Powered by Deep Web Technologies
Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Combined Heat and Power (CHP) Systems  

Broader source: Energy.gov [DOE]

The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light...

2

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

3

Investment in Combined Heat and Power: CHP  

Science Journals Connector (OSTI)

This study investigates the advantages of investing in plants for cogeneration, i.e., Combined Heat and Power (CHP), in case the heat is utilized ... in order to analyze the dimensioning of a CHP plant. Two main ...

Gran Bergendahl

2010-01-01T23:59:59.000Z

4

Combined Heat and Power (CHP) essentials  

Science Journals Connector (OSTI)

'CHP essentials' introduces the concept of power and heat 'production possibility sets', starting at the cradle of CHP, i.e., the thermal power generation plant. The latter always occasions 'fatal' heat that is either recovered (the 'merit' of CHP) or wasted (condensing). This split paves the way to defining the production possibility sets of CHP plants, shown for steam turbines, internal combustion engines and gas turbines as main CHP technologies. Three indicators are widely used to monitor CHP performance: the overall conversion efficiency (quantity indicator), the (mostly ill-defined) power to heat ratio (quality indicator), the 'quality norm' advertised by the EU Directive 2004/8/EC. The paper levels the field for discussing the crucial issue of identifying and quantifying CHP activity.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

5

Promoting Combined Heat and Power (CHP) for Multifamily Properties...  

Broader source: Energy.gov (indexed) [DOE]

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and...

6

Combined Heat and Power (CHP) Resource Guide for Hospital Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007...

7

Combined Heat and Power: Expanding CHP in Your State | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program...

8

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

9

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

10

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

11

Merchant vessel advanced power systems. Final report  

SciTech Connect (OSTI)

This study identifies and evaluates potential highly advanced propulsion power plants which may have marine applications beyond the year 2000. Various promising current technologies were screened and an evaluation of each plant concept and its suitability for use as a merchant ship propulsion system is contained in this report.

Baham, G.J.; Swensson, G.

1982-01-01T23:59:59.000Z

12

Qualifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

The EU 2002 draft and 2004 final CHP Directives propose qualifying CHP activity with the quality norm. This norm benchmarks the energy efficiency of CHP plant outputs on external reference power and heat efficiencies. Because the quality norm amalgamates cogeneration and condensing activity its application entails particular perverse effects for high-quality and adapted scale investment in CHP capacities and for operating available units. Operators get incentives to part-load or shut down their capacities and to avoid condensing activity (lucrative at spiky price conditions in the power market). The formula of the quality norm is only useful when CHP activity (heat recovery, cogenerated electricity, fuel consumption for cogeneration) is first quantified reliably.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

13

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

14

CHP Technical Assistance Partnerships (CHP TAPs) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat & Power Deployment CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships...

15

Local Power Empowers: CHP and District Energy | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Local Power Empowers: CHP and District Energy Local Power Empowers: CHP and District Energy Blue version of the EERE PowerPoint template, for use with PowerPoint 2007. Transcript...

16

HUD Combined Heat and Power (CHP) Guide #3, September 2010 |...  

Broader source: Energy.gov (indexed) [DOE]

HUD Combined Heat and Power (CHP) Guide 3, September 2010 HUD Combined Heat and Power (CHP) Guide 3, September 2010 This Level 2 analysis tool for multifamily buildings will help...

17

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

18

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

19

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

20

Combined heat & Power (CHP), Federal Utility Partnership Working...  

Broader source: Energy.gov (indexed) [DOE]

Award CHP Case Study CHP Case Study - National Institutes of Health (NIH) DC Water BioGas CHP * World's Largest Advanced Wastewater Treatment Facility (AWTP) * Serves 2 Million...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network [OSTI]

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

22

The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005  

Broader source: Energy.gov [DOE]

Report evaluating DG/CHP as wholesale power resources, installed on the utility side of the customer meter

23

Recent Publications in CHP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Deployment Recent Publications in CHP Recent Publications in CHP Learn more about DOE's Combined Heat and Power (CHP) Program and CHP's potential benefits...

24

Combined Heat and Power for Federal Facilities and the DOE CHP...  

Broader source: Energy.gov (indexed) [DOE]

technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, andor district energy with CHP in their facility and to help them through...

25

A micro-COOLING, HEATING, AND POWER (m-CHP) INSTRUCTIONAL MODULE.  

E-Print Network [OSTI]

??Cooling, Heating, and Power (CHP) is an emerging category of energy systems consisting of power generation equipment coupled with thermally activated components. The application of (more)

Oliver, Jason Ryan

2005-01-01T23:59:59.000Z

26

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

27

Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009  

Broader source: Energy.gov [DOE]

EPA CHP Partnerships white paper provides information on energy portfolio standards and how they promote combined heat and power.

28

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007  

Broader source: Energy.gov [DOE]

Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

29

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

30

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network [OSTI]

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

31

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

32

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications,...

33

5th Annual CHP Roadmap Workshop Breakout Group Results, September...  

Broader source: Energy.gov (indexed) [DOE]

Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach 2004austin.pdf...

34

Thermodynamic Modeling and Analysis of the Ratio of Heat to Power Based on a Conceptual CHP System  

E-Print Network [OSTI]

The CHP system not only produces electrical energy, but also produces thermal energy. An extensive analysis of the CHP market reveals that one of the most important engineering characteristics is flexibility. A variable heat-to-power ratio has...

Liu, Z.; Li, X.; Liu, Z.

2006-01-01T23:59:59.000Z

35

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008  

Broader source: Energy.gov [DOE]

The paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, MA; Danbury, CT).

36

HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY...  

Broader source: Energy.gov (indexed) [DOE]

2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 HUD Combined Heat and Power (CHP)...

37

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Broader source: Energy.gov (indexed) [DOE]

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

38

Combined Heat & Power (CHP) -A Clean Energy Solution for Industry  

E-Print Network [OSTI]

, this opportune nexus of market, regulatory, and technology opportunities could dissipate. In fiscal year 1999, we launched the U. S. Department of Energy CHP Challenge program. By 2002 when the Challenge is complete, it should have substantially increased the use...

Parks, H.; Hoffman, P.; Kurtovich, M.

39

A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems  

SciTech Connect (OSTI)

The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

1994-12-31T23:59:59.000Z

40

Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Balance of Plant Needs and Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Applications Chris Ainscough P.E. Chief Engineer - PowerEdge Nuvera Fuel Cells cainscough@nuvera.com Background  Experience integrating systems based on fuel cells and reformers.  Applications include vehicles, combined heat and power (CHP), industrial plants, and forklifts. Who Needs Balance of Plant?  "...an electric generator that has no moving parts...This elegant device is called a fuel cell." Skerrett, P. J. "Fuel Cell Update." Popular Science. June 1993:89. print. No Moving Parts Except These  The typical fluid components in a PEM CHP system based on steam/methane reformer technology. (in red) SWITCH STACK PRV

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems  

Science Journals Connector (OSTI)

One of the most obvious early market applications for thermoelectric generators (TEG) is decentralized micro combined heat and power (CHP) installations of 0.5kWe to 5 ... possible to increase the electricity pr...

L. A. Rosendahl; Paw V. Mortensen; Ali A. Enkeshafi

2011-05-01T23:59:59.000Z

42

Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University  

SciTech Connect (OSTI)

Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

Louay Chamra

2008-09-26T23:59:59.000Z

43

CHP Assessment, California Energy Commission, October 2009  

Broader source: Energy.gov [DOE]

This report analyzes the potential market penetration of combined heat and power (CHP) systems in California.

44

Local Power Empowers: CHP and District Energy (Text Version)...  

Broader source: Energy.gov (indexed) [DOE]

technical assistance program presentation. Today we're going to talk about the combined heat and power and district energy possibilities for your local organization. What we're...

45

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

46

Exergy and exergoeconomic analysis and optimisation of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm  

Science Journals Connector (OSTI)

In the present study, a diesel engine based Combined Heat and Power (CHP) system is optimised using exergoeconomic concept and genetic algorithm. For this purpose, the CHP system is first thermodynamically analysed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. Finally an objective function representing fuel cost, cost of exergy loss and destruction and purchase and maintenance cost of the system components is considered for the optimisation study. Furthermore the above procedure is applied for a case study that produces 277 kW of electricity and 282 kW of heat. Also exergetic and exergoeconomic parameters are calculated in optimum case and compared with the base case. The results show that by applying the optimisation approach for our case study, 8.02% reduction in objective function is achieved which is might be considerable in CHP systems optimisation.

Farzad Mohammadkhani; Shahram Khalilarya; Iraj Mirzaee

2013-01-01T23:59:59.000Z

47

HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for...

48

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

49

U.S. Department of Energy CHP Technical Assistance Partnerships...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy CHP Technical Assistance Partnerships This informational brochure on the Combined Heat and Power Technical Assistance Partnerships (CHP TAPs) provides a summary of the key...

50

CHP: Effective Energy Solutions for a Sustainable Future, December...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2008 CHP: Effective Energy Solutions for a Sustainable Future, December 2008 Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to...

51

Development of the merchant plant  

SciTech Connect (OSTI)

The co-authors of this paper are currently involved in over 1500 megawatts of merchant plant developments in the US. This paper will discuss the latest in combined cycle steam reheat ``H and G'' technology. Big improvements in heat rates along with substantial drop in installed cost will make this power cycle the leading merchant plant of the future. This paper will compare the actual present day performance and clearing price of a state-of-the-art merchant plant versus utility dispatch cost duration curves, known as ``system lambda''. Deregulation of the power market will ultimately provide an open market for these efficient plants to compete effectively against aging utility plants. Comparison of utility system heat rates versus merchant plant heat rates along with an increase need for generation capacity and forecasts of stable gas prices supports to the potential for a large scale building program of these high efficiency generators. This paper will also review the capacity crunch in the Northeast and Wisconsin and how problems with nuclear plants may accelerate the need for merchant plants. This paper will compare the required capacity for the population growth in the SERC Region and in Florida and how this will produce a potential ``hot bed'' for merchant plant development.

Wolfinger, R.; Gilliss, M.B.

1998-07-01T23:59:59.000Z

52

Performance Assessment Report Domain CHP System  

E-Print Network [OSTI]

Performance Assessment Report for the Domain CHP System November 2005 By Burns & McDonnell Engineering #12;Domain CHP System Performance Assessment Report for the Packaged Cooling, Heating and Power

Oak Ridge National Laboratory

53

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

54

CHP, Waste Heat & District Energy  

Broader source: Energy.gov (indexed) [DOE]

CHP Technologies and Applications CHP Technologies and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream." * CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use. * CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations. 11/1/2011 Slide 6 5/20/11 Slide 7 What is CHP? * On-site generation of Power and Thermal Energy from a single fuel source * 'Conventional' grid based generators are located remote from thermal applications while CHP plants are located close to thermal applications

55

HUD CHP GUIDE #1- Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005  

Broader source: Energy.gov [DOE]

This guide explains the basics of Combined Heat and Power (CHP) for apartment building owners and managers

56

CHP RAC Handout_71614.cdr  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined heat and power (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing...

57

Commercial Combustion and CHP Systems  

Science Journals Connector (OSTI)

Wood heat for individual homes (i.e., wood stoves and pellet stoves) is widely recognized and understood in the Northeast USA. Commercial-scale wood heat and CHP (combined heat and power), however, ... the region...

Daniel Ciolkosz; Jim Babcock

2013-01-01T23:59:59.000Z

58

CHP - New Technologies that Work  

E-Print Network [OSTI]

% Efficient Capstone MicroTurbine Heat Recovery Generator 80-90% Efficient ECO-Friendly Combined Heat & Power (CHP) Chilled water for efficient air conditioning and/or refrigeration Utilizing ?free fuel? Capstone MicroTurbine Waste Heat Chiller... spaces and industrial processes ? Water and space heat ? Cooling and refrigeration ? Steam production ?Dehumidification DE Packaged System at Site CHP: It?s time for Reliability Combined Heat & Power provides significantly greater reliability...

Herweck, R.

2012-01-01T23:59:59.000Z

59

CHP: Enabling Resilient Energy Infrastructure - Presentations...  

Broader source: Energy.gov (indexed) [DOE]

- Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as an energy resource in the United...

60

New CHP Technical Assistance Partnerships Launched | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

has supported a set of regional centers to help organizations understand how combined heat and power (CHP) can improve their bottom lines and lower energy bills. Today, the...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CHP Deployment Program: AMO Technical Assistance Overview  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information. 2 Combined Heat a Power (CHP): History * First developed by Thomas Edison in 1880s and is one of the...

62

Micro-CHP Modeling and Simulation using Thermodynamic Cycles.  

E-Print Network [OSTI]

??This thesis discusses the thermoeconomic modeling and simulation of micro-CHP systems powered by various prime movers. Micro Cooling, Heating, and Power (micro-CHP) is becoming an (more)

Moran, Alan Mark

2006-01-01T23:59:59.000Z

63

CHP: A Clean Energy Solution, August 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and...

64

CHP -- A revolution in the making  

SciTech Connect (OSTI)

Liberalization, globalization, and particularly climate change are changing energy thinking. In the future, climate change will be tackled by improved energy efficiency and carbon neutral sources of energy, but much more could be done today by the more widespread use of CHP. CHP has made reasonably good progress in the UK and Europe, due to energy industry liberalization and the widespread availability of gas. But the pursuit of sustainability objectives requires government intervention into liberalized markets. While the current UK Government is a strong supporter of CHP, major opportunities to develop CHP were missed in favor of less efficient CCGT power stations over the last decade. The two critical policy issues in the UK now are the proposed tax on the business use of energy and the current reform of electricity trading arrangements. Both could impact favorably on the development of CHP. The UK CHP Association, COGEN Europe and the International Cogeneration Alliance continue to press the case for CHP.

Green, D.

1999-07-01T23:59:59.000Z

65

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

66

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Cummins Power Generation, in collaboration...

67

2011 Industrial Distributed Energy and CHP R&D Portfolio Review...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Deployment 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced...

68

Flexible CHP System with Low NOx, CO and VOC Emissions | Department...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many...

69

Accelerating CHP Deployment, United States Energy Association (USEA), August 2011  

Broader source: Energy.gov [DOE]

An Industry Consultation by the United States Energy Association (USEA) on Accelerating Combined Heat and Power (CHP) Deployment

70

MerchantAPFBC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 - 1 - Merchant Cost of Repowering With APFBC Advanced Coal-Based Power and Environmental Systems ' 98 Conference Morgantown, West Virginia July 21-23, 1998 Richard E. Weinstein Richard_E_Weinstein@parsons.com 610 / 855-2699 Harvey N. Goldstein Harvey_N_Goldstein@parsons.com 610 / 855-3281 Parsons Infrastructure & Technology Group Inc. 2675 Morgantown Road Reading, PA 19607-9676 and Thomas L. Buchanan Thomas_L_Buchanan@parsons.com 610 / 855-2677 Parsons Energy & Chemicals Group Inc. 2675 Morgantown Road Reading, PA 19607-9676 DOE/FETC Contract No. DE-AM26-94MC31166 Task Order: DE-AT26-98FT40404 DOE/FETC TASK 21 DOE/FETC Task Manager: Mark D. Freier MFreie@metc.doe.gov 304 / 285-4759 U.S. Department of Energy Federal Energy Technology Center 3610 Collins Ferry Road Morgantown, WV 26507-0880

71

Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999  

Broader source: Energy.gov [DOE]

This report is a summary document based on discussions at the CHP Vision Workshop held in Washington, DC, June 8-9, 1999

72

Analysis of a CHP Plant Operation for Residential Consumers  

Science Journals Connector (OSTI)

All European Directives pleads for energy efficiency and, if it is possible, to implement Combined Heat and Power (CHP) high efficiency sources. The system composed by CHP and classical sources (as peak sources) ...

Rodica Frunzulica; Andrei Damian; Radu Baciu

2014-01-01T23:59:59.000Z

73

ENERGY ANALYSIS OF A MICRO-CHP DEMONSTRATION FACILITY.  

E-Print Network [OSTI]

?? Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively (more)

Giffin, Paxton Keith

2010-01-01T23:59:59.000Z

74

Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011  

Broader source: Energy.gov [DOE]

White paper demonstrating cost-effective and flexible approach in increasing power-sector efficiency and reducing GHG emissions

75

Midwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

76

Northwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

77

Pacific Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

78

Northeast Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

79

Reliability Assessment of a Power Grid with Customer Operated CHP Systems Using Monte Carlo Simulation.  

E-Print Network [OSTI]

??This thesis presents a method for reliability assessment of a power grid with distributed generation providing support to the system. The distributed generation units considered (more)

Manohar, Lokesh Prakash

2009-01-01T23:59:59.000Z

80

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Environmental Management (EM)

congestion on the constrained Northeast power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food...

82

Optimization Online - Nonlinear Optimisation in CHP-Applications  

E-Print Network [OSTI]

Nov 14, 2002 ... In particular for CHP systems with fixed heat and power coupling (back pressure turbines), this approach could enable a reduction of operating...

Michael Wigbels

2002-11-14T23:59:59.000Z

83

Installation and Instrumentation of a Micro-CHP Demonstration Facility.  

E-Print Network [OSTI]

??Micro-Cooling, Heating and Power (CHP) is the decentralized generation of electricity in which normally wasted heat is recovered for use in heating and cooling of (more)

Stone, Nicholas Alexander

2006-01-01T23:59:59.000Z

84

The International CHP/DHC Collaborative - Advancing Near-Term...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)District Heat and Cooling (DHC) policy efforts that takes into account three...

85

CHP: Connecting the Gap between Markets and Utility Interconnection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the...

86

ITP Industrial Distributed Energy: Combustion Turbine CHP System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Congestion Based at a large Frito-Lay food processing facility, this com- bined heat and power (CHP) demonstration project reduces the energy costs and environmental...

87

Increasing the Market Acceptance of Smaller CHP Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Packaged Combined Heat and Power System ADVANCED MANUFACTURING OFFICE Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged...

88

Barriers to CHP with Renewable Portfolio Standards, Draft White...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

helped spur the growth of renewable energy projects, including solar, wind, and biomass power. This report aims to determine the barriers to CHP that exist within state RPS...

89

Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007  

Broader source: Energy.gov [DOE]

A draft white paper discussing the barriers to combine heat and power (CHP) with renewable portfolio standards

90

Mid-Atlantic Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

91

The Market for CHP in Florida, August 2008  

Broader source: Energy.gov [DOE]

Presentation overview of CHP benefits, existing CHP installations, CHP potential, and emerging trends

92

2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...  

Broader source: Energy.gov (indexed) [DOE]

2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value:...

93

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect (OSTI)

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

94

2008 CHP Baseline Assessment and Action Plan for the Nevada Market  

Broader source: Energy.gov [DOE]

Report providing an updated assessment and summary of the current status of combined heat and power (CHP) in Nevada and to identify the hurdles that prevent the expanded use of CHP systems

95

2008 CHP Baseline Assessment and Action Plan for the California Market  

Broader source: Energy.gov [DOE]

Report providing an updated baseline assessment and action plan for combined heat and power (CHP) in California and to identify the hurdles that prevent the expanded use of CHP system

96

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

97

Modeling of a Biomass Gasification CHP Plant: Influence of Various Parameters on Energetic and Exergetic Efficiencies  

Science Journals Connector (OSTI)

Modeling of a Biomass Gasification CHP Plant: Influence of Various Parameters on Energetic and Exergetic Efficiencies ... This paper presents a theoretical assessment of energy, exergy, and syngas cleaning performances in a biomass gasification combined heat and power (CHP) plant with varying operating parameters. ... The analysis is carried out using a detailed model of a biomass gasification CHP plant developed with Aspen Plus. ...

Jessica Franois; Guillain Mauviel; Michel Feidt; Caroline Rogaume; Yann Rogaume; Olivier Mirgaux; Fabrice Patisson; Anthony Dufour

2013-10-21T23:59:59.000Z

98

3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002  

Broader source: Energy.gov [DOE]

Announcement letter for 3rd Annual National CHP Roadmap Workshop, A Combined Event for Federal Facility Managers and CHP Advocates

99

The continuing story of CHP in the Netherlands  

Science Journals Connector (OSTI)

The development of combined heat and power generation (CHP) in the period 1988-1993 is described, together with the prospects until the end of the century. The CHP capacity in the Netherlands has already shown a considerable increase in the period 1978- 1988. covering about 19% of total electricity consumption. This capacity was mainly connected to industrial steam generation and was privately owned. In the period 1988-1993 the application of CHP steadily grew and spread to other sectors than industry. More important, the Dutch energy companies, as part of plans to reduce the environmental effects of energy supply, developed activities to expand strongly the application of CHP up to the year 2000. The realisation of these plans is underway, and current developments make it likely that by the year 2000 about 50% of electricity consumption in the Netherlands is covered by CHP plants.

Kornelis Blok; Jacco Farla

1996-01-01T23:59:59.000Z

100

Krikohyoidopexie (CHP) und Krikohyoidoepiglottopexie (CHEP)  

Science Journals Connector (OSTI)

Background....Subtotal laryngectomy with Cricohyoido(epiglotto)pexy (CHEP and CHP) is a commonly used surgical procedure in...

U. Schrder; M. Jungehlsing; J.P. Klumann; H. E. Eckel

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ITP Industrial Distributed Energy: HUD CHP GUIDE #2 - FEASIBILITY...  

Broader source: Energy.gov (indexed) [DOE]

HUD CHP GUIDE 2: FEASIBILITY SCREENING FOR COMBINED HEAT AND POWER IN MULTIFAMILY HOUSING Prepared for U.S. Department of Housing and Urban Development by U.S. Department of...

102

Merchant Green | Open Energy Information  

Open Energy Info (EERE)

Merchant Green Merchant Green Jump to: navigation, search Name Merchant Green Place Holstebro, Denmark Zip DK7500 Sector Renewable Energy, Wind energy Product Denmark-based market intelligence firm focused on wind and renewable energy. Coordinates 56.36254°, 8.620257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.36254,"lon":8.620257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

State of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010  

Broader source: Energy.gov [DOE]

White paper by the Northwest Clean Energy Application Center (NW CEAC) presents the technical market potential for CHP and waste heat recovery for power and heat

104

The International CHP/DHC Collaborative- Advancing Near-Term Low Carbon Technologies, July 2008  

Broader source: Energy.gov [DOE]

Combined Heat and Power (CHP)/District Heat and Cooling (DHC) Country Scorecard of the United States along with Energy Overview

105

Development and evaluation of a biomass-fired micro-scale CHP with organic rankine cycle.  

E-Print Network [OSTI]

??Combined Heat and Power Generation (CHP) or cogeneration has been considered worldwide as the major alternative to traditional energy systems in terms of signi ticant (more)

Shao, Yingjuan

2011-01-01T23:59:59.000Z

106

Feasibility study and resource assessment for biomass CHP plant at sawmill facility.  

E-Print Network [OSTI]

??Combined Heat and Power (CHP) technology to use woody biomass as a fuel has beensignificantly advancing in the past years, but the approach to analyze (more)

Guthula, Phani Kishor.

2011-01-01T23:59:59.000Z

107

DYNAMIC SIMULATION AND OPTIMAL REAL-TIME OPERATION OF CHP SYSTEMS FOR BUILDINGS.  

E-Print Network [OSTI]

??Combined Cooling, Heating, and Power (CHP) systems have been widely recognized as a key alternative for electric and thermal energy generation because of their outstanding (more)

Cho, Hee Jin

2009-01-01T23:59:59.000Z

108

Data Collection and Analyses of the CHP System at Eastern Maine...  

Energy Savers [EERE]

Carlton, San Francisco, August 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Advanced Manufacturing Home Key Activities Research & Development...

109

CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership)  

Broader source: Energy.gov [DOE]

Handbook that provides information to potential CHP developers, including CHP project development overview, qualifications, procurement, and operations and maintenance

110

Suggested Treatment of CHP Within an EERS Context  

E-Print Network [OSTI]

of Combined Heat & Power and Seperate Heat & Power Systems 9 units (Losses) Power Plant fuel (121 units) 7 (Grid Losses) Useful Electricity 35 units 50 units Useful Heat Boiler fuel (59 units) 180 units Grid BOILER CHP 15 units (Losses) Separate Heat... and distribution losses for the power pool as well. 7 Once the power pool's average heat rate is determined, F GRID, POWER ? the fuel that would have been used by the power pool to provide the electricity saved by the CHP system ? can be calculated...

Chittum, A.; Elliott, R. N.; Trombley, D.; Watson, S.

111

ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES  

SciTech Connect (OSTI)

This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all of these criteria. Executive Order 13123 directs federal facilities to use CHP when life-cycle costs indicate energy reduction goals will be met. FEMP can assist facilities to conduct this analysis. The model developed for this report estimates the magnitude of CHP that could be implemented under various performance and economic assumptions associated with different applications. This model may be useful for other energy technologies. It can be adapted to estimate the market potential in federal buildings for any energy system based on the cost and performance parameters that a user desires to assess. The model already incorporates a standard set of parameters based on available data for federal buildings including total building space, building type, energy use intensity, fuel costs, and the performance of many prime movers commonly used in CHP applications. These and other variables can be adjusted to meet user needs or updated in the future as new data become available.

HADLEY, S.W.

2002-03-11T23:59:59.000Z

112

Transforming the Monopoly - CHP in Germany  

Science Journals Connector (OSTI)

The development and application of CHP in Germany has been much more successful ... built up, with some first applications of CHP at the end of the last century. Overall the history of CHP in Germany can be split...

Karl Matthias Weber

1999-01-01T23:59:59.000Z

113

CHP R&D Project Descriptions  

Broader source: Energy.gov [DOE]

The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

114

Optimal Sizing for Residential CHP System  

Science Journals Connector (OSTI)

Residential CHP systems have been introduced around Japan recently, ... the process of boosting the adoption of residential CHP systems, both manufacturers and customers are interested...

Hongbo Ren; Weijun Gao; Yingjun Ruan

2007-01-01T23:59:59.000Z

115

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. with or without combined heat and power (CHP) equipment,Carbon emissions; Combined heat and power; CHP; Distributed

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

116

CHP-MAGE-A4  

Science Journals Connector (OSTI)

A 62-year-old man with a history of pulmonary metastasis and resected colon cancer received four SC injections of 1mg CHP-MAGE-A4 vaccine combined with OK432 and ... followed by six doses of 10mg dose-escalated CHP

2012-03-01T23:59:59.000Z

117

Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005  

Broader source: Energy.gov [DOE]

Development status of air-cooled lithium bromide (LiBr)-water absorption chillers for cooling, heating, and power (CHP) system applications in light-commercial buildings.

118

The Integration of Micro-CHP and Biofuels for Decentralized CHP Applications  

Science Journals Connector (OSTI)

Renewable micro-CHP systems are a combination of micro-CHP technology and renewable energy technology, such as ... The integration of renewable energy sources with micro-CHP allows for the development of sustaina...

Aggelos Doukelis; Emmanouil Kakaras

2011-01-01T23:59:59.000Z

119

Designing and control of a SOFC micro-CHP system  

E-Print Network [OSTI]

of this work is to provide a holistic assessment of the technical potential of solid oxide fuel cells of a micro combined heat and power (CHP) system based on Solid Oxide Fuel Cell (SOFC). The overall aim identi- fied. The models were used to evaluate optimal cell-stack power output, the impact of cell

Liso, Vincenzo

120

Combined Heat and Power Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Webinar Combined Heat and Power Webinar 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices,...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Obstacles and Opportunity: Overcoming Barriers in Today's CHP Marketplace  

E-Print Network [OSTI]

to improve existing incentive programs. By far the most important incentives, according to CHP developers and supporters, are tax incentives or other types of incentives (such as feed-in-tariffs) that offer a set monetary benefit per system output... developers were keen to discuss was a feed-in-tariff (FIT). A FIT is a long-term contract a generator may enter into with a utility to have the generator?s power purchased at a set rate ? typically higher than the wholesale rates that some CHP systems now...

Chittum, A.; Kaufman, N.

2011-01-01T23:59:59.000Z

122

Performance prediction of micro-CHP systems using simple virtual operating cycles  

Science Journals Connector (OSTI)

Abstract This paper presents a general methodology to roughly estimate in advance the actual performance of ?-CHP (micro Combined Heat and Power) systems in one year of operation, by means of limited information on the CHP prime mover efficiency and emission factors in selected set points and by means of a simplified prediction model of the operating cycle. The carried out analysis has been applied to several market-available and under development ?-CHP units of different technologies (Internal Combustion Engines, Micro Gas Turbines, Organic Rankine Cycles, Stirling, Thermo Photo Voltaic, Fuel Cell), operated under a hypothetical virtual operating cycle. The virtual cycle is obtained in this paper on the basis of the year thermal demand of a domestic user, assuming thermal load following of the CHP system. The methodology can be generalized to different applications and different management logics of the CHP system.

M. Bianchi; A. De Pascale; F. Melino; A. Peretto

2014-01-01T23:59:59.000Z

123

Review of CHP Technologies, October 1999  

Broader source: Energy.gov [DOE]

This report describes the leading CHP technologies, their efficiency, size, cost to install and maintain, fuels and emission characteristics.

124

Modelling biomass-fuelled small-scale CHP plants for process synthesis optimisation.  

E-Print Network [OSTI]

??In this work possible process improvements for biomass-fuelled small-scale combined heat and power (CHP) plants are evaluated and a new mixed integer nonlinear programming (MINLP) (more)

Savola, Tuula

2007-01-01T23:59:59.000Z

125

Modelling Biomass-Fuelled Small-Scale CHP Plants for Process Synthesis Optimisation.  

E-Print Network [OSTI]

??In this work possible process improvements for biomass-fuelled small-scale combined heat and power (CHP) plants are evaluated and a new mixed integer nonlinear programming (MINLP) (more)

Savola, Tuula

2007-01-01T23:59:59.000Z

126

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network [OSTI]

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

127

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system for a CHP project less than 1 megawatt (MW) in size. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions More Documents & Publications Low-Cost...

128

Harbec Plastics: 750kW CHP Application - Project Profile | Department...  

Broader source: Energy.gov (indexed) [DOE]

Application - Project Profile This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy...

129

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network [OSTI]

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

130

Federal CHP Potential 1 Does your facility have CHP  

E-Print Network [OSTI]

. The Federal building types with greatest CHP potential are hospitals, industrial, and R&D facilities. Figure 1) systems provide thermal energy for buildings or processes while at the same time generating electricity extraordinary efficiency and environmental benefits. The U.S. Department of Energy's (DOE's) Federal Energy

Oak Ridge National Laboratory

131

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

CHP Emissions Reduction Estimator CHP Emissions Reduction Estimator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CHP Emissions Reduction Estimator Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/chp/basic/calculator.html Country: United States UN Region: Northern America CHP Emissions Reduction Estimator Screenshot References: http://www.epa.gov/chp/basic/calculator.html "This Emissions Estimator provides the amount of reduced emissions in terms of pounds of CO2, SO2, and NOX based on input from the User regarding the CHP technology being used. In turn the User will be provided with

132

Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002  

Broader source: Energy.gov [DOE]

An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

133

CHP NOTEBOOK Table of Contents  

E-Print Network [OSTI]

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure1 CHP NOTEBOOK Table of Contents Section 1 Safety Program Key Personnel Section 2 Laboratory Protective Equipment (PPE) Assessment Section 18 Hazard Assessment Information and PPE Selection Information

Braun, Paul

134

CHP at Post Street in Downtown Seattle  

SciTech Connect (OSTI)

The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steam loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.

Gent, Stan

2012-04-12T23:59:59.000Z

135

Breakout Session Summary Reports National CHP Workshop- One Year Later, Baltimore, October 2001  

Broader source: Energy.gov [DOE]

Developing CHP Markets and Technologies , Eliminating Regulatory and Institute Barriers, Raising CHP Awareness

136

Rehabilitation of CHP in northern Moravia (CZ)  

SciTech Connect (OSTI)

The most effective usage of fuel energy is the combined generation of electricity and heat. Energoprojekt participates in the preparation of many such projects in Czech Republic. The Rehabilitation of Teplarny Karvina, (TEK) is a working title for first stage of fundamental renewal and upgrading of CHP TEK which is under construction now. Its conception is based on maximum utilization of existing equipment focused upon the improvement of combined power and heat generation with the aim to decrease impacts on the environment. The district heating systems of towns Havi ov and Karvina will be interconnected which will improve the operation of systems and increase the reliability of heat supply into both systems. Rehabilitation of TEK consists of the installation of a condensing 37 MWe steam turbine with heat recovery including a 214 MWth heat exchanger station, hot water circulating station and other necessary equipment. The second stage of this project will be the new CHP. The new cogeneration plant called Karvina (EZK) has to assure the basic heating capacity for the integrated complex of two towns and three mines. The peak load of district heating is 426 MWth, the heating capacity of TEK is 266 MWth. This rate enables all-year operation, high effective utilization of the new power plant, and economical and ecological utilization of coal. The existing plants with the sufficient capacity will cooperate with the new plant during approximately half of the heating season. The principal equipment of the cogeneration unit EZK consists of two fluidized bed boilers with heating capacity of 309 MWth and a steam condensation turbine with heat recovery with a maximum output of 260 MWe or alternatively 2x125 MWe. The goals of the project are: increasing the generation of power, reducing the operation costs, keeping the new emission standards, improving the efficiency and reliability of the heat supplies and keeping position on the market.

Mazae, V. [Energoprojekt Praha (Czech Republic); Nimec, V.; Karvina, T.; Novaeek, A. [Moravskoslezske Teplarny (Czech Republic)

1997-12-31T23:59:59.000Z

137

The real problem with Merchant transmission  

SciTech Connect (OSTI)

Current regulatory policy distinguishes transmission investments that have primarily economic benefits from those that primarily enhance reliability. But no such dichotomy exists; congestion and reliability are inter-related in complex ways. Thus, solving the transmission investment problem is more complex than ''fixing'' merchant transmission; investment in the grid must be treated as a systems problem. (author)

Blumsack, Seth; Lave, Lester B.; Ilic, Marija

2008-03-15T23:59:59.000Z

138

CHP Research and Development - Presentation by Oak Ridge National...  

Broader source: Energy.gov (indexed) [DOE]

CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011...

139

2005 CHP Action Agenda: Innovating, Advocating, and Delivering...  

Broader source: Energy.gov (indexed) [DOE]

5 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 More than...

140

CHP in the Midwest - Presentation from the July 2010 Advancing...  

Energy Savers [EERE]

CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CHP Education and Outreach Guide to State and Federal Government...  

Broader source: Energy.gov (indexed) [DOE]

CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This...

142

State Opportunities for Action: Update of States' CHP Activities...  

Energy Savers [EERE]

State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This...

143

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

144

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...  

Energy Savers [EERE]

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March...

145

Modular CHP System for Utica College: Design Specification, March...  

Broader source: Energy.gov (indexed) [DOE]

Modular CHP System for Utica College: Design Specification, March 2007 Modular CHP System for Utica College: Design Specification, March 2007 This paper describes Utica College's...

146

California CHP Market Assessment, July 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the...

147

Consensus Action Items from CHP Roadmap Process, June 2001 |...  

Broader source: Energy.gov (indexed) [DOE]

CHP awareness, eliminating regulatory and institutional barriers, and developing CHP markets and technologies. All levels of government are addressed including state,...

148

Load control in low voltage level of the electricity grid using CHP appliances  

E-Print Network [OSTI]

as a Virtual Power Plant to the electricity grid. In this work we focus on different algorithms to control is centrally generated in large power plants and in which distribution means distribution from these power.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed

Al Hanbali, Ahmad

149

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

150

Are CHP Systems Ready for Commercial Buildings?  

SciTech Connect (OSTI)

This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

2005-06-27T23:59:59.000Z

151

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network [OSTI]

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

152

Do Trading and Power Operations Mix? The Case of Constellation Energy Group 2008  

E-Print Network [OSTI]

Constellation Energy has been a leading performer in the merchant power business since 2001. In addition to its legacy utility, Baltimore Gas and Electric, Constellation is a merchant generator and a wholesale power marketer ...

Parsons, John E.

2008-01-01T23:59:59.000Z

153

CHP Fuel Cell Durability Demonstration - Final Report  

SciTech Connect (OSTI)

Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (?-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

Petrecky, James; Ashley, Christopher J

2014-07-21T23:59:59.000Z

154

Sector Profiles of Significant Large CHP Markets, March 2004  

Broader source: Energy.gov [DOE]

Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

155

Quick Start Guide: Completing Your CHP September 2013  

E-Print Network [OSTI]

Quick Start Guide: Completing Your CHP September 2013 This Laboratory Safety Manual (LSM) is your of what the Washington Department of Labor and Industries calls a "Chemical Hygiene Plan (CHP)." The CHP is required for all laboratories that use hazardous chemicals. EH&S developed much of your CHP for you

Wilcock, William

156

34 Chemical Shifts and Coupling Constants for CHP  

Science Journals Connector (OSTI)

It contains 31P NMR data (chemical shift, coupling constant), structural diagram, and solvent of CHP

M. Kumar

2013-01-01T23:59:59.000Z

157

Screening of CHP Potential at Federal Sites in Select Regions of the U.S.  

SciTech Connect (OSTI)

Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of sizing CHP to thermal and electrical estimates. The table below is a summary of findings of CHP potential for those federal facilities that chose to participate in the screening process. The study focused on three U.S. regions: California, Texas, and New York/New England. All federal facilities in these three regions with reported building space greater than 100,000 square feet were initial targets to contact and offer CHP screening services. Ranking criteria were developed to screen sites for near term CHP potential. The potential site list was pared down for a variety of reasons including site- specific and agency wide decisions not to participate, desk audit assessments, and untraceable contact information. The results are based upon the voluntary participation of those sites we were able to contact, so they reflect a fraction of the total potential CHP opportunities at federal government facilities.

Energy Nexus Group, . .

2002-02-25T23:59:59.000Z

158

EA-359-A Castleton Commodities Merchant Trading L.P.  

Broader source: Energy.gov [DOE]

Order authorizing Castleton Commodities Merchant Trading to export electric energy to Canada. Name Change from Louis Dreyfus Energy Services L.P.

159

Analysis of results obtained using the automatic chemical control of the quality of the water heat carrier in the drum boiler of the Ivanovo CHP-3 power plant  

Science Journals Connector (OSTI)

Results of industrial tests of the new method used for the automatic chemical control of the quality of boiler water of the drum-type power boiler (P d = 13.8 MPa) are described. The possibility o...

A. B. Larin; A. V. Kolegov

2012-10-01T23:59:59.000Z

160

Recent Developments in CHP Policy in the United States  

E-Print Network [OSTI]

28, 2013) 3. Environmental Protection Agency Combined Heat and Power Partnership. 2012. ?Basic Information.? Fact Sheet. http://www.epa.gov/chp/basic/index.html. (March 29, 2013) 4. Oak Ridge National Laboratory. 2008. ?Combined Heat and Power...://www.whitehouse.gov/the- press-office/2012/08/30/executive-order- accelerating-investment-industrial-energy- efficiency. (March 25, 2013) 6. SEE Action. 2013. ?Upcoming Events.? http://www1.eere.energy.gov/seeaction/events.ht ml. (March 28, 2013) 7. Seryak, John. 2012...

Farley, K.; Chittum, A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Computational Analysis of Merchant Marine GPS Data* CASOS Technical Report  

E-Print Network [OSTI]

Computational Analysis of Merchant Marine GPS Data* CASOS Technical Report George B. Davis are applied to geospatial data regarding the movement of Merchant Marine vessels in the English Channel Marine GPS Data EXECUTIVE SUMMARY George B. Davis and Kathleen M. Carley Computational Analysis

Sadeh, Norman M.

162

Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?  

Science Journals Connector (OSTI)

Abstract A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil & solar/heat & power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio.

Gian Paolo Beretta; Paolo Iora; Ahmed F. Ghoniem

2014-01-01T23:59:59.000Z

163

Preliminary Investigations on a Test Bench for Integrated Micro-CHP Energy Systems  

Science Journals Connector (OSTI)

Abstract Micro-CHP (Combined Heat and Power) energy systems are potentially suitable for residential and tertiary utilities, typically characterized by low-grade heat demand and limited electric-to-thermal energy demand ratio values. Different innovative and under development CHP technologies are currently investigated in small scale units, but a standard has not been identified till now. Moreover, depending on the load request, the produced electricity can be used, stored in electric accumulator or in the external net, or integrated with other external sources. Contextually, the available heat can be used, accumulated inside the system or dissipated. The actual convenience of small size CHP systems depends on the demand profiles and the operation management logic. A test facility is being developed, at the University of Bologna, for the experimental characterization of the cogenerative performance of small scale hybrid power systems, composed of micro-CHP systems of different technologies (such as Organic Rankine Cycles and Proton Exchange Membrane Fuel Cells), a battery and a heat recovery subsystem. The test set-up is also integrated with an external load simulator, in order to generate variable load profiles. This report describes the main characteristics of the implemented test bench, the selection procedure of the adopted micro-CHP unit and expected performance.

Michele Bianchi; Lisa Branchini; Andrea De Pascale; Francesco Melino; Antonio Peretto

2014-01-01T23:59:59.000Z

164

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

165

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

166

Combined Heat and Power Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Assistance Combined Heat & Power Deployment Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration,...

167

CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS  

SciTech Connect (OSTI)

Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

Schweitzer, Martin [ORNL

2009-10-01T23:59:59.000Z

168

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

169

Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

170

Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation  

SciTech Connect (OSTI)

This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

2010-03-01T23:59:59.000Z

171

Modelling Danish local CHP on market conditions 1 IAEE European Conference: Modelling in Energy Economics and Policy  

E-Print Network [OSTI]

Modelling Danish local CHP on market conditions 1 6th IAEE European Conference: Modelling in Energy been a significant growth of wind power, particularly in the Western Danish system. As both the power produced by the local CHPs and the wind power are prioritised, the production of these types of power

172

CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants  

Broader source: Energy.gov [DOE]

There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell.

173

The Micro-CHP Technologies Roadmap, December 2003 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Micro-CHP Technologies Roadmap, December 2003 The Micro-CHP Technologies Roadmap, December 2003 On June 11-12, 2003, in Greenbelt, Maryland, key stakeholders from industry,...

174

ITP Distributed Energy: The Market for CHP in Florida, August...  

Broader source: Energy.gov (indexed) [DOE]

Current US CHP Capacity Looks Impressive 0 10 20 30 40 50 60 70 80 90 100 EU 25 USA Russia China Japan India Canada Netherlands UK Finland France Denmark WADE 2006 CHP Capacity,...

175

Mobile Gasification Units for Sustainable Electricity Production in Rural Areas: The SMARt-CHP Project  

Science Journals Connector (OSTI)

Mobile Gasification Units for Sustainable Electricity Production in Rural Areas: The SMARt-CHP Project ... In this project, called SMARt-CHP, the biomass gasifier coupled to an internal combustion engine will be extensively used under real world conditions for combined heat and power production, using different types of residues (wine prunings, corn stalks, etc.) characteristic of agriculture in Northern Greece. ... The main aims of SMARt-CHP are to attempt to demonstrate how logistics and biomass availability problems can be addressed, to inform the general public about the particular environmental issues, concerns, and opportunities in decentralized bioenergy production from agricultural residues, and to promote the applicability of a mature technology, bridging the gap between technology development and application. ...

Anastasia A. Zabaniotou; Vasiliki K. Skoulou; Dimitris P. Mertzis; George S. Koufodimos; Zissis C. Samaras

2010-06-07T23:59:59.000Z

176

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect (OSTI)

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

177

The optimal selection of on-site CHP systems through integrated sizing and operational strategy  

Science Journals Connector (OSTI)

Abstract Achievable outcomes of the combined heat and power (CHP) system applications are subject to several factors. In this study the value of integrated system sizing and operational strategy selection has been evaluated. This would facilitate maximum return on investment as well as reducing primary energy resource consumption and environmental impact. The required model improvements are identified and applied, which will encompass the transient characteristics of the CHP system components and their true operational constraints in a more realistic manner. In addition, the proposed methodology is generic enough to cover energy demand fluctuations of any existing manufacturing plant by aggregated data integration to guarantee improved on-site energy generation system outcomes. Finally the proposed methodology is applied to a pharmaceutical manufacturing plant. The results illustrate promising potential improvements in comparison with existing approaches for CHP system configurations.

P. Ghadimi; S. Kara; B. Kornfeld

2014-01-01T23:59:59.000Z

178

4th Annual CHP Roadmap Breakout Group Results, September 2003  

Broader source: Energy.gov [DOE]

Breakout Group Results for Utilities Issues Including Key Issues and Action Items During the CHP Roadmap Workshop

179

CHP Market Potential in the Western States, September 2005  

Broader source: Energy.gov [DOE]

Outlook for CHP in each state based on base case cumulative market penetration to the technical market potential calculated

180

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

power to others, sometimes taking some merchant risk in the windwind power, with 48% of new 2007 capacity and 55% of cumulative capacity selling power to

Bolinger, Mark A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

power to others, sometimes taking some merchant risk 10 in the windwind power, with 47% of new 2006 capacity and 58% of cumulative capacity selling power to

2008-01-01T23:59:59.000Z

182

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP- Presentation by Dresser Waukesha, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System, given by Jim Zurlo at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

183

Renewables and CHP Deployment in the UK January 2002  

E-Print Network [OSTI]

Renewables and CHP Deployment in the UK to 2020 Jim Watson January 2002 Tyndall Centre for Climate Change Research Working Paper 21 #12;Renewables and CHP Deployment in the UK to 2020 Jim Watson Energy....................................................................................................6 3. The Deployment of Renewables and CHP to 2020

Watson, Andrew

184

Molecular Cell High-Affinity Binding of Chp1 Chromodomain  

E-Print Network [OSTI]

Molecular Cell Article High-Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3, Chp1, and siRNAs derived from centro- meric repeats. Recruitment of RITS to centromeres has been establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide

Halazonetis, Thanos

185

Biomass DHP/ CHP benefits at local and regional level  

E-Print Network [OSTI]

Biomass DHP/ CHP ­ benefits at local and regional level Krzysztof Gierulski EC Baltic RenewableEnergy Workshop, Brussels 01.07.2002 #12;Biomass DHP/ CHP in Poland n Plan of the presentation n Promotion and dissemination of best practices (,,Promotion of conversion to biomass CHP at larger sites in PL", OPET) n

186

Combined Heat and Power (CHP) Technology Development  

Broader source: Energy.gov (indexed) [DOE]

for June 30 Results: High Efficiency through Advanced Thermodynamics High-performance computing model operational for advanced combustion reciprocating engine ...

187

Combination cancer vaccine of CHP-NY-ESO-1 and CHP-HER2 with immuno-adjuvant, OK-432, for chemorefractory metastatic or recurrent esophageal cancer patients  

Science Journals Connector (OSTI)

...cholesteryl hydrophobized polysacharide(CHP-HER2) Shigehisa Kitano Shinichi Kageyama...hydrophobized polysacharide-HER2 protein complex (CHP-HER2) is a cancer vaccine with a novel...hydrophobized polysaccharides, pullulan (CHP) containing truncated recombinant HER2...

Shugo Ueda; Masatoshi Aoki; Hiroyoshi Nishikawa; Michiko Hirayama; Shigehisa Kitano; Eriko Hayashi; Michiyuki Kanai; Arimichi Takabayashi; Hiroshi Shiku; Shinichi Kageyama

2008-05-01T23:59:59.000Z

188

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

CHP/Cogeneration Incentives CHP/Cogeneration Incentives Jump to: navigation, search The following contains the list of 279 CHP/Cogeneration Incentives. CSV (rows 1 - 279) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric Photovoltaics

189

Benefits of Combined Heat and Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benefits of Combined Heat and Power Benefits of Combined Heat and Power Combined heat and power (CHP) positively impacts the health of local economies and supports national policy...

190

3D-animaation kytt CHP-voimalan visualisoinnissa : esimerkkin GASEK CHP.  

E-Print Network [OSTI]

??Opinnytetyn tavoitteena oli suunnitella ja toteuttaa GASEK Oy:lle animaatio kolmiulotteisella grafiikalla. Animaation tarkoitus oli esitell GASEK Oy:n CHP-voimalaitosta, jossa sekapuuhakkeesta tuotetaan lmp ja shk. Tyn (more)

Muilu, Jaakko

2012-01-01T23:59:59.000Z

191

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

192

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008  

Broader source: Energy.gov [DOE]

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.

193

Gas Stirling engine ?CHP boiler experimental data driven model for building energy simulation  

Science Journals Connector (OSTI)

Abstract A dynamic model for the simulation of gas micro combined heat and power devices (?CHP boilers) has been developed in order to assess their energy performances. From a literature review and experimental investigations, the new model is designed with the aim of limiting the number of parameters which need to be easily accessible in order to be suitable with annual building energy simulations. At first, this paper focuses on the description of the ?CHP boiler which has been tested, on the development of the test bench and on the experimental results. Then, it focuses on the model description, on its parameterization and on its validation. The modelling approach is based on an energy balance on the device and on empirical expressions for the main inputs and outputs. The model characterizes the ?CHP boiler behaviour for different inlet water flow rates and temperatures. The dynamic phases with the start-up and cooling phases are taken into account. Finally, the models for the Stirling engine and the additional boiler are limited respectively to 28 and 24. Further experimental investigations led to simplify the ?CHP model from 28 to 17 parameters without reducing the accuracy.

J.-B. Bouvenot; B. Andlauer; P. Stabat; D. Marchio; B. Flament; B. Latour; M. Siroux

2014-01-01T23:59:59.000Z

194

Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

195

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech  

E-Print Network [OSTI]

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech Chemistry Department Chemical Hygiene Plan This CHP applies to rooms Current worker beginning a new task Reviewing a revised edition of the CHP 1

Crawford, T. Daniel

196

Impact of Integrating Renewables and CHP into the UK Transmission Network  

E-Print Network [OSTI]

Impact of Integrating Renewables and CHP into the UK Transmission Network Xueguang Wu, Nick Jenkins of Integrating Renewables and CHP into the UK Transmission Network Xueguang Wu, Nick Jenkins and Goran Strbac ........................................................................................................3 2.2 SCENARIOS FOR CHP

Watson, Andrew

197

Opportunities for CHP at Wastewater Treatment Facilities: Market...  

Broader source: Energy.gov (indexed) [DOE]

2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

198

expanding_chp_in_your_state.doc | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CHP in Your State Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

199

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

200

2008 EPA CHP Partnership Update | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Advancing Near-Term Low Carbon Technologies, July 2008 Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

202

Modeling CHP Descriptions in Labeled Transitions Systems for an Efficient Formal Validation of Asynchronous Circuit Specifications  

Science Journals Connector (OSTI)

This work addresses the analysis and validation of CHP specifications for asynchronous circuits, using property Verification tools. CHP semantics, initially given in terms of Petri...

Menouer Boubekeur; Dominique Borrione

2004-01-01T23:59:59.000Z

203

Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions -...

204

Thermoeconomic analysis of a CHP system by iterative numerical techniques  

SciTech Connect (OSTI)

This paper deals with the determination of the thermoeconomic optimum conditions for a constant space heat load imposed on the air coil of a combined heating and power (CHP) system using iterative numerical techniques. From the thermodynamic relations and equations derived from the energy balance and heat exchanger characteristics, an objective function and constraining equations are obtained. A computer program is developed based on the Redlich-Kwong equation of state to estimate the thermodynamic properties of the refrigerant fluid R-22. Additional computer subroutines are developed to perform thermodynamic and thermoeconomic optimization. Optimum values of the operating variables are identified at thermodynamic and thermoeconomic optimum conditions. Results show that the total irreversibilities produced in the system and the cost of fuel consumption are minimum at thermodynamic optimum conditions, but the annual cost of owning and operating the system is minimum at the thermoeconomic optimum condition, which is 34% lower than at the thermodynamic optimum condition.

Damshala, P.R.

2000-07-01T23:59:59.000Z

205

Transportation and Stationary Power Integration Workshop | Department...  

Broader source: Energy.gov (indexed) [DOE]

and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The...

206

Biomass DHP/ CHP benefits at local and regional level  

E-Print Network [OSTI]

Biomass DHP/ CHP ­ benefits at local and regional level Krzysztof Gierulski EC Baltic RenewableEnergy Workshop, Brussels 01.07.2002 http://www.managenergy.net/conference/ren0702/gierulski.pdf #12;Biomass DHP of conversion to biomass CHP at larger sites in PL", OPET) n Technical assistance (,,Feasibility

207

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network [OSTI]

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

208

Research, Development and Demonstration of Micro-CHP System for Residential Applications  

SciTech Connect (OSTI)

ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

Karl Mayer

2010-03-31T23:59:59.000Z

209

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings  

Broader source: Energy.gov [DOE]

During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

210

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Broader source: Energy.gov [DOE]

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

211

CHP and CHPsim: A Language and Simulator for Fine-Grain Distributed Computation  

E-Print Network [OSTI]

1 CHP and CHPsim: A Language and Simulator for Fine-Grain Distributed Computation Alain J. Martin Abstract--This paper describes a complete and stable version of CHP and the simulator CHPsim. CHP partial versions of the language are already widely used, but CHP has never been presented as a complete

Martin, Alain

212

MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA  

E-Print Network [OSTI]

i MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis submitted OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis presented on the diffusion of micro-CHP shows that micro-CHP will not reach 50% of the market in less than 20 years. Furthermore it analyses

213

5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004  

Broader source: Energy.gov [DOE]

Breakout group results for CHP technologies, markets, utility and regulatory issues, and education and outreach

214

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

215

Life Cycle Assessment of district heat production in a straw fired CHP plant  

Science Journals Connector (OSTI)

Abstract Due to concerns about the sustainability of the energy sector, conversion of biomass to energy is increasing its hold globally. Life Cycle Impact Assessment (LCIA) is being adopted as an analytical tool to assess the environmental impacts in the entire cycle of biomass production and conversions to different products. This study deals with the LCIA of straw conversion to district heat in a Combined Heat and Power (CHP) plant and in a district heating boiler (producing heat only). Environmental impact categories are Global Warming Potential (GWP), Acidification Potential (AP), aquatic and terrestrial Eutrophication Potential (EP) and Non-Renewable Energy (NRE) use. In the case of CHP, the co-produced electricity is assumed to displace the marginal Danish electricity mix. The current study showed that straw fired in the CHP plant would lead to a GWP of ?187gCO2-eq, AP 0.01m2UES (un-protected ecosystem), aquatic EP 0.16gNO3-eq, terrestrial EP 0.008m2UES, and NRE use ?0.14MJ-primary per 1MJ heat production. Straw conversion to heat in the CHP plant showed better environmental performances compared to the district heating boiler. Furthermore, removing straw from the field is related to the consequence e.g. decline in soil carbon sequestration, limiting soil nutrient availability, and when compared with natural gas the conversion of straw to heat would lead to a higher aquatic and terrestrial EP and AP. The study also outlays spaces for the detail sustainability assessment of straw conversion in a biorefinery and compare with the current study.

Ranjan Parajuli; Sren Lkke; Poul Alberg stergaard; Marie Trydeman Knudsen; Jannick H. Schmidt?; Tommy Dalgaard

2014-01-01T23:59:59.000Z

216

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers combined heat and power (CHP) and its uses, configurations, considerations, and more.

217

chp.aceee.final.rev1.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3739 3739 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies. Marta Khrushch, Ernst Worrell, Lynn Price, Nathan Martin, and Dan Einstein Environmental Energy Technologies Division June 1999 This work was supported by the Climate Protection Division, Office of Air and Radiation, U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY ii Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

218

Yantai Tianli Biomass CHP Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yantai Tianli Biomass CHP Co Ltd Yantai Tianli Biomass CHP Co Ltd Jump to: navigation, search Name Yantai Tianli Biomass CHP Co Ltd Place Yantai, Shandong Province, China Zip 265300 Sector Biomass Product Yantai-based biomass CHP project developer. Coordinates 37.538971°, 121.374893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.538971,"lon":121.374893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Cogeneration (Chp) as Alternative Energy Production To Ecological Neighborhoods  

Science Journals Connector (OSTI)

In addition to this, CHP is the key to reducing emissions. According...Boston Consulting Group (BCG) [2], cogeneration saved over 13 milliont of CO2 in Spain in 2008, which represents 3.2?% of nati...

I. Calama

2014-01-01T23:59:59.000Z

220

ITP Industrial Distributed Energy: CHP Market Potential in the...  

Broader source: Energy.gov (indexed) [DOE]

diesel generators that are being converted to CHP. Idaho - There are a large number of potato and beet sugar processing facilities in the state that require large amounts of both...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes 750 buildings.  

E-Print Network [OSTI]

,000 pounds of steam per hour, and � Campus-wide electrical distribution system upgrades. The CHP system can operate as a baseload system to serve 75% of Texas A&M's peak power needs, 65% of total electrical energy&M's New Power Generation System," Energy Action Plan 2015, Utility & Energy Services, Texas A&M University

222

Southeast Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

223

Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation  

Science Journals Connector (OSTI)

Abstract Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used.

?ukasz Bartela; Anna Skorek-Osikowska; Janusz Kotowicz

2014-01-01T23:59:59.000Z

224

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

reduction turbine internal combustion engine - CHP microturbine - CHP gasturbine - CHP advanced energy storage biogas fuel cell - CHP

Stadler, Michael

2014-01-01T23:59:59.000Z

225

Dynamic model based on experimental investigations of a wood pellet steam engine micro CHP for building energy simulation  

Science Journals Connector (OSTI)

Abstract A wood pellet micro combined heat and power device (?CHP) has been tested in order to characterize its performances in steady and transient states. A dynamic model based on these experimental investigations has been developed in order to predict its energy performances and its pollutant emissions. The model is designed with a few parameters experimentally accessible. This model has been implemented in TRNSYS numerical environment. This work focuses on the experimental investigations and on the model description. The modelling approach is based on a physical part (an energy balance on the entire device and a combustion model), and on an empirical part (correlations for the fuel power input and for the thermal and electrical outputs). The model characterizes the ?CHP behaviour for different part load ratios (PLR) (power modulation). The dynamic phases with start-up and cooling phases are also taken into account.

Jean-Baptiste Bouvenot; Benjamin Latour; Monica Siroux; Bernard Flament; Pascal Stabat; Dominique Marchio

2014-01-01T23:59:59.000Z

226

Pak6 protein kinase is a novel effector of an atypical Rho family GTPase Chp/RhoV  

Science Journals Connector (OSTI)

Chp/RhoV is an atypical Rho GTPase whose ... understood. To date several effector proteins of Chp have been identified, including p21-activated kinases ... p21-activated kinase, Pak6, is a novel Chp-binding prote...

M. V. Shepelev; I. V. Korobko

2012-01-01T23:59:59.000Z

227

A University e-commerce site, which sells goods or services to customers via a Web site. A merchant that  

E-Print Network [OSTI]

A University e-commerce site, which sells goods or services to customers via a Web site. A merchant that accepts payment cards must have an Internet Merchant Account with a credit card processor. Operated

Sibille, Etienne

228

Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells  

Science Journals Connector (OSTI)

Abstract This work discusses the design and the development of a Laboratory of Micro-Cogeneration (LMC) atPolitecnico di Milano. The LMC laboratory is a unique structure devoted to small-scale power generation, with the main goals of testing and improving the performance of systems that produce or utilize electric and thermal (hot and/or cold) power in a very general sense, spanning from combined heat and power (CHP) units to heaters, from absorption chillers to heat pumps, but also able to perform tests on fuel processors and electrolyzers. The laboratory features a supply of natural gas as well as H2 and O2 from a high pressure electrolyzer and of CO, CO2 and N2 from bottles, permitting to carry out experiments with simulated synthesis fuels. The maximum allowable electrical power produced, exported to the grid or to an electronic loadbank, or consumed by the system under test is 100kW; maximum allowable thermal power is roughly 200kW with variable temperature water circuits (from chilled water up to a 150C at 8bar superheated water loop). This work outlines also the instruments used for on-line recording of thermodynamic properties, emissions and power, aiming at monitoring and reconstructing mass and energy balances. One of the first experimental campaign has been carried out on a CHP system based on polymer electrolyte membrane fuel cells (PEM), a promising candidate for distributed CHP thanks to low pollutant emissions and good efficiency, rapid startup and flexibility, although affected by a rather complex fuel processing section to provide the appropriate fuel to the PEM. This work presents the experimental analysis of a 20kW prototype PEM CHP system complete of natural gas processor. The prototype is operated at LMC to characterize the processing section and the thermodynamic performances of the overall system. Despite its non-optimized layout, the unit has shown encouraging total efficiency (76%) and primary energy saving index (6%).

S. Campanari; G. Valenti; E. Macchi; G. Lozza; N. Ravid

2014-01-01T23:59:59.000Z

229

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect (OSTI)

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

230

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect (OSTI)

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

231

Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 For years, the American Council for an...

232

The Center for Health Policy (CHP) works with institutional partners at the local, state,  

E-Print Network [OSTI]

Mission The Center for Health Policy (CHP) works with institutional partners at the local, state into effective policies. The CHP sees research as an integral component of its mission. Center faculty engage

Grishok, Alla

233

Federal Strategies to Increase the Implementation of CHP in the United States, June 1999  

Broader source: Energy.gov [DOE]

The federal government is committed to increasing the penetration of CHP technologies in the United States. This 1999 paper discusses the goal to build a competitive market for CHP in which...

234

Field Scale Test and Verification of CHP System at the Ritz Carlton...  

Broader source: Energy.gov (indexed) [DOE]

Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco,...

235

5 Questions for an Expert: Bob Gemmer on Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy and slashing carbon pollution. CHP systems capture energy that is normally lost in centralized power generation and convert that energy to heat and cool manufacturing facilities and businesses. Unlike central power generation, CHP systems are distributed energy generation systems and that means that they are located close to where energy is consumed. The proximity of power generation to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. Bob Gemmer of EEREs Advanced Manufacturing Office is one of the Energy Departments primary experts on CHP technologies with more than 40 years of related expertise. We sat down with Bob to learn more about him and what makes him such a passionate advocate for CHP.

236

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

237

Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network-on-Chip  

E-Print Network [OSTI]

Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network of the Presentation · Introduction · Translation from CHP to LOTOS · CADP toolbox overview · Verification of ANOC Context & Objective process calculus CHP Petri nets process calculus LOTOS (CEA/Leti) translation

Joseph Fourier Grenoble-I, Université

238

Formal Verification of CHP Specifications with CADP Illustration on an Asynchronous Network-on-Chip  

E-Print Network [OSTI]

Formal Verification of CHP Specifications with CADP Illustration on an Asynchronous Network in the high-level language CHP, by using model checking techniques provided by the CADP toolbox. Our proposal is based on an automatic translation from CHP into LOTOS, the process algebra used in CADP. A translator

Joseph Fourier Grenoble-I, Université

239

chp/pcor center for health policy/ center for primary care  

E-Print Network [OSTI]

chp/pcor center for health policy/ center for primary care and outcomes research center overview historicalhighlights 6 Education 12 research 20 Impact 24 outreach 28 Supportingchp/pcor 30 people chp/pcor mission investigators. outreach Over the past decade, CHP/PCOR has pro- duced 25 newsletters, organized nearly 300

Ford, James

240

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Broader source: Energy.gov [DOE]

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

242

Pan China Puyang Biomass CHP Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Puyang Biomass CHP Co Ltd Puyang Biomass CHP Co Ltd Jump to: navigation, search Name Pan-China(Puyang) Biomass CHP Co., Ltd. Place Puyang, Henan Province, China Zip 455000 Sector Biomass Product China based biomass project developer. Coordinates 29.459499°, 119.875023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.459499,"lon":119.875023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Solar and CHP Sales Tax Exemption (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and CHP Sales Tax Exemption (Florida) and CHP Sales Tax Exemption (Florida) Solar and CHP Sales Tax Exemption (Florida) < Back Eligibility Agricultural Commercial General Public/Consumer Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Maximum Rebate No limit Program Info Start Date 07/01/1997 State Florida Program Type Sales Tax Incentive Rebate Amount All Provider Florida Department of Revenue Solar energy systems have been exempt from Florida's sales and use tax since July 1, 1997. The term "solar energy system" means the equipment and requisite hardware that provide and are used for collecting, transferring, converting, storing or using incidental solar energy for water heating,

244

Low-Cost Packaged Combined Heat and Power System | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

245

Actual trends of decentralized CHP integration -- The Californian investment subsidy system and its implication for the energy efficiency directive (Aktuelle Trends in der dezentralen KWK Technologie Integration -- Das kalifornische Fordermodell und dessen Implikation fur die Endenergieeffizienzrichtlinie)  

E-Print Network [OSTI]

http://www.epa.gov/chp/project_resources/calculator.htmVerbrennungsmotoren. Quelle: Midwest CHP Application Center,Mikroturbinen. Quelle: Midwest CHP Application Center, 2003

Stadler, Michael; Lipman, Tim; Marnay, Chris

2008-01-01T23:59:59.000Z

246

A Partial Load Model for a Local Combined Heat and Power Plant  

E-Print Network [OSTI]

A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg and power (CHP) plants constitute a not insignificant share of the power production in Denmark, particularly using data from a typical local CHP plant and the years 2003 through 2006 are simulated to assess

247

ORNL/TM-2001/280 Analysis of CHP Potential  

E-Print Network [OSTI]

://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy for the U.S. DEPARTMENT OF ENERGY under contract no. DE-AC05-00OR22725 #12;Federal CHP Potential #12;Federal

Oak Ridge National Laboratory

248

The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000  

Broader source: Energy.gov [DOE]

Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

249

Source level model for propeller blade rate radiation for the worlds merchant fleet  

Science Journals Connector (OSTI)

A model is developed for the acoustic source strength of blade rate line energy produced by single?screw merchant vessels. These source strengths are based on observed cavitation time histories on merchant vessels and on limitations imposed by considerations of propeller design procedures and ship vibration criteria. Relationships are presented for the expected value of the blade rate source strength for ships of different lengths expressed both as a monopole source strength located at a known depth below a free surface and as a dipole source strength that describes the pressure radiated to the farfield. These relationships are based on a small sample of merchant shipcharacteristics and are exercised for the estimated population of ships at sea. This calculation yields a statistical description of the distribution of source level and frequency of propeller blade rate acoustic energy for the fleet of single?screw merchant vessels.

Leslie M. Gray; David S. Greeley

1980-01-01T23:59:59.000Z

250

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

251

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

252

Southwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

253

OPTIMAL PGU OPERATION STRATEGY IN CHP SYSTEMS.  

E-Print Network [OSTI]

?? Traditional power plants only utilize about 30 percent of the primary energy that they consume, and the rest of the energy is usually wasted (more)

Yun, Kyungtae

2012-01-01T23:59:59.000Z

254

Investigation And Evaluation Of The Systemwide Economic Benefits Of Combined Heat And Power Generation In The New York State Energy Market.  

E-Print Network [OSTI]

??Combined Heat and Power (CHP) is the production of electricity and the simultaneous utilization of the heat produced by the generator prime mover. The energy (more)

Baquero, Ricardo

2008-01-01T23:59:59.000Z

255

Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

256

ITP Industrial Distributed Energy: Combined Heat & Power (CHP...  

Broader source: Energy.gov (indexed) [DOE]

1991 ERENG 745 NG 87 Medical Area Total Energy Plant MA Boston 1985 BST 62,800 NG 88 Jordan Hospital MA Plymouth 1994 ERENG 1,050 NG 89 Heywood Memorial Hospital MA Gardner 1995...

257

Combined Heat and Power: Expanding CHP in Your State  

Broader source: Energy.gov (indexed) [DOE]

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

258

Development of an Advanced Combined Heat and Power (CHP) System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rather than light, crude oil for refinery process. The resulting green coke produced from heavy crude oil pro- cessing has a higher sulfur content, which requires a significant...

259

Recent Developments in Solar-Powered Micro CHP Systems  

Science Journals Connector (OSTI)

Over the last two decades, the world has exhibited an unprecedented increase in the energy resources demand due to the huge technological and industrial developments accompanied by a tremendous population growth....

Muhyiddine Jradi; Saffa Riffat

2014-01-01T23:59:59.000Z

260

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sectors that will most likely benefit are small industrial plants, schools, and health care facilities. Barriers Developing a new ULNB that considers the optimum...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Clean Energy Solutions Large Scale CHP and Fuel Cells Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program Clean Energy Solutions Large Scale CHP and Fuel Cells Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate CHP: $3,000,000 or 30% of project costs Fuel Cells: $3,000,000 or 45% of project costs Program Info Start Date 01/17/2013 State New Jersey Program Type State Grant Program Rebate Amount CHP greater than 1 MW-3 MW: $0.55/wattt CHP > 3 MW: $0.35/watt Fuel Cells > 1 MW with waste heat utilization: $2.00/watt Fuel Cells > 1 MW without waste heat utilization: $1.50/watt

262

Humoral immune responses in patients vaccinated with HER2 protein complexed with a novel antigen delivery system of cholesteryl pullulan(CHP-HER2)  

Science Journals Connector (OSTI)

...2008; San Diego, CA Combination cancer vaccine of CHP-NY-ESO-1 and CHP-HER2 with immuno-adjuvant, OK-432, for chemorefractory...nanoparticles of hydrophobized polysaccharides, pullulan (CHP) containing tumor antigen protein. Previous clinical...

Shigehisa Kitano; Michiko Hirayama; Shinichi Kageyama; Yasuhiro Nagata; Masakatsu Nishikawa; Andrew M. Scott; Roger Murphy; Eric W. Hoffman; Lloyd J. Old; Hiroshi Shiku

2006-04-15T23:59:59.000Z

263

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

CHP Supported with Energy Efficiency Measures -- A Winning and Environmentally Sound Solution in Finland  

E-Print Network [OSTI]

CHP Supported with Energy Efficiency Measures - a Winning and Environmentally Sound Solution in Finland Erkki Hannunkari, IVO Technology Centre In the European Union Energy Progranunes, one of the most significant measures in reducing carbon... dioxides and other emissions is to build additional CHP teclmology. TIris will be implemented with measures to raise the energy efficiency. CHP technology is exceptionally widely used in Finland. At industrial sites, it accounts for more than in any...

Hannunkari, E.

265

ITP Industrial Distributed Energy: CHP GUIDE #1 - Q & A ON COMBINED...  

Broader source: Energy.gov (indexed) [DOE]

CHP systems can combust propane, fuel oil, hydrogen, landfill or anaerobic digester gas--providing a hedge against rising natural gas costs. * Improved Indoor Air Quality...

266

Improving a Pre-Combustion CCS Concept in Gas Turbine Combined Cycle for CHP Production  

Science Journals Connector (OSTI)

Abstract This paper describes modifications to improve the feasibility of a pre-combustion CCS concept for a gas turbine combined cycle. A natural gas-fired greenfield combined heat and power (CHP) plant equipped with pre-combustion capture was used as a base case, for which various improvement options were identified, assessed and selected. The base case was modified using the selected improvement options, after which the investment costs were re-evaluated. The results showed that the investment cost can be reduced with 8% by excluding the pre-reformer and the low temperature water-gas-shift reactor from the reforming process. The exclusion of the pre-reformer did not affect the performance of the plant, but the exclusion of the low temperature water-gas-shift reactor led to higher CO2 emissions.

Marjut S. Suomalainen; Antti Arasto; Sebastian Teir; Sari Siitonen

2013-01-01T23:59:59.000Z

267

Preparation, characterization, and structural analyses of [Rh(chp)(NBD)]2 and [Rh(chp)(NBD)]2(PF6). Isolation of a paramagnetic d7-d8 binuclear radical and its d8-d8 precursor  

Science Journals Connector (OSTI)

Preparation, characterization, and structural analyses of [Rh(chp)(NBD)]2 and [Rh(chp)(NBD)]2(PF6). Isolation of a paramagnetic d7-d8 binuclear radical and its d8-d8 precursor ...

David C. Boyd; Robert. Szalapski; Kent R. Mann

1989-03-01T23:59:59.000Z

268

New isomeric form of the "M2(OC5H3NCl)4" core: a polar arrangement of the four 6-chloro-2-hydroxypyridinato (chp) ligands in a chlorodiruthenium(II,III) complex, Ru2Cl(chp)4  

Science Journals Connector (OSTI)

New isomeric form of the "M2(OC5H3NCl)4" core: a polar arrangement of the four 6-chloro-2-hydroxypyridinato (chp) ligands in a chlorodiruthenium(II,III) complex, Ru2Cl(chp)4 ...

Akhil R. Chakravarty; F. Albert Cotton; Derek A. Tocher

1985-04-01T23:59:59.000Z

269

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network [OSTI]

of a Carbon Tax on Combined Heat and Power Adoption by aof a Carbon Tax on Combined Heat and Power Adoption by ainvolving combined heat and power (CHP). The expectation

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

270

Combined Heat and Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

271

Vent sizing of cumene hydroperoxide (CHP) system under fire scenario considering emergency flooding measure  

Science Journals Connector (OSTI)

Abstract Cumene hydroperoxide (CHP) can release large amounts of thermal energy and result in high temperature and pressure during runaway reactions. Calorimeters and related methodologies have been made for preventing runaway reactions of CHP. However, protective measures such as flooding and emergency relief system have not been studied intensively to protect CHP systems from runaway reactions of CHP. In this paper, vent sizing package 2 (VSP2) was used to study the runaway reactions of CHP in 12wt%, 28wt% and 48wt% concentration and CHP solution mixing with water under adiabatic and heat input conditions. Chemical systems according to runaway reaction of CHP in cumene have been identified as non tempered systems. However, tempering occurs at about 180C with pad pressure of 9bar in open cell tests after water addition. The Design Institute for Emergency Relief Systems (DIERS) methods were used to size the relief system of 120m3 reactor with 60t CHP solution content considering flooding. The required relief rate decreases significantly and the mass flow rate per unit flow area decreases slightly with the addition of water. So the vent diameter of reactors can be reduced when water has been added. The results show that the flooding and emergency relief system can be effective to protect 120m3 reactors from runaway reactions of CHP under fire scenario in the concentration around 28wt% or less. It is suggested that the relief system of CHP reactors should be sized properly considering fire scenario. If emergency flooding measure is involved for relief sizing, the measure must be credible. The volume of reactor and maximum concentration of CHP should be defined properly.

Feng Sun; Fan Zhang; Man-Ping Jin; Ning Shi; Wei Xu

2014-01-01T23:59:59.000Z

272

8/29/07BCB 444/544 F07 ISU Dobbs #5 -Dynamic Programming 1 Chp 3-Sequence Alignment  

E-Print Network [OSTI]

8/29/07BCB 444/544 F07 ISU Dobbs #5 - Dynamic Programming 1 #12;Chp 3- Sequence Alignment SECTION II SEQUENCE ALIGNMENT Xiong: Chp 3 Pairwise Sequence Alignmentq g · Evolutionary Basis · Sequence

Schürmann, Michael

273

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999  

Broader source: Energy.gov [DOE]

Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

274

Institute for Renewable Energy Ltd Preparation of a pilot biogas CHP plant integrated with  

E-Print Network [OSTI]

Institute for Renewable Energy Ltd Poland 1 Preparation of a pilot biogas CHP plant integrated on the preparation phase for a pilot investment in Koczala, Northern Poland, relating to an agricultural biogas CHP production and utilisation of agricultural biogas the project focused on BAT obtainable from various European

275

Filename: FVB Invo2 Forced 121061.CHP Probe Array Type: MG_U74Av2  

E-Print Network [OSTI]

121061.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8 Controls: Antisense.13 ______________________________________________________________________ ______________________________________________________________________ Filename: FVB Invo2 Forced 121062.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8

Betz, William J.

276

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network [OSTI]

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C for a CHP plant based on spark ignition engine running under lean conditions. An overall auto combustion engine. The potential benefits of using H2 in spark ignition (SI) engines may be listed as follows

Paris-Sud XI, Université de

277

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities- Report, March 2013  

Broader source: Energy.gov [DOE]

Critical infrastructure (CI) collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability purposes, as well as state and local policies designed to promote CHP in critical infrastructure applications.

278

Synergistic effects of 8-chlorocyclic-AMP and retinoic acid on induction of apoptosis in Ewing's sarcoma CHP-100 cells.  

Science Journals Connector (OSTI)

...antigen protein by cholesteryl pullulan (CHP) to CD8alpha+ dendritic cells in the draining...problem, we developed cholesteryl pullulan (CHP) as a delivery system for protein antigens...cancer vaccine containing the complex of CHP and protein antigen such as NY-ESO-1...

R K Srivastava; A R Srivastava; Y S Cho-Chung

1998-03-01T23:59:59.000Z

279

Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase  

SciTech Connect (OSTI)

The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

DeMaster, E.G.; Nagasawa,ss H.T.

1986-03-01T23:59:59.000Z

280

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heavy fuel oil fired CHP plant -- Impact on environment: Case Germany  

SciTech Connect (OSTI)

In 1995 Waertsilae NSD Finland Oy got the order to build a 14 MWe CHP (simultaneous heat and power) diesel power plant for Cerestar GMBH in Germany. The order consisted of a complete delivery, installation and commissioning of the fuel treatment system, the diesel engine with alternator, the process control system, the exhaust gas cleaning system (SCR and DESOX) and the heat recovery system. The factory producing starch is situated in the city of Krefeld close to Dusseldorf. The process integration of the diesel power plant into the existing factory was done in a close cooperation between the client and Waertsilae and the result is a CHP-plant suiting well into the existing factory. The diesel power plant went into operation in January 1996. The operating experience has been very encouraging, the annual running time is above 8,000 h and by the end of December 1997 about 16,300 running hours had been accumulated. The power plant is fulfilling the strict TA-LUFT emission limits and even half TA-LUFT values regarding NO{sub x} and SO{sub x}. The measured total efficiency of the power plant is above 90%. The choice of the most economical DESOX-method is dependent on several factors: investment and running cost, plant size, environmental legislation requirements, commercially available heavy fuel oil brands, etc. In small diesel plants the NaOH-scrubber is the most competitive desulfurization (DESOX) method, due to the lower investment cost compared to other DESOX-systems. A wet NaOH scrubbers system is installed. The used reagent is an about 50 wt-% aqueous NaOH solution. Low SO{sub x}-emissions of the flue gas is easily achieved by adjusting the pH of the scrubber liquid. The dissolved salt in the generated liquid end-product consists mainly of Na{sub 2}SO{sub 4}, due to the high oxygen content of the diesel flue gas. Running experiences have shown that the installed wet NaOH scrubber is easy to operate and suits the factory in Krefeld well.

Boij, J.

1998-07-01T23:59:59.000Z

282

Uranium-carbon multiple-bond chemistry. 8. Reaction of tungsten hexacarbonyl with Cp3U:CHP(Ph)(R)(Me) to form (OC)5WC(OUCp3)CHP(Ph)(R)(Me) and its isomerization to Cp3UOCH:CHP(Ph)(R)CH2W(CO)5  

Science Journals Connector (OSTI)

8. Reaction of tungsten hexacarbonyl with Cp3U:CHP(Ph)(R)(Me) to form (OC)5WC(OUCp3)CHP(Ph)(R)(Me) and its isomerization to Cp3UOCH:CHP(Ph)(R)CH2W(CO)5 ...

Roger E. Cramer; Jong Hwa. Jeong; John W. Gilje

1986-12-01T23:59:59.000Z

283

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

with or without combined heat and power (CHP) and contributein Microgrids with Combined Heat and Power Chris Marnay,Microgrids with Combined Heat and Power 1 Chris Marnay a) ,

Marnay, Chris

2010-01-01T23:59:59.000Z

284

Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption  

Science Journals Connector (OSTI)

Abstract Mathematical modelling and optimisation of the Distributed Energy Supply System (DESS) using natural gas, both at the building level and the overall energy supply network level was carried out for three types of micro-combined heat and power (micro-CHP) solid oxide fuel cells, Stirling engines, internal combustion engines and for two different operating strategies cost-driven and primary energy-driven. The modelling framework captures the overall impact of the adoption of micro-CHP systems on the total primary energy usage in both generation and distribution. A detailed case study on the UK domestic energy supply was undertaken by applying both operating strategies to four different sizes of houses. The best technology selected in each case was evaluated in terms of the economics, total primary energy consumption, and reduction of central power generation requirement. It was shown that the primary energy consumption driven option selected technologies which could potentially achieve 610% reduction of total primary energy use compared to the base case where micro-CHP was not adopted, which is nearly two times the reduction by the cost-driven strategy.

Tekena Craig Fubara; Franjo Cecelja; Aidong Yang

2014-01-01T23:59:59.000Z

285

Combined Heat and Power: Is It Right For Your Facility? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how...

286

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2012-01-01T23:59:59.000Z

287

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2013-01-01T23:59:59.000Z

288

ITP Industrial Distributed Energy: HUD Combined Heat and Power...  

Broader source: Energy.gov (indexed) [DOE]

HUD COMBINED HEAT AND POWER (CHP) GUIDE 3 INTRODUCTION TO THE LEVEL 2 ANALYSIS TOOL FOR MULTIFAMILY BUILDINGS PREPARED FOR U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT BY U.S....

289

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

290

Removing Cross-Border Capacity Bottlenecks in the European Natural Gas MarketA Proposed Merchant-Regulatory Mechanism  

Science Journals Connector (OSTI)

We propose a merchant-regulatory framework to promote investment in the European natural gas network infrastructure based on a price cap over two-part tariffs. As suggested by Vogelsang (J Regul Econ 20:141165,

Anne Neumann; Juan Roselln; Hannes Weigt

2014-11-01T23:59:59.000Z

291

A system for calculating the merchantable volume of oak trees in the northwest of the state of Chihuahua, Mexico  

Science Journals Connector (OSTI)

The taper functions of Kozak (1988), Bi (2000) and Fang et al. (2000) were comparatively analyzed in the present paper to develop a system for calculating the merchantable volume of oaks in the northwestern regio...

Marn Pompa-Garca; Jos Javier Corral-Rivas

2009-12-01T23:59:59.000Z

292

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

293

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

effect (Smart effect (Smart Grid Project) (Thisted, Denmark) Jump to: navigation, search Project Name Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167°, 8.703492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.959167,"lon":8.703492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004  

Broader source: Energy.gov [DOE]

This report defines the opportunity for CHP in three specific commercial building market segments: Smaller Educational Facilities, Smaller Healthcare Facilities, and Data Centers/Server Farms/Telecom Switching Centers.

295

Translating Hardware Process Algebras into Standard Process Algebras: Illustration with CHP and LOTOS  

Science Journals Connector (OSTI)

A natural approach for the description of asynchronous hardware designs are hardware process algebras, such as Martins Chp (Communicating Hardware Processes), Tangram, or Balsa, which are extensi...

Gwen Salan; Wendelin Serwe

2005-01-01T23:59:59.000Z

296

Initial Market Assessment for Small-Scale Biomass-Based CHP  

SciTech Connect (OSTI)

The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

Brown, E.; Mann, M.

2008-01-01T23:59:59.000Z

297

CHP Integrated with Packaged Boilers- Presentation by CMCE, Inc., June 2011  

Broader source: Energy.gov [DOE]

Presentation on CHP Integrated with Packaged Boilers, given by Carlo Castaldini of CMCE, Inc., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

298

Application to export electric energy OE Docket No. EA-260-C EPCOR Merchant and Capital (US) Inc: Federal Register Notice Volume 74, No. 43- Mar. 6, 2009  

Broader source: Energy.gov [DOE]

Application of EPCOR Merchant and Capital (US) Inc to export electric energy to Canada. Federal Register Notice Vol 74 No 43

299

Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system  

Science Journals Connector (OSTI)

Abstract Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions.

Mehdi Aghaei Meybodi; Masud Behnia

2013-01-01T23:59:59.000Z

300

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

SciTech Connect (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003  

Broader source: Energy.gov [DOE]

Chart of Database of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC)

302

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

303

National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities  

Broader source: Energy.gov [DOE]

Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

304

Development of a Low Cost 3-10kW Tubular SOFC Power System  

Energy Savers [EERE]

Develop ability to operate on liquid fuels (funded through ONR & DOD) Integrate to remote power, military, and mCHP platforms to allow short, medium, and longer term market...

305

May 2, 2007 2:20 World Scientific Review Volume -9in x 6in chp2DecentralizedWLANResourceManagementfinal A Framework for Decentralized Wireless LAN  

E-Print Network [OSTI]

May 2, 2007 2:20 World Scientific Review Volume - 9in x 6in chp2Decentralized 6in chp2DecentralizedWLANResourceManagementfinal 2 J. Xie, I. Howitt, and A. Raja 1.1. Introduction

Raja, Anita

306

Kenneth Arrow is the Joan Kenney Professor of Economics and Professor of Operations Research, emeritus; a CHP/PCOR fellow; and an FSI senior  

E-Print Network [OSTI]

, emeritus; a CHP/PCOR fellow; and an FSI senior fellow by courtesy. Arrow's work has been primarily

Klein, Ophir

307

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004  

Broader source: Energy.gov [DOE]

Development of a database, in Excel format, listing CHP installations incorporating thermal energy storage or turbine inlet cooling.

308

Report number ex. Ris-R-1234(EN) 1 Local CHP Plants between the Natural Gas and  

E-Print Network [OSTI]

distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas of natural gas from the North Sea of which much is used for electricity and heat generation purposesReport number ex. Risø-R-1234(EN) 1 Local CHP Plants between the Natural Gas and Electricity

309

Expression of Neural Cell Adhesion Molecule-related Sialoglycoprotein in Small Cell Lung Cancer and Neuroblastoma Cell Lines H69 and CHP-212  

Science Journals Connector (OSTI)

...delivery system of cholesteryl pullulan(CHP-HER2) Shigehisa Kitano Michiko Hirayama...Cholesteryl pullulan-HER2 protein complex (CHP-HER2) is a cancer vaccine with a novel...hydrophobized polysaccharides, pullulan (CHP) containing truncated recombinant HER2...

C. E. C. Kitty Moolenaar; Egbert J. Muller; Dick J. Schol; Carl G. Figdor; Elizabeth Bock; Dieter Bitter-Suermann; Rob J. A. M. Michalides

1990-02-15T23:59:59.000Z

310

Cellular and humoral immune responses in patients vaccinated with HER2 protein combined with a novel nanoparticle antigen delivery system of cholesteryl hydrophobized polysacharide(CHP-HER2)  

Science Journals Connector (OSTI)

...induction of apoptosis in Ewing's sarcoma CHP-100 cells The enhanced expression of the...inhibition and apoptosis in Ewing's sarcoma CHP-100 cells were evaluated. The inhibitory...induction of apoptosis in Ewing's sarcoma CHP-100 cells. | The enhanced expression...

Shigehisa Kitano; Shinichi Kageyama; Yasuhiro Nagata; Yoshihiro Miyahara; Atsunori Hiasa; Hiroaki Naota; Satoshi Okumura; Hiroshi Imai; Taizou Shiraishi; Masahiro Masuya; Masakatsu Nishikawa; Andrew M. Scott; Roger Murphy; Eric W. Hoffman; Lloyd J. Old; Hiroshi Shiku

2005-05-01T23:59:59.000Z

311

Small Scale CHP and Fuel Cell Incentive Program (New Jersey) | Department  

Broader source: Energy.gov (indexed) [DOE]

Small Scale CHP and Fuel Cell Incentive Program (New Jersey) Small Scale CHP and Fuel Cell Incentive Program (New Jersey) Small Scale CHP and Fuel Cell Incentive Program (New Jersey) < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Maximum Rebate Limits (% of cost) vary by system type, but the following limits also exist: NJCEP Incentive: $1 million Pay for Performance Bonus Incentive: $250,000 Utility Match: $1 million Overall Maximum: $2.25 million Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund) State New Jersey Program Type State Grant Program

312

Microsoft Word - NonProprietary DOE MicroCHP Final Report.doc  

Office of Scientific and Technical Information (OSTI)

Micro-CHP Systems for Residential Applications Micro-CHP Systems for Residential Applications Final Report June 2006 Prepared by United Technologies Research Center 411 Silver Lane East Hartford, CT 06108 Prepared for U.S. Department of Energy National Energy Technology Laboratory Contract No. DE-FC26-04NT42217 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 Technical Contact: Timothy DeValve, Benoit Olsommer UTRC Micro-CHP Project Leaders (860) 610-7286, (860) 610-7463 devalvtd@utrc.utc.com, olsommbc@utrc.utc.com DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for

313

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

314

An algorithm for combined heat and power economic dispatch  

SciTech Connect (OSTI)

This paper presents a new algorithm for Combined Heat and Power (CHP) economic dispatch. The CHP economic dispatch problem is decomposed into two subproblems: the heat dispatch and the power dispatch. The subproblems are connected through the heat-power feasible region constraints of co-generation units. The connection can be interpreted by the unit heat-power feasible region constraint multipliers in the Lagrangian function, and the interpretation naturally leads to the development of a two-layer algorithm. The outer layer uses the Lagrangian Relaxation technique to solve the power dispatch iteratively. In each iteration, the inner layer solves the heat dispatch with the unit heat capacities passed by the outer layer. The binding constraints of the heat dispatch are fed back to the outer layer to move the CHP economic dispatch towards a global optimal solution.

Guo, T.; Henwood, M.I. [Henwood Energy Services, Inc., Sacramento, CA (United States)] [Henwood Energy Services, Inc., Sacramento, CA (United States); Ooijen, M. van [Eindhoven Univ. of Technology (Netherlands)] [Eindhoven Univ. of Technology (Netherlands)

1996-11-01T23:59:59.000Z

315

cyberspace with no easily identifiable place of business for the merchant or physical delivery site for the  

E-Print Network [OSTI]

Bill is a system for micropayments for information goods on the Internet. This paper presents the NetBill protocol to control where their children shop in cyberspace. In the case of information goods, the value of an item-priced network goods. A customer, represented by a client computer, wishes to buy information from a merchant

Tygar, Doug

316

Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application  

Science Journals Connector (OSTI)

The aim of this paper is the evaluation of the profitability of micro-CHP systems for residential application. An integrated CHP system composed of a prime mover, an Electric Energy Storage system, a thermal storage system and an auxiliary boiler has been considered. The study has been carried out taking into account a particular electrochemical storage system which requires also thermal energy, during its operation, for a better exploitation of the residual heat discharged by the prime mover. The prime mover could be a conventional Internal Combustion Engine or also an innovative system, such as fuel cell or organic Rankine cycle. An investigation of this integrated CHP system has been carried out, by means of an in-house developed calculation code, performing a thermo-economic analysis. This paper provides useful results, in order to define the optimum sizing of components of the integrated CHP system under investigation; the developed code allows also to evaluate the profitability and the primary energy saving with respect to the separate production of electricity and heat.

M. Bianchi; A. De Pascale; F. Melino

2013-01-01T23:59:59.000Z

317

Technical and cost analyses of two different heat storage systems for residential micro-CHP plants  

Science Journals Connector (OSTI)

Abstract The heat storage system represents a key component for micro-cogeneration plants since it permits to store the unused thermal energy during electricity production for a later use. Nevertheless, it also represents a consistent additional cost that has to be taken into account in order to evaluate the profitability of the micro-CHP system with respect to the separate generation. In this paper the results of a technical and of a cost analysis of two different types of thermal energy storage systems for residential micro-CHP plants are presented. Indeed, in the present work hot water thermal energy storage systems and latent heat thermal energy storage systems have been dimensioned for different micro-CHP systems producing electrical and thermal energy for two different buildings situated in Italy. For each analysed micro-CHP system an adequate thermal energy storage capacity is estimated on the basis of the operational logic and of the electric and thermal loads, and the sizing of the cylindrical tank and of the coil heat exchanger relative to both types of thermal energy storage systems is performed. Comparisons in terms of components cost between hot water thermal energy storage systems and latent heat thermal energy storage systems are performed as well.

L. Mongibello; M. Capezzuto; G. Graditi

2014-01-01T23:59:59.000Z

318

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

319

Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective  

SciTech Connect (OSTI)

DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

Kelly, J.

2003-10-10T23:59:59.000Z

320

EPA RE-Powering America's Lands: Kansas City Municipal Farm Site -- Biomass Power Analysis  

SciTech Connect (OSTI)

Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

Hunsberger, R.; Mosey, G.

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

322

Midwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

323

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

324

Northwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

325

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Electric Power Industry Climate Initiative (EPICI) Members Electric Power Industry Climate Initiative (EPICI) Members American Public Power Association American Public Power Association Logo The American Public Power Association (APPA) is the service organization for the nation's public power utilities. Edison Electric Institute Edison Electric Institute Logo Edison Electric Institute (EEI) is the premier trade association for U.S. shareholder-owned electric companies, and serves international affiliates and industry associates worldwide. Electric Power Supply Association Electric Power Supply Association Logo The Electric Power Supply Association (EPSA) is the national trade association representing competitive power suppliers, including independent power producers, merchant generators, and power marketers. Large Public Power Council

326

Combined heat and power: How much carbon and energy can it save for manufacturers?  

SciTech Connect (OSTI)

As part of a September 1997 National Laboratory study for the US Department of Energy, the authors estimated the potential for reducing industrial energy consumption and carbon emissions using advanced technologies for combined heat and power (CHP) for the year 2010. In this paper the authors re-analyze the potential for CHP in manufacturing only. The authors also refine the assessment by more accurately estimating the average efficiency of industrial boilers most likely to be replaced by CHP. The authors do this with recent GRI estimates of the age distribution of industrial boilers and standard age-efficiency equations. The previous estimate was based on use of the best CHP technology available, such as the about-to-be commercialized industrial advanced turbine system (ATS). This estimate assumes the use of existing off-the-shelf CHP technologies. Data is now available with which to develop a more realistic suite of penetration rates for existing and new CHP technologies. However, potential variation in actions of state and federal electricity and environmental regulators introduces uncertainties in the use of existing and potential new CHP far greater than those in previous technology penetration estimates. This is, thus, the maximum cost-effective technical potential for the frozen technology case. The authors find that if manufacturers in 1994 had generated all their steam and electric needs with existing CHP technologies, they could have reduced carbon equivalent (carbon dioxide) emissions by up to 30 million metric tons of carbon equivalent (MtC) or nearly 20%. This result is consistent with carbon and energy savings found in other studies. For example, the aforementioned laboratory study found that just three CHP technologies, fuel cells, advanced turbines, and integrated combined cycle technologies, accounted for nearly 10% of the study's projected carbon savings of 400 MtC by 2010--enough to reduce projected US 2010 emissions to 1990 levels.

Kaarsberg, T.M.; Roop, J.M.

1998-07-01T23:59:59.000Z

327

Influence of steam injection and hot gas bypass on the performance and operation of a combined heat and power system using a recuperative cycle gas turbine  

Science Journals Connector (OSTI)

The influence of steam injection and hot gas bypass on the performance and operation of ... power (CHP) system using a recuperative cycle gas turbine was investigated. A full off-design analysis ... in steam gene...

Soo Young Kang; Jeong Ho Kim; Tong Seop Kim

2013-08-01T23:59:59.000Z

328

U.S. Clean Heat and Power Association | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

U.S. Clean Heat and Power Association U.S. Clean Heat and Power Association U.S. Clean Heat and Power Association November 1, 2013 - 11:40am Addthis United States Clean Heat and Power Association logo The U.S. Clean Heat and Power Association (USCHPA), formerly the U.S. Combined Heat and Power Association, serves as the primary advocacy organization for the combined heat and power (CHP) industry. USCHPA activities at the national and state level helped get key CHP provisions into the Energy Policy Act of 2005 (EPACT05) and the Energy Independence and Security Act of 2007 (EISA), as well as the 10 percent investment tax credit included in the Emergency Economic Stabilization Act of 2008. In addition, the association has worked with the Regional Clean Energy Application Centers (CEACs) to support CHP

329

Long-chain Ceramide Produced in Response to N-Hexanoylsphingosine does not Induce Apoptosis in CHP-100 Cells  

Science Journals Connector (OSTI)

It has been previously reported that treatment of CHP-100 human neuroepithelioma cells with N...-hexanoylsphingosine (C6-Cer) induces intracellular accumulation of long-chain ceramide (LC-Cer) and apoptosis. Here...

Adriano Mancinetti; Sabrina Di Bartolomeo; Angelo Spinedi

2009-11-01T23:59:59.000Z

330

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

331

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

332

CHP: A Technical & Economic Compliance Strategy - SEE Action...  

Broader source: Energy.gov (indexed) [DOE]

Action Webinar, January 2012 This presentation, "IndustrialCommercialInstitutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John...

333

CHP R&D Project Descriptions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

while delivering reliability and durability to the customer. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power TDA Research Inc., in collaboration with...

334

330 kWe Packaged CHP System with Reduced Emissions  

Broader source: Energy.gov (indexed) [DOE]

Objective Increase the adoption rate for high-efficiency small- scale Combined Heat and Power systems via development of a flexible, containerized 330 kWe unit. ...

335

A modified unit decommitment algorithm in combined heat and power production planning  

Science Journals Connector (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

336

Renewable Combined Heat and Power Dairy Operations  

E-Print Network [OSTI]

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

337

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

338

Charging of the Experimental High Temperature BTES Via CHP Unit - Early Results  

Science Journals Connector (OSTI)

Abstract A new, experimental borehole thermal energy storage (BTES) has been constructed in Paskov, Czech Republic. The storage consists of 16 energy boreholes performed to the depth of 60 m. In the boreholes the excessive waste heat from the CHP unit is stored. In this paper the BTES design and results of the rock environment response to the BTES charging and resting phase are briefly presented.

David Grycz; Petr Hemza; Zdenek Rozehnal

2014-01-01T23:59:59.000Z

339

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov (indexed) [DOE]

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

340

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network [OSTI]

of stationary fuel Premier developer of stationary fuel cell technology -- founded in 1969 · Over 50 efficiency 60% DFC-ERGDFC ERG DFC/Turbine 58 ­ 70% Direct FuelCell (DFC)* 47% Natural Gas Engines Small Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SOUTHERN CALIFORNIA ENVIRONMENTAL HEALTH SCIENCES CENTER Keck School of Medicine of USC 1540 Alcazar Street, CHP Suite 236, Los Angeles, CA 90033 TEL (323) 442-1096 FAX (323) 442-3272  

E-Print Network [OSTI]

Alcazar Street, CHP Suite 236, Los Angeles, CA 90033 TEL (323) 442-1096 FAX (323) 442-3272 University Alcazar Street, CHP 236, Los Angeles, CA 90033, or email to csutton@usc.edu. Please, no paper copies

Zhang, Li I.

342

1540 Alcazar St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323-442-1515 www.usc.edu/pt The comprehensive mission of the Division is to  

E-Print Network [OSTI]

(over) 1540 Alcazar St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323 St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323-442-1515 www

Valero-Cuevas, Francisco

343

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

344

Combined heat and power's potential to meet New York City's sustainability goals  

Science Journals Connector (OSTI)

Abstract Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development.

Bianca Howard; Alexis Saba; Michael Gerrard; Vijay Modi

2014-01-01T23:59:59.000Z

345

CO{sub 2} reduction potential in power production and its cost efficiency  

SciTech Connect (OSTI)

CO{sub 2} reduction potential and the economy of it in power production are handled in this presentation. The main focus is on combined heat and power production, CHP. The reference case has been the conventional coal fired condensing power plant and district heating with heavy fuel oil. Various CHP concepts are handled as substitutive technology for the reference case. Considered fuels are coal and biomass. CO{sub 2} produced in biomass firing processes is not regarded to increase the net CO{sub 2} emissions to the atmosphere. Reference case can be substituted by a more efficient coal-fired power plant, so called USC plant or by natural gas-fired combined cycle power plant. Both changes lead to very limited reduction in CO{sub 2} emissions. On the other hand the shifting is profitable. CO{sub 2} reduction potential differs in various CHP concepts according to the fuel used. With biomass the reduction is 100% and in the smallest considered coal-fired industrial power plant it is only 6%. Looking at CO{sub 2} reduction costs, ECU/t CO{sub 2}, the best alternative seems to be the changing to coal-fired CHP in industrial power plants. Due to different reduction potentials of different methods the reduction cost illustrates poorly the quality of the method. For example, in a case where the profitability is good but reduction potential is small the reduction cost is strongly negative and the case seems to be cost-effective. To avoid the previous effects the profitability of the changes has to be studied with and without CO{sub 2} emission fees. Biomass-CHP will be cost-effective compared to coal-CHP with the prices 2.5--5 ECU/t CO{sub 2} saved. The industrial CHP plant will be cost-effective despite of the fuel used and without CO{sub 2} emission fees. The district heating CHP plant will be cost-effective, if the plant size is large. The small district heating CHP plants are cost-effective, if the saved CO{sub 2} ton has a price.

Aijala, M.; Salokoski, P.; Alin, J.; Siikavirta, H.; Nykaenen, J.

1998-07-01T23:59:59.000Z

346

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

DCS-CHP system . . . . . . . . . . . . . . . . . . . 7521 Stationary collector CHP to stationary PV performancesolar dish collector DCS-CHP system . . . . . . 28 Water and

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

347

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

348

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT DE-EE0003392; W(A)-1 0-070; CH-1595 Cummins Power Generation (Cummins), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above cooperative agreement with the Department of Energy. The purpose of the cooperative agreement is to develop a flexible, 330 kWe packaged CHP system that can be deployed to commercial and light industrial applications at a lower cost than current CHP solutions. The program intends to reduce the total installed cost for a CHP system via volume manufacturing and minimization of custom site engineering. The customer input and technology development work from this project also forms the foundation for

349

Development of Energy Balances for the State of California  

E-Print Network [OSTI]

53 CHP Industrial and CommercialIPPs); (3) combined heat and power (CHP), electric powersector; (4) CHP, industrial sector; and (5) CHP, commercial

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

350

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network [OSTI]

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

351

Energy and Society (ER100/PP184/ER200/PP284) Fall 2014 Topics: Thermodynamics of energy systems; Power Loss; Peak Oil; Energy economics. Problem Set #3  

E-Print Network [OSTI]

's campus features a combined heat and power (CHP) energy system. This power (electricity) stationCourse), Student ID, Course # (ER100 etc), Discussion Section (101-110) Combined-Cycle Power Plant 1. UC Berkeley is a combined-cycle: a 21.35 MW natural gas turbine (Brayton cycle) and a 5.0 MW steam- powered, bottoming

Kammen, Daniel M.

352

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov (indexed) [DOE]

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

353

Feasibility, beneficiality, and institutional compatibility of a micro-CHP virtual power plant in the Netherlands:.  

E-Print Network [OSTI]

??Dutch households are responsible for a significant part of the total Dutch energy consumption and CO2 emissions. One option for decreasing household energy consumption and (more)

Landsbergen, P.

2009-01-01T23:59:59.000Z

354

Combined Heat and Power (CHP): Is It Right For Your Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

per kW 0.010 to 0.015 per kWh In Partnership with the US DOE Landfill Gas andor Biogas Cleanup - Consider Moisture, Siloxanes, Hydrogen Sulfide, Carbon Dioxide - Can add up...

355

Research on Heating Scope of Combined Heat and Power (CHP) Plant  

Science Journals Connector (OSTI)

Compilation Stipulation on heat-electricity cogeneration program (trial implementation) published recently says, Under the condition of reasonable technical economy, heat resource shall be concentrated as far as...

Tai L; Zheng Wang; Hui Kang

2007-01-01T23:59:59.000Z

356

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network [OSTI]

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

357

CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers  

E-Print Network [OSTI]

for optimum rate design. REFERENCES 1. Kumana, J D and R Nath, "Demand Side Dispatching, Part 1 - A Novel Approach for Industrial Load Shaping Applications", IETC Proceedings (March 93) 2. R Nath, D A Cerget, and E T Henderson, "Demand Side... Dispatching, Part 2 - An Industrial Application", IETC Proceedings (March 93) 3. R Nath and J D Kumana, "NOx Dispatching in Plant Utility Systems using Existing Software Tools", IETC Proceedings (April 92) 4. R Nath, J D KUJIl3I13, and J F Holiday...

Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

358

Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1977 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Vendor: ClearEdge Power, Hillsboro, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the durability of proton exchange membrane * (PEM) fuel cell systems in residential and light commercial combined heat and power (CHP) applications in California. Optimize system performance though testing of multiple * high-temperature units through collection of field data.

359

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

360

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network [OSTI]

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Islanded house operation using a micro CHP Albert Molderink, Vincent Bakker, Johann L. Hurink, Gerard J.M. Smit  

E-Print Network [OSTI]

high-efficiency boiler producing next to heat also electricity with a comparable overall efficiency high-efficiency boiler. It produces not only heat but also electricity with an overall effi- ciency comparable to a high-efficiency boiler. For an easier market introduction, producers of µCHP appliances

Al Hanbali, Ahmad

362

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

363

Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011  

Broader source: Energy.gov [DOE]

Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

364

Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

365

An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

1999-07-01T23:59:59.000Z

366

Preparation and structural characterization of Os2Cl4(chp)2(L) (chp = 6-chloro-2-hydroxypridinato; L = water, pyridine): a new class of M2X4(LL)2 complexes possessing an eclipsed conformation where LL is a substituted hydroxypyridinato ligand  

Science Journals Connector (OSTI)

Preparation and structural characterization of Os2Cl4(chp)2(L) (chp = 6-chloro-2-hydroxypridinato; L = water, pyridine): a new class of M2X4(LL)2 complexes possessing an eclipsed conformation where LL is a substituted hydroxypyridinato ligand ...

F. Albert Cotton; Kim R. Dunbar; Marek Matusz

1986-05-01T23:59:59.000Z

367

Hybrid robust predictive optimization method of power system dispatch  

DOE Patents [OSTI]

A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

2011-08-02T23:59:59.000Z

368

As we enter 2014, it is no secret that retail merchants remain one of the favorite targets of organized cyber thieves focused on stealing  

E-Print Network [OSTI]

As we enter 2014, it is no secret that retail merchants remain one of the favorite targets organizations. For large retailers, the burden of complying with the PCI DSS is often daunting, if not nearly impossible, at times. The complex, distributed environments of large retailers present unique challenges

Fisher, Kathleen

369

Combined Heat and Power- A Decade of Progress, A Vision for the Future, August 2009  

Broader source: Energy.gov [DOE]

Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals

370

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

371

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

372

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

373

Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine ?-CHP unit in a domestic dwelling  

Science Journals Connector (OSTI)

Abstract This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine ?-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the ?-CHP unit and a condensing gas boiler revealed that the ?-CHP unit resulted in an annual cost saving of 180 with an incremental simple payback period of 13.8years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO2 emissions decreased by 16.1%. The ?-CHP unit used 2889kWh of gas more than the condensing gas boiler.

G. Conroy; A. Duffy; L.M. Ayompe

2014-01-01T23:59:59.000Z

374

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association Association S.2900 Reducing the Electric Power Carbon Footprint October 20, 2010 Richard S. Tuthill, Chair Board of Directors Gas Turbine Association 2 * Alstom Power * Florida Turbine Technologies * General Electric * Rolls Royce * Siemens Energy * Solar Turbines * Strategic Power Systems * United Technologies * Vibro Meter Gas Turbine Association 3 S.2900 * Introduced By Senator Kirsten Gillibrand (D-NY) * Prime Objective is to Fund Ground Power Gas Turbine Technologies - Raise Natural Gas Fired Gas Turbine Efficiencies ○ Phase One - Combined Cycle > 62%, Simple Cycle > 47% ○ Phase Two - Combined Cycle > 65%, Simple Cycle > 50% - Authorizes $340M Over Four Years ($85M per Year) - Combined Cycle, Simple Cycle, CHP, All Engine Sizes * Similar Bill Has Passed the US House (Under Suspension of Rules)

375

Potential of the Power-to-Heat Technology in District Heating Grids in Germany  

Science Journals Connector (OSTI)

Abstract The increasing amount of power generation from weather-dependent renewable sources in Germany is projected to lead to a considerable number of hours in which power generation exceeds power demand. One possibility to take advantage of this power surplus is through the Power-to-Heat technology. As combined heat and power (CHP)-plants can be upgraded relatively easily with a Power-to-Heat facility, a huge potential can be developed in German district heating grids which are mainly served by CHP-plants. In this paper the potential of the Power-to-Heat technology in district heating grids in Germany is evaluated for the years 2015 to 2030 under different assumptions.

Diana Bttger; Mario Gtz; Nelly Lehr; Hendrik Kondziella; Thomas Bruckner

2014-01-01T23:59:59.000Z

376

ITP Industrial Distributed Energy: Combined Heat and Power- A Decade of Progress, A Vision for the Future  

Broader source: Energy.gov [DOE]

Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals

377

Decentralised optimisation of cogeneration in virtual power plants  

SciTech Connect (OSTI)

Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

2010-04-15T23:59:59.000Z

378

?-? Rearrangement of vinylphosphonium ligand in the coordination sphere of manganese, the crystal and molecular structure of [?5-C5H5(CO)2Mn(?2-PhHc=CHP+Ph3]Cl?  

Science Journals Connector (OSTI)

By the x-ray diffraction analysis method we established the structure of [Cp(CO)2Mn (?-PhHC=CHP+Ph3)]Cl?.

N. E. Kolobova; O. M. Khitrova

1987-09-01T23:59:59.000Z

379

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

such as combined heat and power (CHP), photovoltaics (PV),Generation, Combined Heat and Power (CHP), DER-CAMfuel cells, combined heat and power (CHP), and electrical

Feng, Wei

2013-01-01T23:59:59.000Z

380

Optimal Technology Selection and Operation of Microgrids in Commercial Buildings  

E-Print Network [OSTI]

emissions credits) of combined heat and power (CHP), plus 2)efficiency investments, and combined heat and power (CHP)to evaluating combined heat and power (CHP) opportunities

Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

HVAC Meaures Combined heat and power (CHP) Energy managementet al. 2003). Combined heat and power (CHP) or cogeneration.requirements, the combined heat and power (CHP) systems may

Worrell, Ernst

2008-01-01T23:59:59.000Z

382

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

$750 per kW rebate, and CHP systems above a 150 kW capacitytrending favorably toward CHP projects. 101 94. See id.Feb. 28, 107. Database of CHP Policies and Incentives, supra

Ferraina, Steven

2014-01-01T23:59:59.000Z

383

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Broader source: Energy.gov (indexed) [DOE]

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

384

Small-scale biomass gasification CHP utilisation in industry: Energy and environmental evaluation  

Science Journals Connector (OSTI)

Abstract Biomass gasification is regarded as a sustainable energy technology used for waste management and producing renewable fuel. Using the techniques of life cycle assessment (LCA) and net energy analysis this study quantifies the energy, resource, and emission flows. The purpose of the research is to assess the net energy produced and potential environmental effects of biomass gasification using wood waste. This paper outlines a case study that uses waste wood from a factory for use in an entrained flow gasification CHP plant. Results show that environmental impacts may arise from toxicity, particulates, and resource depletion. Toxicity is a potential issue through the disposal of ash. Particulate matter arises from the combustion of syngas therefore effective gas cleaning and emission control is required. Assessment of resource depletion shows natural gas, electricity, fossil fuels, metals, and water are all crucial components of the system. The energy gain ratio is 4.71MJdelivered/MJprimary when only electricity is considered, this increases to 13.94MJdelivered/MJprimary if 100% of the available heat is utilised. Greenhouse gas emissions are very low (715gCO2-e/kWhe) although this would increase if the biomass feedstock was not a waste and needed to be cultivated and transported. Overall small-scale biomass gasification is an attractive technology if the high capital costs and operational difficulties can be overcome, and a consistent feedstock source is available.

P.W.R. Adams; M.C. McManus

2014-01-01T23:59:59.000Z

385

The Influence of Building Location on Combined Heat and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are relatively high risk due to uncertainty of demand Combining hydrogen production with CHP capability may reduce upfront costs and reduce investment risks Fuel Cell with CHP...

386

Powering Microturbines With Landfill Gas, October 2002 | Department...  

Broader source: Energy.gov (indexed) [DOE]

7.4 Landfill Methane Utilization CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

387

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network [OSTI]

GWh] combined heat and power (CHP) and other distributenand combined heat and power (CHP) systems with and withoutrenewable energy source or CHP system at the building could

Stadler, Michael

2012-01-01T23:59:59.000Z

388

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network [OSTI]

DG) and combined heat and power (CHP) applications via heatrates and the potential for CHP applications increase theand combined heat and power (CHP) 2 applications matched to

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

389

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

Power Partnership, Catalog of CHP technologies, Washingtononline at: http://www.epa.gov/chp/ To be published in Energyin Energy and Buildings CHP Combined heat and power; DER

Mendes, Goncalo

2014-01-01T23:59:59.000Z

390

Fuel Cell Technologies Office: Transportation and Stationary Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

391

Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?  

Science Journals Connector (OSTI)

The utilisation of anaerobic digestion to produce biogas as an energy source is a mature technology in many European countries but is yet to be developed in Ireland. In 2009, the EU issued the Renewable Energy Source Directive 2009/28/EC which requires a 20% share of renewable energy sources (heat and electricity) in final energy consumption for all member states, respectively, including a 10% share of biofuels in the transport sector by 2020. The introduction of biogas to produce power and electricity in the form of CHP technology and biomethane as a transport fuel can help Ireland achieve the mandatory targets set by the directive. The key focus of the paper is to determine the optimum small to medium scale biogas technology and the impact the introduction of that technology infrastructure will have on renewable energy targets for Ireland. In terms of feedstock, agricultural sources such as energy crops and slurry offer a sustainable input to the anaerobic digestion process. The crop rotations under consideration consist of different arrangements of grass silage, maize silage and barley. Grass silage is found to be the most suitable crop for biogas energy production while biogas upgrading to biomethane as a transport fuel has the optimum technology potential in Ireland. To fuel a car operating on biomethane, 0.22ha of grass land is required annually. Full scale national development of 5% of the area under grass in Ireland will contribute 11.4% of renewable energy to the total final transport energy demand by 2020, surpassing the target set by the Renewable Energy Source Directive 2009/28/EC.

D. Goulding; N. Power

2013-01-01T23:59:59.000Z

392

Power Systems Integration Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

393

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 22080 of 28,905 results. 71 - 22080 of 28,905 results. Page Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light... http://energy.gov/oe/combined-heat-and-power-chp-systems Download Audit Letter Report: OAS-L-09-17 Audit of Mixed Low-Level Waste Disposal within the Department of Energy http://energy.gov/ig/downloads/audit-letter-report-oas-l-09-17 Download Audit Report: OAS-L-10-06 Former Uranium Enrichment Workers: Questions Regarding Equity in Pension Benefits http://energy.gov/ig/downloads/audit-report-oas-l-10-06 Download EA-0476: Finding of No Significant Impact Installation and Operation of the Plant-wide Fire Protection Systems and

394

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

61 - 18770 of 28,560 results. 61 - 18770 of 28,560 results. Page Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light... http://energy.gov/oe/combined-heat-and-power-chp-systems Download Audit Letter Report: OAS-L-09-17 Audit of Mixed Low-Level Waste Disposal within the Department of Energy http://energy.gov/ig/downloads/audit-letter-report-oas-l-09-17 Download Audit Report: OAS-L-10-06 Former Uranium Enrichment Workers: Questions Regarding Equity in Pension Benefits http://energy.gov/ig/downloads/audit-report-oas-l-10-06 Download EA-0476: Finding of No Significant Impact Installation and Operation of the Plant-wide Fire Protection Systems and

395

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network [OSTI]

tanks in the simulation of CHP plants," Energy Conversionoption combined with CHP system for different commercialas combined heat and power (CHP) or photovoltaics (PV), can

Steen, David

2014-01-01T23:59:59.000Z

396

Lessons Learned from Microgrid Demonstrations Worldwide  

E-Print Network [OSTI]

19 Recommendation 4: Integrate energy functions: CHP and4: Integrate energy functions: CHP and CCHP Demands forand power technologies (CHP) as well as combined cooling,

Marnay, Chris

2014-01-01T23:59:59.000Z

397

International Microgrid Assessment: Governance, INcentives, and Experience (IMAGINE)  

E-Print Network [OSTI]

energy functions, such as CHP and CCHP with solar thermal72 Recommendation B4: Integrate energy functions: CHP andTechnology Solutions CHP Combined heat and power CNY

Marnay, Chris

2014-01-01T23:59:59.000Z

398

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

Power Partnership, Catalog of CHP technologies, Washingtonat: http://www.epa.gov/chp/ [5] Center for Climate andand electricity pricing structure strongly determines CHP

Feng, Wei

2014-01-01T23:59:59.000Z

399

CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript  

Broader source: Energy.gov [DOE]

Kurmit Rockwell:Welcome. I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program. In this presentation we will introduce you to the basics of combined heat and...

400

Bagasse as a Fuel for Combined Heat and Power (CHP): An Assessment of Options for Implementation in Iran.  

E-Print Network [OSTI]

??With over one hundred years of commercial cultivation, sugar cane is one of the most valuable agricultural botanical resources in the World. This position is (more)

Salehi, Farnza Amin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

402

Crystal and molecular structure of a dinuclear ortho-metalated platinum ylid complex, cyclo-[Pt(.mu.-Cl)(MeCO)CHP(C6H4-o)Ph2]2.2CDCl3  

Science Journals Connector (OSTI)

Crystal and molecular structure of a dinuclear ortho-metalated platinum ylid complex, cyclo-[Pt(.mu.-Cl)(MeCO)CHP(C6H4-o)Ph2]2.2CDCl3 ...

Marvin L. Illingsworth; John A. Teagle; John L. Burmeister; William C. Fultz; Arnold L. Rheingold

1983-10-01T23:59:59.000Z

403

Reactivity of coordinated [Ph2PCHP(S)Ph2]- and [Ph2P(S)CHP(S)Ph2]-: two-center, regiospecific reactivity in rhodium and iridium complexes and formation of a disubstituted methylene bridge between platinum atoms  

Science Journals Connector (OSTI)

Reactivity of coordinated [Ph2PCHP(S)Ph2]- and [Ph2P(S)CHP(S)Ph2]-: two-center, regiospecific reactivity in rhodium and iridium complexes and formation of a disubstituted methylene bridge between platinum atoms ...

Jane. Browning; Keith R. Dixon; Robert W. Hilts

1989-02-01T23:59:59.000Z

404

Animal Farm Powers Village | Open Energy Information  

Open Energy Info (EERE)

Animal Farm Powers Village Animal Farm Powers Village Jump to: navigation, search Name Animal Farm Powers Village Agency/Company /Organization M2 Presswire Sector Energy Focus Area Agriculture, Energy Efficiency - Central Plant, Economic Development, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available; free Publication Date 4/18/2011 Website http://news.tradingcharts.com/ Locality Hatherop, England References Animal Farm Powers Village[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This press release describes a project completed in Hatherop, a small English village. The project is a combined heat and power (CHP) plant

405

Return temperature influence of a district heating network on the CHP plant production costs.  

E-Print Network [OSTI]

?? The aim of this Project is to study the influence of high return temperatures in district heating on the costs for heat and power (more)

Sallent, Roger

2009-01-01T23:59:59.000Z

406

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Jrvinen

2014-01-01T23:59:59.000Z

407

Synthesis of lithium and aluminum complexes supported by [OC(But)CHP(Ph2)=NBut]? ligand and catalysis of [R2Al{OC(But)-CHP(Ph2)=NBut}] (R = Me, Et) and [Me2Al{1-{OC(Ph)CH}-3-R1-5-MeC3HN2}] (R1 = Me, But) in the ring-opening polymerization of ?-caprolactone  

Science Journals Connector (OSTI)

A series of lithium and aluminum complexes bearing [OC(But)CHP(Ph2)=NBut]? ligand were synthesized and characterized. Reaction of ButC(O)CH2Br with Ph2PNHBut afforded [Ph2P(NHBut)CH2C(O)But]+Br? (1). Treatment of...

Die Yang; CuiFang Cai; ZhongXia Wang

2010-09-01T23:59:59.000Z

408

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Gas (CHP heat Fuel use) Distribution Losses CHP, Commercialheat rate of power plants) and transmission and distribution losses

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

409

Stationary Policies in the Control of Invasive Species  

E-Print Network [OSTI]

a Combined Heat and Power (CHP) plant. A CHP plant uses hotter steam and higher pressure boilers. It, too

410

Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a dynamic simulation model of a novel prototype of a 6kWe solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5m2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the year, remaining always close to 10%. On the other hand, the efficiency of the solar collectors is very high in summer (>50%) and significantly lower during the coldest winter days (down to 20%). Pay-back periods are extremely attractive in case of feed-in tariffs (about 5years), whereas the profitability of the system is scarce when no public funding is available. A sensitivity analysis was also performed, in order to determine the combination of system/design parameters able to maximize the thermo-economic performance of the system. It was found that the system may be economically feasible for the majority of locations in the Mediterranean area (pay-back periods around 10years), whereas the profitability is unsatisfactory for Central-Europe sites.

Francesco Calise; Massimo Dentice dAccadia; Maria Vicidomini; Marco Scarpellino

2015-01-01T23:59:59.000Z

411

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

412

Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007  

Broader source: Energy.gov [DOE]

ITP Industrial Distributed Energy: National Account Energy Alliance Final Report for the Field Scale Test and Verification of a PureComfort 240M Combined Heat and Power System at the Ritz Carlton, San Francisco

413

CHP Research and Development- Presentation by Oak Ridge National Laboratory, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Combined Heat and Power Research and Development, given by K. Dean Edwards at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

414

Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants  

Science Journals Connector (OSTI)

Abstract Parasitically providing the energy required for CO2 capture from retrofitted coal power plants can lead to a significant loss in output of electricity. In this study, different configurations of auxiliary units are investigated to partially or totally meet the energy requirements for MEA post-combustion capture in a 500MW sub-critical coal-fired plant. The auxiliary unit is either a boiler, providing only the heat required for solvent regeneration in the capture process or a combined heat and power (CHP) unit, providing both heat and electricity. Using biomass in auxiliary units, the grid loss is reduced without increasing fossil fuel consumption. The results show that using a biomass CHP unit is more favourable than using a biomass boiler both in terms of CO2 emission reductions and power plant economic viability. By using an auxiliary biomass CHP unit, both the emission intensity and the cost of electricity would be marginally lower than for a coal plant with capture. Further emission reductions occur if CO2 is captured both from the coal plant and the auxiliary biomass CHP, resulting in negative emissions. However, high incentive schemes (a carbon price higher than 55 $/t CO2 or a combination of lower carbon price and renewable energy certificates) or a low biomass price (lower than 1 $/GJ) are required to make CO2 capture from both the coal plant and the auxiliary biomass CHP unit economically attractive. All cost comparisons are for CO2 capture only and CO2 transport and storage are not included in this study.

Zakieh Khorshidi; Minh T. Ho; Dianne E. Wiley

2015-01-01T23:59:59.000Z

416

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

1998b). Distributed Small-scale CHP on a Large ManufacturingCADDET). (1998). Free CHP Saves Energy for VehicleCombined heat and power (CHP) CHP combined with absorption

Galitsky, Christina

2008-01-01T23:59:59.000Z

417

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

CALEB CALEB v1 CALEB v2 CARB CHP CO 2 DOGGR EIA ft ft /hhspecified) Other Services (CHP heat Fuel use) ResidentialElectricity Output in GWh CHP, Commercial Power CHP,

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

418

Combined Heat and Power: A Federal Manager's Resource Guide, March 2000  

Broader source: Energy.gov [DOE]

Report providing guidance to Federal Energy Managers regarding the potential of CHP technologies in Federal facilities.

419

System Integration of Distributed Power for Complete Building Systems: Phase 1 Report  

SciTech Connect (OSTI)

This report describes NiSource Energy Technologies Inc.'s base year of a planned 3-year effort to advance distributed power development, deployment, and integration. Its long-term goal is to design ways to extend distributed generation into the physical design and controls of buildings. NET worked to meet this goal through advances in the implementation and control of CHP systems in end-user environments and a further understanding of electric interconnection and siting issues. Important results from the first year were a survey of the state of the art of interconnection issues associated with distributed generation, a survey of the local zoning requirements for the NiSource service territory, and the acquisition of data about the operation, reliability, interconnection, and performance of CHP systems and components of two test sites.

Kramer, R.

2003-12-01T23:59:59.000Z

420

City of Boston - Green Power Purchasing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Boston - Green Power Purchasing Boston - Green Power Purchasing City of Boston - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Wind Program Info State Massachusetts Program Type Green Power Purchasing Provider City of Boston Environment Department In April 2007, Boston Mayor Thomas Menino issued an executive order that established a green power purchasing goal of 11% for the city government, effective immediately, and a goal of 15% by 2012. The executive order also requires all existing municipal properties to be evaluated for the feasibility of installing solar, wind, bio-energy, combined heat and power (CHP), and green roofs. (The executive order updated an announcement by

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The effect of precooling inlet air on CHP efficiency in natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Almost all pressure reduction stations in Iran use expansion valves to reduce the natural gas pressure, which leads to wasting large amount of exergy. In this paper, a system is proposed which includes the modification of a conventional pressure reduction station with the addition of a turbo expander and a gas turbine for power recovery and generation. The next step is investigating the effect of heat exchanger on proposed combined heat and power system. The objective of the simulation is first to investigate the effects of modifying components performance equations on system efficiency and performance at a set operating condition. Secondly, to conduct feasibility study of using a heat exchanger at gas pressure reduction station to boost station efficiency in terms of energy saving and economic value. The result demonstrates that by precooling inlet air of gas turbine, station efficiency increases specially when the turbine works at full load.

Mahyar Kargaran; Mahmoood Farzaneh-Grod; Mohammad Saberi

2013-01-01T23:59:59.000Z

422

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25kWh?1 electricity and $0.03kWh?1 thermal, for a system with a life cycle global warming potential of ~80gCO2eqkWh?1 of electricity and ~10gCO2eqkWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40$1.90m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

423

Robert M. Blue President Dominion Virginia Power  

Energy Savers [EERE]

operates a number of merchant generating facilities and has an extensive network of natural gas pipelines, processing facilities and local gas distribution companies in the...

424

Integrated electricity and heating demand-side management for wind power integration in China  

Science Journals Connector (OSTI)

Abstract The wind power generation system will play a crucial role for developing the energy conservative, environmentally friendly, and sustainable electric power system in China. However, the intermittency and unpredictability of wind power has been an obstacle to the deployment of wind power generation, especially in the winter of northern China. In northern China, a combined heat and power (CHP) unit has been widely utilized as a heat and electricity source. Considering the flexible operation of CHP with introduction of electric heat pumps (EHPs), this paper proposes a new method of electricity and heating demand side management to facilitate the wind power integration with the purpose of energy conservation in a unit-commitment problem. The thermal characteristics of demand side such as the thermal inertia of buildings and thermal comfort of end users are taken into consideration. Moreover the distributed electric heat pumps (EHPs) widely used by city dwellers are introduced into the wind-thermal power system as the heating source and spinning reserve so as to increase the flexibility of heating and electricity supply. The simulation results show that the new method can integrate more wind power into power grid for electricity and heating demand to reduce the coal consumption.

Yulong Yang; Kai Wu; Hongyu Long; Jianchao Gao; Xu Yan; Takeyoshi Kato; Yasuo Suzuoki

2014-01-01T23:59:59.000Z

425

Distributed Energy Resources Market Diffusion Model  

E-Print Network [OSTI]

power generation with combined heat and power applications."central stations, combined heat and power (CHP) applicationsgeneration and combined heat and power (CHP) technologies,

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.

2006-01-01T23:59:59.000Z

426

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

427

Microsoft PowerPoint - Overview of Biomass Energy and Economic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

* Market Opportunity Analysis. Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors Education...

428

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

429

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

SciTech Connect (OSTI)

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

430

TPV Power Generation System Using a High Temperature Metal Radiant Burner  

Science Journals Connector (OSTI)

Interest has grown in micro?combined heat and power (micro?CHP). Thermophotovoltaic (TPV) generation of electricity in fuel?fired furnaces is one of the micro?CHP technologies that are attracting technical attention. Previous investigations have shown that a radiant burner that can efficiently convert fuel chemical energy into radiation energy is crucial to realize a practical TPV power system. In this work we developed a TPV power generation system using a gas?fired metal radiant burner. The burner consists of a high temperature alloy emitter which could have an increased emissivity at short wavelengths and low emissivity at long wavelengths. The metal emitter is capable of bearing high temperatures of interest to fuel?fired TPV power conversion. GaSb TPV cells were tested in the combustion?driven radiant source. Electric output characteristics of the TPV cells were investigated at various operating conditions. The electric power output of the TPV cells was demonstrated to be promising. At an emitter temperature of 1185C an electric power density of 0.476 W/cm2 was generated by the GaSb cells. It is shown that the metal emitter is attractive and could be applied to practical fuel?fired TPV power systems.

K. Qiu; A. C. S. Hayden; E. Entchev

2007-01-01T23:59:59.000Z

431

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information The electric power industry reports the vast majority of their emissions (greater than 99 percent) through the use of continuous emissions monitors and fuel-use estimated data that are transmitted to the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA). EIA annually publishes data on GHG emissions and electric power generation. The "Electric Power Sector" in these publications is defined by EIA as the "energy-consuming sector that consists of electricity only and combined heat and power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public - i.e., North American Industry Classification System 22 plants". It does not include CO2 emissions or

432

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Energy management systems Combined heat and power (CHP) CHPperiod was negligible. Combined heat and power (CHP) 5 . Forrequirements, the use of combined heat and power systems can

Galitsky, Christina

2008-01-01T23:59:59.000Z

433

Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants  

E-Print Network [OSTI]

boiler fuel, and combined heat and power (CHP) and/orfluorescent lamp Combined heat and power Canadian Industrysoftware.html Combined Heat and Power Application tool (CHP)

Worrell, Ernst

2010-01-01T23:59:59.000Z

434

Energy Department Turns Up the Heat and Power on Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Department Turns Up the Heat and Power on Industrial Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency Energy Department Turns Up the Heat and Power on Industrial Energy Efficiency March 13, 2013 - 12:19pm Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic courtesy of Sarah Gerrity, Energy Department. Katrina Pielli Senior Policy Advisor, Office of Energy Efficiency and Renewable Energy What is Combined Heat and Power? Often called cogeneration or CHP, a combined heat and power system

435

Kiteships, sailing vessels pulled and powered with a kite  

SciTech Connect (OSTI)

Current windpower technology and future petroleum supply scenarios make it likely that it will become desirable to consider sailing vessels again for the merchant marine. For the wind-powered propulsion it seems possible to use tethered kites, instead of the traditional combination of masts and booms supporting a system of sails. This may be both safer and more cost-effective. The authors are on boat No. 2 in an R and D program aimed at this large scale application, and the present paper represents a progress report. Boat No. 1 was used to achieve speed and power, achieving a speed of 33 knots (over 60 km per hour), and sailing speeds at times of twice the wind velocity. Boat No. 2 will not be used for speed, but for the development of kite deployment and retrieval techniques, with kites of up to 300 sq ft (28 sq m) in surface area.

Winter, F. de; Swenson, R.B.; Culp, D.

1999-07-01T23:59:59.000Z

436

Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October 2011  

Broader source: Energy.gov [DOE]

Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

437

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

438

Hexion CHP Project  

E-Print Network [OSTI]

the exothermic reaction through a heat transfer fluid jacket around the reactor vessel that controls reaction temperature and transfers heat to a secondary water/steam loop. Until 2004, most of the heat entrained in the steam was vented to the atmosphere via a...

Bullock, B.

2008-01-01T23:59:59.000Z

439

28 CHP (HCP)  

Science Journals Connector (OSTI)

This document is part of Subvolume B1 Linear Triatomic Molecules - BClH+ (HBCl+) - COSe (OCSe) of Volume 20 Molecular Constants Mostly from Infrared Spectroscopy of Landolt-Brnstein - Group II Molecules a...

G. Guelachvili; K. Narahari Rao

1995-01-01T23:59:59.000Z

440

National CHP Roadmap  

Broader source: Energy.gov (indexed) [DOE]

sites could explode. These additions, coupled with growth in other forms of distributed energy generation, could easily overwhelm the ability of siting, permitting, and zoning...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Portfolio Standards and the Promotion of Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White...

442

Western Area Power Administration Draft Finding of No Significant Impact East Altamont Energy Center, Alameda County, California  

Broader source: Energy.gov (indexed) [DOE]

DOE/EA-1411 DEPARTMENT OF ENERGY Western Area Power Administration Draft Finding of No Significant Impact East Altamont Energy Center, Alameda County, California Summary: East Altamont Energy Center, LLC (EAEC LLC), a wholly owned subsidiary of Calpine Corporation applied to the Department of Energy (DOE), Western Area Power Administration (Western) to interconnect the East Altamont Energy Center (EAEC), a 1100-megawatt (MW) natural gas-fired power plant, to Western's Tracy Substation. EAEC LLC intends to serve competitive regional markets in California with power from the EAEC. Western proposes to make modifications at its Tracy Substation to accommodate the interconnection. The EAEC is a merchant plant which means that it would be independent of other generators and that the power generated would serve

443

A Framework for the Evaluation of the Cost and Benefits of Microgrids  

E-Print Network [OSTI]

Combined Heat and PowerCHP) [4]. It has been suggested thatCombined Heat and Power (CHP) [9],[16]. Participation ofParameter Description CHP Integration Whether Combined Heat

Morris, Greg Young

2012-01-01T23:59:59.000Z

444

Long Island Power Authority - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

445

ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future  

Broader source: Energy.gov [DOE]

Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future

446

Market Optimization of a Cluster of DG-RES, Micro-CHP, Heat Pumps and Energy Storage within Network Constraints: The PowerMatching City Field Test  

Science Journals Connector (OSTI)

The share of renewable energy resources for electricity production, in a distributed setting (DG-RES), increases. The amount of energy transported via the electricity grid by substitution of fossil fuels for m...

Ren Kamphuis; Bart Roossien; Frits Bliek

2011-01-01T23:59:59.000Z

447

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

448

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

449

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network [OSTI]

CHP) units, one steam turbine, and a steam accumulator. Theand power (CHP) Steam expansion turbines Motor Systems MotorPinch analysis Steam injected gas turbines Cogeneration of

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

450

Vision and Roadmap Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vision and Roadmap Documents Vision and Roadmap Documents The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a...

451

Technical White Papers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

options to increase widespread deployment of distributed generation (DG) and combined heat and power (CHP). Issues such as the treatment of CHP in renewable portfolio standards...

452

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Sweetser EXERGY Partners Corp. April 23, 2008 A Case for CHP Commissioning Combined Heat and Power (CHP) for Commercial Buildings: Best Practices and Pitfalls SLIDE 2...

453

ITP Industrial Distributed Energy: 2006-2007 Combined Heat &...  

Broader source: Energy.gov (indexed) [DOE]

& Power Action Plan Positioning CHP Value: Solutions for National, Regional and Local Energy Issues Prepared for the 7 th Annual CHP Roadmap Workshop Seattle, WA September 2006...

454

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network [OSTI]

and combined heat and power (CHP) systems with and withouta renewable energy source or CHP system at the building canfuel cell systems with CHP. Due to the heat requirement and

Stadler, Michael

2012-01-01T23:59:59.000Z

455

Electric Storage in California's Commercial Buildings  

E-Print Network [OSTI]

or combined heat and power (CHP) in commercial buildings anda renewable energy source or CHP system at the commercialPV at (GW) microgrids adopted CHP and (GW) DG at microgrids

Stadler, Michael

2014-01-01T23:59:59.000Z

456

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

the upfront $750 per kW rebate, and CHP systems above a 150other factors. 100 Such a rebate program helps to keep174 A. Rebate

Ferraina, Steven

2014-01-01T23:59:59.000Z

457

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

Feed-In Tariffs though Europe has used feed-in tariffs for several years tostate currently testing the feed-in tariff system as a CHP

Ferraina, Steven

2014-01-01T23:59:59.000Z

458

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

459

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

460

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

462

The influence of feedstock drying on the performance and economics of a biomass gasifierengine CHP system  

Science Journals Connector (OSTI)

The need to dry biomass feedstocks before they can be gasified can place a large energy and capital cost burden on small-to-medium scale biomass gasification plants for the production of heat and power. Drying may not always be unavoidable, but as biomass moisture content to the gasifier increases, the quality of the product gas deteriorates along with the overall performance of the whole system. This system modelling study addresses the influence of feedstock moisture content both before and after drying on the performance and cost of a biomass gasifierengine system for combined heat and power at a given scale and feedstock cost. The scale range considered 0.53.0MWe. The system comprises an updraft gasifier with external thermal and catalytic tar cracking reactors, gas clean-up and a spark-ignition gas engine. A spreadsheet-based system model is constructed, with individual worksheets corresponding to sub-models of system components, and a number of drying technology options and modes of operation are examined. Wherever possible, data supplied by manufacturers or taken from real systems is used in the construction of the sub-models, particularly in the derivation of cost functions.

J.G. Brammer; A.V. Bridgwater

2002-01-01T23:59:59.000Z

463

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

464

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

SciTech Connect (OSTI)

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

465

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

466

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered micro-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturers rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

467

A Framework for the Evaluation of the Cost and Benefits of Microgrids  

E-Print Network [OSTI]

tax on microgrid combined heat and power adoption," Journalas well as power (Combined Heat and PowerCHP) [4]. It hasand by providing Combined Heat and Power (CHP) [9],[16].

Morris, Greg Young

2012-01-01T23:59:59.000Z

468

PSADEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions of Petroleum Products and Other Terms Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH 3 - (CH 2 )n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usu- ally refers to the high octane product from alkylation units. This alkylate is used in blending high octane gaso- line. Alkylation. A refining process for chemically combining isobutane with olefin hydrocarbons (e.g., propylene, buty- lene) through the control of temperature and pressure in the presence of an acid catalyst, usually sulfuric acid or hydrofluoric acid. The product, alkylate, an isoparaffin, has high octane value and is blended with motor and aviation gasoline to improve the antiknock

469

APPENDXD.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

470

PSMDEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

such production for a given period is measured as volumes delivered from lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media for...

471

PSADEFS.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

such production for a given period is measured as volumes delivered from lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media for...

472

Waste to Energy: Biogas CHP  

E-Print Network [OSTI]

Southside Wastewater Treatment Plant Biogas Cogeneration Project November 9, 2011 2011 Clean Air Through Energy Efficiency Conference ?Turning Waste Into Energy? What to Expect ? ? Southside Overview ? Wastewater Treatment Process... gallons per day ? Processes and disposes over 150 tons of solids/day from both of the City?s wastewater treatment plants What is Biogas? ? Biogas is the methane (CH4) produced as a by-product of the anaerobic digestion process at the Southside...

Wagner, R.

2011-01-01T23:59:59.000Z

473

2008 EPA CHP Partnership Update  

Broader source: Energy.gov (indexed) [DOE]

U.S., accounting for 465.3 MW of electric capacity; 75 of these sites are fueled by biogas generated at the facility, for a total of 210.8 MW. - 100 kW of electric grid capacity...

474

Determinants of CHP-Diffusion  

Science Journals Connector (OSTI)

In the preceding chapter, the main issues and trends in electricity supply have been discussed, and cogeneration technology has been introduced along its main dimensions. This aimed to provide the reader with a b...

Karl Matthias Weber

1999-01-01T23:59:59.000Z

475

APPEND.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

106 Energy Information AdministrationPetroleum Supply Monthly 107 Energy Information AdministrationPetroleum Supply Monthly...

476

HEATRESV.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

such as the ones experienced in December 1996 and January-February 2000. Maximum inventory of heating oil in the reserve will be two million barrels. The Department of...

477

CHP Integrated with Packaged Boilers  

Broader source: Energy.gov (indexed) [DOE]

Carlo Castaldini, President, CMCE, Inc. carlo@cmc-engineering.com 408-314-0382 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 ALTEX...

478

PSMSUMRY.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Note 4. Frames Maintenance In January 1981 and 1983, numerous respondents were added to bulk terminal and pipeline surveys affecting subsequent stocks reported and stock change...

479

PSMNOTES.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Beginning and end-of-month stocks, receipts, inputs, production, ship- ments, and plant fuel use and losses during the month are collected from operators of natural gas processing...

480

CHP Deployment | Department of Energy  

Office of Environmental Management (EM)

Business Solution - Increasing efficiency, reducing business costs, and creating green-collar jobs Local Energy Solution - Deployable throughout the United States...

Note: This page contains sample records for the topic "merchant chp power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

482

NiSource Energy Technologies: Optimizing Combined Heat and Power Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-01-01T23:59:59.000Z

483

Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power  

Broader source: Energy.gov [DOE]

Fact sheet summarizing project that will develop and demonstrate a prototype microturbine CHP fueled by synthesis gas & integrated with a biomass gasifier

484

Combined Heat and Power System Achieves Millions in Cost Savings at Large University- Case Study, 2013  

Broader source: Energy.gov [DOE]

Case study about the CHP system at the Texas A&M district energy campus in College Station, TX funded by the Recovery Act

485

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids  

E-Print Network [OSTI]

with or without combined heat and power). Also, mobilestorage, and combined heat and power (CHP) systems with and

Stadler, Michael

2010-01-01T23:59:59.000Z

486

Application of the Software as a Service Model to the Control of Complex Building Systems  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications,DG) equipment, combined heat and power (CHP), and electrical

Stadler, Michael

2012-01-01T23:59:59.000Z

487

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications,emissions credits) of combined heat and power (CHP), and 2)

Stadler, Michael

2008-01-01T23:59:59.000Z

488

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

489

High power  

Science Journals Connector (OSTI)

... 1970s technomanic projects such as nuclear power stations were still in vogue. Environmentalists argued that solar power seemed a far safer, cheaper and reassuringly low-tech power source. The technomaniacs ... tech power source. The technomaniacs, fearing that they were losingthis argument, sought to hijack solar power themselves. They proposed an enormously expensive and complicated ...

David Jones

1994-03-03T23:59:59.000Z

490

Power Marketing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UGPS' Marketing Service Area Power Marketing As a marketer of Federal power in the Upper Great Plains Region, the Power Marketing staff provides a variety of services for customers...

491

Clean Power & Industrial Efficiency | (919) 515-0354 | www.ncsc.ncsu.edu North Carolina State University, Campus Box 7401, Raleigh, NC 27695 | 1 919-515-3480 | www.ncsc.ncsu.edu 01/2013  

E-Print Network [OSTI]

-specific technology. Even with price volatility in natural gas markets in recent years, natural gas is still the predominant fuel for CHP systems. While fossil fuels such as coal and oil will continue to be utilized into the air. History of CHP Decentralized CHP systems located at industrial sites and urban centers were

492

Creating Markets for Green Biofuels: Measuring and improving environmental performance  

E-Print Network [OSTI]

Plants from the Use of Combined Heat and Power (CHP), U.S.Protection Agency Combined Heat and Power Partnership.the Use of Combined Heat and Power (CHP), U.S. Environmental

Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

2007-01-01T23:59:59.000Z

493

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network [OSTI]

of Carbon Tax on Combined Heat and Power Adoption by ain energy-efficient combined heat and power (CHP) equipment,generation with combined heat and power (CHP) applications

Stadler, Michael

2010-01-01T23:59:59.000Z

494

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Emissions Monitoring Combined Heat and Power Carbon Dioxide18.7 to 36.8 *Combined Heat and Power (CHP) ** Uncertaintiesin electric and Combined Heat and Power (CHP) plants, diesel

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

495

Opportunities for Combined Heat and Power at Wastewater Treatment...  

Broader source: Energy.gov (indexed) [DOE]

option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as fuel to generate electricity and heat in a CHP...

496

Combined Heat and Power: Connecting the Gap Between Markets and...  

Energy Savers [EERE]

Web sites, constituent databases, and analysis all proved to be invaluable in the search of utilities and contacts for the focus of this study. The EPA CHP Partnership, which...

497

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

draft, 2001. Danish Energy Agency (1998). Combined Heat andpolicies and measures, Danish Energy Agency. Hirschenhofer,demand in 1996 (Danish Energy Agency 1998). Reliance on CHP

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

498

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

499

measurement Estimation of Merchantable Bole Volume and  

E-Print Network [OSTI]

, and Jeffery A. Turner Emerging markets for small-diameter roundwood along with a renewed interest in forest for timber species in the FIA program. Keywords: bioenergy, small-diameter roundwood, sawtimber, utilization

500

Essential ClimateVariables Chris Merchant  

E-Print Network [OSTI]

by radiative transfer modelling · High degree of independence · Good performance through volcanic aerosol 55 #12;Maximum impact objective for SST Ships Drifters Moorings Assess ocean temperature changes independently of current marine CDR. Text Wednesday, 2 September 2009 #12;ARC in ECV-speak Taking a single