National Library of Energy BETA

Sample records for mercury emissions control

  1. Controlling mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    2009-07-15

    Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

  2. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  3. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect (OSTI)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  4. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    The Subbituminous Energy Coalition (SEC) identified a need to re-test stack gas emissions from power plants that burn subbituminous coal relative to compliance with the EPA mercury control regulations for coal-fired plants. In addition, the SEC has also identified the specialized monitoring needs associated with mercury continuous emissions monitors (CEM). The overall objectives of the program were to develop and demonstrate solutions for the unique emission characteristics found when burning subbituminous coals. The program was executed in two phases; Phase I of the project covered mercury emission testing programs at ten subbituminous coal-fired plants. Phase II compared the performance of continuous emission monitors for mercury at subbituminous coal-fired power plants and is reported separately. Western Research Institute and a number of SEC members have partnered with Eta Energy and Air Pollution Testing to assess the Phase I objective. Results of the mercury (Hg) source sampling at ten power plants burning subbituminous coal concluded Hg emissions measurements from Powder River Basin (PBR) coal-fired units showed large variations during both ICR and SEC testing. Mercury captures across the Air Pollution Control Devices (APCDs) present much more reliable numbers (i.e., the mercury captures across the APCDs are positive numbers as one would expect compared to negative removal across the APCDs for the ICR data). Three of the seven units tested in the SEC study had previously shown negative removals in the ICR testing. The average emission rate is 6.08 lb/TBtu for seven ICR units compared to 5.18 lb/TBtu for ten units in the SEC testing. Out of the ten (10) SEC units, Nelson Dewey Unit 1, burned a subbituminous coal and petcoke blend thus lowering the total emission rate by generating less elemental mercury. The major difference between the ICR and SEC data is in the APCD performance and the mercury closure around the APCD. The average mercury removal values across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  5. Mercury control in 2009

    SciTech Connect (OSTI)

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  6. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.

  7. Mercury emission control for coal fired power plants using coal and biomass 

    E-Print Network [OSTI]

    Arcot Vijayasarathy, Udayasarathy

    2009-05-15

    + Oxidized Mercury HgP Particulate Mercury HgCl2 Mercuric chloride HCl Hydrogen chloride Sep. Sol. Separated Solids HA High Ash PC Partially Composted DB Dairy Biomass TXL Texas Lignite Coal WYC Wyoming Subbituminous Coal HHV Higher Heating.... ? Oxidized mercury (Hg2+) ? normally exist in gas phase, and can be captured by wet FGD type of units, since they are highly soluble in water. ? Mercury in particulate form (HgP) ? exist in solid phase and can be easily captured at traditional particulate...

  8. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  9. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  10. Dispersion modeling of mercury emissions from coal-fired power plants at Coshocton and Manchester, Ohio

    SciTech Connect (OSTI)

    Lee, S.; Keener, T.C. [University of Cincinnati, Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering

    2009-09-15

    Mercury emissions from coal-fired power plants are estimated to contribute to approximately 46% of the total US anthropogenic mercury emissions and required to be regulated by maximum achievable control technology (MACT) standards. Dispersion modeling of mercury emissions using the AERMOD model and the industrial source complex short term (ISCST3) model was conducted for two representative coal-fired power plants at Coshocton and Manchester, Ohio. Atmospheric mercury concentrations, dry mercury deposition rates, and wet mercury deposition rates were predicted in a 5 x 5 km area surrounding the Coonesville and JM Stuart coal-fired power plants. In addition, the analysis results of meteorological parameters showed that wet mercury deposition is dependent on precipitation, but dry mercury deposition is influenced by various meteorological factors. 8 refs., 5 figs., 3 tabs.

  11. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2006-04-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

  12. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-06-30

    ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

  13. Amended Silicated for Mercury Control

    SciTech Connect (OSTI)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

  14. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  15. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  16. Mercury Specie and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  17. After the Clean Air Mercury Eule: prospects for reducing mercury emissions from coal-fired power plants

    SciTech Connect (OSTI)

    Jana B. Milford; Alison Pienciak

    2009-04-15

    Recent court decisions have affected the EPA's regulation of mercury emissions from coal burning, but some state laws are helping to clear the air. In 2005, the US EPA issued the Clean Air Mercury Rule (CAMR), setting performance standards for new coal-fired power plants and nominally capping mercury emissions form new and existing plants at 38 tons per year from 2010 to 2017 and 15 tpy in 2018 and thereafter; these down from 48.5 tpy in 1999. To implement the CAMR, 21 states with non-zero emissions adopted EPA's new source performance standards and cap and trade program with little or no modification. By December 2007, 23 other states had proposed or adopted more stringent requirements; 16 states prohibited or restricted interstate trading of mercury emissions. On February 2008, the US Court of Appeal for the District of Columbia Circuit unanimously vacated the CAMR. This article assesses the status of mercury emission control requirements for coal-fired power plants in the US in light of this decision, focusing on state actions and prospects for a new federal rule. 34 refs., 1 fig.

  18. Environmental release of mercury from coal utilization by-products: will new mercury controls at power plants make a difference?

    SciTech Connect (OSTI)

    Aljoe, W.W.; Feeley, T.J., III; Brickett, L.A.; Schroeder, K.T.; Murphy, J.T. [National Energy Technology Laboratory, Pittsburgh, PA (US)

    2005-09-30

    The US Department of Energy's National Energy Technology Laboratory (DOE/NETL) uses the term coal utilization by-products (CUBs) to describe the solid materials produced by the combustion or gasification of coal. The following general observations can be drawn from results of field tests that have been carried out thus far to determine whether new technologies for mercury emission control at coal power plants will affect the release of mercury from CUBs. There appears to be only minimal potential mercury release to the environment in typical disposal or utilization application for CUBs generated using ACI control technologies. There appears to be only minimal mercury release to the environment for CUBs generated using wet FGD control technologies. The amount of mercury leached from CUBs samples tested is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life. 3 figs., 2 tabs.

  19. Demonstration of Mer-Cure Technology for Enhanced Mercury Control

    SciTech Connect (OSTI)

    John Marion; Dave O'Neill; Kevin Taugher; Shin Kang; Mark Johnson; Gerald Pargac; Jane Luedecke; Randy Gardiner; Mike Silvertooth; Jim Hicks; Carl Edberg; Ray Cournoyer; Stanley Bohdanowicz; Ken Peterson; Kurt Johnson; Steve Benson; Richard Schulz; Don McCollor; Mike Wuitshick

    2008-06-01

    Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target of $60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.

  20. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  1. Removing mercury from coal emissions: options for ash-friendly technologies

    SciTech Connect (OSTI)

    Sager, J.

    2009-07-01

    The article gives a brief description of techniques to remove mercury emitted from coal-fired power plants and discusses environmental considerations associated with the effect of emission controls on coal fly ash. Techniques covered include use of injected mercury sorbents (activated carbon, metal oxide catalysts, MerCAP{trademark} and MercScreen{trademark}) and fuel cleaning. Technologies currently being researched are mentioned. 8 refs.

  2. Field Demonstration of Enhanced Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Shin Kang; Robert Schrecengost

    2009-01-07

    Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target of $60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all three host sites show that the goals established by DOE/NETL were exceeded during this test program. Mercury removal performance4 of greater than 90% reduction was above the 50-70% reduction goal, and mercury removal cost of 25-92% lower than the benchmark was above the 25 to 50% cost reduction goal.

  3. Apparatus for control of mercury

    DOE Patents [OSTI]

    Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  4. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-FC26-01NT41184 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the original five-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included benchscale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives. This project, which is now in the final report phase, demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  5. Mercury Control With The Advanced Hybrid Paticulate Collector

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Jay Almlie

    2004-09-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project was to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task was to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives. This project, which is now nearing completion, demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  6. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    SciTech Connect (OSTI)

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

  7. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect (OSTI)

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

  8. CFD Modeling for Mercury Control Technology

    SciTech Connect (OSTI)

    Madsen, J.I.

    2006-12-01

    Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system – the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes could limit the overall capture of mercury. For example, capture may be severely limited in situations where the dispersion of sorbent is poor, or where adsorption rates are low because of relatively high temperatures. Application examples taken from the DOE/NETL field test program were considered. The sites considered include Brayton Point, Meramec, Monroe, and Yates. Some general lessons learned concerning the impact of turbulence and flow stratification on dispersion and capture will be presented.

  9. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Steven A. Benson; Michelle R. Olderbak

    2003-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ''Advanced Hybrid''{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  10. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2003-03-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  11. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect (OSTI)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

  12. Mercury emission behavior during isolated coal particle combustion 

    E-Print Network [OSTI]

    Puchakayala, Madhu Babu

    2009-05-15

    and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized...

  13. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Charlene R. Crocker; Steven A. Benson; Stanley J. Miller

    2003-11-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4--Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultra-high collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives and a spray dryer absorber and with novel baghouse sorbent inserts downstream of the fabric filter.

  14. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2003-12-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives and a spray dryer absorber and with novel baghouse sorbent inserts downstream of the fabric filter.

  15. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-08-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scale-up and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives, a spray dryer absorber, and novel baghouse sorbent inserts downstream of the fabric filter.

  16. Mercury Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Steven A. Benson; Stanley J. Miller; Charlene R. Crocker; Kevin C. Galbreath; Jason D. Laumb; Jill M. Zola; Ye Zhuang; Michelle R. Olderbak

    2004-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the original 5-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes benchscale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scale-up and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control. The scope of work was modified to include an additional sixth task, initiated in April 2003. The objective of this task is to evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives, a spray dryer absorber, and novel baghouse sorbent inserts downstream of the fabric filter.

  17. Low-Cost Options for Moderate Levels of Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2008-02-09

    This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

  18. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around the Monticello coal fired power plant. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. The study found the following: (1) There was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Monticello plant, excess soil Hg was associated with soil characteristics with higher values near the lake. Vegetation concentration showed some correlation with soil concentrations having higher mercury in vegetation when the soil mercury. (2) Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. The total deposition within 50 Km of the plant was predicted to be 4.2% of the total emitted. In the deposition, RGM is responsible for 98.7% of the total deposition, elemental mercury accounts for 1.1% and particulate mercury accounts for 0.2%. Less than 1% of the elemental mercury emitted was predicted to deposit within 50 km.

  19. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  20. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  1. Advanced Emission Control Development Program.

    SciTech Connect (OSTI)

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  2. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  3. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  4. Atmospheric Mercury: Emissions, Transport/Fate,

    E-Print Network [OSTI]

    utility coal other fuel waste incin metallurgical cement chloralkali other manuf other Canada Anthopogenic more locally and regionally. · Deposition within the US and Canada comes from domestic sources); http://www.amap.no/Resources/HgEmissions/HgInventoryDocs.html 6 #12;utility coal other coal other fuel

  5. Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

    SciTech Connect (OSTI)

    Thomas K. Gale

    2005-07-01

    This Final Report contains the test descriptions, results, analysis, correlations, theoretical descriptions, and model derivations produced from many different investigations performed on a project funded by the U.S. Department of Energy, to investigate calcium-based sorbents and injection of oxidizing agents for the removal of mercury. Among the technologies were (a) calcium-based sorbents in general, (b) oxidant-additive sorbents developed originally at the EPA, and (c) optimized calcium/carbon synergism for mercury-removal enhancement. In addition, (d) sodium-tetrasulfide injection was found to effectively capture both forms of mercury across baghouses and ESPs, and has since been demonstrated at a slipstream treating PRB coal. It has been shown that sodium-tetrasulfide had little impact on the foam index of PRB flyash, which may indicate that sodium-tetrasulfide injection could be used at power plants without affecting flyash sales. Another technology, (e) coal blending, was shown to be an effective means of increasing mercury removal, by optimizing the concentration of calcium and carbon in the flyash. In addition to the investigation and validation of multiple mercury-control technologies (a through e above), important fundamental mechanism governing mercury kinetics in flue gas were elucidated. For example, it was shown, for the range of chlorine and unburned-carbon (UBC) concentrations in coal-fired utilities, that chlorine has much less effect on mercury oxidation and removal than UBC in the flyash. Unburned carbon enhances mercury oxidation in the flue gas by reacting with HCl to form chlorinated-carbon sites, which then react with elemental mercury to form mercuric chloride, which subsequently desorbs back into the flue gas. Calcium was found to enhance mercury removal by stabilizing the oxidized mercury formed on carbon surfaces. Finally, a model was developed to describe these mercury adsorption, desorption, oxidation, and removal mechanisms, including the synergistic enhancement of mercury removal by calcium.

  6. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  7. Yale's Environment School Power Plants Big Influence in Regional Mercury Emissions Introduction Knowledge

    E-Print Network [OSTI]

    Lee, Xuhui

    Yale's Environment School · Power Plants Big Influence in Regional Mercury Emissions Introduction Power Plants Big Influence in Regional Mercury Emissions Related Topics: News Releases; Publications winters and a correspondent decrease in the need for regional power plants to burn coal could partially

  8. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. Preliminary Field Evaluation of Mercury Control Using Combustion Modifications

    SciTech Connect (OSTI)

    V. Lissianski; P. Maly; T. Marquez

    2005-01-22

    In this project EER conducted a preliminary field evaluation of the integrated approach for mercury (Hg) and NO{sub x} control. The approach enhanced the 'naturally occurring' Hg capture by fly ash through combustion optimization, increasing carbon in ash content, and lowering ESP temperature. The evaluation took place in Green Station Units 1 and 2 located near Henderson, Kentucky and operated by Western Kentucky Energy. Units 1 and 2 are equipped with cold-side ESPs and wet scrubbers. Green Station Units 1 and 2 typically fire two types of fuel: a bituminous coal and a blend of bituminous coals based on availability. Testing of Hg emissions in Unit 2 without reburning system in operation and at minimum OFA demonstrated that efficiencies of Hg reduction downstream of the ESP were 30-40%. Testing also demonstrated that OFA system operation at 22% air resulted in 10% incremental increase in Hg removal efficiency at the ESP outlet. About 80% of Hg in flue gas at ESP outlet was present in the oxidized form. Testing of Hg emissions under reburning conditions showed that Hg emissions decreased with LOI increase and ESP temperature decrease. Testing demonstrated that maximum Hg reduction downstream of ESP was 40-45% at ESP temperatures higher than 300 F and 60-80% at ESP temperatures lower than 300 F. The program objective to demonstrate 80% Hg removal at the ESP outlet has been met.

  11. Analysis of Alternative Mercury Control Strategies

    Reports and Publications (EIA)

    2005-01-01

    This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

  12. An assessment of mercury emissions and health risks from a coal-fired power plant

    SciTech Connect (OSTI)

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P.

    1994-12-01

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  13. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  14. Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United Jeffrey MacAdam Sigler

    E-Print Network [OSTI]

    Lee, Xuhui

    Abstract Anthropogenic and Natural Emissions of Mercury (Hg) in the northeastern United States impact may depend on the emission rate. Anthropogenic Hg emissions in the United States are poorly characterized. Natural Hg emissions are poorly understood worldwide, due to lack of data or measurement systems

  15. Emission and Long-Range Transport of Gaseous Mercury from a

    E-Print Network [OSTI]

    Lee, Xuhui

    Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest FireQuebec.Thesemeasurementsindicated significant and highly correlated increases in Hg and CO during the plume event. The Hg:CO emissions ratio emissions and biomass burned to determine a mean area-based Hg emission flux density for boreal forest fires

  16. Geochemical, Genetic, and Community Controls on Mercury

    SciTech Connect (OSTI)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  17. Demonstration of An Integrated Approach to Mercury Control at Lee Station

    SciTech Connect (OSTI)

    Vitali Lissianski; Pete Maly

    2007-12-31

    General Electric (GE) has developed an approach whereby native mercury reduction on fly ash can be improved by optimizing the combustion system. This approach eliminates carbon-rich areas in the combustion zone, making the combustion process more uniform, and allows increasing carbon content in fly ash without significant increase in CO emissions. Since boiler excess O{sub 2} can be also reduced as a result of optimized combustion, this process reduces NO{sub x} emissions. Because combustion optimization improves native mercury reduction on fly ash, it can reduce requirements for activated carbon injection (ACI) when integrated with sorbent injection for more efficient mercury control. The approach can be tailored to specific unit configurations and coal types for optimal performance. This report describes results of a U.S. DOE sponsored project designed to evaluate the effect of combustion conditions on 'native' mercury capture on fly ash and integrate combustion optimization for improved mercury and NO{sub x} reduction with ACI. The technology evaluation took place in Lee Station Unit 3 located in Goldsboro, NC and operated by Progress Energy. Unit 3 burns a low-sulfur Eastern bituminous coal and is a 250 MW opposed-wall fired unit equipped with an ESP with a specific collection area of 249 ft{sup 2}/kacfm. Unit 3 is equipped with SO{sub 3} injection for ESP conditioning. The technical goal of the project was to evaluate the technology's ability to achieve 70% mercury reduction below the baseline emission value of 2.9 lb/TBtu, which was equivalent to 80% mercury reduction relative to the mercury concentration in the coal. The strategy to achieve the 70% incremental improvement in mercury removal in Unit 3 was (1) to enhance 'naturally' occurring fly ash mercury capture by optimizing the combustion process and using duct humidification to reduce flue gas temperatures at the ESP inlet, and (2) to use ACI in front of the ESP to further reduce mercury emissions. The program was comprised of field and pilot-scale tests, engineering studies and consisted of eight tasks. As part of the program, GE conducted pilot-scale evaluation of sorbent effect on mercury reduction, supplied and installed adjustable riffle boxes to assist in combustion optimization, performed combustion optimization, supplied mobile sorbent injection and flue gas humidification systems, conducted CFD modeling of sorbent injection and flue gas humidification, and performed mercury testing including a continuous 30-day sorbent injection trial. Combustion optimization was the first step in reduction of mercury emissions. Goals of combustion optimization activities were to improve 'native' mercury capture on fly ash and reduce NO{sub x}. Combustion optimization included balancing of coal flow through individual burners to eliminate zones of carbon-rich combustion, air flow balancing, and burner adjustments. As part of the project, the original riffle boxes were replaced with Foster-Wheeler's adjustable riffle boxes to allow for biasing the coal flow between the coal pipes. A 10-point CO/O{sub 2}/NO{sub x} grid was installed in the primary superheater region of the back pass to assist in these activities. Testing of mercury emissions before and after combustion optimization demonstrated that mercury emissions were reduced from 2.9 lb/TBtu to 1.8 lb/TBtu due to boiler operation differences in conjunction with combustion optimization, a 38% improvement in 'native' mercury capture on fly ash. Native mercury reduction from coal was {approx}42% at baseline conditions and 64% at optimized combustion conditions. As a result of combustion optimization NO{sub x} emissions were reduced by 18%. A three-dimensional CFD model was developed to study the flow distribution and sorbent injection in the post air heater duct in Lee Station Unit 3. Modeling of the flow pattern exiting the air pre-heater demonstrated that because of the duct transition from a circular opening at the exit of air-pre-heater to a rectangular ESP inlet duct, flow separation occurred at the corners afte

  18. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

  19. Controlled spontaneous emission

    E-Print Network [OSTI]

    Jae-Seung Lee; Mary A. Rohrdanz; A. K. Khitrin

    2007-07-03

    The problem of spontaneous emission is studied by a direct computer simulation of the dynamics of a combined system: atom + radiation field. The parameters of the discrete finite model, including up to 20k field oscillators, have been optimized by a comparison with the exact solution for the case when the oscillators have equidistant frequencies and equal coupling constants. Simulation of the effect of multi-pulse sequence of phase kicks and emission by a pair of atoms shows that both the frequency and the linewidth of the emitted spectrum could be controlled.

  20. The history of mercury emissions from fuel combustion in Maritime Canada

    E-Print Network [OSTI]

    Sunderland, Elsie M.

    combustion of wood, coal and re®ned petroleum products in Maritime Canada. The pattern of emissions (high) kg per year, coinciding with the period of most intensive coal use in Maritime Canada. In 1995The history of mercury emissions from fuel combustion in Maritime Canada E.M. Sunderlanda, *, G

  1. PRELIMINARY FIELD EVALUATION OF MERCURY CONTROL USING COMBUSTION MODIFICATIONS

    SciTech Connect (OSTI)

    Vitali Lissianski; Antonio Marquez

    2004-02-19

    In this project General Electric Energy and Environmental Research Corporation conducts a preliminary field evaluation of a novel technology, referred to as Hg/NO{sub x}, that can reduce emissions of both mercury (Hg) and oxides of nitrogen (NO{sub x}) from coal-fired power plants. The evaluation takes place in Green Station Unit 2 operated by Western Kentucky Energy. Reduction of Hg and NO{sub x} emissions in Unit 2 is achieved using coal reburning. Activities during first project year (January 23, 2003--January 22, 2004) included measurements of baseline Hg emissions in Unit 2 and pilot-scale testing. Baseline testing of Hg emissions in Green Unit 2 has been completed. Two fuels were tested with OFA system operating at minimum air flow. Mercury emissions were measured at ESP inlet and outlet, and at the stack using Ontario Hydro revised method. Testing demonstrated that baseline Hg reductions at ESP outlet and stack were 30-45% and 70-80%, respectively. Pilot-scale testing demonstrated good agreement with baseline measurements in Unit 2. Testing showed that fuel composition had an effect on the efficiency of Hg absorption on fly ash. Maximum achieved Hg removal in reburning was close to 90%. Maximum achieved Hg reduction at air staging conditions was 60%. Testing also demonstrated that lowering ESP temperature improved efficiency of Hg removal.

  2. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  3. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    E-Print Network [OSTI]

    Muntean, Marilena

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, ...

  4. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  5. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    SciTech Connect (OSTI)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

  6. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

  7. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  8. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  9. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

  10. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2005-03-17

    Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

  11. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf More Documents & Publications Cleaning Up Diesel Engines...

  12. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no specific Hg controls) ranged from 5.7 x 10{sup -6} in the Midwest to 2 x 10{sup -5} in the Southeast. Reducing emissions from coal plants by 90% reduced the estimated range in risk to 5 x 10{sup -6} in the Midwest and 1.5 x 10{sup -5} in Southeast, respectively. The population risk for the subsistence fisher using the Southeast regional fish Hg levels was 3.8 x 10{sup -3}, a factor of 200 greater than the general population risk. For the subsistence fishers and the Savannah River Hg levels, the population risk was 4.3 x 10{sup -5}, a factor of 2 greater than for the general population. The estimated risk reductions from a 90% reduction in coal plant Hg emissions ranged from 25%-68%, which is greater than the assumed reduction in Hg levels in fish, (15.5%). To place this risk in perspective, there are approximately 4 x 10{sup 6} births/year in the U.S (National Vital Statistics Report, 2000). Assuming that the Southeast risk level (the highest of the regions) is appropriate for the entire U.S., an estimate of 80 newborn children per year have a 5% chance of realizing any of the 16 adverse effects used to generate the DRF. If Hg emissions from power plants are reduced 90%, the number of children at risk is reduced to 60.

  13. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect (OSTI)

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on MerCAP{trademark} performance. At Site 2, a pilot-scale array was installed in a horizontal reactor chamber designed to treat approximately 2800 acfm of flue gas obtained from downstream of the plant's flue gas desulfurization (FGD) system. The initial MerCAP{trademark} array was installed at Plant Yates in January 2004, operating continuously for several weeks before a catastrophic system failure resulting from a failed flue gas fan. A second MerCAP{trademark} array was installed in July 2006 and operated for one month before being shut down for a reasons pertaining to system performance and host site scheduling. A longer-term continuous-operation test was then conducted during the summer and fall of 2007. Tests were conducted to evaluate the impacts of flue gas flow rate, sorbent space velocity, and sorbent rinsing frequency on mercury removal performance. Detailed characterization of treated sorbent plates was carried out in an attempt to understand the nature of reactions leading to excessive corrosion of the substrate surfaces.

  14. Experiences in long-term evaluation of mercury emission monitoring systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Hung-Ta Lin; Qiang Wang; Chien-Wei Chen; Chia-Wei Wang; Ming-Chung Liu; Chi-Kuan Chen; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2008-09-15

    Six mercury continuous emission monitoring (CEM) systems provided by two leading mercury (Hg) CEM system manufacturers were tested at five coal combustion utilities. The linearity, response time, day-to-day stability, efficiency of the Hg speciation modules, and ease of use were evaluated by following procedures specified in the Code of Federal Regulation Title 40 Part 75 (40 CFR Part 75). Mercury monitoring results from Hg CEM systems were compared to an EPA-recognized reference method. A sorbent trap sampling system was also evaluated in this study to compare the relative accuracy to the reference method as well as to Hg CEM systems. A conceptual protocol proposed by U.S. EPA (Method 30A) for using an Hg CEM system as the reference method for the Hg relative accuracy (RA) test was also followed to evaluate the workability of the protocol. This paper discusses the operational experience obtained from these field studies and the remaining challenges to overcome while using Hg CEM systems and the sorbent trap method for continuous Hg emission monitoring. 3 refs., 5 figs., 11 tabs.

  15. CONTROL OF TRACE METAL EMISSIONS DURING COAL COMBUSTION

    SciTech Connect (OSTI)

    THOMAS C. HO

    1998-02-18

    Emissions of toxic trace metals in the form of metal fumes or submicron particulates from a coal-fired combustion source have received greater environmental and regulatory concern over the past years. Current practice of controlling these emissions is to collect them at the cold-end of the process by air-pollution control devices (APCDs) such as electrostatic precipitators and baghouses. However, trace metal fumes may not always be effectively collected by these devices because the formed fumes are extremely small. The proposed research is to explore the opportunities for improved control of toxic trace metal emissions, alternatively, at the hot-end of the coal combustion process, i.e., in the combustion chamber. The technology proposed is to prevent the metal fumes from forming during the process, which would effectively eliminate the metal emission problems. Specifically, the technology is to employ suitable sorbents to (1) reduce the amount of metal volatilization during combustion and (2) capture volatilized metal vapors. The objectives of the project are to demonstrate the technology and to characterize the metal capture process during coal combustion in a fluidized bed combustor. This final technical report details the work performed, the conclusions obtained, and the accomplishments achieved over the project performance period from July 1, 1994 through December 31, 1997. Specifically, this report consists of the following five chapters: Chapter 1. Executive Summary; Chapter 2. Metal Capture by Various Sorbents; Chapter 3. Simultaneous Metal and Sulfur Capture; Chapter 4. Sorption and Desorption of Mercury on Sorbents; and Chapter 5. Project Conclusions. In summary, the metals involved in the project were arsenic, cadmium, chromium, lead, mercury and selenium and the sorbents tested included bauxite, zeolite and calcined limestone. The three sorbents have been found to have various degree of metal capture capability on arsenic, cadmium, chromium and lead. Among them, calcined limestone is capable of simultaneouely capturing metals and sulfur. Mercury and selenium, however, can not be effectively retained by these sorbents under the combustion conditions. Mercury adsorption by sorbents at low temperatures was also investigated and the developed mass transfer model for mercury absorption appears to describe reasonably well the experimental results. Overall, the project has generated 18 presentations and/or publications in professional conferences and journals.

  16. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    Reports and Publications (EIA)

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  17. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  18. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    SciTech Connect (OSTI)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  19. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  20. Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR

    SciTech Connect (OSTI)

    Tom Campbell

    2008-12-31

    This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

  1. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  2. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  3. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems...

  4. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jim Butz; Terry Hunt

    2005-11-01

    Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

  5. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect (OSTI)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)] [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

  6. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect (OSTI)

    2009-09-15

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  7. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg deposition and fish content. Soil and vegetation sampling programs were performed around two mid-size coal fired power plants. The objectives were to determine if local mercury hot-spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with model predictions. These programs found the following: (1) At both sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. At the Kincaid plant, there was excess soil Hg along heavily traveled roads. The spatial pattern of soil mercury concentrations did not match the pattern of vegetation Hg concentrations at either plant. (2) At both sites, the subsurface (5-10 cm) samples the Hg concentration correlated strongly with the surface samples (0-5 cm). Average subsurface sample concentrations were slightly less than the surface samples; however, the difference was not statistically significant. (3) An unequivocal definition of background Hg was not possible at either site. Using various assumed background soil mercury concentrations, the percentage of mercury deposited within 10 km of the plant ranged between 1.4 and 8.5% of the RGM emissions. Based on computer modeling, Hg deposition was primarily RGM with much lower deposition from elemental mercury. Estimates of the percentage of total Hg deposition ranged between 0.3 and 1.7%. These small percentages of deposition are consistent with the empirical findings of only minor perturbations in environmental levels, as opposed to ''hot spots'', near the plants. The major objective of this study was to determine if there was evidence for ''hot-spots'' of mercury deposition around coal-fired power plants. Although the term has been used extensively, it has never been defined. From a public health perspective, such a ''hot spot'' must be large enough to insure that it did not occur by chance, and it must affect water bodies large enough to support a population of subsistence fishers. The results of this study support the hypothesis that n

  8. Follow that mercury!

    SciTech Connect (OSTI)

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  9. Asbestos Emission Control Plan Dakota County, Minnesota

    E-Print Network [OSTI]

    Netoff, Theoden

    Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Prepared for University of Minnesota Revised: July 22, 2009 UMP005460 #12;Asbestos Emission Control Plan UMore Park Dakota County.0.doc iii Asbestos Emission Control Plan UMore Park Dakota County, Minnesota Revised: July 22, 2009

  10. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  11. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  12. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    2004) ‘Experience curves for power plant emission controlLtd. Experience curves for power plant emission controlInc. Experience curves for power plant emission control

  13. JV Task 122 - Assessment of Mercury Control Options for the San Miguel Electric Cooperative Power Plant

    SciTech Connect (OSTI)

    Nicholas Lentz; Brandon Pavlish; John Kay; Michael Jones

    2009-02-01

    In the United States, testing has been under way at electric coal-fired power plants to find viable and economical mercury control strategies to meet pending regulations. San Miguel Electric Cooperative (SMEC) engaged the Energy & Environmental Research Center (EERC) through a request for proposal (RFP) to perform research tests to evaluate sorbent-based technologies at its coal-fired San Miguel Generating Station to identify possible technology options that could be used by SMEC to meet the mercury reduction requirements of future U.S. federal standards. The goal of the testing was to target a mercury removal of {ge}90%. The EERC has successfully field-tested several sorbent-based technologies in previous projects that offer promise and potential to achieve a target removal of {ge}90%. Based on these field test results, yet recognizing that fuel type and plant operating conditions affect mercury capture significantly, the EERC proposed research tests to evaluate potential sorbent-based technologies provided by Norit Americas and the EERC that could potentially meet SMEC's mercury control objectives. Over the period of May through mid-June 2008, the EERC tested injection of both treated and nontreated activated carbon (AC) provided by Norit Americas and sorbent enhancement additives (SEAs) provided by the EERC. Tests were performed at San Miguel Unit 1 (450 MW) and included injection at the inlet of the air heater (AH) (temperature of 720 F). The test coal was a Texas lignite fuel with an average moisture content of 31.19%, an ash content of 26.6%, a heating value of 5,094 Btu/lb, a sulfur content of 2.7%, and a mercury concentration of 0.182 ppm, all reported on an as-received basis. Pilot-scale testing results identified DARCO{reg_sign} Hg-LH, SEA2 + DARCO{reg_sign} Hg, and the ChemMod sorbents as technologies with the potential to achieve the target mercury removal of {ge}90% at the full-scale test. Mercury concentrations were tracked with continuous mercury monitors (CMMs) at the electrostatic precipitator (ESP) inlet (ESP In), scrubber inlet, and scrubber outlet of San Miguel Unit 1, and a dry sorbent trap method was used to take samples periodically to measure mercury concentrations at the each of the CMM sampling locations described above. A limited number of Ontario Hydro (OH) measurements were also conducted. Removal efficiencies were calculated from mercury-in-coal values to scrubber out CMM values. Sorbent trap samples taken at the each sampling location outlet were found to be fairly consistent with CMM values. A maximum mercury removal of 78.5% was achieved with the SEA2 + DARCO Hg sorbent combination at injection rates of 50 ppm and 4 lb/Macf, respectively. An injection rate of 4 lb/Macf for DARCO Hg-LH and DARCO Hg resulted in mercury removals of 70.0% and 64.2%, respectively. These mercury reduction values were achieved at full load and at stable plant operating conditions. Scrubber reemission was observed during sorbent injection and had a significant effect on coal to scrubber out mercury removal values. When the sorbents were injected into San Miguel Unit 1 at the AH inlet, no effects on unit operations were observed. ESP performance throughout the test period was fairly steady, with only one minor breakdown. However, it should be noted that test durations were short.

  14. Exhaust emission control and diagnostics

    DOE Patents [OSTI]

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  15. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

  16. Modeling of Lean Exhaust Emissions Control Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean Exhaust Emissions Control Systems Modeling of Lean Exhaust Emissions Control Systems 2002 DEER Conference Presentation: National Renewable Energy Laboratory...

  17. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

  18. Advanced Ceramic Filter For Diesel Emission Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Filter For Diesel Emission Control Advanced Ceramic Filter For Diesel Emission Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Dow Automotive...

  19. Impacts of Biodiesel on Emission Control Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Emission Control Devices Impacts of Biodiesel on Emission Control Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER)...

  20. OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS

    SciTech Connect (OSTI)

    Nick Soelberg

    2007-05-01

    Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

  1. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect (OSTI)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

  2. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    SciTech Connect (OSTI)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  3. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission, Distribution and-- Energy,ConnectGAMMA-RAY

  4. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2001-07-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  5. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2001-10-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

  6. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect (OSTI)

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

  7. Diesel Emission Control in Review

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    E-Print Network [OSTI]

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Reactivity Scale for Low- Emission Vehicles and Clean Fuelsgas, and electricity. Vehicle emission estimates includedtype in controlling vehicle emissions. DedLicated methanol

  9. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  10. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  11. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . • 1977; Mercury in Oil Shale from the Mahogany Zone the

  12. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . • 1977; Mercury in Oil Shale from the Mahogany Zone

  13. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

  14. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, Joseph R. (Livermore, CA)

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  15. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    SciTech Connect (OSTI)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  16. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  17. Strategies for Integrated Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Emission Control Strategies for Integrated Emission Control A new filter system technology significantly reduces harmful pollutants, uses less precious metals, and...

  18. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

  19. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  20. Development and Deployment of Advanced Emission Controls for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Emission Controls for the Retrofit Market Development and Deployment of Advanced Emission Controls for the Retrofit Market 2003 DEER Conference Presentation: Cleaire...

  1. Review of Diesel Emission Control Technology | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review of Diesel Emission Control Technology 2002 DEER Conference Presentation: Corning Inc. 2002deerjohnson.pdf More Documents & Publications...

  2. 2008 Annual Merit Review Results Summary - 9. Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9. Emission Control and Aftertreatment 2008 Annual Merit Review Results Summary - 9. Emission Control and Aftertreatment DOE Vehicle Technologies Annual Merit Review...

  3. Update on Diesel Exhaust Emission Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Update on Diesel Exhaust Emission Control 2003 DEER Conference Presentation: Corning, Inc. deer2003johnson.pdf More Documents & Publications Review of Diesel Emission...

  4. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  5. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  6. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  7. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  8. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

  9. Simplification of Diesel Emission Control System Packaging Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

  10. Review of Emerging Diesel Emissions and Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Diesel Emissions and Control Review of Emerging Diesel Emissions and Control Criteria pollutant regulatory efforts are focused on Euro VI HD PN limits, and California LEV3...

  11. Urea/Ammonia Distribution Optimization in an SCR Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UreaAmmonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis UreaAmmonia Distribution Optimization in an SCR Emission Control System...

  12. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  13. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  14. Mercury Information Clearinghouse

    SciTech Connect (OSTI)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

  15. Regulating mercury with the Clear Skies Act : the resulting impacts on innovation, human health, and the global community

    E-Print Network [OSTI]

    Sweeney, Meghan (Meghan Kathleen)

    2006-01-01

    The 1990 Clean Air Act Amendments require the U.S. EPA to control mercury emission outputs from coal-burning power plants through implementation of MACT, Maximum Achievable Control Technology, standards. However, in 2003 ...

  16. Emission control options for mine diesels

    SciTech Connect (OSTI)

    Waytulonis, R.W. (Bureau of Mines, Twin Cities, MN (USA). Twin Cities Research Center)

    1991-03-01

    New exhaust control techniques and devices may be necessary to meet future diesel particulate matter emission standards in underground coal mines. This paper reviews conventional work practices and devices used to control diesel exhaust emissions, and new techniques being tested by the US Bureau of Mines. Discussions center on important work practices and on the function and efficiency of exhaust aftertreatment devices. An industry-government cooperative research project to develop and test an exhaust aftertreatment system for part 36 equipment is also discussed.

  17. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  18. Variable emissivity laser thermal control system

    DOE Patents [OSTI]

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  19. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 2002 DEER Conference Presentation: Johnson Matthey...

  20. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 2002 DEER Conference Presentation: Johnson Matthey...

  1. Method and apparatus for controlling the flow rate of mercury in a flow system

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1991-01-01

    This patent describes a process for increasing the mercury flow rate {ital Q{sub Hg}} to a photochemical mercury enrichment process. It comprises: utilizing an entrainment system having a temperature regulated pool of mercury, a bubbler or sparger system, and a carrier gas for entraining mercury vapor; passing the carrier gas over a pool of mercury maintained at a first temperature, T{sub 1} wherein the carrier gas entrains mercury vapor; and passing the mercury vapor entrained carrier gas to a second temperature zone, maintained at a temperature T{sub 2}, such that T{sub 2} is less than T{sub 1}, in which the entrained mercury vapor is condensed, thereby producing a saturated Hg conditioning the carrier gas; and passing the saturated Hg carrier gas to the photochemical enrichment reactor, yielding a high flow rate {ital Q{sub Hg}}.

  2. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect (OSTI)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

  3. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Evans, A.P.

    1996-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  4. Progress in diesel engine emissions control

    SciTech Connect (OSTI)

    Khair, M.K. (Southwest Research Inst., San Antonio, TX (United States))

    1992-07-01

    A considerable amount of work was carried out in the mid-1980s to develop heavy-duty diesel engines that could meet limits on particulate emissions. These limits, although high by today's standards, were considered very restrictive. Some manufacturers struggled to achieve the 0.6 g/bhp-h particulate matter limit with enough margin for production variabilities and to account for the deterioration factor. Significant progress was achieved in diesel emissions control through engine and fuel system design changes. This eventually made it possible to meet a particulate level of 0.25 g/bhp-h for 1991. The next target level for particulate emissions is 0.1 g/bhp-h for the 1994 heavy-duty engine. To meet the challenge, engine developers are not only considering engine and injection system design changes but also fuel improvements and exhaust aftertreatment. This paper includes a review of past and current strategies used to control emissions in the modern diesel engine.

  5. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  6. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager; Tom Millar

    2003-01-27

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the ninth reporting quarter, progress was made on the project in the following areas: PG&E NEG Salem Harbor Station -- Long term testing and equipment decommissioning has been completed, A web cast/conference call was held to review data, and Preliminary preparation and review of data and test results for the final report. Technology Transfer -- A number of technical presentations and briefings were made during the quarter. Notable among them was a Program Status Report presented to NETL. Also, one paper was presented at Power-Gen and one at the Annual Coal Marketing Strategies Conference.

  7. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager; Tom Millar

    2002-10-18

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eighth reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Salem Harbor Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field-testing phase of the project; and Baseline testing was completed during the quarter. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them was a paper published in the JAWMA. Also, two papers were presented at the Air Quality III Conference and one at the Pittsburgh Coal Conference.

  8. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Richard Schlager

    2002-08-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventh reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Brayton Point Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field testing phase of the project; Baseline testing was completed during the quarter and parametric testing was begun; and A paper summarizing the full-scale tests was written and submitted to A&WMA for presentation at the annual meeting in June 2002. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them are papers published in the A&WMA EM journal and Pollution Engineering. Also, information was provided to the EPA MACT Working Group and a paper was presented at the annual A&WMA meeting.

  9. Model Identification for Optimal Diesel Emissions Control

    SciTech Connect (OSTI)

    Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon

    2013-06-20

    In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.

  10. Overview of China's Vehicle Emission Control Program: Past Successes...

    Open Energy Info (EERE)

    Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

  11. Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies.

  12. Mercury Chamber Considerations

    E-Print Network [OSTI]

    McDonald, Kirk

    Pump Gravity Drain Flow Control Valve Storage Tank Heat Exchanger Beam Dump #12;4 Managed by UT Mercury Jet Proton Beam Mercury Overflow Gravity Drain Flow Control Overflow drains WC Shielding #12 tungsten shielding · Chamber shape requires significant increase in complexity · Integrating resistive

  13. A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control

    Broader source: Energy.gov [DOE]

    Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

  14. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    E-Print Network [OSTI]

    2001-01-01

    Sustainable Control of NOx Emissions in Deep Space Missionsfrom rice hulls to control NOx emissions for the future deepon the control of NOx emissions. The approach involves the

  15. Oxidation of Mercury in Products of Coal Combustion

    SciTech Connect (OSTI)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

  16. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

  17. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  18. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Martello, Donald; Schroeder, Karl; Granite, Evan

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  19. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  20. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect (OSTI)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

  1. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    1/2, 2004 Experience curves for power plant emission controlcoal-fired electric power plants. In particular, we focus on2004) ‘Experience curves for power plant emission control

  2. Diesel Emission Control Technology in Review | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Review Review of light- and heavy-duty diesel emission regulations and state-of-the-art emission control technologies and strategies to meet them. deer08johnson.pdf More...

  3. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

  4. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  5. Air Emission Regulations for the Prevention, Abatement, and Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting and Permitting Provider Department of Environmental Quality The Air Emission Regulation for the Prevention, Abatement and Control of Air Contaminants is relevant to all...

  6. Reduction of Emission Variance by Intelligent Air Path Control

    Broader source: Energy.gov [DOE]

    This poster describes an air path control concept, which minimizes NOx and PM emission variance while having the ability to run reliably with many different sensor configurations.

  7. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Energy Savers [EERE]

    the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane Emissions in the...

  8. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    SciTech Connect (OSTI)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  9. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  10. Controlling the dynamics of spontaneous emission from

    E-Print Network [OSTI]

    Vos, Willem L.

    of spontaneous emission from quantum dots by photonic crystals Peter Lodahl1 , A. Floris van Driel2 , Ivan S emission can be manipulated10,11 . Photonic crystals provide such an environment: they strongly modify study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals16

  11. Impact of new pollution control technologies on all emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of new pollution control technologies on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new...

  12. Combined Torque and Emission Control for a Turbocharged Gasoline Engine Key words: turbocharged engine, model-based control, torque control, emission control

    E-Print Network [OSTI]

    Frenklach, Michael

    Combined Torque and Emission Control for a Turbocharged Gasoline Engine Key words: turbocharged impact of spark-ignited gasoline engines, it is critical to minimize harmful exhaust emissions of meeting strict emissions requirements [3]. Furthermore, many automotive companies are embracing the trend

  13. The Control of NOx Emissions from Combustion and Incinerators 

    E-Print Network [OSTI]

    Heap, M. P.; Chen, S. L.; Seeker, W. R.; Pershing, D. W.

    1988-01-01

    staged combustion and reburning, for the control of nitrogen oxide emissions from coal fired combustors is most often limited by problems due to carbon burnout or flame impingement. This paper presents new data on the use of selective reducing agents.... The major focus has been on minimizing emissions of potentially toxic organics and trace metals. There is growing concern over emissions of NO x from these facilities as well. However, traditional NO x control technologies such as staged combustion...

  14. Coping with uncertainties of mercury regulation

    SciTech Connect (OSTI)

    Reich, K.

    2006-09-15

    The thermometer is rising as coal-fired plants cope with the uncertainties of mercury regulation. The paper deals with a diagnosis and a suggested cure. It describes the state of mercury emission rules in the different US states, many of which had laws or rules in place before the Clean Air Mercury Rule (CAMR) was promulgated.

  15. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  16. Leading Edge Technology in Diesel Emissions Control

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  17. Controlling Emissions of SOx and NOx from power plants

    E-Print Network [OSTI]

    Toohey, Darin W.

    Controlling Emissions of SOx and NOx from power plants By: Ben Bernardo #12;Main Control2 2 H2S + SO2 2 H2O + 3 S The elemental sulfur is then sold and the emissions of SO2 and H2S 2 CaSO3 + CO2 + H2O CaCO3 + SO2 CaSO3 + CO2 #12;Main Control Technologies for NOx Combustion

  18. Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1993-01-01

    System for Light-Duty Vehicle: Emission Control," Ph.D.reductions motor in vehicle emissions have that Today’scorresponding to consumers vehicle emission one path over

  19. Integrated emissions control system for residential CWS furnace

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  20. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  1. Emission Control Systems and Components for Retrofit and First...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004deeredgar.pdf More Documents & Publications Development and Deployment of Advanced Emission Controls for the Retrofit Market Development of a Stand-Alone Urea-SCR System for...

  2. Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ft07sluder.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Non-Petroleum-Based Fuels:...

  3. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, 1996

    SciTech Connect (OSTI)

    Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States); Sjostrom, S. [ADA Technologies, Inc., Englewood, CO (United States); Chang, R. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-04-01

    The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. The primary activity during the quarter was the design and fabrication of the facility. The main structure, which incorporates the particulate control module (PCM), sorbent injection section and in-duct heater was functionally complete at the end of March. Finish work on the structure will take place in April and arrangements are being made to erect the facility at the host site, Comanche Station, on April 29 and 30, 1996. Final selection of sorbents has been postponed until late April when results from testing in EPRI laboratories should be available.

  4. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect (OSTI)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

  5. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  6. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  7. Wastewater treatment -- New regs add emissions control to managers' duties

    SciTech Connect (OSTI)

    Gorman, P.M. (Environmental Process Technologies Inc., Munster, IN (United States)); Forrest, C.J. (Equinox Environmental Consultants Ltd., Wheaton, IL (United States))

    1994-06-01

    Wastewater treatment facilities traditionally were regulated primarily from the standpoint of effluent criteria and solid waste disposal requirements. However, since passage of the Clean Air Act (CAA) Amendments, wastewater treatment facility operators must be concerned with air emissions, especially of volatile organic compounds (VOCs), generated by their processes. Three basic approaches are used to manage VOC emissions from wastewater treatment systems--pollution prevention activities, wastewater treatment control methods and emissions control methods. These approaches may be used in combination to minimize VOCs in industrial and municipal wastewater streams.

  8. Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz Introduction In this paper we consider an automotive control problem for a variable geometry turbocharged (VGT torque output as compared to (non-turbocharged) naturally aspirated engines 13]. The power generated

  9. Optical control of the emission direction of a quantum dot

    SciTech Connect (OSTI)

    Luxmoore, I. J.; Wasley, N. A.; Fox, A. M.; Skolnick, M. S.; Ramsay, A. J.; Thijssen, A. C. T.; Oulton, R.; Hugues, M.; CNRS-CRHEA, rue Bernard Grégory, 06560 Valbonne

    2013-12-09

    Using the helicity of a non-resonant excitation laser, control over the emission direction of an InAs/GaAs quantum dot is demonstrated. The quantum dot is located off-center in a crossed-waveguide structure, such that photons of opposite circular polarization are emitted into opposite waveguide directions. By preferentially exciting spin-polarized excitons, the direction of emission can therefore be controlled. The directional control is quantified by using the ratio of the intensity of the light coupled into the two waveguides, which reaches a maximum of ±35%.

  10. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  11. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  12. Effects of Retrofitting Emission Control Systems on In-Use Heavy Diesel Vehicles

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2010-01-01

    use emissions from heavy-duty diesel vehicles. Environ. Sci.Sci. Technol. (7) Johnson, T. V. Diesel Emission Control inNO x control on heavy-duty diesel truck emissions. Environ.

  13. New Diesel Emissions Control Strategy for U.S. Tier 2 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control Strategy for U.S. Tier 2 New Diesel Emissions Control Strategy for U.S. Tier 2 2004 Diesel Engine Emissions Reduction (DEER) Conference: Southwest Research...

  14. Neutrino Factory Mercury Flow Loop

    E-Print Network [OSTI]

    McDonald, Kirk

    Storage Tank length beam dump shown 3 Managed by UT-Battelle for the U.S. Department of Energy IDS control Mercury Jet Mercury Overflow Gravity Drain WC Shielding 4 Managed by UT-Battelle for the U/pool receive shielding ­ Currently assumed to be WC spheres cooled

  15. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01

    mercury emissions during biomass combustion: Controllingin biomass smoke from residential wood combustion: Emissions1997), Emissions from smoldering combustion of biomass

  16. Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

  17. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  18. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury contamination and to increase the TCLP mercury values. IT/NFS investigated ambient temperature amalgamation/stabilization/fixation of mercury-contaminated soils to meet these objectives. Treatment ranged in size from a few ounces to 10 pounds. The treatability study philosophy was to develop working envelops of formulations where reasonable minimum and maximum amounts of each reagent that would successfully treat the contaminated soil were determined. The dosages investigated were based on ratios of stoichiometric reactions and applications of standard sets of formulations. The approach purposely identified formulations that failed short or longer cure-time performance criteria to define the limits of the envelope. Reagent envelops successfully met the project requirements one day after treatment and after greater than 30-day cures. The use of multiple levels of spikes allowed the establishment of reagent dosages that were successful across a broad range of mercury values, e.g., 50 to 6000 mg/kg mercury. The treatment products were damp to slightly wet material. Enough drying reagent, e.g., Portland cement or lime by-product, were added to some formulations to control the leachability of uranium and other hazardous metals and to ensure the product passed the paint filter test. Cost analyzes and conceptual designs for four alternatives for full-scale treatments were prepared. The alternatives included two in-situ treatments and two ex-situ treatments. The cost estimates were based on the results from the bench-scale study. All four alternatives treatment costs were well below the baseline costs.

  19. Uniaxial creep as a control on mercury intrusion capillary pressure in consolidating rock salt

    SciTech Connect (OSTI)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    2015-09-01

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteri stic capillary pressure curves from a series of consolidation tests and show characteristic saturation - capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due t o the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett "J" function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self - consistent set of constitutive laws for granular salt consolidation and multiphase (brin e - air) flow.

  20. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  1. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect (OSTI)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

  2. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  3. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

  4. New Technology Provides Cost-Effective Emissions Control

    E-Print Network [OSTI]

    New Technology Provides Cost- Effective Emissions Control Solution for CHP Applications Renewable are the most cost-effective CHP technology less than three MW in size. With a cost effective) applications less than three megawatts (MW). Because they are relatively low cost and have high

  5. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

  6. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect (OSTI)

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  7. Marketable Credits for Light-Duty Vehicle Emission Control in California

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1992-01-01

    for Light-Duty Vehicle Emission CQntrol, Ph.D dissertation,for Light-Duty Vehicle Emission Control in Califorr6a QuantuSince the beginning of vehicle emission regulation in the

  8. Titania-Activated Silica System for Emission Control

    Broader source: Energy.gov [DOE]

    The chlor-alkali industry produces valuable chemicals such as chlorine, hydrogen, and caustic soda. In 2001, between 150 and 200 chlor-alkali facilities throughout the world used the mercury-cell...

  9. Venturi/vortex technology for controlling chromium electroplating emissions

    SciTech Connect (OSTI)

    Hay, K.J.; Northrup, J. [Army Construction Engineering Research Labs., Champaign, IL (United States); Heck, S.R. [MSE-HKM, Inc., Butte, MT (United States)

    1997-12-31

    A new technology has been developed to control air emissions from hexavalent chromium electroplating tanks. The venturi/vortex scrubber uses a patented drain assembly to pull plating solution, air with toxic particulates above the solution, and unpopped bubbles of generated gases down with a gravity generated vortex effect. The recirculated plating solution acts as the scrubbing liquid and air agitation is eliminated. Separated gases are passed through a condenser/filter to remove any remaining fumes. The device is almost entirely constructed of CPVC. This device offers several advantages over conventional end-of-pipe systems including significantly lower cost, no wastewater, no extensive ventilation system, and emissions are recycled. The system can be is easily retrofitted to existing tanks, however, a loose fitting tank lid is recommended. A pilot demonstration has been performed at Benet Laboratory, Watervliet, NY (US Army) with a 1,500 gallon chromic acid electroplating tank and 1,500 Amps of applied current. Overall chromium emissions results were 0.00002 mg/Amp-hr, surpassing the stringent California State requirement of 0.006 mg/Amp-hr. Emission prevention by capturing unpopped bubbles is the method in which this system reduces the most emissions. The system met current ambient worker safety standards. Two major improvements are recommended: an increase in gas flow rate through the system and a solution to the system`s sensitivity to the plating solution level.

  10. Heavy metals emission from controlled combustion of PVC 

    E-Print Network [OSTI]

    El-Ayyoubi, Mohammed A.

    1989-01-01

    such as direct heating and uv radiation exposure e (IZ). The PVC polymer chain contains weak sites that represent the initiating sites of chemical deter ioration. These sites are formed during polymerization of the vinyl chloride monomer. Thus attempts...HEAVY METALS EMISSION FROM CONTROLLED COMBUSTION OF PVC A Thesis by MOHAMMED A. EL-AYYOUBI Submitted to the Office of Graduate Studies of Texas Ag M University in partial fulfillment of the requirement for the degas ee of' MASTER OF SCIENCE...

  11. Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Fiber Wall-Flow DPF For Diesel Emission Control Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control A new metal fiber wall-flow DPF with up to 99% efficiency and...

  12. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis...

  13. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Wilfred W.; Parimi, A.

    2000-01-01

    Control Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumptionalternatives in reducing vehicle emissions. Subject to this

  14. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    L. , Measurements of NOx Emissions and In-Service Duty CycleBiodiesel Blends on NOx Emissions. Society of Automotivemaladjustments to reduce NOx emissions by marine diesel

  15. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Matthew B. Loomis

    2004-05-01

    This technical report describes the results from Task 1 of the Cooperative Agreement. Powerspan has installed, tested, and validated Hg SCEMS systems for measuring oxidized and elemental mercury at the pilot facility at R.E. Burger Generating Station in Shadyside, Ohio. When operating properly, these systems are capable of providing near real-time monitoring of inlet and outlet gas flow streams and are capable of extracting samples from different locations to characterize mercury removal at these different ECO process stages. This report discusses the final configuration of the Hg CEM systems and the operating protocols that increase the reliability of the HG SCEM measurements. Documentation on the testing done to verify the operating protocols is also provided. In addition the report provides details on the protocols developed and used for measurement of mercury in process liquid streams and in captured ash.

  16. Optimizing the mix of strategies for control of vehicular emissions

    SciTech Connect (OSTI)

    Lejano, R.P.; Ayala, P.M.; Gonzales, E.A.

    1997-01-01

    A number of strategies for the control of vehicular emissions are being considered by the Philippine government to address Metropolitan Manila`s air quality problem. An analytical tool is needed for optimizing criteria pollutant reductions given the budgetary constraints. The simplest approach is to take costs and pollutant removals to be linear with each strategy`s scale of activity, and this is readily solved as a linear programming problem. Another approach is to use a dynamic system of weights which shift with progressive improvements in pollutant emissions. The two approaches yield somewhat different results, suggesting the sensitivity of the solution to the assumed weights. The study also illustrates the importance of a sound methodology for evaluating priorities given to different air quality goals. One such methodology may involve a polling of expert panels and the public to gain insight into the relative importance given to competing emissions reduction goals. An informal polling of resource agency staff was conducted and discussed in this paper. The authors take the position that proper planning involves tracing intermediate steps to the final outcome and not just focusing on the latter. 17 refs., 1 fig., 8 tabs.

  17. REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS

    E-Print Network [OSTI]

    Frey, H. Christopher

    REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 0121 NOx(g/gal) Truck Number Highway Arterial Comparison of Trucks: Fuel-Based NO Emission Rates NOx emissions are substantially lower than Truck 5715. 1999 2005 2007 2009 2010 Fuel-Based Emission

  18. Active magneto-optical control of spontaneous emission in graphene

    E-Print Network [OSTI]

    Kort-Kamp, W J M; Bastos, G; Pinheiro, F A; Rosa, F S S; Peres, N M R; Farina, C

    2015-01-01

    We investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99$\\%$ in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of $|{\\bf B}|$, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  19. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  20. Real time control of gasifiers to increase tolerance to biomass variety and reduce emissions

    E-Print Network [OSTI]

    Real time control of gasifiers to increase tolerance to biomass variety and reduce emissions to increase tolerance to biomass variety and reduce emissions Ian A. Watson Systems, Power and Energy Research.watson@glasgow.ac.uk #12;Real time control of gasifiers to increase tolerance to biomass variety and reduce emissions

  1. Control of VOC emissions from ink and paint manufacturing processes. Final report

    SciTech Connect (OSTI)

    McMinn, B.W.; Marsosudiro, P.J.

    1992-04-01

    The document presents the results of a study to collect and report information on processes used to manufacture paint and ink, volatile organic compound (VOC) emissions generated during these operations, emission control techniques and their effectiveness, and costs associated with process changes and emission control options.

  2. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Sanderson

    2007-12-31

    This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an additional coal type. In the project, process stacks in the wallboard plant were sampled using the Ontario Hydro method. In every task, the stack locations sampled included a gypsum dryer and a gypsum calciner. In Tasks 1 and 4 through 7, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. These results and process data were used to construct mercury mass balances across the wallboard plants. The results from the project showed a wide range of percentage mercury losses from the synthetic gypsum feedstocks as measured by the Ontario Hydro method at the process stacks, ranging from 2% to 55% of the mercury in the gypsum feedstock. For the tasks exceeding 10% mercury loss across the wallboard plant, most of the loss occurred across the gypsum calciner. When total wallboard emissions remained below 10%, the primary emission location varied with a much less pronounced difference in emission between the gypsum dryer, calciner and board dryer. For all seven tasks, the majority of the mercury emissions were measured to be in the elemental form (Hg{sup 0}). Overall, the measured mercury loss mass rates ranged from 0.01 to 0.17 grams of mercury per dry ton of synthetic gypsum processed, or 0.01 to 0.4 pounds of mercury released per million square feet of wallboard produced from synthetic gypsum. The Coal Combustion Product Production and Use Survey from the American Coal Ash Association (ACAA) indicate that 7,579,187 short tons of synthetic gypsum were used for wallboard production in 2006. Extrapolating the results of this study to the ACAA industry usage rate, we estimate that mercury releases from wallboard production plants in 2006 ranged between 150 to 3000 pounds for the entire U.S. wallboard industry. With only seven sets of wallboard plant measurements, it is difficult to draw firm conclusions about what variables impact the mercury loss percentages across the wallboard plants. One significant o

  3. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOE Patents [OSTI]

    Nelson, Sidney (Hudson, OH)

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  4. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  5. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    Ignition Engine Fueled with Biodiesel Blends. Society ofRegulated emissions from biodiesel fuels from on/ off-roadEffects of Methyl Ester Biodiesel Blends on NOx Emissions.

  6. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control

    E-Print Network [OSTI]

    Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control David owned treatment works in the United States (1, 2) and probably 50,000 worldwide, and emission

  7. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

  8. Implementing Strategies for Drying and Pressing Wood Without Emissions Controls

    SciTech Connect (OSTI)

    Sujit Banerjee; Terrance Conners

    2007-09-07

    Drying and pressing wood for the manufacture of lumber, particleboard, oriented strand board (OSB), veneer and medium density fiberboard (MDF) release volatile organic compounds (VOCs) into the atmosphere. These emissions require control equipment that are capital-intensive and consume significant quantities of natural gas and electricity. The objective of our work was to understand the mechanisms through which volatile organic compounds are generated and released and to develop simple control strategies. Of the several strategies developed, two have been implemented for OSB manufacture over the course of this study. First, it was found that increasing final wood moisture by about 2-4 percentage points reduced the dryer emissions of hazardous air pollutants by over 70%. As wood dries, the escaping water evaporatively cools the wood. This cooling tapers off wood when the wood is nearly dry and the wood temperature rises. Thermal breakdown of the wood tissue occurs and VOCs are released. Raising the final wood moisture by only a few percentage points minimizes the temperature rise and reduces emissions. Evaporative cooling also impacts has implications for VOC release from wood fines. Flaking wood for OSB manufacture inevitable generates fines. Fines dry out rapidly because of their high surface area and evaporative cooling is lost more rapidly than for flakes. As a result, fines emit a disproportionate quantity of VOCs. Fines can be reduced in two ways: through screening of the green furnish and through reducing their generation during flaking. The second approach is preferable because it also increased wood yield. A procedure to do this by matching the sharpness angle of the flaker knife to the ambient temperature was also developed. Other findings of practical interests are as follows: Dielectric heating of wood under low-headspace conditions removes terpenes and other extractives from softwood; The monoterpene content in trees depend upon temperature and seasonal effects; Method 25A emissions from lumber drying can be modeled from a knowledge of the airflow through the kiln; A heat transfer model shows that VOCs released during hot-pressing mainly originate from the surface of the board; and Boiler ash can be used to adsorb formaldehyde from air streams.

  9. Development of a Microscopic Activity-Based Framework for Analyzing the Potential Impacts of Transportation Control Measures on Vehicle Emissions

    E-Print Network [OSTI]

    Recker, Will; Parimi, Arun

    1998-01-01

    Control Measures on Vehicle Emissions Will Recker 1 ArunControl Measures on Vehicle Emissions W. W. Recker and A.the increase in the vehicle emissions and energy consumption

  10. Control of the emissions of transportation and stationary diesel engines

    SciTech Connect (OSTI)

    Levendis, Y.A. [Northeastern Univ., Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1996-12-31

    This manuscript describes a novel exhaust aftertreatment system for effective reduction of all diesel engine emissions. This system employs high-efficiency ceramic filter elements and filtered exhaust gas recirculation (EGR) to control particulate and NO{sub x} emissions. The filters are periodically regenerated aerodynamically, that is, by pulses of compressed air flowing in the opposite to the exhaust direction. The fact that the filtration system is kept at moderate temperatures, at all times, promotes the condensation of volatile hydrocarbons on the soot. Results obtained from extensive road-testing of various configurations of such systems show that (a) soot filtration efficiencies of over 99% can be achieved, (b) volatile hydrocarbon reductions of over 50% are feasible by condensation and (c) 50% reduction of NO{sub x} can be obtained with 20% EGR. Additional benefits include capture of ash and sulfates. To accommodate engines of different sizes a multi-module system is proposed. The optimum number of filters and the frequency of regeneration varies according to the size of the engine. Upon regeneration, soot is collected in a separate chamber where it is incinerated or it is periodically removed by a vacuum system.

  11. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  12. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect (OSTI)

    Heaphy, J.P.; Carbonara, J.; Litzke, W.; Butcher, T.A.

    1993-12-31

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  13. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

    SciTech Connect (OSTI)

    Lowndes, D.H.; Merkulov, V.I.; Baylor, L.R.; Jellison, Jr., G.E.; Poker, D.B.; Kim, S.; Sohn, M.H.; Paik, N.W.

    1999-11-29

    The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission.

  14. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  15. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  16. Single-Walled Carbon Nanotubes of Controlled Diameter and Bundle Size and Their Field Emission Properties

    E-Print Network [OSTI]

    Resasco, Daniel

    Single-Walled Carbon Nanotubes of Controlled Diameter and Bundle Size and Their Field Emission: June 8, 2005 Field emission studies were conducted on as-produced CoMoCAT single-walled carbon nanotube became larger, but the bundle size became smaller. A gradual and consistent reduction in the emission

  17. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  18. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-Print Network [OSTI]

    Nam, Kyung-Min

    We estimate the potential synergy between pollution and climate control in the U.S. and China, summarizing the results as emissions cross-elasticities of control. We set a range of NOx and SO2 targets, and record the ...

  19. Media for control of thermal emission and methods of applications thereof

    DOE Patents [OSTI]

    Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2002-01-01

    A new class of media for control of emission of thermal radiation from an object or part thereof is disclosed. These materials can be used for a wide variety of thermal control applications.

  20. Southern California Edison's (SCE) Research Program for Industrial Volatile Organic Compound (VOC) Emissions Control 

    E-Print Network [OSTI]

    Sung, R. D.; Cascone, R.; Reese, J.

    1990-01-01

    EDISON'S (SCE) RESEARCH PROGRAM FOR INDUSTRIAL VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS CONTROL ROGER D. SUNG RON CASCONE JIM REESE Program Manager Senior Consultant Manager Southern California Edison Chem Systems, Inc. Applied Utility Systems... Rosemead, California Tarrytown, New York Santa Ana, California ABSTRACT SCE has developed and implemented a research program for customer retention through VOC emission control. Following characterization of problematic emission sources, SCE has...

  1. Preface: Special Issue on Catalytic Control of Lean-Burn Engine Exhaust Emissions

    SciTech Connect (OSTI)

    Yezerets, Aleksey; Peden, Charles HF; Szanyi, Janos; Nova, Isabella; Epling, Bill

    2012-04-30

    This issue of Catalysis Today includes original research articles based on select presentations from the Mobile Emissions Control Symposium at the 22nd North American Catalysis Society (NACS) Meeting held in Detroit in June 2011, with a particular focus on catalyzed diesel emissions control. The Symposium was dedicated to the memory of Dr. Haren Gandhi, a visionary technology leader and a passionate environmental advocate.

  2. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  3. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  4. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  5. Mercury Replacement Program It is the policy of California State University, Fullerton to remove mercury containing

    E-Print Network [OSTI]

    de Lijser, Peter

    and air conditioning (HVAC) devices and in temperature controls for heat pumps. V. Accountability decomposes. As a liquid metal at room temperature, mercury has been widely used throughout industry. Man-made sources of mercury include abandoned mines, energy production, sewage, industrial processes, mining

  6. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect (OSTI)

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  7. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect (OSTI)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  8. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect (OSTI)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  9. Air Pollution Control Regulations: No. 13 - Particulate Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Regulations Provider Department of Environmental Management The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

  10. The Weekend Ozone Effect - The Weekly Ambient Emissions Control...

    Energy Savers [EERE]

    Douglas R. Lawson National Renewable Energy Laboratory douglawson@nrel.gov 9 th Diesel Engine Emissions Reduction Conference Newport, RI August 27, 2003 Acknowledgments...

  11. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  12. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect (OSTI)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  13. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect (OSTI)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2003-10-31

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  14. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  15. Mercury Handling for the Target System for a Muon Collider

    SciTech Connect (OSTI)

    Graves, Van B [ORNL; Mcdonald, K [Princeton University; Kirk, H. [Brookhaven National Laboratory (BNL); Weggel, Robert [Particle Beam Laser, Inc.; Souchlas, Nicholas [Particle Beam Laser, Inc.; Sayed, H [Brookhaven National Laboratory (BNL); Ding, X [University of California, Los Angeles

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes and waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.

  16. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    SciTech Connect (OSTI)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  17. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    W. G. , Heavy- duty engine exhaust emission tests usingtest engine was operated on the normal fuel of operation, 3.61% heavyand heavy fuel oil (HFO). Experimental Methods Test Engine

  18. Alloy Foam Diesel Emissions Control School Bus Implementation

    Broader source: Energy.gov [DOE]

    Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status of APBF-DEC NOx AdsorberDPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car...

  20. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    emissions from coal-fired power plants have been the subjectrequired on all new coal-fired power plants in the US andof FGD at coal-burning power plants can be traced back to

  1. Neutrino Factory Mercury Vessel

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 vessel assumed to be cooled with Helium ­ Shielding vessel filled with tungsten beads ­ Mercury vessel;7 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Mercury Vessel

  2. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control, Prepared byReduction (SCR) Technology for the Control of Nitrogen Oxide (NOx)NOx removal technologies. Volume 1. Selective catalytic reduction.

  3. High-Capacity Sulfur Dioxide Absorbents for Diesel Emissions Control

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2005-01-05

    High capacity sulfur dioxide absorbents based on manganese oxide octahedral molecular sieves (OMS) have been identified. These materials are based on MnO6 octahedra sharing faces and edges to form various tunnel structures (2x2, 2x3, 2x4, 3x3) differentiated by the number of octahedra on a side. The SO2 capacities of these materials, measured at 325 C with a feed containing 250 ppmv SO2 in air, are as high as 70wt% (wt/wt), remarkably higher than conventional metal oxide-based SO2 absorbents. Among the OMS materials the 2x2 member, cryptomelane, exhibits the highest capacity and adsorption rate. Its SO2 absorption behavior has been further characterized as a function of temperature, space velocity, and feed composition. The dominant pathway for SO2 absorption is through the oxidation of SO2 to SO3 by Mn4+ followed by SO3 reaction with Mn2+ to form MnSO4. Absorption can occur in the absence of gas phase oxygen, with a moderate loss in overall capacity. The inclusion of reducible gases NO and CO in the feed does not reduce SO2 capacity. The absorption capacity decreases at high space velocity and lower absorption temperature, indicating the important role of diffusion of sulfate from the surface to the bulk of the material in order to reach full capacity. A color change of cryptomelane from black to yellow-brown after SO2 absorption can be used as an indicator of absorption progress. Cryptomelane can be synthesized using MnSO4 as a reagent. Therefore, after full SO2 absorption the product MnSO4 can be re-used as raw material for a subsequent cryptomelane synthesis. Cryptomelane has a similarly high capacity toward SO3, therefore it can be used for removal of all SOx species generated from a variety of combustion sources. Cryptomelane may find application as a replaceable absorbent for the removal of SOx from diesel truck exhaust, protecting downstream emissions control devices such as particulate filters and NOx traps.

  4. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Marshall Sanderson

    2006-06-01

    This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more signific

  5. Temporal controls on global dust emissions: The role of surface S. Engelstaedter1

    E-Print Network [OSTI]

    Washington, Richard

    in the atmosphere will not be realistic either. While climatically important atmospheric gases such as CO2 are well with constraining dust emissions spatially came with the `preferred source' concept following analysis of the firstTemporal controls on global dust emissions: The role of surface gustiness S. Engelstaedter1 and R

  6. Quantum Optical Coherence: Applications in Photon Switching, Control of Spontaneous Emission and Atom Localization 

    E-Print Network [OSTI]

    Yang, Shuai

    2013-12-12

    bistability of atomic media in the cavity. We also study the effect of counter-rotating terms in the control of spontaneous emission. We make use of a unitary transformation method and investigate the effect of dynamic energy shifts on the spontaneous emission...

  7. Dual-UEGO Active Catalyst Control for Emissions Reduction: Design and Experimental Validation

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Dual-UEGO Active Catalyst Control for Emissions Reduction: Design and Experimental Validation are used to measure air-fuel ratio upstream and downstream of each catalyst. A series controller on the basis of measured feedgas air-fuel ratio, while the downstream controller uses the feedgas and post

  8. Impact of the Volkswagen emissions control defeat device on US public health

    E-Print Network [OSTI]

    Ashok, Akshay

    The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system 'defeat devices' (software) in model ...

  9. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  10. A theoretical analysis of acoustic scrubber in diesel engine emission control 

    E-Print Network [OSTI]

    Huang, Tiing-Lieh

    1985-01-01

    A THEORETICAL ANALYSIS OF ACOUSTIC SCRUBBER IN DIESEL ENGINE EMISSION CONTROL A Thesis by Tiing-Lich Huang Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1985 Major Subject: Mechanical Engineering A THEORETICAL ANALYSIS OF ACOUSTIC SCRUBBER IN DIESEL ENGINE EMISSION CONTROL A Thesis by Tiing-Lich Huang Approved as to style and content by: Josep K. ou (Chairman of Committee) Marro Co...

  11. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    SciTech Connect (OSTI)

    James Locke; Richard Winschel

    2011-09-30

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230 °F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energyâ??s R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230 °F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  12. Single Photon Subradiance:Quantum control of spontaneous emission and ultrafast readout

    E-Print Network [OSTI]

    Marlan O. Scully

    2015-05-12

    Recent work has shown that collective single photon emission from an ensemble of resonate two-level atoms is a rich field of study. For example single photon superradiance from an extended ensemble yields enhanced directional spontaneous emission; and when the effects of the collective Lamb shift are included it becomes even more interesting. The present paper addresses the flip side of superradiance, i.e., subradiance. Single photon subradiant states are potentially stable against collective spontaneous emission and can have ultrafast readout. In particular, it is shown how many atom collective effects can be used to control emission by preparing and switching between subradiant and superradiant states.

  13. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  14. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-Print Network [OSTI]

    Enneking, J. C.

    1992-01-01

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  15. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    E-Print Network [OSTI]

    Midolo, L; Hoang, T B; Xia, T; van Otten, F W M; Li, L H; Linfield, E; Lermer, M; Höfling, S; Fiore, A

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting the exciton energies. A spontaneous emission enhancement of 4.5 has been achieved with a coupling efficiency of the dot to the mode 92%.

  16. Atmospheric Environment 42 (2008) 51935204 Seasonal and spatial patterns of mercury wet deposition in

    E-Print Network [OSTI]

    Jacob, Daniel J.

    2008-01-01

    ) and enter the global pool. Anthropogenic emission of mercury from North America is mostly from coal North America (Seigneur et al., 2004; Selin et al., 2007; Strode et al., 2007, 2008 America accounts for only 7% of global anthropogenic emission of mercury (2000 statistics) (Pacyna et al

  17. Mobile source emission control cost-effectiveness: Issues, uncertainties, and results

    SciTech Connect (OSTI)

    Wang, M.Q.

    1994-12-01

    Emissions from mobile sources undoubtedly contribute to US urban air pollution problems. Consequently, mobile source control measures, ranging from vehicle emission standards to reducing vehicle travel, have been adopted or proposed to help attain air quality standards. To rank various mobile source control measures, various government agencies and private organizations calculate cost-effectiveness in dollars per ton of emissions reduced. Arguments for or against certain control measures are often made on the basis of the calculated cost-effectiveness. Yet, different studies may yield significantly different cost-effectiveness results, because of the various methodologies used and assumptions regarding the values of costs and emission reductions. Because of the methodological differences, the cost-effectiveness results may not be comparable between studies. Use of incomparable cost-effectiveness results may result in adoption of ineffective control measures. This paper first discusses some important methodological issues involved in cost-effectiveness calculation for mobile sources and proposes appropriate, systematic methods for dealing with these issues. Various studies have been completed recently to evaluate the cost-effectiveness of mobile source emission control measures. These studies resulted in wide variations in the cost-effectiveness for same control measures. Methodological assumptions used in each study are presented and, based on the proposed methods for cost-effectiveness calculation, adjustments are applied to the original estimates in each study to correct inappropriate methodological assumptions and to make the studies comparable. Finally, mobile source control measures are ranked on the basis of the adjusted cost-effectiveness estimates.

  18. Integrated emissions control system for residential CWS furnace. Final report, September 20, 1989--March 20, 1993

    SciTech Connect (OSTI)

    Breault, R.W.; McLarnon, C.

    1993-03-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen is developing a novel, integrated control system to control NO{sub x}SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. Final cleanup of any fine particulates exiting the reactor including respirable-sized particulates, is completed with the use of high efficiency bag filters. Under a previous contract with PETC (Contract No. DE-AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor to control NO{sub x}emission. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emission.

  19. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    are strongly related to NOx emissions, and in order to reach extremely low emission levels, reduction1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube of the consumed lube-oil. Significant reductions in particulate emission rate could be obtained by controlling

  20. A Novel New Approach to VOC and HAP Emission Control 

    E-Print Network [OSTI]

    McGinness, M.

    2000-01-01

    if the emissions carry metals or organics that act as biocides at elevated concentrations (Webster, 1999). Bio-trickling filters and stationary air biofilters use fixed microorganisms but the bio-trickling filters use a flowing water phase. Bio-scrubbers use a...&D EFFORTS The Navy has been investigating a pilot scale bio trickling filter (Webster, 1999) for treating off gases from spray paint booths. The project was funded by the Navy's Small Business Innovative Research (SBIR) Program. Test results indicated...

  1. Best available control technology (BACT) equivalent for the control of volatile organic emissions from paint dipping operations

    SciTech Connect (OSTI)

    Blankenship, W.R.; Pugh, C.W. Jr.

    1999-07-01

    This paper provides details of a study conducted to demonstrate an equivalent method of Best Available Control Technology (BACT) compliance for volatile organic emissions from dip coating of certain miscellaneous metal parts. The study was proposed to show that the total volatile organic compound (VOC) emissions from 3.8 lb of VOC/gallon coating formulations were no greater than the total VOC emissions from 3.5 lb/gallon formulations used under the same conditions for coating steel joists. The presumptive BACT standard enforced by the Virginia Department of Environmental Quality (DEQ) for dip coating of steel joists is 3.5 lb/gallon. The requirement of 3.5 lb/gallon was derived from the US Environmental Protection Agency Guideline Series Control of Volatile Organic Emissions from Existing Stationary Sources--Volume 6: Surface Coating of Miscellaneous Metal Parts and Products. On June 5, 1998 the source completed a 12 month, full scale comparison study under a consent order with the Virginia DEQ. During the study period, the source made daily measurements of product produced, paint used, and emissions from the control and test paint tanks, and reported data to EPA and the DEQ every two months. The study concluded that a 26 percent reduction in paint usage and a 20 percent reduction in emissions was achieved in the test tanks using a 3.8 lb/gal coating compared to the control tanks using a 3.5 lb/gal coating. This study enables the source to achieve greater emission reductions than the presumptive BACT level and at the same time reduce painting costs by 34%. This study provides positive results for the environment, the steel joist industry, and the construction industry. This study could impact EPA's current Maximum Achievable Control Technology (MACT) rule development for Miscellaneous Metal Parts and Products and national VOC rules for this source category under Section 183(e) of the Clean Air Act.

  2. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  3. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  4. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Curran, Scott; Parks, II, James E; Wagner, Robert M

    2013-01-01

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  5. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy`s (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation`s energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  6. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy's (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation's energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  7. Overview of DOE Emission Control R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOE Hydrogen Program andEmission

  8. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    SciTech Connect (OSTI)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

  9. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies

    E-Print Network [OSTI]

    Li, Ying

    can be oxidized to Hg2+ and/or bound on fly ash as Hgp. Hg2+ is soluble in water and is readily captured by wet flue gas desulfurization (FGD) equipment. Hgp can be collected together

  10. Emission Control Strategy for Downsized Light-Duty Diesels

    Broader source: Energy.gov [DOE]

    This poster discusses the combustion aspects and control challenges of a high EGR combustion calibration that was conducted on a moderately downsized diesel engine with a compression ratio of 15:1.

  11. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    oxides (NO x ) from coal-fired electric power plants. InFGD Installations on Coal-Fired Plants, IEA Coal Research,control modeling of coal-fired power systems’, Journal of

  12. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  13. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  14. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  15. Low-Emissions Exhaust Quality Control System to Optimize

    E-Print Network [OSTI]

    ) improve flexibility in deployment of a given suite of prime mover/waste heat recovery options, and (3 10 percent. Potential adopters of this exhaust control technology include industrial and commercial and end-use equipment (Image credit: UC Irvine) While the potential benefits of distributed generation

  16. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    1996-02-29

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  17. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect (OSTI)

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  18. Mercury in the environment

    ScienceCinema (OSTI)

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  19. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  20. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    SciTech Connect (OSTI)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

  1. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    SciTech Connect (OSTI)

    Jessica Sanderson; Gary M. Blythe; Mandi Richardson

    2006-12-01

    This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was expected to impact the stability of mercury in synthetic gypsum used to produce wallboard, so Task 6 was added to the project to test this theory. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. For every task, the stack locations sampled have included a dryer for the wet gypsum as it enters the plant and a gypsum calciner. For Tasks 1, 4, 5 and 6, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 6 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant has a single-loop, open spray tower limestone forced oxidation FGD system, with the forced oxidation conducted in the reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, and the SCR was in service during the time period the gypsum tested was produced. Also, as mentioned above, Degussa additive TMT-15 was being added to the FGD system when this gypsum was produced. The results of the Task 6 stack testing, as measured by the Ontario Hydro method, detected that an average of 55% of the incoming mercury was emitted during wallboard production. These losses were distributed as about 4% across the dryer mill, 6% across the board dryer kiln, and 45% across the kettle calciner. Emissions were similar to what Task 5 results showed on a percentage basis, but about 30% lower on a mass basis. The same power plant FGD system produced the synthetic gypsum used in Task 5 (with no use of TMT-15) and in Task 6 (with TMT-15 added to the FGD system). The lower emissions on a mass basis appeared

  2. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  3. Environmental Control Technology

    SciTech Connect (OSTI)

    NONE

    1997-02-10

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutants (HAP) study was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber and the Pulse-Jet Fabric Filter). Testing also continued across the B&W/CHX Heat Exchanger this month as the effects of increased particulate loading are being studied. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. On September 13, 1996, the ECTC completed an independent test block for a third-party company, Air Purification Inc. (API). For this testing, the ECTC's staff (O&M and Testing) were contracted to conduct performance and validation testing across a new, integrated emissions control device, the Rotorfilter{trademark}. This testing was conducted for a thirty (30) day period simultaneously with the B&W/CHX test block. The HAP testing resumed as this third-party test block was completed. Testing in September at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC) included tests from the Pilot Trace Elements Removal (TER) test block as part of EPRI's overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions. The 1996 program is being performed on the 4.0 MW wet FGD pilot unit and the spray dryer/pulse jet fabric filter (SDA/PJFF) pilot units. The 1996 Trace Elements Removal (TER) test block is a continuation of the 1995 TER test block and will focus on up to five research areas, depending on experimental results. These areas are: (1) Mercury speciation methods; (2) Effect of FGD system operating variables on mercury removal; (3) Novel methods for elemental mercury control; (4) Catalytic methods for converting elemental mercury to oxidized mercury; and (5) Electrostatic charging of particulate material in the FGD inlet flue gas stream.

  4. Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of b-Ionone,

    E-Print Network [OSTI]

    Klee, Harry J.

    Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of b rhythm in both leaves and flowers. b-Ionone emission by flowers occurred principally during daylight-ionone emission are likely regulated at the level of transcript. Apocarotenoids are a class of compounds derived

  5. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Luyendyk, Bruce

    ORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world (Shindell et al. 2005; Etiope 2009). As a result, future Kyoto- type treaties likely will seek to reduce

  6. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone-

    E-Print Network [OSTI]

    Mauzerall, Denise

    Increasing global agricultural production by reducing ozone damages via methane emission controls demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3 degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant

  7. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric options is an important step in formulating a cohesive strategy to abate U.S. greenhouse gas (GHG

  8. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  9. An optimization study on the control of NOx and particulate emissions from diesel engines

    SciTech Connect (OSTI)

    Larsen, C.; Oey, F.; Levendis, Y.A. [Northeastern Univ., Boston, MA (United States)

    1996-09-01

    This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio {phi} was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions. A series of road tests showed that EGR most effectively reduces NO emissions at high {phi}`s (by a factor of two at 20% EGR) which, however, is accompanied by an increase in CO emissions by a factor of two, and a penalty in fuel economy by 8%. Benefits and losses can be optimized by automatically varying the level of EGR, using feedback from the aforementioned engine parameters. An algorithm was developed to govern the electrically controlled EGR valve and tests showed that the NO levels decreased by 30%, while the CO increased by 30%, showing no penalty in fuel economy. The resulting specific NO and CO emissions were well within the current US EPA standards.

  10. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  11. Long-term changes in legacy trace organic contaminants and mercury in Lake Ontario salmon in relation to source controls, trophodynamics, and climatic variability

    E-Print Network [OSTI]

    Jackson, Don

    Long-term changes in legacy trace organic contaminants and mercury in Lake Ontario salmon Queen's University, Department of Biology and School of Environmental Studies, Kingston, Ontario K7L 3N6, Ontario M5S 3G5, Canada John M. Casselman Queen's University, Department of Biology, Kingston, Ontario K7L

  12. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet me

  13. Air-sea exchange in the global mercury cycle Sarah A. Strode,1

    E-Print Network [OSTI]

    Park, Rokjin

    Research Council, 2000], as well as detrimental effects on wildlife [Wolfe et al., 1998]. Because mercury sources [Lindqvist et al., 1991]. [3] Mercury is emitted to the atmosphere from anthropo- genic sources al., 2003], with direct anthropogenic emissions representing approximately one third of the total

  14. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  15. X-ray Spontaneous Emission Control By 1D-PBG Structure

    SciTech Connect (OSTI)

    Andre, Jean-Michel; Jonnard, Philippe [Laboratoire de Chimie Physique-Matiere et Rayonnement, CNRS, Universite Paris 6, UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris CEDEX 05 (France)

    2010-04-06

    The control of the decay rate of an excited atom through the photonic mode density (PMD) was pointed out at radiofrequency by Purcell in 1946. Nowadays the development of sophisticated photonic band structures makes it possible to monitor the PMD at shorter radiation wavelengths and then to manipulate the spontaneous emission of atoms in the hard region of the electromagnetic spectrum especially in the visible domain. In this communication we study the possibility of monitoring the x-ray emission by means of one-dimensional photonic band structures such as periodic multilayer systems. Enhancement or inhibition of soft x-ray emissions seems now to be feasible by means of the state-of-the art in x-ray optics.

  16. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.Emilio Segrè About the LabEmission

  17. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    DOE Patents [OSTI]

    Reifman, Jaques (Western Springs, IL); Feldman, Earl E. (Willowbrook, IL); Wei, Thomas Y. C. (Downers Grove, IL); Glickert, Roger W. (Pittsburgh, PA)

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  18. Development of venturi/vortex scrubber technology for controlling chromium electroplating hazardous air emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Northrup, J.I.; Heck, S.R.

    1998-07-01

    Chromium has a combination of qualities that give chromium electroplating an important role in coating military hardware and armament. However, chromium electroplating and chromium anodizing operations create hazardous air pollutants in the form of hexavalent chromium. Conventional technologies for controlling this pollutant are expensive, noisy, and use a lot of energy and water. Consequently, an air pollution problem is turned into a water pollution problem that also requires treatment. There is a need for an economical control option that pollutes less than conventional technologies. This project developed control technologies to effectively and economically control hazardous air emissions from Army chromium electroplating and anodizing operations, primarily focusing on the development of the Venturi/Vortex Scrubber technology (VVST).

  19. Integrated emissions control system for residential CWS furnace. Annual status report No. 2, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Balsavich, J.C. Jr.

    1991-11-01

    To meet the emission goals set by the Pittsburgh Energy Technology Center (PETC), Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. At the heart of this system is a unique emissions control reactor for the control of SO{sub 2}. This reactor provides high sorbent particle residence time within the reactor while doing so in a very compact geometry. In addition to controlling SO{sub 2} emissions, the reactor provides a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any fine particulates exiting the reactor, including respirable-sized particulates, is completed with the use of high efficiency bag filters. With SO{sub 2} and particulate emissions being dealt with by an emissions control reactor and bag filters, the control of NO{sub x} emissions needs to be addressed. Under a previous contract with PETC (contract No. AC22-87PC79650), Tecogen developed a residential-scale Coal Water Slurry (CWS) combustor. This combustor makes use of centrifugal forces, set up by a predominantly tangential flow field, to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled in such a manner as to minimize NO{sub x} emissions.

  20. Structure and method for controlling the thermal emissivity of a radiating object

    DOE Patents [OSTI]

    DeSteese, John G.; Antoniak, Zenen I.; White, Michael; Peters, Timothy J.

    2004-03-30

    A structure and method for changing or controlling the thermal emissivity of the surface of an object in situ, and thus, changing or controlling the radiative heat transfer between the object and its environment in situ, is disclosed. Changing or controlling the degree of blackbody behavior of the object is accomplished by changing or controlling certain physical characteristics of a cavity structure on the surface of the object. The cavity structure, defining a plurality of cavities, may be formed by selectively removing material(s) from the surface, selectively adding a material(s) to the surface, or adding an engineered article(s) to the surface to form a new radiative surface. The physical characteristics of the cavity structure that are changed or controlled include cavity area aspect ratio, cavity longitudinal axis orientation, and combinations thereof. Controlling the cavity area aspect ratio may be by controlling the size of the cavity surface area, the size of the cavity aperture area, or a combination thereof. The cavity structure may contain a gas, liquid, or solid that further enhances radiative heat transfer control and/or improves other properties of the object while in service.

  1. Task 2.8 -- Mercury speciation and capture in scrubber solutions. Semi-annual report, July 1--December 31, 1996

    SciTech Connect (OSTI)

    Ness, S.R.

    1997-08-01

    Investigations into mercury control across conventional scrubber systems have precipitated questions concerning (1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal-fired boilers and, subsequently, (2) the effects of scrubber slurry composition and pH on the mercury forms. Mercury capture in scrubber slurry is highly dependent on its form. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, whereas elemental mercury is not and passes through the scrubber to the stack. The objectives of this project are to determine whether scrubber solutions convert either form of mercury to another and whether mercury capture is affected by pH.

  2. Task 2.8 - Mercury speciation and capture in scrubber solutions: Semiannual report, January 1-June 30, 1996

    SciTech Connect (OSTI)

    Ness, S.R.

    1997-09-01

    Investigations into mercury control across conventional scrubber systems have precipitated questions concerning (1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal-fired boilers and subsequently, (2) the effects of scrubber slurry composition and pH on the mercury forms. Mercury capture in scrubber slurry is highly dependent on its own form. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, whereas elemental mercury is not and passes through the scrubber to the stack. The objectives of this project are to determine whether scrubber solutions convert either form of mercury to another and whether mercury capture is affected by pH.

  3. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  4. Controlling the spontaneous emission rate of monolayer MoS[subscript 2] in a photonic crystal nanocavity

    E-Print Network [OSTI]

    Gan, Xuetao

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS[subscript 2]) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping ...

  5. Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls

    E-Print Network [OSTI]

    Lang, Kevin R., 1980-

    2006-01-01

    An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

  6. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    SciTech Connect (OSTI)

    Michael Jones; Brandon Pavlish; Stephen Sollom; John Kay

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. The Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.

  7. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    SciTech Connect (OSTI)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.

  8. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  9. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  10. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  11. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  12. Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

    SciTech Connect (OSTI)

    Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

    2005-11-01

    A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

  13. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  14. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect (OSTI)

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  15. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission

    E-Print Network [OSTI]

    Elliott, Emily M.

    burners limit the availability of oxygen to nitrogen in the fuel and have been employed in many EGU boilers. However, low NOx burners do not necessarily reduce NOx emissions sufficiently to meet stringent

  16. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2007-02-01

    The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly reports 1 through 15. Results for each of the tasks in Phase 1 are presented.

  17. Milestone Project Demonstrates Innovative Mercury Emissions Reduction

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.doc Microsoft WordBlends Mid-LevelDomesticB O

  18. Tillage and Field Scale Controls on Greenhouse Gas Emissions Juhwan Lee,* Johan Six, Amy P. King, Chris van Kessel, and Dennis E. Rolston

    E-Print Network [OSTI]

    van Kessel, Chris

    -scale controls on GHG emissions. AGRICULTURE is an important anthropogenic source of atmospheric CO2, N2O, and CH by CO2 emissions from agriculture is currently considered minor compared to other anthropogenic sources and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more

  19. Controlling the emission properties of multimode vertical-cavity surface-emitting lasers via polarization-and frequency-selective feedback

    E-Print Network [OSTI]

    Fischer, Ingo

    Controlling the emission properties of multimode vertical-cavity surface-emitting lasers via scheme to control the emission properties of multimode vertical-cavity surface-emitting lasers. A joint measurements and numerical simulations also reveal that the emission and polarization dynamics can

  20. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  1. Venturi/vortex scrubber technology for controlling/recycling chromium electroplating emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Holden, B.; Helgeson, N.; Fraser, M.E.

    1999-03-01

    Chromium electroplating is an essential DOD process. Chromium has a combination of qualities that are very difficult to substitute, however, the process itself is inefficient, resulting in the production of byproduct gases that rise and create a mist of chromic acid (strongly regulated as an air pollutant) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution`s surface. This project demonstrated the Venturi/Vortex Scrubber Technology at the Marine Corps Logistics Base (MCLB) in Albany, GA. This study concluded that the PLRS was able to reduce the flow rate of the current conventional ventilation system at the one tank chromium electroplating facility at MCLB Albany by 63 percent. If new ventilation and control equipment were to be installed at MCLB Albany, this system would offer a 25 percent reduction in capital costs and a 48 percent reduction in annual costs, representing 36 percent in life-cycle cost savings. This study also presented a strong case for the use of Spark-Induced Breakdown Spectroscopy for monitoring real-time chromium emissions above a chromium electroplating tank.

  2. Mercury Strategic Plan Outfall 200 Mercury Treatment Facility

    Office of Environmental Management (EM)

    Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

  3. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect (OSTI)

    Southworth, George R [ORNL; Greeley Jr, Mark Stephen [ORNL; Peterson, Mark J [ORNL; Lowe, Kenneth Alan [ORNL; Ketelle, Richard H [ORNL; Floyd, Stephanie B [ORNL

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.

  4. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  5. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  6. Abatement of Air Pollution: Control of Particulate Matter and Visible Emissions (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set emissions opacity standards for stationary sources with opacity continuous emissions monitoring equipment, stationary sources without such equipment, and mobile sources. The...

  7. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  8. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  9. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  10. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  11. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  12. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  13. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  14. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  15. DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES

    SciTech Connect (OSTI)

    Leonard Levin

    2006-06-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

  16. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  17. The potential role of nuclear power in controlling CO sub 2 emissions

    SciTech Connect (OSTI)

    Fulkerson, W.; Jones, J.E.; Delene, J.G.; Perry, A.M.; Cantor, R.A.

    1990-01-01

    Nuclear power currently reduces CO{sub 2} emissions from fossil fuel burning worldwide by about 8% (0.4 Gt(C)/yr). It can continue to play an important role only if it can grow substantially in the next 50 years. For such growth to occur public confidence will need to improve throughout the world. That might happen if (a) other non-fossil alternatives are inadequate to meet electricity demand growth, (b) the risks to society from global warming are perceived to be very high, (c) nuclear technology improves substantially, and (d) an international institutional setting is devised to manage the nuclear enterprise so that the technology is available to all nations while catastrophic accidents and proliferation of nuclear weapon capabilities are avoided. It seems feasible that the necessary technological and institutional advances can be devised and tested over the next 20 years. It is also plausible that the direct costs of electricity produced by the system would be in the range of 50-100 mills/kWhr (1990 dollars) delivered to the grid. In other words, the direct costs of nuclear power should not be greater than they are today. Achieving such an outcome will require aggressive technical and institutional RD D performed in a cooperative international setting. If rapid growth of nuclear power can begin again in 15-20 years it could supply 30-50% of world electricity in 50 years and cut CO{sub 2} emission rates by up to 2.5 Gt(C)/yr. This would be a substantial contribution to controlling greenhouse gases, but it is not sufficient. Improved efficiency and various renewable energy sources must also grow rapidly if CO{sub 2} emission rates from electricity generation are to be reduced from the current value of about 2 Gt(C)/yr. 41 refs., 4 figs., 3 tabs.

  18. Control of emissions from cofiring of coal and RDF. Final report

    SciTech Connect (OSTI)

    Raghunathan, K.; Bruce, K.R.

    1997-09-01

    Research has been conducted toward developing technology for co-firing of coal with municipal solid waste (MSW) in order to reduce emissions of chlorinated organic compounds, particularly polychlorinated dibenzo-p-dioxins and furans (PCDDs and PCDFs). Previous bench- and pilot-scale research has shown that presence of SO{sub 2} can inhibit the PCDD and PCDF formation, and suggested co-firing high-sulfur coal with refuse derived fuel (RDF) to reduce the emissions. The objective of this research is to identify the effect of process and co-firing options in reducing PCDD and PCDF yield from waste combustion. Two types of municipal waste based fuels were used: a fluff refuse-derived fuel (simply referred to as RDF) and a densified refuse derived fuel (dRDF). The coal used was high-sulfur Illinois No. 6 coal. Experiments were conducted in US EPA`s recently constructed Multi-Fuel Combustor (MFC), a state-of-the-art facility with fuel handling and combustion release rates representative of large field units. The MFC was fired, at varying rates, with RDF/dRDF and coal, and sampled for PCDD and PCDF. Tests were conducted over a range of process variables such as lime injection, HCl concentration, flue gas temperature, quench, and residence time so that the results are applicable to a wide variety of waste combustors. The data are used for developing a comprehensive statistical model for PCDD and PCDF formation and control.

  19. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  1. VALIDATION OF MERCURY CEMS WHEN COFIRING BIOMASS AT MADISON ELECTRIC'S BLOUNT STATION

    SciTech Connect (OSTI)

    Dennis L. Laudal; Jeffrey S. Thompson

    2000-09-30

    The state of Wisconsin has been concerned about mercury deposition into its lakes and streams and has been evaluating strategies to reduce mercury emissions. As part of this effort, the Blount Station, owned and operated by Madison Gas and Electric Company (MGE), has undergone a project to evaluate the effects and potential mercury emissions reduction of cofiring preconsumer waste. MGE owns and operates the Blount Generating Station located in central Madison, Wisconsin. At present, Blount operates with nine boilers and six turbine generators. The two largest boilers at Blount produce 400,000 pounds of steam per hour at 950 F and 1250 psi. These larger boilers, MGE's Boiler Nos. 8 and 9, have the capability of cofiring both paper and plastic. MGE's Blount Generating Station was one of the first electric generating stations in the United States to retrofit its existing steam boilers to successfully burn refuse-derived fuel and other alternate fuels including waste paper and wood. It is the No. 9 boiler that was the focus of this project to determine the effect of cofiring PDF (plastic- and paper-derived fuel) on speciated mercury emissions. The project was laid out to compare four different fuel combinations: (1) coal feed only, (2) coal with plastic, (3) coal with paper, and (4) coal with paper and plastic. The design was to run the boiler for 2 days at each condition, thus allowing four samples to be taken at each condition. This plan was aimed at getting at least three representative samples at each condition and allowed for difficulties in sampling and boiler operation. The following objectives were accomplished as part of the project to determine the effects of cofiring PDF on mercury emissions and speciation at MGE Blount Station: Successfully completed all of the mercury sampling for each of the four boiler/PDF conditions using the Ontario Hydro (OH) mercury speciation method; Determined mercury concentrations at the stack location using mercury continuous emission monitors (CEMs) for each of the four boiler/PDF conditions; Calculated the overall mercury mass balance for each of the runs; Determined chlorine concentrations at the stack location using EPA Method 26A for each of the four boiler/PDF conditions; and Calculated speciated mercury flow to determine removal and/or transformations before its exiting the unit at the stack for each of the four boiler/PDF conditions.

  2. Method for control of NOx emission from combustors using fuel dilution

    DOE Patents [OSTI]

    Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  3. The fate of mercury in coal utilization byproducts

    SciTech Connect (OSTI)

    William Aljoe; Thomas Feeley; James Murphy; Lynn Brickett [US Department of Energy's National Energy Technology Laboratory (DOE/NETL), Pittsburgh, PA (US)

    2005-05-01

    The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wet FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.

  4. Direct Measurement of Mercury Reactions In Coal Power Plant Plumes

    SciTech Connect (OSTI)

    Leonard Levin

    2005-12-31

    Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

  5. Development of a purpose built landfill system for the control of methane emissions from municipal solid waste

    E-Print Network [OSTI]

    Columbia University

    ) has been attempted for munici- pal solid waste management. Methane mitigation and energy generating solid waste Sudhakar Yedla*, Jyoti K. Parikh Indira Gandhi Institute of Development Research, Vaidya (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW

  6. Enhanced response of an oligonucleotide-based biosensor to environmental mercury

    SciTech Connect (OSTI)

    Edenborn, H.M.

    2006-10-01

    One environmental pollutant of particular relevance to the coal-generated power industry is mercury. Power plants in the U.S., led by Texas, Ohio, Pennsylvania, Indiana, and Alabama, collectively emitted over 90,000 pounds of mercury into the air in 2003. Calls for increased mercury monitoring activities have come from many groups concerned with environmental contamination and mercury bioconcentration in fish. Additionally, the benefits of improvements in the reduction of mercury emissions from existing power plants cannot be seriously evaluated without extensive monitoring of the environment. Low in situ mercury concentrations and the expense of traditional laboratory analyses currently limit such routine and effective monitoring. Microbial biosensors sensitive to mercury have been developed that quantitatively produce light in response to the amount of mercury (II) entering the cells. However, these sensors are typically difficult to prepare, can have long lag times between initial exposure and subsequent light emission, and are difficult to use in the field. Whole cell biosensors using living bacteria also require attention to the growth requirements of the cells, as well as complications brought on by the presence of other toxic compounds in addition to mercury. A “molecular beacon” sensor for mercury (II) reported by Ono and Togashi (Angew. Chem. Int. Ed. 2004, 43:4300-4302.) was modified to enhance its sensitivity and fluorescence response. The basic detection method involves the selective binding of mercury ions to thymine-thymine (T-T) base pairs in DNA duplexes. An oligonucleotide sequence in the sensor changes its conformation upon binding with mercury ions, and causes a fluorophore at one end of the oligonucleotide sequence to come in proximity with a quencher molecule attached to the other end. Enhanced fluorescence resonance energy transfer (FRET) results in a decrease in the intensity of the fluorescence spectrum. The use of fluorescein as a harvester fluorophore and alternative emitter fluorophores dramatically increased the sensitivity of the sensor. The fluorescence spectrum generated by this sensor is analyzed using a field spectrofluorometer, and the analytical approach may be useful in environmental mercury monitoring activities.

  7. Electric Power Research Institute: Environmental Control Technology Center.

    SciTech Connect (OSTI)

    NONE

    1997-07-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified. The 1990 Clean Air Act Amendments have required that the Environmental Protection Agency (EPA) assess the health risks and environmental effects associated with air toxic emissions (primarily mercury) from fossil-fuel fired utility boilers. EPRI has sponsored research on environmental mercury since 1983 to determine the factors that may influence human health, and to determine the role of electric power generating stations in contributing to those factors. Over the last four years, EPRI`s Environmental Control Technology Center (ECTC) has conducted EPRI and DOE sponsored testing to develop and demonstrate appropriate measurement methods and control technologies for power plant atmospheric mercury emissions. Building upon the experience and expertise of the EPRI ECTC, a test program was initiated at the Center in July to further evaluate dry sorbent-based injection technologies upstream of a cold-side ESP for mercury control, and to determine the effects of such sorbents on ESP performance. The results from this program will be compared to the results from previous DOE/EPRI demonstrations, and to other ongoing programs. The primary objectives of this test program are to: (1) Determine the levels of mercury removal achievable by dry sorbent injection upstream of an electrostatic precipitator (ESP). The process parameters to be investigated include sorbent residence time, sorbent type, sorbent size, sorbent loading, and flue gas temperature. (2) Determine the impact of sorbent injection on ESP performance.

  8. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOE Patents [OSTI]

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  9. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  10. Vehicle Emissions Review- 2012

    Broader source: Energy.gov [DOE]

    Reviews vehicle emission control highlighting representative studies that illustrate the state-of-the-art

  11. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Alex J. Berry; Thomas K. Gale

    2005-09-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

  12. Semi-continuous detection of mercury in gases

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  13. Long-Term Management and Storage of Elemental Mercury | Department...

    Energy Savers [EERE]

    Mercury Long-Term Management and Storage of Elemental Mercury In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury...

  14. Integrated dry NO[sub x]/SO[sub 2] emissions control system

    SciTech Connect (OSTI)

    Not Available

    1992-09-29

    This Quarterly Report summarizes the Integrated Dry NO[sub x]/SO[sub 2] Emissions Control System Project (DOE Agreement No. DE-FC22-91PC90550) progress for the months of April, May, and June 1992. Public Service Company of Colorado ( PSCC'') activities focused on construction of all systems for the project. The unit was off-line for installation of the project equipment from March 20, 1992 through May 30, 1992. A short summary of the items completed are listed. Construction activities centered on boiler modifications to install the new burners and the overfire air system. A major milestone was achieved when the boiler was successfully hydrotested on April 18, 1992. Gas burners were fired on May 27, 1992 and the unit was operating on coal May 30, 1992 at 5OMWe. Startup went was very smooth. with only minor modifications required. Significant progress was made on construction of the dry sorbent injection system this quarter. All equipment has been set and most piping is complete. All work on the humidification system, other than painting and insulation, was completed.

  15. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  16. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  17. Mercury in the Anthropocene Ocean

    E-Print Network [OSTI]

    Lamborg, Carl

    The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

  18. Discovery of the Mercury Isotopes

    E-Print Network [OSTI]

    D. Meierfrankenfeld; M. Thoennessen

    2010-09-08

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  19. Clean Air Mercury Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

  20. Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  1. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01

    offshore oil production. Geology 27:1047–1050 Shindell DT,between the subsurface geology and gas-phase (methane)emission distribution. Geology and seeps Vertical migration

  2. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions.

  3. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  4. Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2013-01-01

    Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

  5. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  6. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman

    2004-01-01

    During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.

  7. Nanophotonic control of circular dipole emission: toward a scalable solid-state to flying-qubits interface

    E-Print Network [OSTI]

    B. le Feber; N. Rotenberg; L. Kuipers

    2014-11-25

    Controlling photon emission by single quantum emitters with nanostructures is crucial for scalable on-chip quantum information processing. Nowadays nanoresonators can affect the lifetime of emitters and ultimately induce strong coupling between the emitters and the light field, while nanoantennas can control the directionality of the emission. Expanding this control to the manipulation of the emission of orbital angular momentum-changing transitions would enable coupling between long-lived solid-state qubits and flying qubits. As these transitions are associated with circular rather than linear dipoles, such control requires detailed knowledge of the spatially dependent interaction of a complex dipole with highly structured optical eigenstates containing local helicity. Using a classical analogue, we experimentally map the coupling of circular dipoles to photonic modes in a model structure, a photonic crystal waveguide. We show that depending on the local helicity the dipoles can be made to couple to modes either propagating to the left or to the right. The maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the coupling of spin to photonic pathway with near-unity (0.8 $\\pm$ 0.1) efficiency.

  8. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  9. Nonimaging Optical Gain in Luminescent Concentration through Photonic Control of Emission Etendue

    E-Print Network [OSTI]

    Rogers, John A.

    and show that it delivers three times more luminescent power to an opposing GaAs photovoltaic cell when their concentration ratio because their emission is angularly isotropic. Here, we use a luminescent thin film bilayer: luminescence, solar concentration, nonimaging optics, microcavity, spontaneous emission, photovoltaics

  10. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  11. State Air Emission Regulations That Affect Electric Power Producers (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  12. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

  13. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  14. Mercuty Control With The Advanced Hybrid Particulate Collector

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

    2003-03-31

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  15. Mercury switch with non-wettable electrodes

    DOE Patents [OSTI]

    Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

    1987-01-01

    A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

  16. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

    1995-12-01

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  17. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  18. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman; Allen J. Adriani

    2004-01-01

    For the period of the 8th reporting period high-impact control technologies were identified during the meeting at Cooper in Oklahoma City. The technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas where engine controls and ignition systems, but still included were other alternatives to reduce emissions. The most exhilarating item for this quarter was when Ajax engine was delivered to the test bed at the NGML.

  19. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup Feature Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's...

  20. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01

    Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

  1. Air Pollution Control Regulations: No. 6- Continuous Emissions Monitors and Opacity Monitors (Rhode Island)

    Broader source: Energy.gov [DOE]

    Stationary sources, including fossil fuel fired steam or hot water generating units, may be required to install and operate a continuous emissions monitoring system equipped with an opacity monitor...

  2. Air Pollution Control Regulations: No. 3- Particulate Emissions from Industrial Processes (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations limit particulate emissions into the atmosphere by process weight per hour, where process weight is the total weight of all materials introduced into any specific process which...

  3. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support of HCCI Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Ground-level ozone influenced by circadian control of isoprene emissions

    E-Print Network [OSTI]

    2011-01-01

    S. The relation between ozone, NO x and hydrocarbons inAmerican emissions on surface ozone in the US. Atmos. Chem.10.1038/NGEO1271 Ground-level ozone influenced by circadian

  5. Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas

    E-Print Network [OSTI]

    Nam, Junsang

    2007-01-01

    High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

  6. Regulatory Control of Vehicle and Power Plant Emissions: How Effective and at What Cost?

    E-Print Network [OSTI]

    Paltsev, S.

    Passenger vehicles and power plants are major sources of greenhouse gas emissions. While economic analyses generally indicate that a broader market-based approach to greenhouse gas reduction would be less costly and more ...

  7. Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Nitrogen oxides emission control through reburning with biomass in coal-fired power plants 

    E-Print Network [OSTI]

    Arumugam, Senthilvasan

    2005-02-17

    Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning ...

  9. Integrated dry NO{sub x}/SO{sub 2} emissions control system. Final report, Volume 1: Public design

    SciTech Connect (OSTI)

    Hunt, T.; Hanley, T.J.

    1997-11-01

    The U.S. Department of Energy (DOE)/Pittsburgh Energy Technology Center (PETC) and the Public Services Company of Colorado (PSCo) signed the cooperative agreement for the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System in March 1991. This project integrates various combinations of five existing and emerging technologies onto a 100 MWe, down-fired, load-following unit that burns pulverized coal. The project is expected to achieve up to 70% reductions in both oxides of nitrogen (NO{sub x}) and sulfur dioxide (SO{sub 2}) emissions. Various combinations of low-NO{sub x} burners (LNBs), overfire air (OFA) ports, selective non-catalytic reduction (SNCR), dry sorbent injection (DSI) using both calcium- and sodium-based reagents, and flue-gas humidification are expected to integrate synergistically and control both NO{sub x} and SO{sub 2} emissions better than if each technology were used alone. For instance, ammonia emissions from the SNCR system are expected to reduce NO{sub 2} emissions and allow the DSI system (sodium-based reagents) to achieve higher removals of SO{sub 2}. Unlike tangentially or wall-fired units, down-fired require substantial modification to their pressure parts to retrofit LNBs and OFA ports, substantially increasing the cost of retrofit. Conversely, the retrofitting of SNCR, DSI, or humidification systems does not require any major boiler modifications and are easily retrofitted to all boiler types. However, existing furnace geometry and flue-gas temperatures can limit their placement and effectiveness. In particular, SNCR requires injecting the SNCR chemicals into the furnace where the temperature is within a very narrow temperature range.

  10. Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China

    SciTech Connect (OSTI)

    Ni, Wenqing [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Chen, Yaowen [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China)] [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China); Huang, Yue; Wang, Xiaoling [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Zhang, Gairong [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China)] [Central Laboratory of Shantou University, Shantou 515063, Guangdong (China); Luo, Jiayi [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China); Wu, Kusheng, E-mail: kswu@stu.edu.cn [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)] [Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong (China)

    2014-01-15

    Objective: Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. Methods: A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteers were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Results: Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18–3.98 ?g/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12–1.63 ?g/g). We also observed a higher over-limit ratio (>1 ?g/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (?=0.299, P<0.001), and frequency of shellfish intake (?=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (?=?0.190, P=0.015) and whether house also served as e-waste workshop (?=?0.278, P=0.001). Conclusions: This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. -- Highlights: • Mercury levels in hair samples from Guiyu and risk factors were assessed. • The recruitments from Guiyu were exposed to high levels of mercury. • Primitive e-waste recycling resulted in high mercury exposure of local people.

  11. REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!

    E-Print Network [OSTI]

    presents a hazard for faculty, staff, and students in laboratory areas? Mercury also presents a hazard mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other generating hazardous waste from spill clean-up. · Mercury is volatile at room temperature with vapors

  12. Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury

    E-Print Network [OSTI]

    activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine and climate projections; critically and quantitatively analyze environmental management and policy proposals mercury research. Global Budget of Mercury Prior to the onset of human industrial activities, the amount

  13. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01

    out that EPA used an emissions trading program to controlsuggested that an emissions trading system could qualify asTO MANAGE LIFECYCLE GHG emissions trading system would also

  14. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  15. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  16. Catalyst Additives to Enhance Mercury Oxidation and Capture

    SciTech Connect (OSTI)

    Jared W. Cannon; Thomas K. Gale

    2005-06-30

    Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

  17. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  18. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  19. Controlling spontaneous emission of a two-level atom by hyperbolic metamaterials

    E-Print Network [OSTI]

    Zheng Liu; Wei Li; Xunya Jiang

    2012-03-03

    Within the frame of quantum optics we analyze the properties of spontaneous emission of two-level atom in media with indefinite permittivity tensor where the geometry of the dispersion relation is characterized by an ellipsoid or a hyperboloid(hyperbolic medium). The decay rate is explicitly given with the orientation of the dipole transition matrix element taken into account. It indicates that for the ellipsoid case the intensity of the photons coupled into different modes can be tuned by changing the direction of the matrix element and for the hyperboloid case it is found that spontaneous emission in hyperbolic medium can be dramatically enhanced compared to the dielectric background. Moreover, spontaneous emission exhibit the strong directivity and get the maximum in the asymptote direction.

  20. Predictive Modeling of Mercury Speciation in Combustion Flue Gases Using GMDH-Based Abductive Networks

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    and boiler operating conditions. Prediction performance compares favourably with neural network models for future work to further improve performance. Index Terms: Mercury speciation, Flue gases, Boiler emissions activities are coal-fired electric utility boilers, where speciation depends on the operating conditions

  1. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  2. Control technology of vinyl chloride in EDC-VCM and PVC plants at main source points and fugitive emissions 

    E-Print Network [OSTI]

    Parra, Dario Antonio

    1983-01-01

    of the great quantities of dilute gas in EDC-VCN and PVC plants, the combustion system cannot be self-supported and therefore additional fuel is necessary, resulting in a waste of combustibles and heat. 3. Due to the flame, flares need to be located away...CONTROL TECHNOLOGY OF VINYL CHLORIDE IN EDC-VCM AND PVC PLANTS AT MAIN SOURCE POINTS AND FUGITIVE EMISSIONS A Thesis by DARIO ANTONIO PARRA Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements...

  3. The selection and maintenance of valves for the control of fugitive emissions

    SciTech Connect (OSTI)

    Dresch, C. (NIBCO Inc., Elkhart, IN (United States))

    1994-08-01

    The pulp and paper industry has long needed valves that (a) have extremely low stem leakage when they are new and (b) need little or no maintenance to retain that low leakage over their service life. The EPA fugitive emission regulations provide additional impetus for the pulp and paper industry to buy such valves and for the valve and packing industry to produce such valves. Even if particular operations are not covered by the fugitive emissions regulations, it is--and always has been--in a mill's best interest to have valves whose stems don't leak and need little or no maintenance to prevent that leakage. The paper gives some recommendations on how to meet that objective: selection the right packing materials; apply the right amount of stress to the packing; install the packing correctly; and use rotary valves where practical.

  4. Potentiality of small DI diesel engines under consideration of emissions and noise control

    SciTech Connect (OSTI)

    Sugihara, K.; Matusi, Y.; Saegusa, S.

    1985-01-01

    The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noise levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 db (a) higher than those of the IDI engine. It was suggested from these results that in those countries which have stringent emission and noise regulations several years would be required to introduce small, high speed DI diesel engines for passenger cars to meet with these regulations.

  5. Mercury exposure from interior latex paint

    SciTech Connect (OSTI)

    Agocs, M.M.; Etzel, R.A.; Parrish, R.G.; Paschal, D.C.; Campagna, P.R.; Cohen, D.S.; Kilbourne, E.M.; Hesse, J.L. )

    1990-10-18

    Many paint companies have used phenylmercuric acetate as a preservative to prolong the shelf life of interior latex paint. In August 1989, acrodynia, a form of mercury poisoning, occurred in a child exposed to paint fumes in a home recently painted with a brand containing 4.7 mmol of mercury per liter (at that time the Environmental Protection Agency's recommended limit was 1.5 mmol or less per liter). To determine whether the recent use of that brand of paint containing phenylmercuric acetate was associated with elevated indoor-air and urinary mercury concentrations, we studied 74 exposed persons living in 19 homes recently painted with the brand and 28 unexposed persons living in 10 homes not recently painted with paint containing mercury. The paint samples from the homes of exposed persons contained a median of 3.8 mmol of mercury per liter, and air samples from the homes had a median mercury content of 10.0 nmol per cubic meter (range, less than 0.5 to 49.9). No mercury was detected in paint or air samples from the homes of unexposed persons. The median urinary mercury concentration was higher in the exposed persons (4.7 nmol of mercury per millimole of creatinine; range, 1.4 to 66.5) than in the unexposed persons (1.1 nmol per millimole; range, 0.02 to 3.9; P less than 0.001). Urinary mercury concentrations within the range that we found in exposed persons have been associated with symptomatic mercury poisoning. We found that potentially hazardous exposure to mercury had occurred among persons whose homes were painted with a brand of paint containing mercury at concentrations approximately 2 1/2 times the Environmental Protection Agency's recommended limit.

  6. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content

    SciTech Connect (OSTI)

    Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R.

    2007-01-31

    The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of different characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.

  7. Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

  8. Compliance Costs, Regulation, and Environmental Performance: Controlling Truck Emissions in the United States

    E-Print Network [OSTI]

    Thornton, Dorothy; Kagan, Robert A.; Gunningham, Neil

    2008-01-01

    maintenance • Older fleet Less available capital*, more incentive • Better logistics (maintenance More Expensive Diesel Fuel • Older fleet (higher costs, Incentive for fuel cost controls** • Better logistics (

  9. Control of NO/sub x/ emissions in gas engines using pre-stratified charge - Applications and field experience

    SciTech Connect (OSTI)

    Tice, J.K.; Nalim, M.R.

    1988-01-01

    Since 1983, development of the Pre-Stratified Charge (PSC) means of NO/sub x/ control has focused upon gas fueled industrial engines following a decade of development in automobile-type liquid fueled engines. The early test results indicated exceptional potential and wre previously reported. In the two years following the initial tests of PSC on in-field gas engines, over 140 units have been installed in a wide range of applications including compression, generation, and pumping service. Importantly, the applications have demonstrated PSC effectiveness and longevity where other means of emissions control are either not applicable or ineffective. These include higher digester gas, landfill gas, and sour natural gas (containing substantial H/sub 2/S). This work is concerned with the Field experience in general, but with emphasis on particular applications and specific results.

  10. Kinetics of Mercury(II) Adsorption and Desorption on Soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

  11. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  12. State Regulations on Airborne Emissions: Update Through 2006 (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In May 2005, the Environmental Protection Agency published two final rules aimed at reducing emissions from coal-fired power plants. The Clean Air Interstate Rule (CAIR) requires 28 states and the District of Columbia to reduce emissions of SO2 and/or NOx. The Clean Air Mercury Rule (CAMR) requires the states to reduce emissions of mercury from new and existing coal-fired plants.

  13. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    SciTech Connect (OSTI)

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  14. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  15. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  16. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  17. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  18. Mercury audit at Rocky Mountain Arsenal

    SciTech Connect (OSTI)

    Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

    1994-02-01

    This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

  19. Mercury Effects, Sources and Control Measures

    E-Print Network [OSTI]

    ........................................................................................................................................................................................................3 Forest fires

  20. An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers

    E-Print Network [OSTI]

    Rubin, Jonathan D.; Kling, Catherine

    1993-01-01

    System for Light-Duty Vehicle Emission Control," Ph.D.the same number of vehicles and emissions in each category.estimates for vehicle emissions, unpublished manuscript,

  1. ESTABLISHING THE LINK BETWEEN AMMONIA EMISSION CONTROL AND MEASUREMENTS OF REDUCED NITROGEN

    E-Print Network [OSTI]

    Aneja, Viney P.

    , Slovakia; 10 Swiss Agency for the Environment, Forest and Landscape (SAEFL), Air Pollution Control Division of Agroecology and Agriculture (FAL), Bern-Liebefeld, Switzerland; 14 Energie Centrum Nederland (ECN), Petten # Present address: Danish Institute of Agricultural Sciences, Research Centre Foulum, P.O. Box 50, DK-8830

  2. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

  3. Interaction of toluene with two-color asymmetric laser fields: Controlling the directional emission of molecular hydrogen fragments

    SciTech Connect (OSTI)

    Kaziannis, S.; Kotsina, N.; Kosmidis, C.

    2014-09-14

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H{sub 2}{sup +} and H{sub 3}{sup +} fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH{sub 3}- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ?/2? field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H{sub 2}{sup +}, H{sub 3}{sup +} species.

  4. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  5. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S.

    E-Print Network [OSTI]

    cross-elasticities of control. We set a range of NOx and SO2 targets, and record the ancillary reduction the ancillary reduction in NOx and SO2 to compute NOx,CO2 and SO2,CO2 . For CO2,NOx and CO2,SO2 we find low in CO2 to calculate the percentage change in CO2 divided by the percentage change in NOx (SO2) denoted

  6. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  7. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  8. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  9. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Controls by light, temperature and stomatal conductance

    SciTech Connect (OSTI)

    Harley, P.; Eller, Allyson; Guenther, Alex B.; Monson, Russell K.

    2014-07-14

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in ?-3-carene.

  10. Mercury Isotope Fractionation by Environmental Transport and Transformation Processes

    E-Print Network [OSTI]

    Koster van Groos, Paul Gijsbert

    2011-01-01

    in contaminated soils: Mercury pyrolysis versus sequentialin soils and sediments–acid digestion versus pyrolysis.

  11. Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta

    E-Print Network [OSTI]

    McDonald, Kirk

    in mercury pool with 24GeV beam How much of the beam energy is absorbed in the beam dump? #12;Agitation `eruption' of mercury pool surface due to 24GeV proton beam Autodyne simulation Splash following pulse of 20 pool surface due to impinging mercury jet 2 phase CFX model mercury jet velocity = 20m/s Angle

  12. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    . A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool. · Providing a mercury pool that serves as a dump for both the jet and the proton beam remaining after target

  13. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  14. The regenerable trap oxidizer-An emission control technique for diesel engines

    SciTech Connect (OSTI)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.; Loose, G.

    1985-01-01

    Daimler-Benz made an early start with the development of systems for the aftertreatment of the exhaust gas emitted by diesel engines. The more important limiting conditions could best be met by the provision of a ceramic, selfcleaning trap oxidizer (TO). In such filters, self-regeneration is effected continuously while driving without any external control. Either partial or complete regeneration is effected, depending on the temperature, oxygen content and rate of flow of the exhaust gas, the amount of soot in the filter and the period for which a given operating condition is maintained. Such a trap oxidizer was developed for a 3.0 liter turbocharged diesel engine to the extent necessary for series production and has been fitted to type 300 SD and 300 D turbocharged diesel of model year 1985 in California.

  15. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01

    Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

  16. Air Pollution Emissions and Abatement (Minnesota) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Regulations A person who controls the source of an emission must notify the Pollution Control Agency immediately of excessive or abnormal unpermitted emissions, and...

  17. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    SciTech Connect (OSTI)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L. [Institute for Clean Energy Technology (ICET), Mississippi State University, 205 Research Blvd, Starkville, MS 39759 (United States)

    2007-07-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl{sub 2}, and Hg(NO{sub 3}){sub 2}, were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots (<65 mg/kg), even though root mercury accumulation is significant (maximum 2298 mg/kg). Consequently, this plant species may not be suitable for mercury phyto-remediation. Other plant species, such as Indian mustard (Brassica juncea), a well-studied metal accumulator, exhibited severe chlorosis symptoms during some experiments. Among all the plant species studied, Chinese brake fern (Pteris vittata) accumulated significant amount of mercury in both roots and shoots and hence may be considered as a potential candidate for mercury phyto-extraction. During one experiment, Chinese brake ferns accumulated 540 mg/kg and 1469 mg/kg in shoots after 18 days of growing in soils treated with 500 parts-per-million (ppm) and 1000 ppm HgCl{sub 2} powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl{sub 2}, or Hg(NO{sub 3}){sub 2}. We have found that up to hundreds of ppm mercury can be accumulated in the roots of Indian mustard plants grown with soil contaminated by mercury sulfide; HgS is assumed to be the most stable and also the predominant mercury form in flood plain soils. We have also started to investigate different mercury uptake mechanisms, such as root uptake of soil contaminant and foliar mercury accumulation from ambient air. We have observed mercury translocation from roots to shoot for Chinese fern and two Indian mustard varieties. (authors)

  18. Research, Development, and Technology Licensing Opportunities

    E-Print Network [OSTI]

    ................................................................................................................................................................... 9 SYNTHESIS OF CARBON NITRIDES AND LITHIUM CYANAMIDE FROM CARBON DIOXIDE ..................................................................................................................................................................... 7 CONTROLLING MERCURY EMISSIONS

  19. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  20. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    SciTech Connect (OSTI)

    Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

  1. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  2. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  3. Innovative Mercury Treatment Benefits Stream, Fish

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – A team of scientists is working at the Savannah River Site (SRS) to evaluate the impact of an innovative, inexpensive treatment system that removes mercury from water.

  4. Gold Mining Impacts on Food Chain Mercury in Northwestern Sierra Nevada Streams

    E-Print Network [OSTI]

    Slotton, Darell G; Ayers, Shaun M; Reuter, John E; Goldman, Charles R

    1995-01-01

    food item mercury was considerably lower than corresponding stream invertebrate mercury, it was noted that terrestrial insects

  5. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  6. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

    Broader source: Energy.gov [DOE]

    Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization.

  7. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01

    Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

  8. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01

    associated with solar and wind energy occur prior to theemissions associated with wind energy as the lowest of anyenergy resource). 64. Wind energy emissions are also site

  9. Evaluating Mercury Concentrations in Midwest Fish in Relationship to Mercury Emission Sources

    E-Print Network [OSTI]

    Robichaud, Jeffery

    2008-12-19

    Project report submitted to the Engineering Management Program and the Faculty of the Graduate School of The University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. ______________________________ Tom... stream_size 208243 stream_content_type text/plain stream_name Robichaud, Jeffery EMGT Field Project.pdf.txt stream_source_info Robichaud, Jeffery EMGT Field Project.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset...

  10. Low Temperature Emission Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. ULTRA HIGH EFFICIENCY ESP DEVELOPMENT FOR AIR TOXICS CONTROL

    SciTech Connect (OSTI)

    David K. Anderson

    1999-11-01

    Because more than 90 percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESPs), retrofitable ESP technologies represent a logical approach towards achieving the Department of Energy's (DOE) goal of a major reduction in fine particulate and mercury emissions (air toxics) from coal based power systems. EPA's recent issuance of significantly tightened ambient air standards for particles smaller than 2.5 {micro}m (PM{sub 2.5}) creates a new urgency for developing cost-effective means to control fine particulate emissions. This challenge is compounded by the on-going switch in the utility industry to low-sulfur Powder River Basin (PRB) coals, that generate higher resistivity and difficult-to-collect fly ash. Particulate emissions can increase by a factor of ten when a utility switches to a low-sulfur coal. Numerous power plants are presently limited in operation by the inability of their ESPs to control opacity at high loads. In Phase I of this program, ABB investigated five technologies to improve the collection of fine particulate and trace metals in ESPs. These included: (1) flue-gas cooling, (2) flue-gas humidification, (3) pulsed energization, (4) wet ESP and precharger modules, and (5) sorbent injection for mercury control. Tests were conducted with an Eastern bituminous coal and a Powder River Basin sub-bituminous low-sulfur coal in an integrated pilot-scale combustor and ESP test facility. The impacts of the different retrofit technologies on ESP performance, individually and in combination, were evaluated indepth through advanced sampling and measurement techniques. In Phase II, the most promising concepts identified from Phase I testing, flue-gas cooling and humidification, pulsed energization, and sorbent injection at low flue-gas temperatures for mercury control, were integrated into a commercially oriented sub-scale system for field testing at Commonwealth Edison's Waukegan Unit No. 8. The main objective of the proposed Phase II testing was to determine longer term ESP performance and mercury capture improvements with the above enhancements for a range of low-sulfur coals currently fired by utilities. Unanticipated cost growth in readying the Pilot Plant for shipment and during slipstream construction at the utility host site resulted in the issuance of a preemptive stop work order from ABB until a detailed technical and budgetary review of the project could be completed. Four program recovery scenarios were developed and presented to the DOE. After careful review of these options, it was decided to terminate the program and although the Pilot Plant installation was essentially completed, no testing was performed. The Pilot Plant was subsequently decommissioned and the host site returned to its preprogram condition.

  12. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  13. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  14. VEE-0020- In the Matter of Mercury Fuel Service, Inc.

    Broader source: Energy.gov [DOE]

    On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

  15. Removal of mercury from coal via a microbial pretreatment process

    DOE Patents [OSTI]

    Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  16. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  17. Seismic effects of the Caloris basin impact, Mercury

    E-Print Network [OSTI]

    Lü, Jiangning

    2011-01-01

    Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

  18. Air Pollution Control Regulations: No. 7- Emission of Air Contaminants Detrimental to Person or Property (Rhode Island)

    Broader source: Energy.gov [DOE]

    No person shall emit any contaminant which either alone or in connection with other emissions, by reason of their concentration or duration, may be injurious to human, plant or animal life, or...

  19. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx

    Broader source: Energy.gov [DOE]

    Reports results from study of potential for using chemisorbing materials to temporally trap HC and NOx emissions during cold-start of HEVs and PHEVs over transient driving cycles

  1. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Urea/Ammonia Distribution Optimization in an SCR Emission Control System Through the Use of CFD Analysis

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  4. Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants 

    E-Print Network [OSTI]

    Schwartz, M. H.

    1979-01-01

    Over the past decade increasing concern over the potential environmental impact associated with the emissions of both gaseous and particulate pollutants has resulted in the promulgation of strict regulatory standards ...

  5. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-07-01

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

  6. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  7. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  8. MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER

    E-Print Network [OSTI]

    McDonald, Kirk

    angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable target module includes the interaction region and mercury pool inside a primary containment vessel flow loop: The interaction region inside the target module: Cross section of the mercury pool: Services

  9. Mercury in shallow Savannah River Plant soil

    SciTech Connect (OSTI)

    Carlton, W.H.; Price, V.; Cook, J.R.

    1988-10-01

    Soil concentrations of adsorbed mercury at 999 sites at the Savannah River Plant (SRP) were determined by Microseeps Limited of Indianola, PA. The sites were in and around the 643-C Burial Ground, at the Savannah River Swamp adjacent to TNX Area, and at a background area. The Burial Ground was chosen as a test site because of a history of disposal of radioactive mercury there prior to 1968. Extremely low traces of mercury have been detected in the water table beneath the Burial Ground. Although the mercury concentrations at the majority of these sites are at background levels, several areas appear to be anomalously high. In particular, an area of large magnitude anomaly was found in the northwest part of the Burial Ground. Three other single point anomalies and several other areas of more subtle but consistently high values were also found. Several sites with anomalous mercury levels were found in an area of the Savannah River flood plain adjacent to TNX Area.

  10. Emissions Technology Gives Company Clean Win as Energy Innovator

    Broader source: Energy.gov [DOE]

    Umpqua Energy produced an emission control system that can potentially reduce the emissions from vehicles by 90 percent.

  11. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect (OSTI)

    Daniel P. Connell

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  12. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  14. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  15. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  16. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  17. Users guide for the conversion of Navy paint-spray-booth particulate emission-control systems from wet to dry operation. Final report, January-September 1989

    SciTech Connect (OSTI)

    Ayer, J.; Tate, D.

    1990-03-01

    The report is a guide for converting U.S. Navy paint-spray-booth particulate emission control systems from wet to dry operation. The use of water curtains for air-pollution-control of paint-spray booths is considered a major source of water and solid-waste pollution from industrial painting operations. It is possible, however, to eliminate this water-pollution problem and significantly reduce the solid-waste load by converting the booth to utilize a dry-filter pollution-control system. The conversion, however, requires extensive planning prior to actual facility modification. The report describes requirements to facilitate the planning and preparation for conversion of typical spray booths. Although the report addresses modifications of Navy spray booths, the basic engineering requirements discussed apply also to other Department of Defense installations and to commercial industrial facilities.

  18. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    SciTech Connect (OSTI)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

  19. FY09 assessment of mercury reduction at SNL/NM.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  20. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a