium and radium sorption ratios, as well as apparent concentration limit values, were measured in site soil/groundwater systems by employing batch contact methodology. The results suggest that any uranium which is in solution in the groundwater at the NFSS may be poorly retarded due to the low uranium sorption ratio values and high solubility measured. Further, appreciable concentrations of uranium in groundwater could be attained from soluble wastes. Release of uranium via groundwater migration could be a significant release pathway. Solubilized radium would be expected to be effectively retarded by soil at the NFSS as a result of the very high radium sorption ratios observed. The addition of iron oxyhydroxide to NFSS soils resulted in much higher uranium sorption ratios. Additional field testing of this potential remedial action additive could be desirable. 10 references.

  20. Appendix K Disposal Cell Groundwater Monitoring Plan

    Office of Legacy Management (LM)

    K Disposal Cell Groundwater Monitoring Plan

  1. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOE Patents [OSTI]

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  2. Geothermal/Geochemical Database | Open Energy Information

    Open Energy Info (EERE)

    to library Chart: GeothermalGeochemical DatabaseInfo GraphicMapChart Author Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 2012 DOI Not...

  3. Nanogeochemistry: Geochemical reactions and mass transfers in...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Nanogeochemistry: Geochemical reactions and mass transfers in nanopores ... OSTI Identifier: 913493 Report Number(s): SAND2003-0369J Journal ID: ISSN 0091-7613; TRN: ...

  4. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  5. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67 wells in alluvium in canyons. August 1, 2013 Map of LANL's groundwater...

  6. Localized surface plasmon resonance mercury detection system and methods

    DOE Patents [OSTI]

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  7. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1,...

  8. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an ... August 1, 2013 Conceptual model of water movement and geology at Los Alamos National ...

  9. Hanford Site ground-water monitoring for July through December 1987

    SciTech Connect (OSTI)

    Evans, J.C.; Dennison, D.I.; Bryce, R.W.; Mitchell, P.J.; Sherwood, D.R.; Krupka, K.M.; Hinman, N.W.; Jacobson, E.A.; Freshley, M.D.

    1988-12-01

    The Pacific Northwest Laboratory monitors ground-water quality at the Hanford Site for the US Department of Energy to assess the impact of Site operations on the environment. Work undertaken between July and December 1987 included monitoring ground-water elevations across the Site, monitoring hazardous chemicals and radionuclides in ground water, geochemical evaluations of unconfined ground-water data, and calibration of ground-water flow and transport models. Water levels continued to rise in areas receiving increased recharge (e.g., beneath B Pond) and decline in areas where the release of water to disposal facilities has been terminated (e.g., U Pond). The major areas of ground-water contamination defined by monitoring activities are (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and 200-West Areas; (3) hexavalent chromium contamination in the 100-B, 100-D, 100-F, 100-H, 100-K, and 200-West Areas; (4) chlorinated hydrocarbons in the vicinity of the Central Landfill and 300 Area; (5) uranium in the 100-F, 100-H, 200-West, and 300 Areas; and (6) tritium and nitrate across the Site. The MINTEQ geochemical code was used to identify chemical reactions that may be affecting the concentrations of dissolved hazardous chemicals in the unconfined ground water. Results indicate that many cations are present mainly as dissolved carbonate complexes and that a majority of the ground-water samples are in near equilibrium with carbonate minerals (e.g., calcite, dolomite, otavite).

  10. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    SciTech Connect (OSTI)

    2006-12-01

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  11. Mercury switch with non-wettable electrodes

    DOE Patents [OSTI]

    Karnowsky, Maurice M.; Yost, Frederick G.

    1987-01-01

    A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

  12. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  13. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  14. Mercury Continuous Emmission Monitor Calibration

    SciTech Connect (OSTI)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  15. Coping with uncertainties of mercury regulation

    SciTech Connect (OSTI)

    Reich, K.

    2006-09-15

    The thermometer is rising as coal-fired plants cope with the uncertainties of mercury regulation. The paper deals with a diagnosis and a suggested cure. It describes the state of mercury emission rules in the different US states, many of which had laws or rules in place before the Clean Air Mercury Rule (CAMR) was promulgated.

  16. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    SciTech Connect (OSTI)

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  17. EPA's groundwater protection strategy

    SciTech Connect (OSTI)

    Smith, J. )

    1992-06-01

    What the EPA, working jointly with the states, hopes to accomplish over the next ten years in order to integrate and coordinate all the groundwater programs within the agency is discussed. Although many other EPA programs such as Superfund, Clean Air Act, and Wetlands Management are often highlighted in the media, EPA does not down rate the importance of groundwater protection. Indeed as a resource, it is one of the most important commodities. Groundwater is the basis for life in this country. Recharge rates are no where near what the withdrawal rates are in many areas of the country. Twenty-five percent of all the potable water comes from groundwater. Groundwater supplies 50 percent of the needs for all the US population. If you include strictly rural areas, it supplies 95 percent of all the use. Something that most people who are not groundwater hydrologists would not think about is the fact that groundwater is a recharge mechanism that provides over 30 percent of the flow in streams and major rivers.

  18. Apparatus for control of mercury

    SciTech Connect (OSTI)

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  19. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect (OSTI)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  20. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  1. Natural radionuclides in groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.

    1990-01-01

    The U-234 and Th-230 radionuclides are highly retarded by factors of 10{sup 4} to 10{sup 5} in basalt groundwater (Hanford) and briny groundwaters from Texas and geothermal brine from the Salton Sea Geothermal Field (SSGF). In basalt groundwaters (low ionic strength), Ra is highly sorbed, while in brines (high ionic strength), Ra is soluble. This is probably because the sorption sites are saturated with Na{sup +} and Cl{sup {minus}} ions and RaCl{sub 2} is soluble in brines. Pb-210 is soluble in SSGF brine, probably as a chloride complex. The U-234/Th-230 ratios in basalt groundwaters and brines from Texas and SSGF are nearly unity, indicating that U is in the +4 state, suggesting a reducing environment for these aquifers. 19 refs., 3 figs.

  2. Novel Coupled Thermochronometric and Geochemical Investigation of Blind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Resources in Fault-Controlled Dilational Corners | Department of Energy Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners presentation at the

  3. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    SciTech Connect (OSTI)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  4. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  5. Mercury exposure from interior latex paint

    SciTech Connect (OSTI)

    Agocs, M.M.; Etzel, R.A.; Parrish, R.G.; Paschal, D.C.; Campagna, P.R.; Cohen, D.S.; Kilbourne, E.M.; Hesse, J.L. )

    1990-10-18

    Many paint companies have used phenylmercuric acetate as a preservative to prolong the shelf life of interior latex paint. In August 1989, acrodynia, a form of mercury poisoning, occurred in a child exposed to paint fumes in a home recently painted with a brand containing 4.7 mmol of mercury per liter (at that time the Environmental Protection Agency's recommended limit was 1.5 mmol or less per liter). To determine whether the recent use of that brand of paint containing phenylmercuric acetate was associated with elevated indoor-air and urinary mercury concentrations, we studied 74 exposed persons living in 19 homes recently painted with the brand and 28 unexposed persons living in 10 homes not recently painted with paint containing mercury. The paint samples from the homes of exposed persons contained a median of 3.8 mmol of mercury per liter, and air samples from the homes had a median mercury content of 10.0 nmol per cubic meter (range, less than 0.5 to 49.9). No mercury was detected in paint or air samples from the homes of unexposed persons. The median urinary mercury concentration was higher in the exposed persons (4.7 nmol of mercury per millimole of creatinine; range, 1.4 to 66.5) than in the unexposed persons (1.1 nmol per millimole; range, 0.02 to 3.9; P less than 0.001). Urinary mercury concentrations within the range that we found in exposed persons have been associated with symptomatic mercury poisoning. We found that potentially hazardous exposure to mercury had occurred among persons whose homes were painted with a brand of paint containing mercury at concentrations approximately 2 1/2 times the Environmental Protection Agency's recommended limit.

  6. Mercury emissions from municipal solid waste combustors

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  7. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  8. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald ...

  9. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports ...

  10. Improved Ex-Situ Mercury Remediation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Improved Ex-Situ Mercury Remediation Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary The present invention provides a process for the treatment of mercury containing waste in a single reaction vessel. The process is effective in treating various types of mercury contaminated waste; such as elemental mercury or mercury compounds, mercury contaminated bulk material, or

  11. In-Situ Mercury Remediation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In-Situ Mercury Remediation Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary In Situ Mercury Stabilization (ISMS) is a method that can remove toxic mercury from soil, sediment, sludge, and other industrial waste. Description ISMS includes a device and method for remediation of mercury contamination in which mercury is first concentrated by inserting rods of sulfur reagent into the waste. Mercury is drawn to specially designed treatment rods, which

  12. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1, 2013 Where to place a sentinel well Where

  13. In situ groundwater bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  14. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  15. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  16. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  17. Sorbents for the oxidation and removal of mercury (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Title: Sorbents for the oxidation and removal of mercury A promoted activated carbon ... the sorbent, or to the flue gas to enhance sorbent performance andor mercury capture. ...

  18. Evaluation of the Mercury Soil Mapping Geothermal Exploration...

    Open Energy Info (EERE)

    the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil...

  19. Sorbents for mercury removal from flue gas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; Flue Gas; Flue Gas; Mercury; Mercury; ...

  20. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  1. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  2. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  3. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  4. Identification of elemental mercury in the subsurface

    DOE Patents [OSTI]

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  5. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  6. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's Marketplace Los Alamos National Laboratory performed a ...

  7. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  8. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect (OSTI)

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  9. X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, B.; Mishra, B.; Miller, C.; Wang, W.; Lai, B.; Brooks, S. C.; Kemner, K. M.; Liang, L.

    2014-05-23

    Mercury (Hg) bioavailability and geochemical cycling is affected by its partitioning between the aqueous and particulate phases. We applied X-ray fluorescence (XRF) microprobes to directly visualize and quantify the spatial localization of Hg and its correlations with other elements of interest on suspended particles from a Hg contaminated freshwater system. Up to 175 μg g–1 Hg is found on suspended particles. Mercury is heterogeneously distributed among phytoplankton (e.g., diatoms) and mineral particles that are rich in iron oxides and natural organic matter (NOM), possibly as Hg-NOM-iron oxide ternary complexes. The diatom-bound Hg is mostly found on outer surfaces of themore » cells, suggesting passive sorption of inorganic Hg on diatoms. Our results indicate that localized sorption of Hg onto suspended particles, including diatoms and NOM-coated oxide minerals, is an important sink for Hg in natural aquatic environments.« less

  10. A Geochemical Speciation Program Based on PHREEQE

    Energy Science and Technology Software Center (OSTI)

    1992-02-18

    HARPHRQ is a program based on the code PHREEQE and is designed to model geochemical reactions. Like PHREEQE, it can calculate the pH, redox potential and mass transfer as a function of reaction progress and the composition of solution in equilibrium with multiple phases. In addition, HARPHRQ includes options to allow the composition of a solution at a fixed pH to be calculated and to automatically add or remove mineral phases as they become saturatedmore » or exhausted. A separate module can also be interfaced to give a choice of sorption models including the triple-layer model.« less

  11. DNA-based methods of geochemical prospecting

    DOE Patents [OSTI]

    Ashby, Matthew

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  12. Category:Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    category, out of 4 total. G Geochemical Data Analysis Geothermometry T Thermal Ion Dispersion Thermochronometry Retrieved from "http:en.openei.orgwindex.php?titleCategory:Ge...

  13. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  14. Monitoring CO2 intrusion and associated geochemical transformations...

    Office of Scientific and Technical Information (OSTI)

    Monitoring CO2 intrusion and associated geochemical transformations in a shallow ... Citation Details In-Document Search Title: Monitoring CO2 intrusion and associated ...

  15. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships. ...

  16. Groundwater monitoring system

    DOE Patents [OSTI]

    Ames, Kenneth R.; Doesburg, James M.; Eschbach, Eugene A.; Kelley, Roy C.; Myers, David A.

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  17. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  18. Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated

  19. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  20. Microsoft Word - Groundwater Discharge Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13

  1. Implementation of ORR Groundwater Strategy

    Office of Environmental Management (EM)

    ... modeling * Summary of progress in annual Remediation Effectiveness Report Groundwater Program ... * first sampling event in FY 2015 Q2 was successfully completed ...

  2. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (OSTI)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  3. ccpi_mercury | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury Specie and Multi-Pollutant Control Project - Project Brief [PDF-131KB] NeuCo, Inc., Boston, MA (acquired original participant, Pegasus Technologies) PROJECT FACT SHEET Mercury Specie and Multi-Pollutant Control Project (Completed May 31, 2010) [PDF-815KB] (June 2011) PROGRAM PUBLICATIONS Final Report Mercury Specie and Multi-Pollutant Control [PDF-14MB] (May 2011) Quarterly Progress Reports April - June 2007 [PDF- 6.1MB] (July 2007) January - March 2007 [PDF-6.1MB] (Apr 2007) October -

  4. Anatomy of a Groundwater Uranium Plume

    Office of Energy Efficiency and Renewable Energy (EERE)

    Groundwater containing legacy contaminants (pollutants that remain after their sources have been controlled) moves through aquifers in response to the hydraulic gradient. As the groundwater moves,...

  5. TWDB Groundwater Conservation Districts website | Open Energy...

    Open Energy Info (EERE)

    TWDB Groundwater Conservation Districts website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TWDB Groundwater Conservation...

  6. Groundwater Periodic Monitoring Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Groundwater Periodic Monitoring Reports Groundwater Periodic Monitoring Reports Topic: David Rhodes DOE, Provided Information on the Watersheds at LANL and the Monitoring Schedule ...

  7. California Groundwater Management Plans | Open Energy Information

    Open Energy Info (EERE)

    Groundwater Management Plans Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Groundwater Management PlansLegal Published...

  8. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  9. Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site

    SciTech Connect (OSTI)

    Looney, Brian; BryanJr., Larry; Mathews, Teresa J; Peterson, Mark J; Roy, W Kelly; Jett, Robert T; Smith, John G

    2012-03-01

    A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level

  10. Mercury Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    of PV products and systems for commercial and residential clients in the New York metrotri-state area. References: Mercury Solar Systems1 This article is a stub. You can...

  11. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  12. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-06-13

    A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

  13. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  14. Mercury sorbent delivery system for flue gas

    DOE Patents [OSTI]

    Klunder; ,Edgar B.

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  15. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve ... contamination in the East Fork Popular Creek and how to reduce mercury levels in the fish. ...

  16. Remediation of Mercury and Industrial Contaminants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

  17. Analysis of Alternative Mercury Control Strategies

    Reports and Publications (EIA)

    2005-01-01

    This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

  18. The Mercury Export Ban Act of 2008...

    Office of Environmental Management (EM)

    Statement (Mercury Storage EIS) DOE Grand Junction Disposal Site, CO The Grand Junction Disposal Site is located on DOE-owned land, 18 miles southeast of Grand Junction, Colorado. ...

  19. Innovative Mercury Treatment Benefits Stream, Fish

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – A team of scientists is working at the Savannah River Site (SRS) to evaluate the impact of an innovative, inexpensive treatment system that removes mercury from water.

  20. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  1. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  2. Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA

    SciTech Connect (OSTI)

    Gosselin, D.C. ); Smith, M.R.; Lepel, E.A. ); Laul, J.C. )

    1992-04-01

    Rare earth element (REE) data for groundwater samples from the Deep-Basin Brine aquifer of the Palo Duro Basin, Texas, USA, illustrates the potential use of REE for inferring groundwater flow paths through different geologic materials. The REE content of the groundwaters range over 2.5 orders of magnitude and are depleted by 10{sup 2} to 10{sup 5} relative to aquifer materials. The shale-normalized REE patterns for groundwater that have primarily interacted with arkosic sandstones (granite wash) are flat with similar heavy REE (HREE) enrichments ((Lu/La){sub n} = 0.60 to 0.80). The samples with highest REE contents and REE patterns, which are enriched in the intermediate REEs (IREEs; Sm-Tb) reflect variable degrees of interaction with carbonate rocks. The IREE enrichment is the result of fluid interaction with Fe-Mn coatings on carbonate minerals and/or secondary minerals in fractures and vugs. The chloride complex. (LnCl{sup 2+}), and free-ions are the predominant REE species, accounting for over 95% of the REEs. Carbonate and sulfate species account for the other 5% and have very little influence on the behavior of the REEs. Although this study indicates a potentially important role for the REEs in understanding geochemical transport and groundwater movement, it also indicates the necessity for developing a better understanding of REE speciation in high ionic strength solutions.

  3. Mercury-metadata data management system

    Energy Science and Technology Software Center (OSTI)

    2008-01-03

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facettedmore » type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  4. Mercury cleanup efforts intensify | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs

  5. Statute - Mercury Export Ban Act of 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Waste Management » Waste Disposition » Long-Term Management and Storage of Elemental Mercury is in the Planning Stages » Statute - Mercury Export Ban Act of 2008 Statute - Mercury Export Ban Act of 2008 Public Law 110-414, 110th Congress - Mercury Export Ban Act of 2008 to prohibit the sale, distribution, transfer, and export of elemental mercury, and for other purposes. Mercury Export Ban Act of 2008 (166.11 KB) More Documents & Publications Section 129 of the Consolidated

  6. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  7. A Mineralogical Petrographic And Geochemical Study Of Samples...

    Open Energy Info (EERE)

    Mineralogical Petrographic And Geochemical Study Of Samples From Wells In The Geothermal Field Of Milos Island (Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  9. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  10. H-Area Seepage Basins. Third quarter 1990 groundwater quality assessment report

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  11. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume IV Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  12. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  13. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  14. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  15. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  16. SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signals in the Subsurface | Department of Energy SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface Grand Challenge Workshop -Imaging Subsurface.pdf (434.52 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Presentation at Town Hall - American Geophysical Union Controlling Subsurface Fractures and Fluid Flow: A Basic

  17. Soil & Groundwater Home - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Home Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Soil & Groundwater Home Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Share on Last Updated 08/28/2016 4:15

  18. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  19. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  20. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. [Mercury reductase

    SciTech Connect (OSTI)

    Wang, Y.; Levinson, H.S.; Mahler, I. ); Moore, M.; Walsh, C. ); Silver, S. )

    1989-01-01

    A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.

  1. Long-Term Management and Storage of Elemental Mercury | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) ... and 2 it will not sell, or otherwise place the elemental mercury into commerce. ...

  2. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and ...

  3. VEE-0020- In the Matter of Mercury Fuel Service, Inc.

    Broader source: Energy.gov [DOE]

    On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

  4. Operating Experience Level 3, Safe Management of Mercury | Department...

    Broader source: Energy.gov (indexed) [DOE]

    to raise awareness about mercury hazards and to reinforce the informaiton in Safety and Health Bulleting 2005-08, Safe Management of Mercury. OE-3 2012-03: Safe Management of...

  5. Removal of mercury from coal via a microbial pretreatment process

    DOE Patents [OSTI]

    Borole, Abhijeet P.; Hamilton, Choo Y.

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  6. Monitoring CO2 intrusion and associated geochemical transformations...

    Office of Scientific and Technical Information (OSTI)

    transformations in a shallow groundwater system using complex electrical methods Citation ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL ...

  7. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  8. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    SciTech Connect (OSTI)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  9. DOE Interim Guidance on Mercury Management Procedures and Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Services » Waste Management » Waste Disposition » Long-Term Management and Storage of Elemental Mercury is in the Planning Stages » DOE Interim Guidance on Mercury Management Procedures and Standards DOE Interim Guidance on Mercury Management Procedures and Standards DOE, in consultation with the USEPA and State agencies, prepared this guidance on packaging, transportation, receipt, management, and long-term storage of elemental mercury at a DOE facility or

  10. Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage

    SciTech Connect (OSTI)

    Spycher, N.; Oldenburg, C.M.

    2014-01-01

    This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily

  11. Chemical and isotopic data for groundwater in southern Nevada

    SciTech Connect (OSTI)

    Rose, T. P., LLNL

    1997-07-01

    This document presents a compilation of chemical and isotopic data for groundwater samples analyzed by Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and the Underground Test Area Program (UGTA) for the U.S. Department of Energy, Nevada Operations Office. Included are data for 107 samples collected from wells and springs located on and around the Nevada Test Site (NTS), within an area approximately bounded by latitudes 36{sup o} to 38{sup o}15'N and longitudes 115{sup o} to 117{sup o}15'W. The samples were collected during the time period 1992 to early 1997. The data represents one of the largest internally consistent geochemical data sets to be gathered for groundwater in southern Nevada. This database is available in electronic or hardcopy formats to interested parties upon request. In addition to the LLNL data we have included a table of selected isotopic data summarized from a larger database compiled by GeoTrans, Inc. (1994). This data is included for comparative purposes as a means of placing the LLNL data in the context of other data for the same geographic region.

  12. Geochemical and physical properties of wetland soils at the Savannah River site

    SciTech Connect (OSTI)

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  13. Geochemical Mud Logging of geothermal drilling

    SciTech Connect (OSTI)

    Tonani, F.B.; Guidi, M.; Johnson, S.D.

    1988-01-01

    The experience and results described in the present paper were developed over nearly two decades, with a major R&D project around 1980. The expression Geochemical Mud Logging (GML) has ill defined meaning in the geothermal industry, and ought to be specified. We refer here to GML as featuring mud and formation fluid tracer(s) and temperature as the bare essentials and with specified accuracies. Air and water logging are expected to be less demanding with regard to analysis accuracy, but are not discussed in this report. During application of GML to several drill holes with low formation permeabilities and under conditions of high temperature and high mud weight, GML as specified, revealed unexpected influx of formation brine. Such influx was a recurring feature that has been referenced to individual fractures and reflects both fracture size and permeability. As a consequence, continuous or subcontinuous sampling of mud systems appears more cost effective than trying to keep up with cumulative changes of bulk mud composition; although, the latter approach is more sensitive to extremely low rate, steady, inflow of formation fluid into the mud system. It appears, that based on this influx of formation fluid, permeability can be estimated well before mud losses are detected and/or drill strings are stuck. The main advantages of GML are: (1) the capability to assess formation temperature and permeability in nearly real time, resulting in (a) assessments of undisturbed formation and (b) having data in hand for holes lost during drilling operations and (2) being effective under conditions of very high temperatures where electrical logs are very costly and less reliable. Estimated cost for GML is $1500 per day (1982) based on assessments of R&D operations. However, extrapolating to larger scale services and to different operating conditions is indeed difficult. GML cost is probably the only significant point of controversy with regard to GML being a viable evaluation tool.

  14. CFD Modeling for Mercury Control Technology

    SciTech Connect (OSTI)

    Madsen, J.I.

    2006-12-01

    Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes

  15. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  16. Groundwater Report Goes Online, Interactive

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application.

  17. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  18. NNSS Hosts Groundwater Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey of the Bay Area NNSS Hosts Groundwater Open House A RSL helicopter spent part of August conducting aerial radiation flyovers in the California Bay Area. The team rocked the competition and chiseled out an impressive second place finish recently in the Security Protection Officer competition. Groundwater was the topic of discussion at a recent open house. See page 12. See page 5. See page 8. Enterprise Publication "ONEVOICE" Replaces Spotlight and SiteLines The Nevada National

  19. groundwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring at NETL-Albany Ground Water Testing Program NETL is committed to the safety and health of its employees and of nearby residents and to protecting the environment. As part of a DOE environmental protection program, NETL initiated a ground water monitoring program in 2001 with the Oregon Department of Environmental Quality (DEQ) to evaluate the groundwater flowing beneath the Albany, OR facility. Ground water monitoring wells were installed at that time, and periodic samples

  20. Groundwater contamination from stormwater infiltration

    SciTech Connect (OSTI)

    Pitt, R.; Clark, S.; Parmer, K.

    1995-10-01

    The research summarized here was conducted during the first year of a 3-yr cooperative agreement (CR819573) to identify and control stormwater toxicants, especially those adversely affecting groundwater. The purpose of this research effort was to review the groundwater contamination literature as it relates to stormwater. Prior to urbanization groundwater is recharged by rainfall-runoff and snowmelt infiltrating through pervious surfaces including grasslands and woods. This infiltrating water is relatively uncontaminated. Urbanization, however, reduces the permeable soil surface area through which recharge by infiltration occurs. This results in much less groundwater recharge and greatly increased surface runoff. In addition the waters available for recharge carry increased quantities of pollutants. With urbanization, waters having elevated contaminant concentrations also recharge groundwater including effluent from domestic septic tanks, wastewater from percolation basins and industrial waste injection wells, infiltrating stormwater, and infiltrating water from agricultural irrigation. The areas of main concern that are covered by this paper are: the source of the pollutants, stormwater constituents having a high potential to contaminate groundwater, and the treatment necessary for stormwater.

  1. Hoe Creek groundwater restoration, 1989

    SciTech Connect (OSTI)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  2. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  3. EM Soil and Groundwater Database Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Soil and Groundwater Database Reports EM Soil and Groundwater Database Reports Brookhaven National Laboratory - HFBR Tritium Groundwater Database Report - Brookhaven National ...

  4. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  5. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  6. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  7. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  8. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  9. ZZ Mercury Storage Book.indb

    Office of Environmental Management (EM)

    Z:\ENROLL\H1.ENR Z:\ENROLL\H1.ENR Z:\ENROLL\H1.ENR (89.89 KB) More Documents & Publications Public Health Security and Bioterrorism Preparedness and Response Act of 2002 E:\BILLS\H6.PP Energy Policy Act of 2005

    2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final

  10. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  11. Probabilistic evaluation of shallow groundwater resources at...

    Office of Scientific and Technical Information (OSTI)

    atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in...

  12. FY09 assessment of mercury reduction at SNL/NM.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  13. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  14. Geochemical Modeling of ILAW Lysimeter Water Extracts

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2014-12-22

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network than gibbsite under field conditions. This may be due to the

  15. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    SciTech Connect (OSTI)

    A.M. Schwalb; J.A. Withum

    2003-07-01

    There is some concern that mercury (Hg) in coal combustion by-products can be emitted into the environment during processing to other products, by volatilization or by dissolution into groundwater. This perception may limit the opportunities to use coal combustion by-products after disposal in recycle/reuse applications. In this program, CONSOL Energy Inc., Research & Development (CONSOL) is conducting a comprehensive sampling and analytical program to address this concern. The objective is to evaluate the potential for Hg emissions by leaching or volatilization, and to provide data that will allow a scientific assessment of the issue. The main activities for this quarter were: the re-volatilization study was continued; the literature review was updated; and the ground water study was continued.

  16. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  17. Conceptual studies for a mercury target circuit

    SciTech Connect (OSTI)

    Sigg, B.

    1996-06-01

    For the now favored target design of the European Spallation Source project, i.e. the version using mercury as target material, a basic concept of the primary system has been worked out. It does not include a detailed design of the various components of the target circuit, but tries to outline a feasible solution for the system. Besides the removal of the thermal power of about 3MW produced in the target by the proton beam, the primary system has to satisfy a number of other requirements related to processing, safety, and operation. The basic proposal uses an electromagnetic pump and a mercury-water intermediate heat excanger, but other alternatives are also being discussed. Basic safety requirements, i.e. protection against radiation and toxic mercury vapours, are satisfied by a design using an air-tight primary system containment, double-walled tubes in the intermediate heat exchanger, a fail-safe system for decay heat removal, and a remote handling facility for the active part of the system. Much engineering work has still to be done, because many details of the design of the mercury and gas processing systems remain to be clarified, the thermal-hydraulic components need further optimisation, the system for control and instrumentation is only known in outline and a through safety analysis will be required.

  18. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-06-30

    ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

  19. The low temperature hydrothermal system of Campiglia, Tuscany (Italy); A geochemical approach

    SciTech Connect (OSTI)

    Celati, R.; Grassi, S.; D'Amore, F.; Marcolini, L. )

    1991-01-01

    This paper reports on the Campiglia hydrothermal system which is a low temperature hydrothermal system located in southwestern Tuscany, a region of Italy characterized by intense geothermal activity and by the presence of high temperature exploited geothermal reservoirs. Six water-points, with temperatures ranging between 20 and 47{degrees} C and different chemical and isotopic compositions, are found close to the margins of outcrops of the main regional aquifer formation. Systematic hydrogeological, geochemical and isotopic observations and temperature measurements were carried out on the different springs and wells for a period of three years (1984-1986). Constant water characteristics with time were observed in four water-points; two wells had variable trends depending on mixing processes. A groundwater circulation model characterized by flowpaths of different length and depth is suggested by the variety of chemical and isotopic characteristics and is consistent with geothermometry, which indicates temperatures up to 25{degrees} C higher than those measured at the spring emergencies. An important water supply to the system comes from local recharge, although regional circulation may also be present, particularly in the eastern part of the investigated area.

  20. INTEC Groundwater Monitoring Report 2006

    SciTech Connect (OSTI)

    J. R. Forbes S. L. Ansley M. Leecaster

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  1. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks

  2. Shiprock Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock Archived Soil & Groundwater Master Reports Shiprock - Shiprock (19.31 KB) More Documents & Publications Slick Rock Archived Soil & Groundwater Master Reports Tuba City Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports

  3. Spook Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports Spook - Spook (17.91 KB) More Documents & Publications Tuba City Archived Soil & Groundwater Master Reports Slick Rock Archived Soil & Groundwater Master Reports Weldon Spring Site Archived Soil & Groundwater Master Reports

  4. Hanford Story: Groundwater - Questions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hanford Story Hanford Story: Groundwater - Questions The Hanford Story Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size How did contamination get into the groundwater beneath the Hanford Site? What has caused the level of contamination to decrease over the years? What is the 2015 vision for Hanford? What is the goal of the water treatment systems and facilities? What is being done to treat groundwater to remove contamination? Is contaminated groundwater

  5. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    2005-09-29

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  6. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including

  7. RDX in Groundwater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RDX in Groundwater RDX in Groundwater Topic: Tim Goering LANL, Provided Information on the RDX Groundwater Plume that is Located Under Technical Area 16 at Los Alamos. Information on Monitoring and Possible Clean-up Solutions was Given. RDX Update - July 8, 2015 (1.97

  8. Coupled Geochemical Impacts of Leaking CO2 and Contaminants from...

    Office of Scientific and Technical Information (OSTI)

    on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. ... without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent ...

  9. How 12 geochemical methods fared in GERT project in Permian basin

    SciTech Connect (OSTI)

    Calhoun, G.G.

    1991-05-13

    This paper reports on Geochemical Evaluation Research Team (GERT) which is an experiment conceived to identify surface geochemical exploration methods that are effective in finding oil. Many of the methods use technology developed in the last 5 years. In fact, one of the challenging jobs for the geochemical explorationist is keeping up with new techniques and improvements. The way to minimize dry holes is to screen prospects with carefully selected geochemical techniques prior to acreage acquisition and seismic surveys.

  10. Numerical Simulation of Groundwater Withdrawal from Proposed Pumping Near the Southeastern Nevada Test Site

    SciTech Connect (OSTI)

    R.W.H. Carroll; R.L.Hershey; G.M. Pohll

    2006-04-25

    Current modeling of the southeastern portion of the Nevada Test Site (NTS) with a refined U.S. Geological Survey Death Valley regional groundwater flow system model shows that impacts from pumping by proposed Southern Nevada Water Authority (SNWA) and Vidler Water Company (VWC) wells can be substantial over 75 years of operation. Results suggest that significant drawdown at proposed well sites will occur with depths of drawdown ranging from 8 m to nearly 1,600 m. The areal extent of 0.5 m of drawdown is also significant, impacting Mercury Valley, Amargosa, Indian Springs, Three Lakes, and Frenchman Flat basins. Drawdown will impact Army No.1 Water Well in Mercury Valley by lowering water levels 2.1 m but will not impact other NTS production wells. It is also predicted that flowpaths from detonation sites within the NTS will be altered with the potential to move material out of the NTS. Impacts to both springs and regions of groundwater evapotranspiration (modeled as MODFLOW drain cells) appear very minimal, with an estimated 0.2-percent reduction in flow to these regions. This amounts to a loss of more that 55,000 m3/year (45 acre-ft/year), or more than 4,000,000 m3 (3,400 acre-ft) during 75 years of groundwater withdrawal by pumping at proposed SNWA and VWC wells. Whether the reduced flow will impact specific springs more than any others, or if the reduction in flow is enough to have significant ecological implications, was not addressed in this study.