Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Determination of mercury and organic mercury contents in Malaysian seafood  

Science Journals Connector (OSTI)

The contents of mercury and organic mercury in various types of seafood from various location in Malaysia were determined...Rastrelliger kanagurta), Spanish mackerel (Scomberomurus commersoni), shrimp (Peneaus sp...

S. A. Rahman; A. K. Wood; S. Sarmani…

1997-03-01T23:59:59.000Z

2

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect (OSTI)

Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

2014-01-15T23:59:59.000Z

3

Mercury and lead content in fuels: a literature review  

SciTech Connect (OSTI)

The scope of this report is to provide information on levels of mercury and lead in fuels entering the portland cement manufacturing process. Information was gathered from published literature and cement companies. Most information available for fuels was for coal, followed by information on tire-derived and waste-derived fuel. Limited information was available for petroleum coke and heavy oil. The majority of studies report the maximum levels of mercury in coal, tire-derived fuel, petroleum coke, and heavy oil to be under 1 ppm. Mercury in coal is likely to be associated with pyrite, or organically associated. The majority of studies report the maximum levels of lead in coal to be under 25 ppm, with higher levels in tire-derived and waste-derived fuel, and no information found for lead in petroleum coke and heavy oil fuels. Values provided in this report are concentration levels, mean values, and standard deviation (as available). 24 refs., 7 tabs., 2 figs.

Hills, L.

2006-07-01T23:59:59.000Z

4

Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological  

Open Energy Info (EERE)

Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Abstract Abstract unavailable. Authors D.E. White, M.E. Hinkle and I. Barnes Published U.S. Government Printing Office, 1970 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713 Citation D.E. White,M.E. Hinkle,I. Barnes. 1970. Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological Survey Professional Paper 713.

5

Annual Report 2002 5.2. A fast mercury jet entering a 20 T  

E-Print Network [OSTI]

of the camera system (~ 0.33 mm/pixel). The damping of disrupted jets, simulated with highly turbulent jets disruptions. With increasing field, the tip gets thinner. On injecting a mercury jet into a magnetic field://www.cap.bnl.gov/mumu/studyii/ [2] GHMFL, Annual Report 2001 [3] A. Fabich, High Power Proton Beam Shocks and Magnetohydrodynamics

McDonald, Kirk

6

Study on PCB 101, PCB 153, mercury and methyl mercury content in blue crab Portunus Pelagicus from Khuzestan shore (Persian Gulf)  

Science Journals Connector (OSTI)

Distribution of polychlorinated biphenyl (PCB 101, PCB 153), Mercury (Hg) and methyl mercury (MMHg) in muscle, gill and hepatopancreas of blue swimming crab Portunus segnis from Persian Gulf were investigated. In...

Abdolah Raeisi Sarasiab; Mehdi Hosseini

2014-06-01T23:59:59.000Z

7

Australian seafood compositional profiles: A pilot study. Vitamin D and mercury content  

Science Journals Connector (OSTI)

Abstract Given the scarcity of comprehensive nutritional data for Australia’s >400 commercially produced seafood species a pilot study was undertaken to collect and analyse 22 species of wild and aquaculture seafood in order to develop a model for future comprehensive surveys. The species analysed were: Atlantic salmon, Australian sardine, prawn (six species), barramundi, abalone (three species), blue sprat, burrowing blackfish, gummy shark, oyster (four species), ocean trout and yellowtail kingfish. The analyses undertaken in this pilot study were: moisture, protein, total fat, cholesterol, fatty acids, vitamin C, vitamins A and D, and 21 mineral elements (including total mercury and methyl mercury). The data reported here are for vitamin D and mercury only. Comprehensive data have already been published elsewhere. Issues identified that should be addressed prior to undertaking a more extensive and representative study of the remaining major edible commercial Australian seafood species include: choice of samples and nutrients for analysis, facilities for sample handling and storage, data management and scrutiny, and laboratory quality control.

David Padula; Heather Greenfield; Judy Cunningham; Andreas Kiermeier; Catherine McLeod

2014-01-01T23:59:59.000Z

8

Mercury Calibration System  

SciTech Connect (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

9

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp!  

E-Print Network [OSTI]

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp! ABSTRACT Mercury not significantly altered the mercury content of the high seas where most tunas are captured. Mercury compounds importance of these pathways in tunas is unknown. Mercury occurs in tuna principally in the form

10

Mercury Spills EHS Contact: Kate Lumley-Sapanski (kxl3@psu.edu) 814-865-6391  

E-Print Network [OSTI]

Mercury Spills EHS Contact: Kate Lumley-Sapanski (kxl3@psu.edu) 814-865-6391 Michael Burke (mjb7 Not Enter ­Mercury Spill" · Call EHS immediately When to Report: For large mercury spills (i.e. manometers) or spills in areas where loose mercury could be heated (>90 F degrees) and vapors released and call EHS

Maroncelli, Mark

11

Glutathione peroxidase response in tissues of rats fed diets containing fish protein concentrate prepared from shark flesh of known mercury and selenium contents  

SciTech Connect (OSTI)

Studies have been reported using experimental animals and synthetic diets containing selenium and mercury compounds to demonstrate detoxification of mercury by selenium. The mechanism of detoxification remains obscure. Most experiments have involved the use of high levels of both elements and relied on the observation of gross symptoms. The measurement of enzyme systems may be useful in detecting effects of mercury at a lower, subclinical level and in elucidating the biochemistry of mercury/selenium interactions. The activity of the selenoenzyme glutathione peroxidase (GSH-Px) in rats is dependent on dietary selenium and attempts have been made to use this enzyme as an indicator of mercury/selenium interactions. The research described in this paper was designed to investigate the effect of mercury, in the form and amounts which occur naturally in seafood, on the availability of selenium at levels approximating the nutritional requirement. In anticipation of mercury lowering the GSH-Px response a range of selenium concentrations was used, from nutritional deficiency to three times the nutritional requirement.

Thrower, S.J. (Commonwealth Scientific and Industrial Research Organization, Hobart, Australia); Andrewartha, K.A.

1981-01-01T23:59:59.000Z

12

COST OF MERCURY REMOVAL IN IGCC PLANTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

13

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Office RPD relative percent difference RSD relative standard deviation TIC tentatively identified compound DOERL-96-68, HASQARD Table of Contents, Rev. 3 Volume...

14

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS March 21, 2013 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ......

15

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assurancecontrol) 3. Responsible operations manager 4. Equipment custodian 5. Cognizant engineer. *Reviewapproval is mandatory. 18.3.3 Hostile Environment Plan Contents The plan...

16

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

17

Mercury Thermometer Replacement Alternatives Thermometer Description Non-Mercury Non-Mercury Non-Mercury  

E-Print Network [OSTI]

Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury Non-Mercury Range / Division VWR-Enviro-Safe® Fisherbrand® Brooklyn Thermometer Company Inc. Total/A #12;Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non

18

Apparatus for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

19

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

20

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lifestyle and Mercury Contamination of Amerindian Populations along the Beni River  

E-Print Network [OSTI]

1 Lifestyle and Mercury Contamination of Amerindian Populations along the Beni River (Lowland (Corresponding author), M.D., Ph.D. Abstract The objective of this paper was to document mercury contamination at the foothills of the Andes. Hair mercury content (H-Hg) served as a bioindicator of mercury contamination

Paris-Sud XI, Université de

22

MERCURY EXCESS  

Science Journals Connector (OSTI)

Congress and EPA probe possibility of long-term STORAGE of liquid metal CHERYL HOGUE, C&EN WASHINGTON ... Hazardous waste handlers keep mercury from polluting the environment by reclaiming the liquid metal from scrap electrical switches, thermometers, and fluorescent light bulbs. ...

2007-07-02T23:59:59.000Z

23

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

24

Office of Human Resources, FRS002, rev. 3/14 Fraud Reporting System Information, Notice of Auditor of State, Page 1 of 2 Screen reader users can use arrow key and header navigation to review the text content of this form. Use the tab key to enter into the  

E-Print Network [OSTI]

Office of Human Resources, FRS002, rev. 3/14 Fraud Reporting System Information, Notice of Auditor content of this form. Use the tab key to enter into the form to begin filling it out. Fraud Reporting), The Ohio State University must make all its faculty and staff employees aware of the fraud reporting system

25

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

26

Probing Mercury's Partnering Preferences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preferences Probing Mercury's Partnering Preferences Merc.gif Why it Matters: Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources....

27

Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases  

DOE Patents [OSTI]

Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

Nelson, Sidney (Hudson, OH)

2011-02-15T23:59:59.000Z

28

NETL: Mercury Emissions Control Technologies - Mercury Control For Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD Mercury Control For Plants Firing Texas Lignite and Equipped with ESP-wet FGD URS Group, Inc., in collaboration with EPRI, Apogee Scientific, AEP, Texas Genco, and TXU Power, ADA-ES, will evaluate sorbent injection for mercury control in an 85/15 blend Texas lignite/PRB derived flue gas, upstream of a cold-side ESP – wet FGD combination. Full-scale sorbent injection tests conducted with various sorbents and combinations of fuel and plant air pollution control devices (APCD) have provided a good understanding of variables that affect sorbent performance. However, many uncertainties exist regarding long-term performance and data gaps remain for specific plant configurations. For example, sorbent injection has not been demonstrated at full-scale for plants firing Texas lignite, which represent approximately 10% of the annual U.S. power plant mercury emissions. The low and variable chloride content of Texas lignite may pose a challenge to achieving high levels of mercury removal with sorbent injection. Furthermore, activated carbon injection may render the fly ash unsuitable for sale, posing an economic liability to Texas lignite utilities. Alternatives to standard activated carbon, such as non-carbon sorbents and alternate injection locations (Toxecon II), have not been fully explored. Toxecon II involves sorbent injection in the middle field(s) of an ESP, thus preserving the integrity of the fly ash in the first fields.

29

/ http://www.sciencemag.org/content/early/recent / 29 November 2012 / Page 1/ 10.1126/science.1229764 Mercury's near-zero obliquity and impact-roughened topography (1)  

E-Print Network [OSTI]

.1126/science.1229764 Mercury's near-zero obliquity and impact-roughened topography (1) prevent direct sunlight

Zuber, Maria

30

2006 Mercury Control Technology Conference Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury Control Technology Conference Mercury Control Technology Conference December 11-13, 2006 Table of Contents Disclaimer Papers and Presentations Introduction Sorbent Injection By-Product Characterization/Management Mercury Oxidation and Co-Removal with FGD Systems Other Mercury Control Technology Panel Discussions Posters New 2006 Phase III Mercury Field Testing Projects Sorbent Injection Pretreatment of Coal Oxidation of Mercury Environmental Studies on Mercury Mercury in CUBs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

31

Mercury contamination extraction  

DOE Patents [OSTI]

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

32

Mercury bioaccumulation in Lavaca Bay, Texas  

E-Print Network [OSTI]

MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1992 Major... Subject: Oceanography MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Approved as to style and content by: obby J. Pr y (Chair of Committee) Robe J. Tayl (Member) owell (Member) Marvin W. Rowe (Member) Gi bert T. Rowe...

Palmer, Sally Jo

2012-06-07T23:59:59.000Z

33

MERCURY IN FISH AND SHELLFISH OF THE NORTHEAST PACIFIC. II. SABLEFISH, ANOPLOPOMA FIMBRIA  

E-Print Network [OSTI]

MERCURY IN FISH AND SHELLFISH OF THE NORTHEAST PACIFIC. II. SABLEFISH, ANOPLOPOMA FIMBRIA ALICE S several locations in Alaska, Washington, Oregon, and California were analyzed for their mercury content. Mean mercury level in this species varied with the geographical location of catch, showing a gradual

34

Chemical Form and Distribution of Mercury and Selenium in Edible Seafood  

Science Journals Connector (OSTI)

......Distribution of Mercury and Selenium in Edible Seafood Chris J. Cappon J. Crispin Smith * Environmental...distribution of mercury and selenium in edible seafood. | The content, chemical form, and...Distribution of Mercury and Selenium in Edible Seafood Chris J. Cappon and J. Crispin Smith......

Chris J. Cappon; J. Crispin Smith

1982-01-01T23:59:59.000Z

35

Is Mercury from Hawaiian Volcanoes a Natural Source of Pollution?  

Science Journals Connector (OSTI)

... ml. with distilled water. Portions of 20 ml. were analysed for mercury content by flameless atomic absorption at the 253.65 nm resonance line. We used a Utopia Instruments ... atomic absorption at the 253.65 nm resonance line. We used a Utopia Instruments flameless mercury analysis kit6 and a 10 cm absorption cell mounted on the burner of a ...

ALAN ESHLEMAN; SANFORD M. SIEGEL; BARBARA Z. SIEGEL

1971-10-15T23:59:59.000Z

36

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

37

Mercury and Fish  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury and Fish Mercury and Fish Name: donna Location: N/A Country: N/A Date: N/A Question: how does mercury get into fish in rivers. what is the ecological process involved which could produce toxic levels of mercury in fish and eventually get into humans? Replies: Hi Donna! Nowadays mercury or its compounds are used at a high scale in many industries as the manufacture of chemicals, paints, household itens, pesticides and fungicides. These products can contaminate humans (and mamals) by direct contact, ingestion or inhalation. Besides the air can become contaminated also, and since mercury compounds produce harmful effects in body tissues and functions, that pollution is very dangerous. Now for your question: Efluent wastes containing mercury in various forms sometimes are dropped in sea water or in rivers or lakes. There the mercury may be converted by bacteria, that are in the muddy sediments, into organic mercurial compounds particularly the highly toxic alkyl mercurials ( methyl and di-methyl mercury), which may in turn be concentrated by the fishes and other aquatic forms of life that are used as food by men. The fishes dont seem to be affected but they are able to concentrate mercury in high poisoning levels, and if human beings, mamals or birds eat these containing mercury fishes, algae, crabs or oysters they will be contaminated and poisoned.

38

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

39

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

40

Environmental and health aspects of lighting: Mercury  

SciTech Connect (OSTI)

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mercury Emissions Control Technologies (released in AEO2006)  

Reports and Publications (EIA)

The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

2006-01-01T23:59:59.000Z

42

NETL: Mercury Emissions Control Technologies - Amended Silicates for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amended Silicates for Mercury Control Amended Silicates for Mercury Control The project is designed to implement a comprehensive demonstration of the use of Amended Silicates for mercury control on a commercial-scale generating unit. Miami Fort Unit 6 burns eastern bituminous coal, has a nominal output of 175 MW, and a flue gas volumetric flow of 535,000 actual cubic feet per minute (acfm) at full load. The demonstration includes a baseline phase with no injection of mercury control sorbents, injection of carbon to develop a mercury-control technology baseline for sorbent performance comparison, and the injection of Amended Silicates at several rates. All sorbent will be injected upstream of the existing electro-static precipitators (ESPs) on the host unit, providing a nominal 1-second contact time before the gas flow enters an ESP. Mercury measurements will be made upstream of the sorbent injection and downstream of the first ESP to characterize the performance of the sorbent technologies. In addition, samples of coal and fly ash will be collected and analyzed to provide data for a mercury mass balance for the unit. The mercury measurements will be made with continuous emissions monitors as well as with Ontario-Hydro wet-chemistry sampling. Samples of fly ash plus sorbent from demonstration cases which include Amended Silicate sorbent injection will be collected from ESP hoppers for use in concrete testing to confirm the suitability of the material as a portland cement replacement.

43

Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury deposition come from?  

E-Print Network [OSTI]

1 Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury of the Mercury Working Group, Office of Air Quality, Indiana Department of Environmental Management (IDEM) April 21, 2005 #12;2 For mercury, how important is atmospheric deposition relative to other loading

44

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

R. J. Warmack, “Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor,” Ieee Trans.N. E. Selin, “Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

45

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

46

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

47

Mercury Chamber Considerations  

E-Print Network [OSTI]

Mercury Chamber Considerations V. Graves IDS-NF Target Studies July 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Considerations, July 2011 Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment

McDonald, Kirk

48

Mercury in Municipal Solid Waste in China and Its Control: A Review  

Science Journals Connector (OSTI)

Regulation on mercury content limitation for batteries; China Light Industry Association: Beijing, China, 1997. ... The 2015 scheme 2 assumes mercury use by the battery industry is reduced to 26 Mg,(95) and mercury use by the lighting industry increases to 90 Mg (due to market growth), while the production and disposal patterns of mercury-containing medical devices are the same as the base case. ... Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, elec. ...

Hefa Cheng; Yuanan Hu

2011-12-02T23:59:59.000Z

49

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

50

NETL: Mercury Emissions Control Technologies - University of North Dakota,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Table Of Contents for Field Testing Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems Mercury Oxidation Upstream of an ESP and Wet FGD Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems The scope of the project consists of attempting to control mercury at four different power plants using two novel concepts. The first concept is using furnace additives that will enhance the sorbent effectiveness for mercury capture. The other concept involves using novel treated carbons to significantly increase sorbent reactivity and resultant capture of Hg. The furnace additives will be tested at Leland Olds Station and Antelope Valley Station while the novel sorbents will be tested at Stanton Station Units 1 &10. Related Papers and Publications:

51

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

52

Dynamic duo captures mercury  

SciTech Connect (OSTI)

There is strong evidence that the combination of wet flue gas desulphurisation (FGD) scrubbers and selective catalytic reduction (SCR) can prove a viable and formidable combination for knocking out mercury. This article analyzes the capabilities and limitations of the SCR-FGD combination for mercury compliance, including applicability to different types of coal and issues with scrubber by-products. 3 figs.

Senior, C.; Adams, B. [Reaction Engineering International (United States)

2006-02-15T23:59:59.000Z

53

Mercury in the environment  

ScienceCinema (OSTI)

Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

Idaho National Laboratory - Mike Abbott

2010-01-08T23:59:59.000Z

54

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents [OSTI]

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

55

NETL: Mercury Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Mercury Emissions Control Innovations for Existing Plants Mercury Emissions Control NETL managed the largest funded research program in the country to develop an in-depth understanding of fossil combustion-based mercury emissions. The program goal was to develop effective control options that would allow generators to comply with regulations. Research focus areas included measurement and characterization of mercury emissions, as well as the development of cost-effective control technologies for the U.S. coal-fired electric generating industry. Control Technologies Field Testing Phase I & II Phase III Novel Concepts APCD Co-benefits Emissions Characterization

56

DOE Mercury Control Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury Control Research Mercury Control Research Air Quality III: Mercury, Trace Elements, and Particulate Matter September 9-12, 2002 Rita A. Bajura, Director National Energy Technology Laboratory www.netl.doe.gov 169330 RAB 09/09/02 2 Potential Mercury Regulations MACT Standards * Likely high levels of Hg reduction * Compliance: 2007 Clean Power Act of 2001 * 4-contaminant control * 90% Hg reduction by 2007 Clear Skies Act of 2002 * 3-contaminant control * 46% Hg reduction by 2010 * 70% Hg reduction by 2018 * Hg emission trading President Bush Announcing Clear Skies Initiative February 14, 2002 169330 RAB 09/09/02 3 Uncertainties Mercury Control Technologies * Balance-of-plant impacts * By-product use and disposal * Capture effectiveness with low-rank coals * Confidence of performance 169330 RAB 09/09/02 4

57

Mercury Jet Studies Tristan Davenne  

E-Print Network [OSTI]

Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting mercury target and reported a radial velocity at surface of mercury jet due to proton beam is 36m/s #12;Numerical simulation of Sievers & Pugnat Result Click on image above to watch video of 2cm mercury target

McDonald, Kirk

58

Mercury Effects, Sources and Control Measures  

E-Print Network [OSTI]

Mercury Effects, Sources and Control Measures Prepared by Alan B. Jones, Brooks Rand, Ltd., Seattle ................................................................................................................................1 MERCURY SOURCES....................................................................................................................................................................................8 Mercury dumping from naval vessels

59

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

60

Transient Model for Behavior of Mercury in Portland Cement Kilns  

Science Journals Connector (OSTI)

(2) Bituminous coals (median value of 0.1 ?g/g) typically contain more mercury than petcoke (0.05 ?g/g median) or tires (0.04 ?g/g median), although the range of fuel mercury content is broad. ... Figure 2. Cumulative distribution of mercury in bituminous coal, petcoke, and tires fired at coal-fired power plants(2) and limestone input to cement kilns. ... The kiln used coal and petcoke as primary fuels, while tires were burned in the precalciner. ...

Constance Senior; Christopher J. Montgomery; Adel Sarofim

2009-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fate of mercury collected from air pollution control devices  

SciTech Connect (OSTI)

Mercury that enters a coal-fired power plant originates from the coal that is burned and leaves through the output streams, which include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent findings on the fate and environmental stability of mercury in coal combustion residues (CCRs) such as fly ash and solid products from flue gas desulfurization (FGD) scrubbers when either disposed or reused in agricultural, commercial, or engineering applications. 19 refs., 4 figs., 5 tabs.

Constance L. Senior; Susan Thorneloe; Bernine Khan; David Goss [Reaction Engineering International, Salt Lake City, UT (United States)

2009-07-15T23:59:59.000Z

62

Mercury Contamination in Pelagic Fishes of the Gulf of Mexico  

E-Print Network [OSTI]

2 Map of sampling locations at the docks and offshore from ` Freeport and Port Aransas, Texas, and Venice, Louisiana, in the NW of Gulf of Mexico. .................................................................... 11 3 Mean Hg concentration...). Figure 1 Mercury cycling and bioaccumulation in aquatic system (Engstrom 2007). Elemental Hg can be oxidized by chemical reactions that depend on ozone, solar energy and water content in the atmosphere. Mercury oxidation is a photochemical 6...

Kuklyte, Ligita

2012-10-19T23:59:59.000Z

63

Emissions of airborne toxics from coal-fired boilers: Mercury  

SciTech Connect (OSTI)

Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

Huang, H.S.; Livengood, C.D.; Zaromb, S.

1991-09-01T23:59:59.000Z

64

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

65

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

66

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

67

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

68

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

69

Mercury Risk Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED ASSESSING THE MERCURY HEALTH RISKS ASSOCIATED WITH COAL-FIRED POWER PLANTS: IMPACTS OF LOCAL DEPOSITIONS *T.M. Sullivan 1 , F.D. Lipfert 2 , S.M. Morris 2 , and S. Renninger 3 1 Building 830, Brookhaven National Laboratory, Upton, NY 11973 2 Private Consultants 3 Department of Energy, National Energy Technology Laboratory, Morgantown, WV ABSTRACT The U.S. Environmental Protection Agency has announced plans to regulate emissions of mercury to the atmosphere from coal-fired power plants. However, there is still debate over whether the limits should be placed on a nationwide or a plant-specific basis. Before a nationwide limit is selected, it must be demonstrated that local deposition of mercury from coal-fired power plants does not impose an excessive local health risk. The principal health

70

NETL: Conference Proceedings - 2007 Mercury Control Technology Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Mercury Control Technology Conference 2007 Mercury Control Technology Conference December 11-13, 2007 Table of Contents Disclaimer Papers and Presentations Overview Sorbent Injection Panel Discussion #1: Sorbents for Mercury Control Mercury Oxidaton and Co-Removal with FGD Systems By-Product Characterization/Management Panel Discussion #2: Mercury Measurements / CEMS Other Mercury Control Technology Panel Discussion #3: Non-Sorbent Mercury Control Poster Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

71

Behavior of mercury and iodine during vitrification of simulated alkaline Purex waste  

SciTech Connect (OSTI)

Current plans indicate that the high-level wastes stored at the Savannah River Plant will be solidified by vitrification. The behavior of mercury and iodine during the vitrification process is of concern because: mercury is present in the waste in high concentrations (0.1 to 2.8 wt%); mercury will react with iodine and the other halogens present in the waste during vitrification and; the mercury compounds formed will be volatilized from the vitrification process placing a high particulate load in the vitrification system off-gas. Twelve experiments were completed to study the behavior of mercury during vitrification of simulated SRP Purex waste. The mercury was completely volatized from the vitrification system in all experiments. The mercury reacted with iodine, chlorine and oxygen to form a fine particulate solid. Quantitative recovery of mercury compounds formed in the vitrification system off-gas was not possible due to high (37 to 90%) deposition of solids in the off-gas piping. The behavior of mercury and iodine was most strongly influenced by the vitrification system atmosphere. During experiments performed in which the oxygen content of the vitrification system atmosphere was low (< 1 vol%); iodine retention in the glass product was 27 to 55%, the mercury composition of the solids recovered from the off-gas scrub solutions was 75 to 85 wt%, and a small quantity of metallic mercury was recovered from the off-gas scrub solution. During experiments performed in which the oxygen content of the vitrification system atmosphere was high (20 vol%), iodide retention in the glass product was 3 to 15%, the mercury composition of the solids recovered from the off-gas scrub solutions was 60 to 80 wt%, and very little metallic mercury was recovered from the off-gas scrub solution.

Holton, L.K.

1981-09-01T23:59:59.000Z

72

Mercury Concentrations in Common Tern Sterna hirundo and Slender-billed Gull Larus genei from the Shadegan Marshes of Iran, in North-western Corner of the Persian Gulf  

Science Journals Connector (OSTI)

We examined mercury levels in several tissues of Common Terns and Slender-billed Gulls collected from Shadegan Marshes of south-western Iran. In both species, total mercury content was highest in feathers foll...

Rasool Zamani-Ahmadmahmoodi; Mostafa Alahverdi…

2014-06-01T23:59:59.000Z

73

NETL: Mercury Emissions Inactive Mercury Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Completed Mercury Projects Completed Mercury Projects View specific project information by clicking the state of interest on the map. Clickable U.S. Map ALABAMA Characterizing Toxic Emissions from Coal-Fired Power Plants Southern Research Institute The objective of this contract is to perform sampling and analysis of air toxic emissions at commercial coal-fired power plants in order to collect data that the EPA will use in their Congressionally mandated report on Hazardous Air Pollutants from Electric Utilities. CALIFORNIA Assessment of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP Energy & Environmental Research Corporation – CA The overall objective of this project is to conduct comprehensive assessments of toxic emissions of two coal-fired electric utility power plants. The power plant that was assessed for toxic emissions during Phase I was American Electric Power Service Corporation's Cardinal Station Unit 1.

74

Environmental chamber measurements of mercury flux from coal utilization by-products  

SciTech Connect (OSTI)

An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

2009-05-01T23:59:59.000Z

75

Mercury-Related Materials Studies  

E-Print Network [OSTI]

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

76

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Bioaccumulation of Mercury in Sharks Part 2 a Using a subset of data collected on RJD shark research trips, you will analyze the mercury levels found in the Florida Sharks we catch. Based on your analysis, you will be able to conclude which species have the highest levels of mercury contamination

Miami, University of

77

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Resources: EPA General Info on Mercury - http://www.epa.gov/mercury/about.htm FDA Mercury Levels in Seafood - http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ Seafood/ucm092041/en/index.html Monterey Bay Aquarium Sustainable Seafood Guide - http://www.montereybayaquarium.org/cr/Seafood

Miami, University of

78

Gas Mileage of 1994 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1994 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Capri 20 City 21 Combined 24 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 21 City 23 Combined 26 Highway 1994 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1994 Mercury Capri 22 City 24 Combined 28 Highway 1994 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 17 City 19 Combined 24 Highway 1994 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Cougar 16 City 18 Combined 23 Highway 1994 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1994 Mercury Grand Marquis 16

79

Gas Mileage of 1985 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 19 City 20 Combined 23 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1985 Mercury Capri 21 City 23 Combined 27 Highway 1985 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 17 City 18 Combined 20 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1985 Mercury Capri 15 City 17 Combined 22 Highway 1985 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1985 Mercury Capri 18 City

80

NETL: Mercury Emissions Control Technologies - Oxidation of Mercury Across  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels The objective of the proposed research is to assess the potential for the oxidation of mercury in flue gas across SCR catalysts in a coal fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. Results from the project will contribute to a greater understanding of mercury behavior across SCR catalysts. Additional tasks include: review existing pilot and field data on mercury oxidation across SCR catalysts and propose a mechanism for mercury oxidation and create a simple computer model for mercury oxidation based on the hypothetical mechanism. Related Papers and Publications: Final Report - December 31, 2004 [PDF-532KB]

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Water displacement mercury pump  

DOE Patents [OSTI]

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

82

Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Mercury Vapor Details Activities (23) Areas (23) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Anomalously high concentrations can indicate high permeability or conduit for fluid flow Hydrological: Field wide soil sampling can generate a geometrical approximation of fluid circulation Thermal: High concentration in soils can be indicative of active hydrothermal activity Dictionary.png Mercury Vapor: Mercury is discharged as a highly volatile vapor during hydrothermal

83

It's Elemental - The Element Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

84

Gas Mileage of 1986 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Mercury Vehicles 6 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1986 Mercury Capri 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 18 City 20 Combined 23 Highway 1986 Mercury Capri 4 cyl, 2.3 L, Manual 4-spd, Regular Gasoline Compare 1986 Mercury Capri 21 City 23 Combined 26 Highway 1986 Mercury Capri 6 cyl, 3.8 L, Automatic 3-spd, Regular Gasoline Compare 1986 Mercury Capri 17 City 19 Combined 22 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1986 Mercury Capri 15 City 18 Combined 24 Highway 1986 Mercury Capri 8 cyl, 5.0 L, Manual 5-spd, Regular Gasoline Compare 1986 Mercury Capri View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1986 Mercury Cougar 4 cyl, 2.3 L, Automatic 3-spd, Regular Gasoline

85

Gas Mileage of 1991 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1991 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Capri 21 City 22 Combined 24 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1991 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1991 Mercury Capri 22 City 24 Combined 28 Highway 1991 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar 17 City 20 Combined 24 Highway 1991 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1991 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 22 Highway 1991 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

86

Controlling mercury emissions from coal-fired power plants  

SciTech Connect (OSTI)

Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

2009-07-15T23:59:59.000Z

87

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Inferring Company Structure from Limited Available Information. Enter the Article Password: ... Search, Browse the Repository · Submit · Update · Policies

88

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Update Entry. Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition. Enter the Article Password:.

89

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Enter the Article Password: If you forgot your password, ...

90

Mercury control in 2009  

SciTech Connect (OSTI)

Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C. [ADA Environmental Solutions, Littleton, CO (United States)

2009-07-15T23:59:59.000Z

91

UNCERTAINTY IN PALEOECOLOGICAL STUDIES OF MERCURY IN SEDIMENT CORES  

E-Print Network [OSTI]

and required corrections for remaining water content. Frozen sediments did not lose Hg during a 72-day storage of the analysis (while adhering to strict QA/QC criteria) produced compounded uncertainties of ±11 and ±29% in Hg to correctly evaluate trends and remediation efforts. Keywords: Florida Everglades, Lake Erie, mercury

Gottgens, Hans

92

Gas Mileage of 2002 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Mercury Vehicles 2 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2002 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 26 Highway 2002 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2002 Mercury Cougar 18 City 21 Combined 27 Highway 2002 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2002 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2002 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 2002 Mercury Mountaineer 2WD 14 City

93

Gas Mileage of 1989 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Mercury Vehicles 9 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 25 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 17 Combined 21 Highway 1989 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1989 Mercury Cougar 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1989 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1989 Mercury Grand Marquis Wagon 15

94

Gas Mileage of 1993 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Mercury Vehicles 3 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1993 Mercury Capri 4 cyl, 1.6 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Capri 20 City 21 Combined 24 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 21 City 23 Combined 26 Highway 1993 Mercury Capri 4 cyl, 1.6 L, Manual 5-spd, Regular Gasoline Compare 1993 Mercury Capri View MPG Estimates Shared By Vehicle Owners 22 City 24 Combined 28 Highway 1993 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar 17 City 19 Combined 24 Highway 1993 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1993 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15

95

Gas Mileage of 2008 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2008 Mercury Grand Marquis FFV 8 cyl, 4.6 L, Automatic 4-spd, Regular Gas or E85 Compare 2008 Mercury Grand Marquis FFV Gas 15 City 18 Combined 23 Highway E85 11 City 13 Combined 16 Highway 2008 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD 19 City 21 Combined 24 Highway 2008 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner 4WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 22 Highway 2008 Mercury Mariner FWD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD 20 City 22 Combined 26 Highway 2008 Mercury Mariner FWD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2008 Mercury Mariner FWD

96

Gas Mileage of 1987 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1987 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar 17 City 19 Combined 24 Highway 1987 Mercury Cougar 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1987 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1987 Mercury Grand Marquis Wagon 16 City 19 Combined 24 Highway 1987 Mercury Lynx 4 cyl, 1.9 L, Automatic 3-spd, Regular Gasoline Compare 1987 Mercury Lynx 23

97

Gas Mileage of 1990 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

90 Mercury Vehicles 90 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 21 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 17 City 20 Combined 24 Highway 1990 Mercury Cougar 6 cyl, 3.8 L, Manual 5-spd, Premium Gasoline Compare 1990 Mercury Cougar 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1990 Mercury Grand Marquis Wagon 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1990 Mercury Grand Marquis Wagon 15

98

Biosequence Similarity Search on the Mercury System  

E-Print Network [OSTI]

Biosequence Similarity Search on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster, "Biosequence Similarity Search on the Mercury on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang

Chamberlain, Roger

99

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

100

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mercury Strategic Plan Outfall 200 Mercury Treatment Facility  

Office of Environmental Management (EM)

Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

102

BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING  

SciTech Connect (OSTI)

The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

Zamecnik, J.; Koopman, D.

2012-04-09T23:59:59.000Z

103

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

104

Category:Mercury Vapor | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as exploration techniques,...

105

Permitted Mercury Storage Facility Notifications | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

106

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

samples by cold vapor-atomic absorption spectrometry,” J.S. Gucer, “Direct atomic absorption determination of mercuryL. A. Vasilieva, “Direct atomic absorption determination of

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

107

Magnetoacoustic Effect in Mercury  

Science Journals Connector (OSTI)

Geometric resonances in the ultrasonic attenuations have been observed in high-purity mercury single crystals with longitudinal sound waves propagated along five crystallographic directions at frequencies up to 165 MHz. Of the five, only data for the (11¯0), (110), and (112¯) directions are reported. The dominant resonance branches have been assigned to calipers of the second-band electron-lens surface, with three major symmetry calipers being obtained. The remainder of the resonance branches have been assigned to orbits on the first-band hole surface. Various breakthrough dimensions of the hole surface were determined from these orbits. The pseudopotential coefficients corresponding to the planes bounding the first Brillouin zone in mercury have been estimated by comparing the geometric resonance data with the results of a fourpseudowave calculation neglecting spin-orbit coupling.

Tommy E. Bogle; Julian B. Coon; Claude G. Grenier

1969-01-15T23:59:59.000Z

108

Apparatus for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

109

Method for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

110

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

111

Gas Mileage of 2000 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2000 Mercury Vehicles 2000 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2000 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar 21 City 25 Combined 31 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2000 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2000 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2000 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2000 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

112

Gas Mileage of 2004 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Mercury Vehicles 4 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2004 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 2004 Mercury Marauder 8 cyl, 4.6 L, Automatic 4-spd, Premium Gasoline Compare 2004 Mercury Marauder View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Monterey Wagon FWD 6 cyl, 4.2 L, Automatic 4-spd, Regular Gasoline Compare 2004 Mercury Monterey Wagon FWD View MPG Estimates Shared By Vehicle Owners 15 City 17 Combined 21 Highway 2004 Mercury Mountaineer 2WD 8 cyl, 4.6 L, Automatic 5-spd, Regular Gasoline Compare 2004 Mercury Mountaineer 2WD 13 City 15 Combined 18 Highway 2004 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

113

Gas Mileage of 1997 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Mercury Vehicles 7 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1997 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 24 Highway 1997 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1997 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1997 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 12 City 14 Combined 17 Highway 1997 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

114

Gas Mileage of 1995 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1995 Mercury Cougar 6 cyl, 3.8 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar 17 City 19 Combined 24 Highway 1995 Mercury Cougar 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 23 Highway 1995 Mercury Mystique 4 cyl, 2.0 L, Automatic 4-spd, Regular Gasoline Compare 1995 Mercury Mystique View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 1995 Mercury Mystique 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline

115

Gas Mileage of 2001 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Mercury Vehicles 1 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2001 Mercury Cougar 4 cyl, 2.0 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 31 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 26 Highway 2001 Mercury Cougar 6 cyl, 2.5 L, Manual 5-spd, Regular Gasoline Compare 2001 Mercury Cougar View MPG Estimates Shared By Vehicle Owners 18 City 21 Combined 27 Highway 2001 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2001 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 18 Combined 23 Highway 2001 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline

116

Gas Mileage of 1998 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Mercury Vehicles 8 Mercury Vehicles EPA MPG MODEL City Comb Hwy 1998 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 15 City 18 Combined 22 Highway 1998 Mercury Mountaineer 2WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD View MPG Estimates Shared By Vehicle Owners 14 City 16 Combined 18 Highway 1998 Mercury Mountaineer 2WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 2WD 12 City 14 Combined 17 Highway 1998 Mercury Mountaineer 4WD 6 cyl, 4.0 L, Automatic 5-spd, Regular Gasoline Compare 1998 Mercury Mountaineer 4WD View MPG Estimates Shared By Vehicle Owners 14 City 15 Combined 18 Highway 1998 Mercury Mountaineer 4WD 8 cyl, 5.0 L, Automatic 4-spd, Regular Gasoline

117

Gas Mileage of 2005 Vehicles by Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Mercury Vehicles 5 Mercury Vehicles EPA MPG MODEL City Comb Hwy 2005 Mercury Grand Marquis 8 cyl, 4.6 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Grand Marquis View MPG Estimates Shared By Vehicle Owners 16 City 19 Combined 23 Highway 2005 Mercury Mariner 2WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 19 City 21 Combined 24 Highway 2005 Mercury Mariner 2WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 2WD View MPG Estimates Shared By Vehicle Owners 17 City 19 Combined 23 Highway 2005 Mercury Mariner 4WD 4 cyl, 2.3 L, Automatic 4-spd, Regular Gasoline Compare 2005 Mercury Mariner 4WD 17 City 19 Combined 21 Highway 2005 Mercury Mariner 4WD 6 cyl, 3.0 L, Automatic 4-spd, Regular Gasoline

118

NETL: Mercury Emissions Control Technologies - Pilot Testing of Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of Mercury Oxidation Catalysts Project Summary Testing of Mercury Oxidation Catalysts Project Summary URS Group, Inc., Austin, TX, will demonstrate at the pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project's pilot tests, conducted at electric generating plants using wet flue gas desulfurization systems and particulate collection systems, will be conducted for periods up to 14 months to provide data for future, full-scale designs. Mercury-oxidation potential will be measured periodically to provide long-term catalyst life data. The project is applicable to about 90,000 megawatts of generation capacity. Project partners are the Electric Power Research Institute, Palo Alto, CA, which will co-manage and co-fund the pilot tests, and five utilities.

119

NETL: Mercury Emissions Control Technologies - Evaluation of Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems Control Technology Evaluation of Mercury Emissions from Coal-Fired Facilities w/ SCR and FGD Systems CONSOL is evaluating the mercury removal co-benefits achieved by SCR-FGD combi nations. Specific issues that will be addressed include the effects of SCR, catalyst degradation, and load changes on mercury oxidation and capture. This objective will be achieved by measuring mercury removal achieved by SCR-FGD combinations at ten plants with such equipment configurations. These plants include five with wet limestone, three wet lime, and two with dry scrubbing. Material balance will be conducted. Related Papers and Publications: Final Report - April 2006 [PDF-377KB] Topical Report # 11 - January 2006 [PDF-19MB] Topical Report # 9 - January 2006 [PDF-6MB]

120

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Update Entry. Optimization of Demand Response Through Peak Shaving. Enter the Article Password: If you forgot your password, select your e-mail address:.

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Robust Unit Commitment Problem with Demand Response and Wind Energy. Enter the Article Password: If you forgot your password, select your e-mail address ...

122

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Robustified Reserve Modelling for Wind Power Integration in Ramp-Based Unit Commitment. Enter the Article Password: If you forgot your password, select your

123

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials. Enter the Article Password: If you forgot your password, select your ...

124

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Ancestral Benders' Cuts and Multi-term Disjunctions for Mixed-Integer Recourse Decisions in ... Enter the Article Password: ... Search, Browse the Repository.

125

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Linear-quadratic control problem with a linear term on semiinfinite interval:theory and applications. Enter the Article Password: ... Search, Browse the Repository.

126

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Robust mid-term power generation management. Enter the Article Password: If you forgot your password, ... Search, Browse the Repository · Submit · Update

127

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

A three-term conjugate gradient method with sufficient descent property for unconstrained ... Enter the Article Password: ... Search, Browse the Repository.

128

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

... of Gas Supply Contracts with Take-or-pay Clauses in the Brazilian Long-term Energy Planning. Enter the Article Password: ... Search, Browse the Repository.

129

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Update Entry. A nonlinear optimization package for long-term hydrothermal coordination. Enter the Article Password: ... Search, Browse the Repository · Submit

130

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Enter the Article Password: If you forgot your password, select ...

131

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Solving large scale polynomial convex problems on \\ell_1/nuclear norm balls by randomized first-order algorithms. Enter the Article Password: If you forgot your ...

132

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Sensitivity analysis for the outages of nuclear power plants. Enter the Article Password: If you forgot your password, select your e-mail address: kengy.barty@

133

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Finding approximately rank-one submatrices with the nuclear norm and l1 norm. Enter the Article Password: If you forgot your password, select your e-mail ...

134

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

Nuclear norm minimization for the planted clique and biclique problems. Enter the Article Password: If you forgot your password, select your e-mail address:.

135

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization. Enter the Article Password: If you forgot your password, select your

136

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Enter the Article Password: If you forgot your password, select

137

Optimization Online - Enter Your Password to Continue  

E-Print Network [OSTI]

An Optimization Approach to the Design of Multi-Size Heliostat fields. Enter the Article Password: If you forgot your password, select your e-mail address:.

138

Mercury-Related Materials Studies  

E-Print Network [OSTI]

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for MercuryMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 ­ updated Feb 3, 2010 #12;ORNL Material Reports Reviewed · IDS-NF requested ORNL research any past SNS

McDonald, Kirk

139

Stanford University Mercury Thermometer Replacement  

E-Print Network [OSTI]

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

140

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY  

E-Print Network [OSTI]

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY Mercury is a pollutant of high the information most urgently needed by managers to find remedies to the Bay's mercury problem. The focus of total mercury in the Bay are expected to slowly decline over coming decades. The premise

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DIRECT MEASUREMENT OF MERCURY REACTIONS IN COAL POWER PLANT PLUMES  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Program Area of Interest: No.5--Environmental and Water Resources. The project team includes the Electric Power Research Institute (EPRI) as the contractor and the University of North Dakota Energy & Environmental Research Center (EERC) and Frontier Geosciences as subcontractors. Wisconsin Energies and its Pleasant Prairie Power Plant acted as host for the field-testing portion of the research. The project is aimed at clarifying the role, rates, and end results of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. Mercury emitted from power plants emerges in either its elemental, divalent, or particulate-bound form. Deposition of the divalent form is more likely to occur closer to the source than that of the other two forms, due to its solubility in water. Thus, if chemical transformations occur in the stack emissions plume, measurements in the stack may mischaracterize the fate of the material. Initial field and pilot plant measurements have shown significant and rapid chemical reduction of divalent to elemental mercury may occur in these plumes. Mercury models currently assume that the chemical form of mercury occurring in stacks is the same as that which enters the free atmosphere, with no alteration occurring in the emissions plume. Recent data indicate otherwise, but need to be evaluated at full operating scale under field conditions. Prestbo and others have demonstrated the likelihood of significant mercury chemical reactions occurring in power plant plumes (Prestbo et al., 1999; MDNR-PPRP, 2000; EERC, 2001). This experiment will thus increase our understanding of mercury atmospheric chemistry, allowing informed decisions regarding source attribution. The experiment was carried out during the period August 22-September 5, 2003. The experimental site was the Pleasant Prairie Power Plant in Pleasant Prairie, Wisconsin, just west of Kenosha. The experiment involved using an aircraft to capture emissions and document chemistry changes in the plume. While using the airplane for sampling, supplemental fast-response sensors for NOx, connected to data loggers, were used to gauge entry and exit times and transect intervals through plume emissions material. The Frontier Geosciences Static Plume Dilution Chamber (SPDC) was employed simultaneously adjacent to the stack to correlate its findings with the aircraft sampling, as well as providing evaluation of the SPDC as a rapid, less costly sampler for mercury chemistry. A complementary stack plume method, the Dynamic Plume Dilution (DPD) was used in the latter portion of the experiment to measure mercury speciation to observe any mercury reduction reaction with respect to both the reaction time (5 to 30 seconds) and dilution ratio. In addition, stack sampling using the ''Ontario Hydro'' wet chemistry method and continuous mercury monitors (CMM) were used to establish the baseline chemistry in the stack. Comparisons among stack, SPDC, DPD and aircraft measurements allow establishment of whether significant chemical changes to mercury occur in the plume, and of the verisimilitude of the SPDC and DPD methods. This progress report summarizes activities during a period of results review from the stack/aircraft subcontractor, data analysis and synthesis, and preparation and presentation of preliminary results to technical and oversight meetings.

Leonard Levin

2006-06-01T23:59:59.000Z

142

Mercury Speciation in the Presence of Polysulfides  

E-Print Network [OSTI]

Mercury Speciation in the Presence of Polysulfides J E N N Y A Y L A J A Y , * , F R A N C¸ O I Environmental mercury methylation appears modulated by sulfide concentrations, possibly via changes in mercury, there has been much recent interest in quantifying the chemical speciation and lipid solubility of mercury

Morel, François M. M.

143

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

144

Mercury and the Gold Country Angler Survey  

E-Print Network [OSTI]

#12;#12;Mercury and the Gold Rush #12;#12;#12;#12;#12;#12;#12;#12;#12;Gold Country Angler Survey A Pilot Study to Assess Mercury Exposure from Sport Fish Consumption in the Sierra Nevada Carrie Monohan, Ph.D. #12;Mercury and the Gold Rush Deer Creek 1908 Greenhorn Creek 2011 Mercury was used during

145

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

146

Mercury Spill Information and Response Guidance  

E-Print Network [OSTI]

Mercury Spill Information and Response Guidance Background Information Mercury can be found, plumbing traps and vacuum pumps. When mercury is spilled, it forms beads or droplets that can accumulate mercury vapors can be very dangerous, depending on the amount inhaled and the length of exposure

Holland, Jeffrey

147

Collection of atomic mercury by electrostatic precipitators  

Science Journals Connector (OSTI)

... Flameless atomic absorption spectroscopy was used to measure the difference in the mercury concentration of gas ...

O. M. G. NEWMAN; D. J. PALMER

1978-10-12T23:59:59.000Z

148

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network [OSTI]

activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine

149

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network [OSTI]

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

150

Mercury Vapor (Kooten, 1987) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor (Kooten, 1987) Mercury Vapor (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor (Kooten, 1987) Exploration Activity Details Location Unspecified Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury were conducted in 16 areas in 1979-1981 by ARCO Oil and Gas Company as part of its geothermal evaluation program. Three techniques used together have proved satisfactory in evaluating surface mercury data. These are contouring, histograms and cumulative frequency plots of the data. Contouring geochemical data and constructing histograms are standard

151

Fluorescent sensor for mercury  

DOE Patents [OSTI]

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

152

AIR QUALITY: Control Enters New Phase  

Science Journals Connector (OSTI)

AIR QUALITY: Control Enters New Phase ... Federal enforcement of air pollution is about to enter a new, more technically sophisticated, phase. ... Now air pollution control moves into the criteria and standards period, when numbers eventually will be the basis for enforcement and the country becomes zoned into 32 air quality regions. ...

1968-08-05T23:59:59.000Z

153

Please enter the characters - DOE Directives, Delegations, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please enter the characters by Diane Johnson Please enter the characters Listen to audio for this captcha...

154

Mercury (Hg) and methyl mercury (MMHg) bioaccumulation in three fish species (sea food) from Persian Gulf  

Science Journals Connector (OSTI)

In this study, mercury (Hg) and methyl mercury (MMHg) were determined in three fish species including benthic, benthopelagic and pelagic fish from Arvand river, northwest of Persian Gulf. Mercury and methyl mercu...

Sajad Abdolvand; Sahar Kayedinejad Esfahani…

2014-09-01T23:59:59.000Z

155

GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor |  

Open Energy Info (EERE)

GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor GRR/Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-f - Permit to Cross or Enter the State Energy Corridor 03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Harbors Divsion Regulations & Policies Hawaii Revised Statutes Chapter 277 Triggers None specified Click "Edit With Form" above to add content 03HIFPermitToCrossOrEnterTheStateEnergyCorridor.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

156

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

J.A. Withum

2006-03-07T23:59:59.000Z

157

MESSENGER Observations of Magnetic Reconnection in Mercury’s Magnetosphere  

Science Journals Connector (OSTI)

...Prague 14131, Czech Republic. Solar wind energy transfer to planetary magnetospheres...MP reconnection transfers solar wind energy into the magnetosphere, where...Mercury's magnetosphere. | Solar wind energy transfer to planetary magnetospheres...

James A. Slavin; Mario H. Acuña; Brian J. Anderson; Daniel N. Baker; Mehdi Benna; Scott A. Boardsen; George Gloeckler; Robert E. Gold; George C. Ho; Haje Korth; Stamatios M. Krimigis; Ralph L. McNutt; Jr.; Jim M. Raines; Menelaos Sarantos; David Schriver; Sean C. Solomon; Pavel Trávní?ek; Thomas H. Zurbuchen

2009-05-01T23:59:59.000Z

158

Mercury's moment of inertia from spin and gravity data  

E-Print Network [OSTI]

2006), Evolution of Mercury’s obliquity, Icarus, 181, 327–longitude librations of Mercury, Icarus, 207, 11 of 11The free librations of Mercury and the size of its inner

2012-01-01T23:59:59.000Z

159

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

160

NETL: Mercury Emissions Control Technologies - Testing of Mercury Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Testing of Mercury Control with Calcium-Based Sorbents and Oxidizing Agents Southern Research Institute, Birmingham, Alabama Subcontractor- ARCADIS Geraghty & Miller The overall goal of this project is to test the effectiveness of calcium-based sorbents and oxidizing agents for controlling mercury emissions from coal-fired power plant boilers. ARCADIS Geraghty & Miller, with EPA support, has developed calcium-based sorbents to remove SO2 and mercury simultaneously. The sorbents consist of hydrated lime (Ca(OH)2) and an added oxidant and a silica-modified calcium (CaSiO3) with an added oxidant. The mercury capacity in ug Hg/g sorbent for the two sorbents is 20 and 110-150, respectively, verses a mercury capacity for the current standard sorbent, activated carbon, of 70-100. The advantages of a lime based sorbent verses carbon is lower cost, simultaneous removal of sulfur, and allowance of ash to be utilized for a cement additive.

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enteric bacteria in aerobically digested sludge.  

Science Journals Connector (OSTI)

...Research Article Enteric bacteria in aerobically digested sludge. S R Farrah G Bitton Indicator bacteria, Salmonella...aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic...

S R Farrah; G Bitton

1984-04-01T23:59:59.000Z

162

Enter Keyword(s) Today's Ecology Top  

E-Print Network [OSTI]

Enter Keyword(s) Today's Ecology Top News OMG's Business Ecology Initiative BEI Reaches 250 Member Advertisement Ecology Topics Botany Climate Research Ecology Environment Environmental Microbiology Environmental Monitoring Environmental Research Fisheries Research Marine Biology Meteorology Molecular Ecology

163

In situ mercury stabilization  

SciTech Connect (OSTI)

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

Fuhrmann, M.; Kalb, P.; Adams, J.

2004-09-01T23:59:59.000Z

164

Mercury pollution in Doha (Qatar) coastal environment  

SciTech Connect (OSTI)

Surface water and sediment samples were collected from the Doha coastal area and analyzed for content of physico-chemical forms of mercury. Dissolved reactive Hg represented 81.0% of the total dissolved Hg. Organic Hg contributed only 5.0% of total Hg. Mercury showed a strong tendency to be associated with suspended matter in Doha coastal waters, as it represented about 73.0% of the total. Total Hg in bulk Doha surface sediments fluctuated between 0.14 and 1.75 [mu]g g[sup [minus]1] dry weight, with an average of 0.54 [+-] 0.46 [mu]g g[sup [minus]1] dry weight. The sediment fraction past 63 [mu]m contained 0.73 [+-] 0.60 [mu]g g[sup [minus]1] dry weight total Hg. Leachable and methyl Hg averaged 0.10 [+-] 0.11 and 0.02 [+-] 0.03 [mu]g g[sup [minus]1] dry weight, respectively, in the < 63-[mu]m sediment fraction. There is a general trend for all Hg species determined in water and sediments to decrease seaward. The significantly elevated Hg levels at certain locations indicated that the main Hg sources to Doha coastal environment are leachate from the solid waste disposal site, the two harbors, and surface-water discharge.

Al-Madfa, H.; Dahab, O.A.; Holail, H. (Univ. of Qatar, Doha (Qatar). Dept. of Geology)

1994-05-01T23:59:59.000Z

165

Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control  

Science Journals Connector (OSTI)

Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

Steven J. Balogh; Yabing H. Nollet

2008-01-01T23:59:59.000Z

166

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

167

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients with Parkinson''s Diseases Disease  

E-Print Network [OSTI]

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients's Disease EvaluationEvaluation Mercury ArchitectureMercury Architecture Mercury is a wireless sensor network and disconnections Node Behavior Hardware PlatformHardware Platform Usage Scenario InternetInternet http://fiji.eecs.harvard.edu/Mercury

Chen, Yiling

168

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers  

E-Print Network [OSTI]

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric by bringing in contact two small (3 Ã? 10-3 cm2) mercury drop electrodes in a 5-20% (v/v) hexadecane solution incorporating alkanethiolate-type monolayer films. The results reported below convince us that the mercury

Majda, Marcin

169

An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii | Open  

Open Energy Info (EERE)

Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Abstract Concentrations of soil mercury of 15 to 1250ppb were determined in the Puna geothermal areaon the lower east rift zone of Kilauea volcano. As the area is young and volcanically active a wide range of soils exist. Hg concentrations are partly controlled by such factors as soil development and organic content, which tend to complicate interpretation of the absolute concentrations measured. The pH of both ground gas and soil may also influence transport and fixation of the Hg, and some low pH soils may be due to SO2 and C02 in ground gas. By relating the Hg concentration of

170

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect (OSTI)

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

171

Mercury switch with non-wettable electrodes  

DOE Patents [OSTI]

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

172

Mercury Solar Systems | Open Energy Information  

Open Energy Info (EERE)

commercial and residential clients in the New York metrotri-state area. References: Mercury Solar Systems1 This article is a stub. You can help OpenEI by expanding it. Mercury...

173

Mercury speciation in the Persian Gulf sediments  

Science Journals Connector (OSTI)

The concentrations of total mercury (Hg) and methyl mercury (MMHg) were determined in 78 marine sediments in the Iranian coastal waters of the Persian Gulf along nine transects perpendicular to the coastline....?...

Homira Agah; Marc Elskens…

2009-10-01T23:59:59.000Z

174

A Tragic Reminder about Organic Mercury  

Science Journals Connector (OSTI)

...politically contentious. Mercury is used in industry primarily in the manufacture of batteries, latex paint, urethane, and polyvinyl chloride. Pollution of the environment by mercury occurs mainly through incinerators, fossil-fuel plants, leaching from mining waste, and municipal sewage systems. Industrial discharge... Exposure to mercury and its potential toxic effects is a subject that involves everyone, because we are all frequently exposed. The toxicologic literature has clearly established the dangers of excessive exposure to mercury. What is less clear is the dose ...

Kulig K.

1998-06-04T23:59:59.000Z

175

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect (OSTI)

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

176

2003 Mercury Computer Systems, Inc. Data Reorganization  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC Mercury Computer Systems, Inc. Status update for the DRI-1.0 standard since Sep. 2002 publication Outline

Kepner, Jeremy

177

3, 35253541, 2003 Modelling of Mercury  

E-Print Network [OSTI]

ACPD 3, 3525­3541, 2003 Modelling of Mercury with the Danish Eulerian Hemispheric Model J. H and Physics Discussions Modelling of mercury with the Danish Eulerian Hemispheric Model J. H. Christensen, J Correspondence to: J. H. Christensen (jc@dmu.dk) 3525 #12;ACPD 3, 3525­3541, 2003 Modelling of Mercury

Paris-Sud XI, Université de

178

Constraining Mercury Oxidation Using Wet Deposition  

E-Print Network [OSTI]

Constraining Mercury Oxidation Using Wet Deposition Noelle E. Selin and Christopher D. Holmes mercury oxidation [Selin & Jacob, Atmos. Env. 2008] 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150 30 Influences on Mercury Wet Deposition · Hg wet dep = f(precipitation, [Hg(II)+Hg(P)]) Correlation (r2) between

Selin, Noelle Eckley

179

Mercury: Recovering Forgotten Passwords Using Personal Devices  

E-Print Network [OSTI]

Mercury: Recovering Forgotten Passwords Using Personal Devices Mohammad Mannan1 , David Barrera2, and to allow forgotten passwords to be securely restored, we present a scheme called Mercury. Its primary mode and revealed to the user. A prototype implementation of Mercury is available as an Android application. 1

Van Oorschot, Paul

180

2003 Mercury Computer Systems, Inc. Delivered Performance  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Delivered Performance Predictions and Trends for RISC Applications Luke Cico (lcico@mc.com) Mark Merritt (mmerritt@mc.com) Mercury Computer Systems, Inc. Chelmsford, MA 01824 #12;© 2003 Mercury Computer Systems, Inc. Goals of PresentationGoals of Presentation

Kepner, Jeremy

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mercury Pollution in the Marine Environment  

E-Print Network [OSTI]

Collaborative December 2012 SourceSto Seafood SourceSto Seafood #12;About the report In 2010, the Toxic Metals.P. Mason, L.R. Rardin, C.V. Schmitt, N.S. Serrell, and E.M. Sunderland. 2012. Sources to Seafood: Mercury. 2 Sources to Seafood: Mercury Pollution in the Marine Environment #12;Executive Summary Mercury

Shepherd, Simon

182

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!  

E-Print Network [OSTI]

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK! Did you know, mercury from broken thermometers to the local environment, if broken thermometers in sinks eventually end at the sanitary sewer plant. Broken mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other

183

Manhattan Project: Enter the Army, 1942  

Office of Scientific and Technical Information (OSTI)

Army parade, Los Alamos ENTER THE ARMY Army parade, Los Alamos ENTER THE ARMY (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 The decision to proceed with planning for the production of enriched uranium and of plutonium led directly to the involvement of the Army, specifically the Corps of Engineers. President Roosevelt had approved Army involvement on October 9, 1941, and Vannevar Bush had arranged for Army participation at S-1 meetings beginning in March 1942. The need for security suggested placing the S-1 program within one of the armed forces, and the construction expertise of the Corps of Engineers made it the logical choice to build the production facilities envisioned in the Conant report of May 23.

184

Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-10 CHECKLIST  

E-Print Network [OSTI]

Enter Date: Enter NVLAP Lab Code: NIST HANDBOOK 150-10 CHECKLIST EFFICIENCY OF ELECTRIC MOTORS prescribed in NIST Handbook 150-10, Efficiency of Electric Motors. The Test Method Review Summary, which is used to review the laboratory's ability to perform Efficiency of Electric Motors test methods

185

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

DFJ Mercury DFJ Mercury Jump to: navigation, search Name DFJ Mercury Place Houston, Texas Zip 77046 Product Houston-based seed and early-stage venture capital firm that targets the information technology, advanced materials, and bioscience sectors. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Your access to OECD data & analysis Access content via 3 main methods  

E-Print Network [OSTI]

Factbook. · GLOSSARIES for OECD reference and glossary publications. 2 Enter some terms into the SEARCH.oecd-ilibrary.org August 2010 #12;Quick Search Enter some terms into the quick SEARCH field to find related content will not search full-text content ­ see Advanced Search. Advanced Search Enter one term or more into the Option

Viglas, Anastasios

187

Mercury capture in bench-scale absorbers  

SciTech Connect (OSTI)

This paper gives,a brief overview of research being conducted at Argonne National Laboratory on the capture of mercury by both dry sorbents and wet scrubbers. The emphasis in the research is on development of a better understanding of the key factors that control the capture of mercury. Future work is expected to utilize that information for the development of new or modified process concepts featuring enhanced mercury capture capabilities. The results and conclusions to date from the Argonne -research on dry sorbents can be summarized as follows: lime hydrates, either regular or high-surface-area, are `not effective in removing mercury; mercury removals are enhanced by the addition of activated carbon; mercury removals with activated carbon decrease with increasing temperature, larger particle size, and decreasing mercury concentration in the gas; and chemical pretreatment (e.g., with sulfur or (CaCl{sub 2}) can greatly increase the removal capacity of activated carbon. Preliminary results from the wet scrubbing research include: no removal of elemental mercury is obtained under normal scrubber operating conditions; mercury removal is improved by the addition of packing or production of smaller gas bubbles to increase the gas-liquid contact area; polysulfide solutions do not appear promising for enhancing mercury removal in typical FGC systems; stainless steel packing appears to have beneficial properties for mercury removal and should be investigated further; and other chemical additives may offer greatly enhanced removals.

Livengood, C.D.; Huang, H.S.; Mendelsohn, M.H.; Wu, J.M.

1994-08-01T23:59:59.000Z

188

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

189

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network [OSTI]

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

190

https://doyouliveunited.org 1. Enter you user ID  

E-Print Network [OSTI]

Search' button. 7. Enter you search terms for the agency of your choice and click on `Search'. #12;httpshttps://doyouliveunited.org 1. Enter you user ID: your email address Enter your password: welcome be different then the options listed here. 5. For a payroll pledge, enter the amount per pay or the total

191

An assessment of methyl mercury and volatile mercury in land-applied sewage sludge  

SciTech Connect (OSTI)

In 1993, the US Environmental Protection Agency issued regulations covering the land-application of municipal sewage sludge. These regulations established maximum pollutant concentrations and were based upon a risk assessment of human exposure. Mercury, assumed to be inorganic and non-volatile, was one pollutant evaluated. From April, 1995 through February, 1996, the authors studied the species of mercury contaminating municipal sludge applied to land, and the potential for volatilization of mercury from land-applied sludge. Methyl mercury was found at 0.1% of total mercury concentrations and was emitted from land-applied sludge to the atmosphere. Elemental mercury (Hg) was formed in land-applied sludge via the reduction of oxidized mercury and was also emitted to the atmosphere. Hg emission from land-applied sludge was significantly elevated over background soil emission. Methyl mercury is more toxic and more highly bioaccumulated than inorganic mercury, and warrants assessment considering these special criteria. Additionally, mercury emission from sludge-amended soil may lead to the contamination of other environmental media with significant concentrations of the metal. Although these pathways were not evaluated in the regulatory risk assessment, they are an important consideration for evaluating the risks from mercury in land-applied sludge. This presentation will summarize the results of a re-assessment of US EPA regulations regarding the land-application of municipal sewage sludge using data on methyl mercury toxicity and mercury transport in the atmosphere.

Carpi, A. [Cornell Univ., Ithaca, NY (United States); Lindberg, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

192

Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae  

SciTech Connect (OSTI)

Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

2013-04-08T23:59:59.000Z

193

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

194

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network [OSTI]

Long-period forcing of Mercury’s libration in longitude.M. : Resonant forcing of Mercury’s libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

195

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network [OSTI]

Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

196

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network [OSTI]

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

197

Mercury Surface, Space Environment, Geochemistry, and Ranging Mission  

E-Print Network [OSTI]

MESSENGER Mercury Surface, Space Environment, Geochemistry, and Ranging Mission Frequently Asked Mercury's characteristics and environment during two complementary mission phases. The mission's primary goal is to increase our understanding of Mercury's density, geologic history, magnetic field, core

Mojzsis, Stephen J.

198

Control of mercury methylation in wetlands through iron addition  

E-Print Network [OSTI]

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

199

Determination of Mercury in Soils by Flameless Atomic Absorption Spectrometry  

Science Journals Connector (OSTI)

...chemical analysis exploration flameless geochemical methods mercury...Determination of Mercury in Soils by Flameless Atomic Absorption Spectrometry...Determinationof Mercury in Soilsby Flameless Atomic AbsorptionSpectrometry...the mercuryre- RF Induction Heater work coils 1. Carriergas...

B. G. Weissberg

200

Assessment of Low Cost Novel Mercury Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Mercury Replacement Program It is the policy of California State University, Fullerton to remove mercury containing  

E-Print Network [OSTI]

Mercury Replacement Program I. Policy It is the policy of California State University, Fullerton to remove mercury containing devices throughout campus, insofar as is reasonably possible, and provide, the University has an obligation to safeguard employees from the potential health effects of mercury vapor while

de Lijser, Peter

202

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network [OSTI]

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

203

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

204

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

205

Mercury Contents of Natural Thermal and Mineral Fluids, In- U...  

Open Energy Info (EERE)

Geological Survey Professional Paper 713 Abstract Abstract unavailable. Authors D.E. White, M.E. Hinkle and I. Barnes Published U.S. Government Printing Office, 1970 DOI Not...

206

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

207

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network [OSTI]

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

Verdú, Sergio

208

DOE Interim Guidance on Mercury Management Procedures and Standards...  

Broader source: Energy.gov (indexed) [DOE]

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages DOE Interim Guidance on Mercury Management...

209

Mercury: A Diode-Pumped Solid-State Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the development of the National Ignition Facility and its goal of achieving thermonuclear burn was another ambitious Livermore laser project named Mercury. The Mercury...

210

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

1.1.5 Mercury detection Atomic absorption 19 and atomicsacrifices in simplicity. Atomic absorption or fluorescencedown to low nanogram masses. Atomic absorption/fluorescence

James, Jay Zachary

2012-01-01T23:59:59.000Z

211

Natural sources of mercury in arid and semiarid landscapes of western North America  

SciTech Connect (OSTI)

Mercury is enriched naturally in three global belts associated with areas in which Tertiary and Quaternary volcanism occurred. one belt, which occurs along the western margin of North America, contains concentrated and disseminated mercury occurrences in semiarid and arid biomes. Mercury enters the atmosphere from these landscapes through three processes: volatilization from enriched substrate, venting of geothermal systems, and resuspension. It is expected that the component of Hg deposited to arid landscapes through wet and dry deposition is negligible. Mercury fluxes to the atmosphere from arid and semiarid landscapes will be greater than that in more mesic environments because of the aridity and the daily amplitude in air temperatures. Resuspension may contribute significantly to the atmospheric burden of Hg due to eolian dispersal and subsequent evasion. To calculate the Hg flux from naturally enriched areas, the concentration, chemical form, and distribution of the Hg must be known. An understanding of the magnitude of natural Hg enrichment in global mercuriferous belts is important because the baseline for addressing human health and ecological risk is likely to be higher in these landscapes.

Gustin, M.S.; Taylor, G.E. Jr. [Univ. of Nevada, Reno, NV (United States). Dept. of Environmental and Resource Sciences

1994-12-31T23:59:59.000Z

212

Mercury and tritium removal from DOE waste oils  

SciTech Connect (OSTI)

This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

Klasson, E.T. [Oak Ridge National Lab., TN (United States)

1997-10-01T23:59:59.000Z

213

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

214

Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moves Forward in Mercury Cleanup Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. OAK RIDGE, Tenn. - Oak Ridge's EM program is making significant progress to reduce environmental mercury releases from the Y-12 National Security Complex. Mercury is one of the greatest environmental concerns facing the Oak Ridge

215

Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler  

SciTech Connect (OSTI)

The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2007-12-15T23:59:59.000Z

216

Enter a Service Request 2012 Northwestern University 1  

E-Print Network [OSTI]

in FAMIS Self Service. How to log in? Contact the Help Desk for security access to FAMIS. Additional for billing capital and R&R projects. You cannot use this tool to edit Work Orders (WO) or creating child Work Orders. You would not use this tool to enter estimates or projects, or to enter SRs already entered

Shull, Kenneth R.

217

Isotope Effect of Mercury Diffusion in Air  

Science Journals Connector (OSTI)

Isotope fractionation describes the separation of a reservoir with one isotope composition into “fractions” with different isotope compositions due to small isotopic differences in equilibrium partitioning, rates of mass transfer, or rates of transformation. ... (29) ?202Hg is the value most frequently used to examine mass dependent fractionation of mercury isotopes as 202Hg is the heaviest mercury isotope without significant isobaric interferences. ...

Paul G. Koster van Groos; Bradley K. Esser; Ross W. Williams; James R. Hunt

2013-12-23T23:59:59.000Z

218

The influence of floodplains on mercury availability  

SciTech Connect (OSTI)

The floodplains of the German river Elbe affect the mercury distribution in the river system in two different ways: they act both as a medium-term sink and as a long-term source. The large amounts of mercury deposited onto the floodplains during annual floodings are first effectively fixed in the soils, rendering them basically unavailable. Sequential extraction experiments reveal that only a small fraction of the mercury (< 3%) is present in available forms, whereas the vast majority is associated with humic substances or present in sulfidic binding forms. After deposition, a small fraction of the total mercury is gradually remobilized into the aqueous phase bound passively to water-soluble humic acids. The availability of mercury in these complexes is still low, since environmental influences such as changes in pH or redox potential and competition with other cations do not cause any mercury liberation. In the next step, reactions in the aqueous phase lead to the formation of the highly available volatile species Hg{sup 0} and dimethylmercury (DMM). Their evaporation gives rise to a strong mercury flux from the floodplains into the atmosphere. Preliminary mass balances indicate that the majority of the deposited mercury stays bound in the floodplain soils, while small amounts are emitted back into the river`s ecosystem. Atmospheric emission is more important as a remobilization pathway than aquatic export.

Wallschlaeger, D.; Wilken, R.D. [GKSS Research Center, Geesthacht (Germany). Inst. of Physical and Chemical Analytics

1997-09-01T23:59:59.000Z

219

Mercury Chamber NF-IDS Meeting  

E-Print Network [OSTI]

-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 Starting Point: Coil and Shielding Concept IDS120H #12;3 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 · Penetrations (ports) into chamber ­ Nozzle ­ Hg drains (overflow and maintenance) ­ Vents (in and out) ­ Beam

McDonald, Kirk

220

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production  

SciTech Connect (OSTI)

This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more signific

Jessica Marshall Sanderson

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Broader source: Energy.gov (indexed) [DOE]

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

222

Effect of salinity on methylation of mercury  

SciTech Connect (OSTI)

Monomethyl and dimethylmercury are potent neurotoxins subject to biomagnification in food webs. This fact was tragically demonstrated by the Minamata and Niigata poisoning incidents in Japan in which 168 persons who ate seafood from mercury polluted waters were poisoned, 52 fatally. Shortly after these two incidents, work conducted in freshwater environments demonstrated the microbial conversion of inorganic and phenylmercury compounds to mono- and di-methylmercury. Consideration of some fragmentary evidence from the literature, however, indicates that the rate and the significance of microbial methylation of mercury in freshwater and saltwater environments may not be the same. A demonstrated relationship between mercury methylation rates and water salinity would greatly influence our thinking about mercury pollution effects in marine versus freshwater environments. Since we were unable to locate published reports on this subject, we are investigating the influence of salinity on the rate of mercury methylation in an estuarine sediment.

Blum, J.E.; Bartha, R.

1980-09-01T23:59:59.000Z

223

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

224

Thursday, March 15, 2007 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 15, 2007 POSTER SESSION II: MERCURY 6:30 p.m. Fitness Center Dombard A. J. Hauck S. A. II Despinning Plus Global Contraction and the Orientation of Lobate Scarps on Mercury [#2026] We thermal models of Mercury. King S. D. A Possible Connection Between Convection in Mercury's Mantle

Rathbun, Julie A.

225

2003 Mercury Computer Systems, Inc. Optimizing System Compute  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Optimizing System Compute Density for Deployed HPEC Electronics Engineering Mercury Computer Systems, Inc. rbanton@mc.com Richard Jaenicke, Director, Product Marketing Mercury Computer Systems, Inc. rjaenicke@mc.com #12;2 © 2002 Mercury Computer Systems, Inc.© 2003

Kepner, Jeremy

226

Laser Altimeter Observations from MESSENGER's First Mercury Flyby  

E-Print Network [OSTI]

REPORT Laser Altimeter Observations from MESSENGER's First Mercury Flyby Maria T. Zuber,1 * David E Barnouin-Jha,8 John K. Harmon10 A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part

Hauck II, Steven A.

227

Sources to Seafood: Mercury Pollution in the Marine Environment  

E-Print Network [OSTI]

Sources to Seafood: Mercury Pollution in the Marine Environment The Coastal and Marine Mercury a series of scientific papers on mercury pollution in the marine environment from sources to seafood and in June 2012 in Environmental Health Perspectives. The summary report, Sources to Seafood: Mercury

228

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

229

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.  

E-Print Network [OSTI]

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm. Figure 3: The layout of multiple proton beam entry directions relative to mercury jet at z=-75 cm. A PION of a free liquid mercury jet with an intense proton beam. We study the variation of meson production

McDonald, Kirk

230

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network [OSTI]

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

231

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

232

Development of an electromagnetically actuated mercury microvalve  

SciTech Connect (OSTI)

The development of microscale fluid handling components has been recognized as a crucial element in the design of microscale chemical detection systems. Recently, work has been undertaken at Sandia National Laboratories to construct a valve that uses a small mercury droplet to control the flow of gas through capillary passages. Electromagnetic forces that are provided by small permanent magnets and a current supply are used to drive the mercury into position. Driving the mercury droplet into a tapered passage halts gas flow through a capillary, while surface tension forces prevent the mercury from passing through the passage. Models have been developed to describe the movement of the mercury droplet and the sealing of the gas passage, and millimeter-scale units have been tested to explore design options. Predictions from the model show that a valve with 10 micron sized features can seal against pressures up to 1.5 atmospheres. Experiments have highlighted the promise of mercury valves and demonstrated problems that can arise from contamination of the mercury.

Adkins, D.R.; Wong, C.C.

1998-08-01T23:59:59.000Z

233

Chronic radiation enteritis: A community hospital experience  

SciTech Connect (OSTI)

A retrospective study was undertaken to evaluate the operative management of patients with chronic radiation enteropathy. Thirty-eight affected patients from 1974 to 1986 were reviewed. Patients with recurrent cancer responsible for symptoms were excluded. Seventy-one percent of patients presented with bowel obstruction. Twenty-one patients were treated with bowel resection, while 17 were treated with a bypass procedure or diverting ostomy alone. Overall morbidity was 45%, and postoperative mortality was 16%. Patients in the bypass group were significantly older than those in the resection group (70.3 vs. 55.5 years, P = .024), suggesting that age may have been a determinant of the procedure performed. In our study there was no difference in outcome based on preexisting vascular disease, tumor site, type of procedure performed, or radiation dose. We conclude that resection is the procedure of choice in cases of chronic radiation enteritis requiring surgery except in cases with dense adhesions when enteroenterostomal bypass is a viable alternative.

Fenner, M.N.; Sheehan, P.; Nanavati, P.J.; Ross, D.S. (Southern Illinois Univ. School of Medicine, Springfield (USA))

1989-08-01T23:59:59.000Z

234

In Situ Mercury Stabilization (ISMS) Treatment: Technology Maturation Project Phase I Status Report  

SciTech Connect (OSTI)

Mercury (Hg) was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge in the 1950s and 1960s. As much as two million pounds of elemental mercury was 'lost' or unaccounted for and a large portion of that material is believed to have entered the environment. The DOE site office in Oak Ridge has identified Hg pollution in soils, sediments, and streams as the most significant environmental challenge currently faced. In industry, large amounts of mercury have been used to manufacture products (e.g., fluorescent light bulbs, thermometers) and for chemical processing (e.g., production of chlorine and alkali via mercury electrochemical cells) and many of these industrial sites are now polluted with mercury contaminated soil as a result of previous releases and/or inadvertent leaks. Remediation techniques for Hg contaminated soils are either based on thermal desorption and recovery of the mercury or excavation and shipping of large volumes of material to remote facilities for treatment and disposal. Both of these alternatives are extremely costly. The Brookhaven National Laboratory (BNL) Environmental Research & Technology Division (ERTD) has demonstrated, in laboratory-scale experiments, the viability of treating mercury contaminated soils by means of sulfide treatment rods inserted into the soil through a process known as In Situ Mercury Stabilization (ISMS). This approach is partly based on BNL's patented and successfully licensed ex situ process for Hg treatment, Sulfur Polymer Stabilization/Solidification (SPSS) which converts Hg to the more stable sulfide form. The original experiments showed that Hg homogeneously distributed in soil rapidly migrates to form a high concentration zone of chemically stable mercuric sulfide near the treatment rods while concentrations of Hg in surrounding areas away from the treatment rods are depleted to acceptable levels. BSA has subsequently filed for patent protection on the ISMS technology. If further developed it has the potential for large-scale in-situ treatment of contaminated soils that could substantially reduce the prohibitive cost of thermal desorption and/or excavation and disposal. Licensing and spin-off technology development opportunities would then be viable. Depending on performance and regulatory acceptance, the treated mercury could either be excavated for disposal elsewhere or left in place as a stable alternative. Excavated spent treatment rods could be processed by the SPSS process to reduce the potential for dispersion and lower leachability even further. The Phase I objectives of the In Situ Mercury Stabilization Treatment Process Technology Maturation Project were to: (1) replicate the original bench-scale results that formed the basis for BNL's patent application, i.e., mercury contamination in soil will migrate to and react with 'rods' containing sulfur and/or sulfur compounds, (2) provide enough information to evaluate a decision to conduct further development, and (3) establish some of the critical parameters that require further technology maturation during Phase II. The information contained in this report summarizes the work conducted in Phase I to meet these objectives.

Kalb,P.D.; Milian, L.

2008-03-01T23:59:59.000Z

235

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

236

Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood  

Science Journals Connector (OSTI)

Abstract This paper reports the method development for the simultaneous determination of methylmercury (MeHg+) and inorganic mercury (iHg) species in seafood samples. The study focused on the extraction and quantification of MeHg+ (the most toxic species) by liquid chromatography coupled to on-line UV irradiation and cold vapour atomic fluorescence spectroscopy (LC-UV-CV-AFS), using \\{HCl\\} 4 mol L?1 as the extractant agent. Accuracy of the method has been verified by analysing three certified reference materials and different spiked samples. The values found for total Hg and MeHg+ for the \\{CRMs\\} did not differ significantly from certified values at a 95% confidence level, and recoveries between 85% and 97% for MeHg+, based on spikes, were achieved. The detection limits (LODs) obtained were 0.001 mg Hg kg?1 for total mercury, 0.0003 mg Hg kg?1 for MeHg+ and 0.0004 mg Hg kg?1 for iHg. The quantification limits (LOQs) established were 0.003 mg Hg kg?1 for total mercury, 0.0010 mg Hg kg?1 for MeHg+ and 0.0012 mg Hg kg?1 for iHg. Precision for each mercury species was established, being ? 12% in terms of RSD in all cases. Finally, the developed method was applied to 24 seafood samples from different origins and total mercury contents. The concentrations for Total Hg, MeHg+ and iHg ranged from 0.07 to 2.33, 0.003–2.23 and 0.006–0.085 mg Hg kg?1, respectively. The established analytical method allows to obtain results for mercury speciation in less than 1 one hour including both, sample pretreatment and measuring step.

Ariane V. Zmozinski; Sergio Carneado; Carmen Ibáñez-Palomino; Àngels Sahuquillo; José Fermín López-Sánchez; Márcia M. da Silva

2014-01-01T23:59:59.000Z

237

Mercury cleanup efforts intensify | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury cleanup efforts ... Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs in several chemical forms, all of which can produce toxic effects in high enough doses. Mercury was used in the column exchange process, which Y-12 employed to produce lithium-6 from 1953 to 1962. Through process spills, system leaks and surface runoff, some 700,000 pounds of mercury have been lost to the

238

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

239

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification...  

Broader source: Energy.gov (indexed) [DOE]

May 7, 2010, DOE entered into a Consent Decree with Mitsubishi Electric & Electronics, USA Inc. dismissing alleged energy efficiency certification violations in return for a...

240

Chapter 1 - Understanding Branding, Content Strategy, and Content Marketing  

Science Journals Connector (OSTI)

Abstract The web provides an ever-changing, morphing platform for content, which is an ongoing conversation between your company and your customers. We need to keep up, not only with the technology but also the audience—who are they, what do they want, and how can we get their attention and keep it? The answers to all of those questions start with one thing—content strategy. We need to learn about our audience, figure out how to reach them, and enter into a conversation with them so that there is trust and comfort. To do that, we need a solid system that keeps us on track throughout this process. Content marketing is the tactic that will help you establish a brand audience who engages consistently with your content and recommends your brand to others via social networks.

Ahava Leibtag

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: News Release - Meeting Mercury Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 18, 2001 June 18, 2001 Meeting Mercury Standards DOE Selects 6 Projects to Develop Cost-Saving Technologies for Curbing Mercury Emissions from Coal Power Plants Power Plant with Fish - MORGANTOWN, WV - With President Bush's National Energy Plan calling for mandatory reductions in the release of mercury from electric power plants - part of the Plan's multi-pollutant reduction strategy - the U.S. Department of Energy today named six new projects to develop innovative technologies that can curb mercury emissions from coal plants more effectively and at a fraction of today's costs. The winning projects were submitted by the University of North Dakota's Energy & Environmental Research Center in Grand Forks; URS Group. Inc., of Austin, TX; CONSOL, Inc., of Library, PA; Southern Research Institute in

242

ZZ Mercury Storage Book.indb  

Broader source: Energy.gov (indexed) [DOE]

2 2 Comment Response Document Environmental Impact Statement Final Final Environmental Impact Statement DOE/EIS-0423 January 2011 Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury For additional information on this Final Mercury Storage EIS, contact: AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY ENVIRONMENTAL IMPACT STATEMENT David Levenstein, Document Manager Office of Environmental Compliance (EM-41) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Fax: 877-274-5462 Printed with soy ink on recycled paper Cover Sheet Lead Agency: U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Environmental Protection Agency (EPA)

243

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

244

Future trends in environmental mercury concentrations: implications  

E-Print Network [OSTI]

Future trends in environmental mercury concentrations: implications for prevention strategies interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended

245

Remediation of Mercury and Industrial Contaminants  

Broader source: Energy.gov [DOE]

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

246

Mercury's Magnetosphere After MESSENGER's First Flyby  

Science Journals Connector (OSTI)

...IMF is unfavorable to dayside magnetic reconnection with Mercury's magnetic field and greatly limits the rate of solar wind energy transfer across the MP (2). The earlier southward IMF intervals before MESSENGER's entry into the magnetosphere...

James A. Slavin; Mario H. Acuña; Brian J. Anderson; Daniel N. Baker; Mehdi Benna; George Gloeckler; Robert E. Gold; George C. Ho; Rosemary M. Killen; Haje Korth; Stamatios M. Krimigis; Ralph L. McNutt; Jr.; Larry R. Nittler; Jim M. Raines; David Schriver; Sean C. Solomon; Richard D. Starr; Pavel Trávní?ek; Thomas H. Zurbuchen

2008-07-04T23:59:59.000Z

247

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production  

SciTech Connect (OSTI)

This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was expected to impact the stability of mercury in synthetic gypsum used to produce wallboard, so Task 6 was added to the project to test this theory. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. For every task, the stack locations sampled have included a dryer for the wet gypsum as it enters the plant and a gypsum calciner. For Tasks 1, 4, 5 and 6, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 6 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant has a single-loop, open spray tower limestone forced oxidation FGD system, with the forced oxidation conducted in the reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, and the SCR was in service during the time period the gypsum tested was produced. Also, as mentioned above, Degussa additive TMT-15 was being added to the FGD system when this gypsum was produced. The results of the Task 6 stack testing, as measured by the Ontario Hydro method, detected that an average of 55% of the incoming mercury was emitted during wallboard production. These losses were distributed as about 4% across the dryer mill, 6% across the board dryer kiln, and 45% across the kettle calciner. Emissions were similar to what Task 5 results showed on a percentage basis, but about 30% lower on a mass basis. The same power plant FGD system produced the synthetic gypsum used in Task 5 (with no use of TMT-15) and in Task 6 (with TMT-15 added to the FGD system). The lower emissions on a mass basis appeared

Jessica Sanderson; Gary M. Blythe; Mandi Richardson

2006-12-01T23:59:59.000Z

248

Symplectic Integrator Mercury: Bug Report  

E-Print Network [OSTI]

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

249

Detection of concealed mercury with thermal neutrons  

SciTech Connect (OSTI)

In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D&D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them.

Bell, Z.W.

1994-08-18T23:59:59.000Z

250

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

251

energy content  

Science Journals Connector (OSTI)

energy content, (weight) strength ? Arbeitsvermögen n (im ballistischen Mörser gemessen), Sprengenergie f (im ballistischen Mörser gemessen) [Mit 10 g Sprengstoff ermittelt

2014-08-01T23:59:59.000Z

252

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

253

DOE/NETL's Mercury Control Technology R&D Program Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE/NETL's Mercury Control Technology R&D Program Review DOE/NETL's Mercury Control Technology R&D Program Review July 14-15, 2004 Table of Contents Disclaimer Papers and Presentations Program Review Overview Sorbent Injection Research Panel Discussion: Sorbent Injection for Hg Control Mercury Control Technology R&D I Poster Session Mercury Control Technology R&D II By-Product Characterization Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

254

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site  

Broader source: Energy.gov (indexed) [DOE]

DOE Issues Final Mercury Storage Environmental Impact Statement: DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage January 19, 2011 - 12:00pm Addthis Media Contact (202) 586-4940 WASHINGTON - The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations. Based on these factors, DOE identified the Waste Control Specialists, LLC, site near Andrews, Texas, as the preferred alternative for long-term management and storage of mercury. DOE will consider the environmental impact information presented in this

255

Dissolved gaseous mercury behavior in shallow water estuaries  

E-Print Network [OSTI]

The formation of dissolved gaseous mercury (DGM) can be an important pathway for mercury removal from an aquatic environment. DGM evasional fluxes from an aquatic system can account for up to 95% of atmospheric Hg and its deposition pathways. While...

Landin, Charles Melchor

2009-05-15T23:59:59.000Z

256

Mitigation and Remediation of Mercury Contamination at the Y...  

Office of Environmental Management (EM)

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

257

Mercury in the sediments of the Pallanza Basin  

Science Journals Connector (OSTI)

... Pallanza Basin of Lago Maggiore, Italy, in 1970 have been analysed for mercury, using flameless atomic absorption spectrophotometry. The concentration of mercury in the Maggiore sediments proved to be ...

V. DAMIANI; R. L. THOMAS

1974-10-25T23:59:59.000Z

258

Emission factor of mercury from coal-fired power stations  

Science Journals Connector (OSTI)

Mercury emission from coal-fired power stations, situated in Poland in the Silesian region ... mercury in the consumed coal and in combustion gas, used in this research, are described. ... the air from coal combu...

Wojciech Mniszek

1994-11-01T23:59:59.000Z

259

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network [OSTI]

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

Lü, Jiangning

2011-01-01T23:59:59.000Z

260

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

262

Carbon Nanotube-Silver Composite for Mercury Capture and Analysis  

Science Journals Connector (OSTI)

The mechanisms of capturing mercury on a sorbent vary from amalgamation, chemical adsorption to simple physical adsorption. ... Untreated carbon-based sorbents and mineral-based sorbents capture mercury mainly via physical adsorption that allows release of captured mercury at slightly higher temperatures. ... This paper outlines the results of a systematic study on the capture of trace mercury vapor from simulated flue gases, using activated carbons. ...

Guangqian Luo; Hong Yao; Minghou Xu; Xinwei Cui; Weixing Chen; Rajender Gupta; Zhenghe Xu

2009-12-17T23:59:59.000Z

263

Groundwater Discharge of Mercury to California Coastal Waters  

E-Print Network [OSTI]

leading to levels in some seafood that can be dangerous ifis all the mercury in seafood coming from? ’” says Russell

Flegal, Russell; Paytan, Adina; Black, Frank

2009-01-01T23:59:59.000Z

264

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

265

Impact of Closing Canada’s Largest Point-Source of Mercury Emissions on Local Atmospheric Mercury Concentrations  

Science Journals Connector (OSTI)

(29) Solar radiation measurements at the airport were initiated in August 2010. ... Steffen, A.; Schroeder, W. Standard Operating Procedures for Total Gaseous Mercury Measurements—Canadian Atmospheric Mercury Measurement Network (CAMNet); Environment Canada: Toronto, Canada, 1999. ...

Chris S. Eckley; Matthew T. Parsons; Rachel Mintz; Monique Lapalme; Maxwell Mazur; Robert Tordon; Robert Elleman; Jennifer A. Graydon; Pierrette Blanchard; Vincent St Louis

2013-08-26T23:59:59.000Z

266

Mercury: Supporting Scalable Multi-Attribute Range Queries  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe Mukesh Agrawal 15213 Abstract This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range- based searches. Mercury differs from previous range-based query systems in that it supports mul

Keinan, Alon

267

Mercury/Waterfilling for Fixed Wireless OFDM Angel Lozano  

E-Print Network [OSTI]

Mercury/Waterfilling for Fixed Wireless OFDM Systems Angel Lozano Bell Labs (Lucent Technologies- mation is then given by the more general mercury/waterfilling policy. This paper illustrates the usance of mercury/waterfilling on frequency-selective OFDM channels with QAM constellations and it quantifies

Verdú, Sergio

268

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

269

Powering Mercury's dynamo J.-P. Williams,1  

E-Print Network [OSTI]

Powering Mercury's dynamo J.-P. Williams,1 O. Aharonson,1 and F. Nimmo2 Received 6 July 2007 magnetic field of Mercury has implications for the interior structure of the planet and its thermal (2007), Powering Mercury's dynamo, Geophys. Res. Lett., 34, L21201, doi:10.1029/ 2007GL031164. 1

Nimmo, Francis

270

2003 Mercury Computer Systems, Inc. Session 5: Current &  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Session 5: Current & Emerging Standards Session 5: Current & Emerging Standards Craig Lund, Chief Technology Officer Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 2003 #12;© 2003 Mercury Computer Systems, Inc. Agenda

Kepner, Jeremy

271

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY  

E-Print Network [OSTI]

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY: A GLOBAL PERSPECTIVE. T. MESSENGER's Newly Global Perspective on Mercury: Some Implications for Interior Evolution [#1750] MESSENGER's first two flybys of Mercury have revealed a planet with a richer history of magmatism

Rathbun, Julie A.

272

Exploring Mercury: Scientific Results from the MESSENGER Mission  

E-Print Network [OSTI]

#12;Exploring Mercury: Scientific Results from the MESSENGER Mission Larry R. Nittler Carnegie-Cahill · MESSENGER Science Team, Engineers, Mission Operations (APL) #12;Mars Mercury · Naked-eye planet, but very difficult to observe due to proximity to Sun May 12, 2011, from NZ (M. White, Flickr) Mercury Venus Jupiter

Rhoads, James

273

2003 Mercury Computer Systems, Inc. Beamforming for Radar  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Beamforming for Radar Systems on COTS Heterogeneous ComputingHeterogeneous Computing PlatformsPlatforms Jeffrey A. Rudin Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 23, 2003 #12;2© 2003 Mercury Computer Systems, Inc. Outline

Kepner, Jeremy

274

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from a global 3D land.S. National Science Foundation Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since

Selin, Noelle Eckley

275

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2nd Princeton-Oxford High Power Target Meeting 6-7 November-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump design from NUFACT

McDonald, Kirk

276

Mercury Concentrations in Fish from the San Francisco Bay Area  

E-Print Network [OSTI]

Mercury Concentrations in Fish from the San Francisco Bay Area San Francisco Bay Regional Water on composite samples · Some mercury analysis on individual largemouth bass · Size targets #12;Tomales Bay Study chemical analyses (Hg and organics) conducted on composite samples · Some mercury analysis on individual

277

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network [OSTI]

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

278

Mercury exosphere I. Global circulation model of its sodium component  

E-Print Network [OSTI]

Mercury exosphere I. Global circulation model of its sodium component Francois Leblanc a,*, R 2010 Accepted 27 April 2010 Available online 5 May 2010 Keywords: Mercury, Atmosphere Aeronomy a b s t r a c t Our understanding of Mercury's sodium exosphere has improved considerably in the last 5

Johnson, Robert E.

279

Mercury warning given to north state anglers By Ryan Sabalow  

E-Print Network [OSTI]

Mercury warning given to north state anglers By Ryan Sabalow Monday, June 7, 2010 A new study the highest levels of mercury contamination in the state. Although anglers arent being warned to wean,905 fish in 272 of Californias popular lakes and reservoirs for mercury, PCBs, DDT and other contaminants

280

Mercury reuses several external software tools developed by ORNL  

E-Print Network [OSTI]

Mercury reuses several external software tools developed by ORNL DAAC and other organizations-on,canopychemistryaccpclimatecollectionseoslandvalidationFIFEFIFEfollow-on fluxnethydroclimatologycollectionsmodelarchivenetprimaryproductivityNPPNBIIMAST- DCUSANPNIABINDataONEWENDI Mercury's architecture includes 1) a harvesting engine was packaged in such a way that all the Mercury projects will use the same harvester scripts, but each project

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mercury and Freon: Temperature Emulation and Management for Server Systems  

E-Print Network [OSTI]

Mercury and Freon: Temperature Emulation and Management for Server Systems Taliver Heath Dept by simulators and real measurements. In this paper, we introduce Mercury, a soft- ware suite that avoids data. Most importantly, Mercury runs the entire software stack natively, enables repeatable experiments

Bianchini, Ricardo

282

Thursday, March 26, 2009 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 26, 2009 POSTER SESSION II: MERCURY 6:30 p.m. Town Center Exhibit Area Gómez-Perez N. Wicht J. Magnetic Field at Mercury: Effects of External Sources on Planetary Dynamos [#1634] In Mercury, magnetospheric currents induce a magnetic field at the top of the core. We study dynamo

Rathbun, Julie A.

283

Mercury: Supporting Scalable Multi-Attribute Range Ashwin R. Bharambe  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe ashu Carnegie Mellon University Pittsburgh, PA 15213 ABSTRACT This paper presents the design of Mercury, a scalable pro- tocol for supporting multi-attribute range-based searches. Mercury differs from previous

Krishnamurthy, Arvind

284

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1st joint meeting of EUROnu WP2 (Superbeam) and NF-IDS target 15-17 December-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump

McDonald, Kirk

285

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from global modeling Noelle Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since industrialization Major anthropogenic

Selin, Noelle Eckley

286

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY  

E-Print Network [OSTI]

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY 7:00 p.m. Fitness Center Helbert J. Moroz L. V for the MERTIS Instrument on the ESA BepiColombo Mission to Mercury [#1662] The MERTIS instrument on BepiColombo will study the surface of Mercury in the TIR. We will present a list of analog material compiled to support

Rathbun, Julie A.

287

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from Global Modeling Noelle #12;MERCURY IN THE ENVIRONMENT: OUTLINE 1. Deposition to the United States results from a mix of local and global sources, depending on the location 2. Historical and present releases of mercury will continue

Selin, Noelle Eckley

288

MESSENGER observations of magnetopause structure and dynamics at Mercury  

E-Print Network [OSTI]

MESSENGER observations of magnetopause structure and dynamics at Mercury Gina A. DiBraccio,1 James December 2012; accepted 10 January 2013; published 1 March 2013. [1] On 18 March 2011, MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) became the first spacecraft to orbit Mercury

Salzman, Daniel

289

Long-Term Management and Storage of Elemental Mercury  

Broader source: Energy.gov [DOE]

In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) required DOE to establish a facility for the long-term management and storage of elemental mercury.

290

Optical frequency standards based on mercury and aluminum ions  

E-Print Network [OSTI]

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

291

Sediment-water fluxes of mercury in Lavaca Bay, Texas  

SciTech Connect (OSTI)

The aqueous flux of inorganic Hg and monomethyl Hg from sediments to the water column was determined at several sites in Lavaca Bay, an estuary along the Texas Coast, historically impacted by Hg discharges. Diffusive fluxes were calculated at 15 sites using interstitial pore water gradients and compared to direct flux measurements obtained at two sites using benthic flux chambers. The diffusive flux of monomethyl mercury (MMHg), when modeled as a chloride species, varied over 3 orders /of magnitude from 0.2 to 1500 ng m{sup {minus}2} day{sup {minus}1}. Diffusive fluxes determined at a single site revealed that MMHg fluxes varied seasonally; maximal fluxes occurred in late winter to early spring. Flux chamber deployments at an impacted site revealed t hat MMHg was the Hg species entering the water column from sediments and the flux was not in steady-state; there was a strong diurnal signal with most of the MMHg flux occurring during dark periods. The flux of inorganic Hg was smaller and not as easily discernible by this method. The MMHg flux during the dark period was about 6 times greater than the estimated diffusional flux for MMHgCl, suggesting that biological and/or chemical processes near the sediment-water interface were strongly mediating the sediment-water exchange of MMHg.

Gill, G.A. [Texas A and M Univ., Galveston, TX (United States)] [Texas A and M Univ., Galveston, TX (United States); Bloom, N.S. [Frontier Geosciences Inc., Seattle, WA (United States)] [Frontier Geosciences Inc., Seattle, WA (United States); Cappellino, S. [Parametrix, Inc., Houston, TX (United States)] [Parametrix, Inc., Houston, TX (United States); Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil and Environmental Engineering] [Syracuse Univ., NY (United States). Dept. of Civil and Environmental Engineering; Dobbs, C.; McShea, L. [Aluminum Co. of America, Point Comfort, TX (United States)] [Aluminum Co. of America, Point Comfort, TX (United States); Mason, R. [Univ. of Maryland, Solomons, MD (United States). Chesapeake Biological Lab.] [Univ. of Maryland, Solomons, MD (United States). Chesapeake Biological Lab.; Rudd, J.W.M. [Dept. of Fisheries and Oceans, Winnipeg, Manitoba (Canada). Freshwater Inst.] [Dept. of Fisheries and Oceans, Winnipeg, Manitoba (Canada). Freshwater Inst.

1999-03-01T23:59:59.000Z

292

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle*  

E-Print Network [OSTI]

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle no immediate effect on mercury removal. In 0.8 M HNO3 with the addition of K2Cr2O7, the reaction is first at 25 °C. For mercury absorption in Hg(II) obtained by HgCl2 injection, the presence of HNO3 greatly

Rochelle, Gary T.

293

PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION  

SciTech Connect (OSTI)

Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

2000-12-01T23:59:59.000Z

294

NETL: Mercury Emissions Control Technologies - Advanced Utility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

295

Geochemical, Genetic, and Community Controls on Mercury  

SciTech Connect (OSTI)

The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

Wall, Judy D.

2014-11-10T23:59:59.000Z

296

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

222014 5:11:47 PM" "Back to Contents","Data 1: U.S. Gasoline and Diesel Retail Prices" "Sourcekey","EMMEPM0PTENUSDPG","EMMEPM0UPTENUSDPG","EMMEPM0RPTENUS...

297

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:08:27 PM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012MO2" "Date","Missouri...

298

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9262014 3:44:37 PM" "Back to Contents","Data 1: Natural Gas Pipeline & Distribution Use " "Sourcekey","N9170US2","NA1480SAL2","NA1480SAK2","NA1480SAZ...

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSDMCF"...

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:55 PM" "Back to Contents","Data 1: Natural...

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Texas...

302

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:41 PM" "Back to Contents","Data 1: Natural...

303

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:11:23 PM" "Back to Contents","Data 1:...

304

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:32:23 PM" "Back to Contents","Data 1:...

305

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Virginia...

306

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:26:30 PM" "Back to Contents","Data 1: Alabama...

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1: Rhode...

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:58 PM" "Back to Contents","Data 1: Natural...

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:23 PM" "Back to Contents","Data 1: Vermont...

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:10 PM" "Back to Contents","Data 1:...

311

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oregon...

312

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:53 PM" "Back to Contents","Data 1: Utah...

313

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Michigan...

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:30 PM" "Back to Contents","Data 1: New...

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:52 PM" "Back to Contents","Data 1: Natural...

316

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:24:23 PM" "Back to Contents","Data 1: Kansas...

317

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: U.S....

318

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:02 PM" "Back to Contents","Data 1: South...

319

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Tennessee...

320

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Montana...

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:32 PM" "Back to Contents","Data 1: New...

322

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:54 PM" "Back to Contents","Data 1: Natural...

323

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Utah...

324

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:31 PM" "Back to Contents","Data 1: Natural...

325

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oklahoma...

326

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:08:23 PM" "Back to Contents","Data 1: Illinois...

327

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Maryland...

328

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Percent...

329

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1:...

330

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:54 PM" "Back to Contents","Data 1: Virginia...

331

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:08 PM" "Back to Contents","Data 1: U.S....

332

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:51 PM" "Back to Contents","Data 1: Natural...

333

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:05:23 PM" "Back to Contents","Data 1: Natural...

334

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1:...

335

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: Wyoming...

336

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1: Vermont...

337

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:57 PM" "Back to Contents","Data 1:...

338

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: West...

339

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:00:57 PM" "Back to Contents","Data 1: Iowa...

340

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:45 PM" "Back to Contents","Data 1: South...

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NNSA enters into strategic partnership to promote cybersecurity | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enters into strategic partnership to promote cybersecurity | National enters into strategic partnership to promote cybersecurity | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA enters into strategic partnership to promote cybersecurity NNSA enters into strategic partnership to promote cybersecurity Posted By Bob Osborn, NNSA Associate Administrator for Information

342

Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting  

Broader source: Energy.gov (indexed) [DOE]

Entering Invoices Through the Vendor Inquiry Payment Electronic Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) The purpose of this document is to provide an overview of the process to submit invoices electronically to the Oak Ridge Financial Service Center (ORFSC) and interface them into STARS using the Vendor Inquiry Payment Electronic Reporting System (VIPERS). It is recommended that the plan outlined below be used by Department of Energy vendors to submit electronic invoices and to check status of outstanding invoice payments. Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) More Documents & Publications Smart Grid Investment Grant Invoice Template and Instructions

343

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification  

Broader source: Energy.gov (indexed) [DOE]

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations May 7, 2010 - 12:41pm Addthis On May 7, 2010, DOE entered into a Consent Decree with Mitsubishi Electric & Electronics, USA Inc. dismissing alleged energy efficiency certification violations in return for a $5000 voluntary contribution that will be made on Mitsubishi's behalf by the Air-Conditioning, Heating and Refrigeration Institute (AHRI). This will resolve the case initiated on April 21, 2010, against Mitsubishi. After issuing a Notice of Proposed Civil Penalty alleging that Mitsubishi had failed to submit certification reports for some models of air conditioners and heat pumps, DOE discovered Mitsubishi

344

TH.D. STUDENT PROFILES 2006 Entering Class  

E-Print Network [OSTI]

TH.D. STUDENT PROFILES 2006 Entering Class Jeff Conklin-Miller Primary Concentration: Theology ecclesiology, drawing on insights of John Howard Yoder, Rowan Williams, and the Wesleyan tradition. Tommy

Reif, John H.

345

Textbook Adoption Application Guide Entering the Application ..................................................................................... 2  

E-Print Network [OSTI]

allows you to search for your assigned course(s) by: Term, Location, Academic Department, Course NumberTextbook Adoption Application Guide Entering the Application ............................................................................................................ 3 Search with Academic Criteria

Sura, Philip

346

PHOTO OPTION CURRICULUM (FOR STUDENTS ENTERING FALL, 2011 OR LATER)  

E-Print Network [OSTI]

PHOTO OPTION CURRICULUM (FOR STUDENTS ENTERING FALL, 2011 OR LATER) NOTE ON REVERSE. GATE REQUIREMENTS FOR PHOTO OPTION: FILM 100IH ­ Introduction to Film)..................................................................3 PHOTO OPTION REQUIREMENTS (GATE REQUIRED FOR MOST COURSES): PHOT 255

Dyer, Bill

347

Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting  

Broader source: Energy.gov (indexed) [DOE]

Entering Invoices Through the Vendor Inquiry Payment Electronic Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) The purpose of this document is to provide an overview of the process to submit invoices electronically to the Oak Ridge Financial Service Center (ORFSC) and interface them into STARS using the Vendor Inquiry Payment Electronic Reporting System (VIPERS). It is recommended that the plan outlined below be used by Department of Energy vendors to submit electronic invoices and to check status of outstanding invoice payments. Entering Invoices Through the Vendor Inquiry Payment Electronic Reporting System (VIPERS) More Documents & Publications Smart Grid Investment Grant Invoice Template and Instructions

348

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification  

Broader source: Energy.gov (indexed) [DOE]

DOE/Mitsubishi Enter Consent Decree Dismissing Claims of DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations DOE/Mitsubishi Enter Consent Decree Dismissing Claims of Certification Violations May 7, 2010 - 12:41pm Addthis On May 7, 2010, DOE entered into a Consent Decree with Mitsubishi Electric & Electronics, USA Inc. dismissing alleged energy efficiency certification violations in return for a $5000 voluntary contribution that will be made on Mitsubishi's behalf by the Air-Conditioning, Heating and Refrigeration Institute (AHRI). This will resolve the case initiated on April 21, 2010, against Mitsubishi. After issuing a Notice of Proposed Civil Penalty alleging that Mitsubishi had failed to submit certification reports for some models of air conditioners and heat pumps, DOE discovered Mitsubishi

349

THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT  

SciTech Connect (OSTI)

We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within {approx}25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Wu Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

2011-09-20T23:59:59.000Z

350

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

351

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

352

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

2014-09-02T23:59:59.000Z

353

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

354

NETL: IEP - Mercury Emissions Control: Emissions Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Control Emissions Characterization In anticipation of the 1990 CAAAs, specifically the draft Title III regarding the characterization of potential HAPs from electric steam generating units, DOE initiated a new Air Toxics Program in 1989. The DOE Mercury Measurement and Control Program evolved as a result of the findings from the comprehensive assessment of hazardous air pollutants studies conducted by DOE from 1990 through 1997. DOE, in collaboration with EPRI, performed stack tests at a number of coal-fired power plants (identified on map below) to accurately determine the emission rates of a series of potentially toxic chemicals. These tests had not been conducted previously because of their cost, about $1 million per test, so conventional wisdom on emissions was based on emission factors derived from analyses of coal. In general, actual emissions were found to be about one-tenth previous estimates, due to a high fraction of the pollutants being captured by existing particulate control systems. These data resulted in a decision by EPA that most of these pollutants were not a threat to the environment, and needed no further regulation at power plants. This shielded the coal-fired power industry from major (tens of millions) costs that would have resulted from further controlling these emissions. However, another finding of these studies was that mercury was not effectively controlled in coal-fired utility boiler systems. Moreover, EPA concluded that a plausible link exists between these emissions and adverse health effects. Ineffective control of mercury by existing control technologies resulted from a number of factors, including variation in coal composition and variability in the form of the mercury in flue gases. The volatility of mercury was the main contributor for less removal, as compared to the less volatile trace elements/metals which were being removed at efficiencies over 99% with the fly ash. In addition, it was determined that there was no reliable mercury speciation method to accurately distinguish between the elemental and oxidized forms of mercury in the flue gas. These two forms of mercury respond differently to removal techniques in existing air pollution control devices utilized by the coal-fired utility industry.

355

NETL: Mercury Emissions Control Technologies - Full- Scale Testing of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full-Scale Testing of Enhanced Mercury Control in Wet FGD Full-Scale Testing of Enhanced Mercury Control in Wet FGD The goal of this project is to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The two specific objectives of this project are 1) ninety percent (90%) total mercury removal and 2) costs below 1/4 to 1/2 of today's commercially available activated carbon mercury removal technologies. Babcock and Wilcox and McDermott Technology, Inc's (B&W/MTI's) will demonstrate their wet scrubbing mercury removal technology (which uses very small amounts of a liquid reagent to achieve increased mercury removal) at two locations burning high-sulfur Ohio bituminous coal: 1) Michigan South Central Power Agency's (MSCPA) 55 MWe Endicott Station located in Litchfield, Michigan and 2) Cinergy's 1300 MWe Zimmer Station located near Cincinnati, Ohio.

356

NETL: News Release - Innovative Mercury Removal Technique Shows Early  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 5, 2003 August 5, 2003 Innovative Mercury Removal Technique Shows Early Promise Photochemical Process Developed in Federal Lab Removes Mercury from Flue Gas - NETL scientist Evan Granite prepares a lab test of the UV mercury removal process. - NETL scientist Evan Granite prepares for a lab test of the UV mercury removal process. MORGANTOWN, WV - A promising technology to remove mercury from coal-fired power plants -- dubbed the "GP-254 Process" -- has been developed and is currently being tested at the Department of Energy's National Energy Technology Laboratory (NETL). Newly patented, the GP-254 Process enhances mercury removal using ultraviolet light to induce various components of power plant stack gas to react with the mercury, and changes the

357

NETL: Mercury Emissions Control Technologies - Bench Scale Kinetics of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bench Scale Kinetics of Mercury Reactions in FGD Liquors Bench Scale Kinetics of Mercury Reactions in FGD Liquors When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury can not. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have shown substantial re-emissions from some FGD systems. The goal of this project is to develop a fundamental understanding of the aqueous chemistry of mercury (Hg) absorbed by wet flue gas desulfurization (FGD) scrubbing liquors. Specifically, the project will determine the chemical reactions that oxidized mercury undergoes once absorbed, the byproducts of those reactions, and reaction kinetics.

358

NETL: Mercury Emissions Control Technologies - Development of Comprehensive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full-Scale Testing of Mercury Control Via Sorbent Injection Full-Scale Testing of Mercury Control Via Sorbent Injection DOE has identified technologies (based on past DOE and other R&D organizations' mercury measurement and control achievements) that are expected to be important in developing possible strategies on mercury control for the coal-fired electric utility industry. To address critical questions related to cost and efficiency of these mercury control technologies, DOE has funded the first of a kind large-scale initiative aimed at testing and evaluating large-scale mercury control technologies for coal-based power systems. These tests will collect cost and performance data with parametric and long term field experiments at power plants with existing air pollution control devices (APCDs) utilized to control other pollutants as well as mercury in hopes of providing the cheapest control options for the utility industry in mid-term application (5 to 10 years).

359

Global change and mercury cycling: Challenges for implementing a global mercury treaty  

E-Print Network [OSTI]

The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their ...

Selin, Noelle Eckley

360

Classification of carbon in Canadian fly ashes and their implications in the capture of mercury  

Science Journals Connector (OSTI)

Fly ashes produced from Canadian power plants using pulverized coal and fluidized bed combustors were examined for their carbon content to determine their ability to capture mercury. The feed coal used in these power plants were lignite, subbituminous, high and medium volatile bituminous, their blends, and also blends of coal with petroleum coke (Petcoke). The carbon and mercury content of the coals and fly ashes were determined using the ASTM standard method and by the cold vapour atomic absorption spectrometry method. The carbon content of the fly ash was concentrated by strong acid digestion using \\{HCl\\} and HF. The quantitative and qualitative analyses of the carbon concentrate were made by using a reflected light microscope. The results show that the carbon content of fly ash appears to be partially related to depositional environment during coalification and to the rank of the coal. The Hg captured by the fly ash depends on the rank and blend of the feed coals and the type of carbon in the fly ash. The isotropic vitrinitic char is mostly responsible for the capture of most Hg in fly ash. The inadvertent increase in carbon content due to the blending of coal with petroleum coke did not increase the amount Hg captured by the fly ash. The fly ash collected by the hot side electrostatic precipitator has a low Hg content and no relation between the Hg and carbon content of the ash was observed. These results indicate that the quantity of carbon in the fly ash alone does not determine the amount Hg captured. The types of carbon present (isotropic and anisotropic vitrinitic, isotropic inertinitic and anisotropic Petcoke), the halogen content, the types of fly ash control devices, and the temperatures of the fly ash control devices all play major roles in the capture of Hg.

Fariborz Goodarzi; James C. Hower

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CEDR Content  

Broader source: Energy.gov (indexed) [DOE]

CEDR Content" CEDR Content" "The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The CEDR is due to the SPO no later than December 9th." "Worksheet",,"Overview","Action" 1.1,"Content","Stand-alone overview of the CEDR tabs.","None" 2.1,"Funds, Meters, Training","Collects information on energy and water spending, and metering status.","If applicable, complete cells highlighted in orange. Edited and new data cells should be highlighted in light blue." 3.1,"BTU & Gal Key","Reference tab containing all factors and dropdown menu information for all tabs starting with ""3"". If you need to divide up the CEDR, please keep all tabs starting with ""3"" together to ensure calculation links are not broken. ","None"

362

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents  

E-Print Network [OSTI]

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents the Mercury Exchange Program. This is a great program that enables laboratories to exchange their intact mercury thermometers, manometers, and other mercury-containing devices for non-mercury devices at no cost. The key

Duchowski, Andrew T.

363

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future  

E-Print Network [OSTI]

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future with unusually severe and widespread mercury contamination due to extensive mercury and gold mining in the 1800s. Mercury monitoring in California sport sh began in 1969. Since that time, a substantial amount of mercury

364

DOI: 10.1002/chem.200701895 A Highly Selective Colorimetric Aqueous Sensor for Mercury  

E-Print Network [OSTI]

to methyl mercury, adding this potent neuro- toxin to the food chain.[4­6] Mercury poisoning causes serious Mercury poisoning remains a significant threat to human health, yet global mercury emissions continue of mercury poisoning requires new methods of detection that are sen- sitive and selective. Here we report

Tew, Gregory N.

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Workbook Contents" Workbook Contents" ,"U.S. State-to-State capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units of Measurement","Frequency","Updated Date" ,"Pipeline State-to-State Capacity","State-to-State capacity","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Inflow Capacity","Inflow capacity from other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Outflow Capacity","Outflow capacity to other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel"

366

NETL: IEP - Mercury Emissions Control: Regulatory Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Drivers Regulatory Drivers The Clean Air Act Amendments of 1990 (CAAA) brought about new awareness regarding the overall health-effects of stationary source fossil combustion emissions. Title III of the CAAA identified 189 pollutants, including mercury, as hazardous or toxic and required the Environmental Protection Agency (EPA) to evaluate their emissions by source, health effects and environmental implications, including the need to control these emissions. These pollutants are collectively referred to as air toxics or hazardous air pollutants (HAPs). The provisions in Title III specific to electric generating units (EGU) were comprehensively addressed by DOE's National Energy Technology Laboratory (NETL) and the Electric Power Research Institute (EPRI) in collaborative air toxic characterization programs conducted between 1990 and 1997. This work provided most of the data supporting the conclusions found in EPA's congressionally mandated reports regarding air toxic emissions from coal-fired utility boilers; the Mercury Study Report to Congress (1997)1 and the "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress" (1998).2 The first report identified coal-fired power plants as the largest source of human-generated mercury emissions in the U.S. and the second concluded that mercury from coal-fired utilities was the HAP of "greatest potential concern" to the environment and human health that merited additional research and monitoring.

367

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents [OSTI]

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

368

Global Biogeochemical Cycling of Mercury: A Review  

E-Print Network [OSTI]

's biogeo- chemical system, but centuries of human activi- ties, such as mining and fossil fuel burning by Annual Reviews. All rights reserved 1543-5938/09/1121-0043$20.00 Key Words ecosystem dynamics, health, land-atmosphere interactions, pollution Abstract Mercury pollution poses global human health

369

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

370

Mariner 10 mission to Venus and Mercury  

Science Journals Connector (OSTI)

Mariner 10, the first dual-planet, gravity-assist mission, was launched by an Atlas/Centaur Mariner launch vehicle from the National Aeronautics and Space Administration—Kennedy Space Center in Cape Canaveral, Florida on 3 November 1973. Shortly after liftoff, a series of earth and Moon observations were made. These were followed by the initial trajectory correction maneuver and a period of interplanetary cruise operations. An additional trajectory correction maneuver was made several weeks prior to the encounter with Venus to refine the flyby on 5 February 1974 to 5000 km (3000 miles) above the surface of the planet. Extensive scientific observations of Venus took place over a period of about one week. Several thousand TV images were transmitted to Earth, many of which showed spectacular ultraviolet cloud formations and motions. The post-Venus trajectory required only a modest correction to place the spacecraft on a flight path that passed within the planned 1000 km (620 miles) of the surface of Mercury on 19 March 1974. Extensive TV imaging, together with other scientific observations, provided the first in-depth information concerning Mercury. The Mariner 10 mission is described, including engineering highlights of the flight and the key scientific results. The post-Mercury operation plan is discussed, the initial results of the second encounter with Mercury are given, and the possibilities of a third encounter are presented.

W.Eugene Giberson; N.William Cunningham

1975-01-01T23:59:59.000Z

371

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

372

MERCURY SPECIATION SAMPLING AT NEW CENTURY ENERGY'S VALMONT STATION  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the ''Mercury Study Report to Congress'' and ''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units''. The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam electric generating units. Although these reports did not state that mercury controls on coal-fired electric power stations would be required given the current state of the art, they did indicate that the EPA views mercury as a potential threat to human health. Therefore, it was concluded that mercury controls at some point may be necessary. EPA also indicated that additional research/information was necessary before any definitive statement could be made. In an effort to determine the amount and types of mercury being emitted into the atmosphere by coal-fired power plants, EPA in late 1998 issued an information collection request (ICR) that required all coal-fired power plants to analyze their coal and submit the results to EPA on a quarterly basis. In addition, about 85 power stations were required to measure the speciated mercury concentration in the flue gas. These plants were selected on the basis of plant configuration and coal type. The Valmont Station owned and operated by New Century Energy in Boulder, Colorado, was selected for detailed mercury speciation of the flue gas as part of the ICR process. New Century Energy, in a tailored collaboration with EPRI and the U.S. Department of Energy, contracted with the Energy & Environmental Research Center (EERC) to do a study evaluating the behavior of mercury at the Valmont Station. The activities conducted at the Valmont Station by the EERC not only included the sampling needed to meet the requirements of the ICR, but involved a much more extensive mercury research program. The following objectives for the sampling at New Century Energy's Valmont Station were accomplished: (1) Successfully complete all of the mercury sampling and reporting requirements of the ICR. (2) Determine the variability in mercury concentrations at the stack using mercury continuous emission monitors (CEMs). (3) Calculate mercury mass balances and emission rates. (4) Determine the mercury concentration in the fly ash as a function of particle size. (5) Determine the impact of a fabric filter on mercury emissions for a western bituminous coal.

Dennis L. Laudal

2000-04-01T23:59:59.000Z

373

Enter data into Portfolio Manager | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enter data into Portfolio Manager Enter data into Portfolio Manager Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker How Portfolio Manager calculates metrics

374

Green academy helps researchers enter the marketplace | Department of  

Broader source: Energy.gov (indexed) [DOE]

Green academy helps researchers enter the marketplace Green academy helps researchers enter the marketplace Green academy helps researchers enter the marketplace March 29, 2010 - 11:07am Addthis Andrew Hargadon teaches a workshop at Green Technology Entrepreneurship Academy in Incline Village, Nevada.
| Photo Courtesy of University of California, Davis Andrew Hargadon teaches a workshop at Green Technology Entrepreneurship Academy in Incline Village, Nevada.
| Photo Courtesy of University of California, Davis Stephen Graff Former Writer & editor for Energy Empowers, EERE Before wading into the green energy sector, there are crucial things every budding entrepreneur should know: think like an investor, know your customer, and prove your research is going to solve a problem. To the business-savvy this advice may seem obvious, but for the

375

Better Buildings Federal Award 2013 Guidelines for Entering | Department of  

Broader source: Energy.gov (indexed) [DOE]

2013 Guidelines for Entering 2013 Guidelines for Entering Better Buildings Federal Award 2013 Guidelines for Entering October 7, 2013 - 4:40pm Addthis Have Questions? A list of frequently asked questions contains answers to a variety of Better Buildings Federal Award queries. The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year. Selecting Applicants Agencies should consider nominating a building based on how well it expects the building to perform in 2013 as compared to 2012, taking into account a wide range of innovative or comprehensive energy management practices being

376

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-  

E-Print Network [OSTI]

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed Oak Creek, Wisconsin (center). (All photographs by the authors.) #12;Total Mercury, Methylmercury.E., 2008, Total mercury, methylmercury, methylmercury production potential, and ancillary streambed

377

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network [OSTI]

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

378

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network [OSTI]

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

379

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

380

Mercury Distribution in Contaminated Surface Sediments from Four Estuaries, Khuzestan Shore, North Part of Persian Gulf  

Science Journals Connector (OSTI)

...The distribution of mercury in surface sediment from four estuaries along the Khuzestan shore, north part of Persian Gulf, was measured. The concentration of mercury...p < 0.05). The concentrations of mercury ...

Abdolah Raeisi Sarasiab; Mehdi Hosseini…

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for  

E-Print Network [OSTI]

Mercury(II) Sorption to Two Florida Everglades Peats: Evidence for Strong and Weak Binding of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms

Illinois at Chicago, University of

382

E-Print Network 3.0 - aptamers selectively enter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selectively enter Search Powered by Explorit Topic List Advanced Search Sample search results for: aptamers selectively enter Page: << < 1 2 3 4 5 > >> 1 Analysis of Selection...

383

Oxidation of Mercury in Products of Coal Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heng Ban Heng Ban Principal Investigator University of Alabama at Birmingham 1150 10th Avenue South Birmingham, AL 35294-4461 205-934-0011 hban@uab.edu Environmental and Water Resources OxidatiOn Of Mercury in PrOducts Of cOal cOMbustiOn Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. A variety of mercury reduction technologies are under commercial development, but an improved understanding of the fundamental chemical mechanisms that control the transformations and capture of mercury in boilers and pollution control devices is required to achieve necessary performance and cost reduction levels. Oxidized mercury is more easily captured by pollution control devices, such as Selective

384

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

385

Mercury Energy formerly Aquus Energy | Open Energy Information  

Open Energy Info (EERE)

Energy formerly Aquus Energy Energy formerly Aquus Energy Jump to: navigation, search Name Mercury Energy (formerly Aquus Energy) Place New Rochelle, New York Zip 10801 Sector Solar Product Integrator of solar energy systems for commercial and residential clients located in the mid-Atlantic and Northeast regions of the US through its wholly-owned subsidary Mercury Solar Energy. References Mercury Energy (formerly Aquus Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mercury Energy (formerly Aquus Energy) is a company located in New Rochelle, New York . References ↑ "Mercury Energy (formerly Aquus Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Energy_formerly_Aquus_Energy&oldid=348731

386

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

387

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

388

Thief Process Removal of Mercury from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

389

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect (OSTI)

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

390

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

391

NETL: Emissions Characterization - Direct Measurement of Mercury Reactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Direct Measurement of Mercury Reactions in Coal Power Plant Plumes: Pleasant Prairie Plant Under DOE-NETL Cooperative Agreement DE-FC26-03NT41724, EPRI, in collaboration with Frontier Geosciences and the University of North Dakota Energy and Environmental Research Center (EERC), will perform precise in-stack and in-plume sampling of mercury emitted from the stack of WE Energies' Pleasant Prairie coal-fired power plant near Kenosha, Wisconsin. The overall objective of the project is to clarify the role, rates and end result of chemical transformations that may occur to mercury that has been emitted from elevated stacks of coal-fired electric power plants. This information is critical in determining the role of coal-fired plants in mercury deposition and in developing cost-effective, environmentally sound policies and strategies for reducing the adverse environmental effects of mercury.

392

Removal of mercury from solids using the potassium iodide/iodine leaching process  

SciTech Connect (OSTI)

Potassium iodide (KI) and iodine (I{sub 2}) leaching solutions have been evaluated for use in a process for removing mercury from contaminated mixed waste solids. Most of the experimental work was completed using surrogate waste. During the last quarter of fiscal year 1995, this process was evaluated using an actual mixed waste (storm sewer sediment from the Oak Ridge Y-12 Site). The mercury content of the storm sewer sediment was measured and determined to be approximately 35,000 mg/kg. A solution consisting of 0.2 M I{sub 2} and 0.4 M KI proved to be the most effective leachant used in the experiments when applied for 2 to 4 h at ambient temperature. Over 98% of the mercury was removed from the storm sewer sediment using this solution. Iodine recovery and recycle of the leaching agent were also accomplished successfully. Mathematical model was used to predict the amount of secondary waste in the process. Both surrogate waste and actual waste were used to study the fate of radionuclides (uranium) in the leaching process.

Klasson, K.T.; Koran, L.J. Jr.; Gates, D.D.; Cameron, P.A.

1997-12-01T23:59:59.000Z

393

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

394

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT  

E-Print Network [OSTI]

Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

McDonald, Kirk

395

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents [OSTI]

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

396

Argonne/EPA system captures mercury from air in gold shops |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Writing Internship Typical gold shop hood used to purify gold by superheating the goldmercury amalgam until the mercury vaporizes. The vaporized mercury is directed outside the...

397

E-Print Network 3.0 - aquatic mercury assessment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sea Grant Institute in consultation with the panel chairs. Summary: the assessment of fish-mercury responses to changes in mercury loadings. High net methylation rates in...

398

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network [OSTI]

III T; Murphy J T. DOE/NETL’s Phase II Mercury ControlFired Power Plants, DOE/NETL Mercury R&D Program Review,

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

399

E-Print Network 3.0 - advanced mercury control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Francisco Estuary Institute Collection: Environmental Sciences and Ecology 3 MERCURY POLLUTION PREVENTION IN MINNESOTA Emily Ray Moore Summary: applications Mercury in glass...

400

E-Print Network 3.0 - air pollution mercury Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mercury Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution mercury Page: << < 1 2 3 4 5 > >> 1 Environment, Health and Safety...

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Krypton-filled light bulbs enter consumer market  

Science Journals Connector (OSTI)

Duro-Test Corp., North Bergen, N.J., this month began marketing a krypton-filled bulb and Westinghouse Electric will enter the market this fall. ... Its lower heat conductivity reduces energy loss from the filament, allowing the filament to run hotter and the glass jacket to run cooler. ...

1968-06-24T23:59:59.000Z

402

Sir --Venezuela has entered 2003 deadlocked in a dangerous political  

E-Print Network [OSTI]

Sir -- Venezuela has entered 2003 deadlocked in a dangerous political confrontation and a general to preserve Venezuela's science and its natural environment, which is rich in biodiversity. We ask for Scientific Research, PO Box 21827, Caracas 1020A, Venezuela correspondence NATURE |VOL 421 |30 JANUARY 2003

Chapman, Clark R.

403

Enteric Protozoa in the Developed World: a Public Health Perspective  

Science Journals Connector (OSTI)

...and T Roberts. 2009. The economics of enteric infections: human...in rainwater harvesting. Desalination 248 :118-124. 186. Henriques-Gil...processes: a critical review. Desalination 250 :236-248. 368. Shoff...N .January 2007. The economics of climate change: the Stern...

Stephanie M. Fletcher; Damien Stark; John Harkness; John Ellis

2012-07-01T23:59:59.000Z

404

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

405

Ch. VIII, Soil mercury investigations, Waunita Hot Springs |...  

Open Energy Info (EERE)

mercury investigations, Waunita Hot Springs Authors C. D. Ringrose and R. H. Pearl Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

406

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

407

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

408

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

409

ORNL scientists solve mercury mystery | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL scientists solve mercury mystery February 07, 2013 Oak Ridge National Laboratory scientist Liyuan Liang, left, and a team of researchers have identified two genes required for...

410

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Exploration Activity Details...

411

ORNL research reveals new challenges for mercury cleanup | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

412

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

413

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

414

anthropogenic mercury emissions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marine boundary layer Palmer, Paul 25 MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT University of California eScholarship Repository Summary: Effluents for...

415

Dissolved Organic Carbon Thresholds Affect Mercury Bioaccumulation in Arctic Lakes  

Science Journals Connector (OSTI)

Barkay, T.; Gillman, M.; Turner, R. R.Effects of dissolved organic carbon and salinity on bioavailability of mercury Appl. ... Barkay, Tamar; Gillman, Mark; Turner, Ralph R. ...

Todd D. French; Adam J. Houben; Jean-Pierre W. Desforges; Linda E. Kimpe; Steven V. Kokelj; Alexandre J. Poulain; John P. Smol; Xiaowa Wang; Jules M. Blais

2014-02-13T23:59:59.000Z

416

Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy  

Open Energy Info (EERE)

Kooten, 1987) Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration Activity Details Location Medicine Lake Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Gerald K. Van Kooten (1987) Geothermal Exploration Using Surface Mercury Geochemistry Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Medicine_Lake_Area_(Kooten,_1987)&oldid=386431" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

417

NETL: IEP - Mercury Emissions Control: Methods Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methods Development Methods Development EPRI and NETL collaboratively funded a $3-million program under the DOE/ University of North Dakota Energy and Environmental Research Center (UNDEERC) Jointly Sponsored Research Program (JSRP) to evaluate, develop, and validate a mercury speciation method for coal-fired produced flue gas. There was a 60/40 percent split of the funding, as required under the JSRP for this two-year effort. The work conducted by the EERC identified the Ontario Hydro Method as the best mercury speciation method. The EERC has validated the Ontario Hydro Method at both pilot- and full-scale levels. Radian International aided in the full-scale validation, with a written protocol of the method being finalized through the American Society for Testing and Materials (ASTM).

418

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

420

Langmuir Films of Polycyclic Molecules on Mercury  

SciTech Connect (OSTI)

Langmuir films (LFs) of biphenyl and anthracene derivatives on the surface of liquid mercury were studied by surface-specific X-ray and surface tension measurements. Phases of lying-down, side-lying and standing-up molecules were found, some of which exhibit long-range lateral order. The molecular symmetry and the position and nature of the side-, end-, and headgroups are shown to dominate the structural evolution of the LFs with surface coverage.

Tamam,L.; Kraack, H.; Sloutskin, E.; Ocko, B.; Pershan, P.; Deutsch, M.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An evaluation of elemental mercury vapor exposure to children due to silver-mercury dental amalgam restorations  

E-Print Network [OSTI]

AN EVALUATION OF ELEMENTAL MERCURY VAPOR EXPOSURE TO CHILDREN DUE TO SILVER-MERCURY DENTAL AMALGAM RESTORATIONS A Thesis By RONALD DALE TAYLOR Submitted to the Office of Graduate Studies College Texas A&M University in partial fulfillment.... . . . . 1X LIST OF FIGURES. I. INTRODUCTION. II ' LITERATURE REVIEW Dental Mercury Toxicology Body Burden. Inhalation Exposure. Childhood Exposure III. METHODOLOGY. . . . 3 5 . . . 8 . . . 10 . . . 14 . 16 Human Research Committee...

Taylor, Ronald Dale

1989-01-01T23:59:59.000Z

422

Gravitomagnetism and the Earth-Mercury range  

E-Print Network [OSTI]

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2011-08-29T23:59:59.000Z

423

The free precession and libration of Mercury  

E-Print Network [OSTI]

An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core

S. J. Peale

2005-07-06T23:59:59.000Z

424

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect (OSTI)

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

425

Assessment of mercury in the Savannah River Site environment  

SciTech Connect (OSTI)

Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

1994-09-01T23:59:59.000Z

426

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

434

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

435

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

440

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

453

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

454

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

455

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

456

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

457

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

458

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

460

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

462

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

463

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

464

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_a.xls" mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:23 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","MCRFPWV1","MCRFPP21","MCRFPIL1","MCRFPIN1","MCRFPKS1","MCRFPKY1","MCRFP_SMI_1","MCRFPMO1","MCRFPNE1","MCRFPND1","MCRFPOH1","MCRFPOK1","MCRFPSD1","MCRFPTN1","MCRFPP31","MCRFPAL1","MCRFPAR1","MCRFPLA1","MCRFPMS1","MCRFPNM1","MCRFPTX1","MCRFP3FM1","MCRFPP41","MCRFPCO1","MCRFPMT1","MCRFPUT1","MCRFPWY1","MCRFPP51","MCRFPAK1","MCRFPAKS1","MANFPAK1","MCRFPAZ1","MCRFPCA1","MCRFPNV1","MCRFP5F1"

465

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

466

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

468

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

469

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

470

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

471

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

472

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

473

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

474

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

475

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

476

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

477

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

478

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

479

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_a.xls" mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:25 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","MCRFPWV2","MCRFPP22","MCRFPIL2","MCRFPIN2","MCRFPKS2","MCRFPKY2","MCRFP_SMI_2","MCRFPMO2","MCRFPNE2","MCRFPND2","MCRFPOH2","MCRFPOK2","MCRFPSD2","MCRFPTN2","MCRFPP32","MCRFPAL2","MCRFPAR2","MCRFPLA2","MCRFPMS2","MCRFPNM2","MCRFPTX2","MCRFP3FM2","MCRFPP42","MCRFPCO2","MCRFPMT2","MCRFPUT2","MCRFPWY2","MCRFPP52","MCRFPAK2","MCRFPAKS2","MANFPAK2","MCRFPAZ2","MCRFPCA2","MCRFPNV2","MCRFP5F2"

480

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

Note: This page contains sample records for the topic "mercury content enter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

482

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

483

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 24653,7098 25019,5910 25384,8097 25749,7233 26114,5090 26480,3672 26845,10767 27210,10787

484

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OK3" "Date","Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

485

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:40 PM" "Back to Contents","Data 1: North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ND3" "Date","North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

486

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35246 35611,0 35976,0 36341,0 36707,0 37072,0 37437,0 37802,0 38168,0 38533,0 38898,0 39263,0

487

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:27 PM" "Back to Contents","Data 1: Kentucky Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KY2" "Date","Kentucky Natural Gas Residential Consumption (MMcf)" 24653,69542 25019,75824 25384,83815 25749,86473 26114,84197 26480,85881

488

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9160us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9160us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" "Sourcekey","N9160US2" "Date","U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" 29235,93000 29266,87000 29295,93000 29326,85000

489

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:28 AM" "Back to Contents","Data 1: U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" "Sourcekey","N9030US2" "Date","U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891

490

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MI3" "Date","Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

491

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (MMcf)" "Sourcekey","N9070US2" "Date","U.S. Dry Natural Gas Production (MMcf)" 35445,1617923 35476,1465907 35504,1627602 35535,1551268 35565,1610527 35596,1525325

492

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:55 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports (MMcf)" "Sourcekey","N9102US2" "Date","U.S. Natural Gas Pipeline Imports (MMcf)" 35445,268310 35476,232878 35504,254455 35535,235621 35565,236725 35596,227059 35626,230567

493

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:08 PM" "Back to Contents","Data 1: Wyoming Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WY2" "Date","Wyoming Natural Gas Residential Consumption (MMcf)" 24653,11939 25019,12592 25384,16592 25749,17984 26114,19463 26480,22242 26845,13868

494

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:09 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)" "Sourcekey","N3020AK2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)"

495

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 26679,843900 26710,747331 26738,648504 26769,465867 26799,326313

496

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:38 PM" "Back to Contents","Data 1: Montana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MT2" "Date","Montana Natural Gas Residential Consumption (MMcf)" 24653,19756 25019,19711 25384,21463 25749,24794 26114,25379 26480,23787 26845,24923

497

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 35445,3 35476,3

498

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports (MMcf)" "Sourcekey","N9132US2" "Date","U.S. Natural Gas Pipeline Exports (MMcf)" 35445,6424 35476,6846 35504,10601 35535,8211 35565,6284 35596,5741 35626,6380 35657,10101

499

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:10 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

500

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WI3" "Date","Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"