National Library of Energy BETA

Sample records for mendoza juan argueta

  1. Faces of Science: Juan Duque

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Juan Duque March 4, 2015 Duque bent on discovery with sensors and new materials For as long as he can remember, Juan Duque has been fascinated with building new things and learning how they work. 0:40 - 2 - Faces of Science: Juan Duque Juan is developing tools that enable researchers to design new materials for photovoltaics and sensors. As always, it is scientific research that drives Juan, as his work often takes him in unexpected directions that always keep the discovery process dynamic and

  2. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  3. Steepest Descent Juan C. Meza

    Office of Scientific and Technical Information (OSTI)

    Steepest Descent Juan C. Meza 1 Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract The steepest descent method has a rich history and is one of the simplest and best known methods for minimizing a function. While the method is not commonly used in practice due to its slow conver- gence rate, understanding the convergence properties of this method can lead to a better understanding of many of the more sophisticated optimization methods. Here, we give a short introduction

  4. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr...

    Open Energy Info (EERE)

    San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At San Juan Volcanic Field...

  5. EIS-0516: Clean Path Energy Center Project; San Juan County,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path Energy Center Project; San Juan County, New Mexico EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico Summary DOE's Western Area Power Administration is ...

  6. Juan Meza | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Juan Meza Previous Next List Juan Meza Juan Meza Formerly: Senior Scientist; Department Head, High Performance Computing Research, Lawrence Berkeley National Laboratory Presently:...

  7. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal history...

  8. Newton's Method Juan C. Meza March

    Office of Scientific and Technical Information (OSTI)

    Newton's Method Juan C. Meza March 15, 2010 Abstract Newton's method is one of the most powerful techniques for solving systems of nonlinear equations and minimizing functions. It is easy to implement and has a provably fast rate of convergence under fairly mild assumptions. Because of these and other nice properties, Newton's method is at the heart of many solution techniques used to solve real-world problems. This article, gives a short introduction to this method with a brief discussion of

  9. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  10. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  11. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  12. The Thermal Regime Of The San Juan Basin Since Late Cretaceous...

    Open Energy Info (EERE)

    Times And Its Relationship To San Juan Mountains Thermal Sources Abstract Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has...

  13. MHK Projects/San Juan Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  14. EIS-0477: San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado

    Broader source: Energy.gov [DOE]

    The Department of the Interior’s Bureau of Land Management is preparing an EIS to evaluate the potential environmental impacts of a proposal to construct a 230-kilovolt transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado, to relieve transmission constraints, serve new loads, and offer economic development through renewable energy development in the San Juan Basin. DOE’s Western Area Power Administration is a cooperating agency; the proposed transmission line would require an interconnection with Western's Shiprock Substation, near Farmington, and a new Three Rivers Substation on Western's reserved lands.

  15. A jewel in the desert: BHP Billiton's San Juan underground mine

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-12-15

    The Navajo Nation is America's largest native American tribe by population and acreage, and is blessed with large tracks of good coal deposits. BHP Billiton's New Mexico Coal Co. is the largest in the Navajo regeneration area. The holdings comprise the San Juan underground mine, the La Plata surface mine, now in reclamation, and the expanding Navajo surface mine. The article recounts the recent history of the mines. It stresses the emphasis on sensitivity to and helping to sustain tribal culture, and also on safety. San Juan's longwall system is unique to the nation. It started up as an automated system from the outset. Problems caused by hydrogen sulfide are being tackled. San Juan has a bleederless ventilation system to minimise the risk of spontaneous combustion of methane and the atmospheric conditions in the mine are heavily monitored, especially within the gob areas. 3 photos.

  16. Atmospheric and soil-gas monitoring for surface leakage at the San Juan

    Office of Scientific and Technical Information (OSTI)

    Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons (Journal Article) | SciTech Connect Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons Citation Details In-Document Search Title: Atmospheric and soil-gas monitoring for surface leakage at the

  17. EIS-0112: Rifle to San Juan 345-kV Transmission Line and Associated Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture - Rural Electrification Administration developed this statement to evaluate the environmental impacts of the Colorado-Ute Electric Association Inc. and the U.s. Department of Energy's Western Area Power Administration (WAPA) constructing and operating a 345-kilovolt transmission line from Rifle, Colorado, to the San Juan Generating Station near Farmington, New Mexico. WAPA served as a cooperating agency in the preparation of this statement and adopted it on 10/30/1984. WAPA assumed the lead role for project implementation after issuance of the final statement.

  18. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect (OSTI)

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  19. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect (OSTI)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  20. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  1. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect (OSTI)

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  2. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  3. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

  4. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect (OSTI)

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.

  5. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Volumes IV Chapters 4 -5 Comment Responses U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Volume IV 4.0 Responses............................................................................................................................4-1 4.1 Response Index Tables

  6. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement

    Office of Environmental Management (EM)

    II Appendices A-H U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Page Volume II Appendix A, Biological Assessment/Screening Level Risk Assessment/Biological Opinion Appendix A1, Biological Assessment A1-1.0 Introduction ..............................................................................................................A1-1 A1-2.0 Species

  7. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION

    SciTech Connect (OSTI)

    Don L. Hanosh

    2004-08-01

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

  8. RIFLE TO SAN JUAN

    Office of Environmental Management (EM)

    Di r ec to r Wes t e r n A r e a - E l ec tric Ru r al E l ec t rifica tio n Adminis t r a tio n 14 th & Inde p e nde nce Ave., S.W. Washi n g ton, D.C. 20250 Tele pho n e:...

  9. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  10. Natural Tracers and Multi-Scale Assessment of Caprock Sealing Behavior: A Case Study of the Kirtland Formation, San Juan Basin

    SciTech Connect (OSTI)

    Jason Heath; Brian McPherson; Thomas Dewers

    2011-03-15

    The assessment of caprocks for geologic CO{sub 2} storage is a multi-scale endeavor. Investigation of a regional caprock - the Kirtland Formation, San Juan Basin, USA - at the pore-network scale indicates high capillary sealing capacity and low permeabilities. Core and wellscale data, however, indicate a potential seal bypass system as evidenced by multiple mineralized fractures and methane gas saturations within the caprock. Our interpretation of {sup 4}He concentrations, measured at the top and bottom of the caprock, suggests low fluid fluxes through the caprock: (1) Of the total {sup 4}He produced in situ (i.e., at the locations of sampling) by uranium and thorium decay since deposition of the Kirtland Formation, a large portion still resides in the pore fluids. (2) Simple advection-only and advection-diffusion models, using the measured {sup 4}He concentrations, indicate low permeability ({approx}10-20 m{sup 2} or lower) for the thickness of the Kirtland Formation. These findings, however, do not guarantee the lack of a large-scale bypass system. The measured data, located near the boundary conditions of the models (i.e., the overlying and underlying aquifers), limit our testing of conceptual models and the sensitivity of model parameterization. Thus, we suggest approaches for future studies to better assess the presence or lack of a seal bypass system at this particular site and for other sites in general.

  11. Faces of Science: Juan Duque

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duque's passion for research stems from his fascination with building new things and learning how they work. His research in surface chemistry continues to feed this passion...

  12. San Juan Basin EC | Open Energy Information

    Open Energy Info (EERE)

    Colorado, across Federal, State, Tribal, and private lands. It would improve reliability of the transmission system and deliver electricity generated at existing facilities...

  13. EIS-0477: San Juan Basin Energy Connect Project, San Juan County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the potential environmental impacts of a proposal to construct a 230-kilovolt transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado, to relieve ...

  14. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  15. San Juan County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.761667, -107.905 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  16. NNMCAB Board Agenda: January 2016 San Juan (Ohkay Owingeh)

    Broader source: Energy.gov [DOE]

    Agenda for the January 27, 2016 Board Meeting at Ohkay Owingeh Conference Center Presentation, DOE, Environmental Management Los Alamos Field Office Budget, Jenna Hackett

  17. San Juan Mesa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Xcel...

  18. Carbon Cycle 2.0: Robert Cheng and Juan Meza

    ScienceCinema (OSTI)

    Robert Cheng and Juan Meza

    2010-09-01

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  19. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  20. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  1. San Juan Fracture Characterization Project: Status and current results

    SciTech Connect (OSTI)

    Majer, E.L.; Daley, T.M.; Myer, L.R.; Nihei, K.; Queen, J.; Sinton, J.; Murphy, J.; Fortuna, M.; Lynn, H.B.; Imhoff, M.A.; Wilson, R.

    2001-02-26

    The overall objectives of this report are to extend current state-of-the-art 3-D imaging to extract the optimal information for fracture quantification and to develop next generation capability in fracture imaging for true 3-D imaging of the static and dynamic fracture properties.

  2. ARM - Instrument - assist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connor Flynn Pacific Northwest National Laboratory (509) 375-2041 connor.flynn@pnnl.gov Albert Mendoza Pacific Northwest National Laboratory associate 509-375-2591 Albert.Mendoza...

  3. ARM - Publications: Science Team Meeting Documents: MPL Hardware...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Capabilities Flynn, Connor Pacific Northwest National Laboratory Mendoza, Albert PNNL Hopkins, Derek Pacific Northwest National Laboratoroy Flynn, Donna Pacific...

  4. EIS-0378: Port Angeles-Juan de Fuca Transmission Project, WA

    Broader source: Energy.gov [DOE]

    This EIS assesses DOE decision to approve the Sea Breeze Transmission project for a Presidential permit for through DOE's Office of Electricity Delivery and Energy Reliability and for approval for interconnection into the federal transmission system through the Bonneville Power Administration (BPA).

  5. solenoidal field Richard C. Fernow; Juan C. Gallardo; H. G. Kirk...

    Office of Scientific and Technical Information (OSTI)

    to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory. The experiment uses device dimensions and parameters and beam...

  6. EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EIS for the proposed interconnection of the Clean Path Energy Center Project to Western’s transmission system at the Shiprock Substation. The planned Clean Path Energy Center will consist of a 680 MW natural gas combined cycle power plant co-located with a 70 MW solar photovoltaic project.

  7. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  8. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Gregory Korshin Richard Stout Public-at-Large Jan Catrell Rudy Mendoza Sam Dechter Bob Suyama Regional Environ- mentCitizen Shelley Cimon Steve Hudson Floyd...

  9. EIS-0477: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Environmental Impact Statement EIS-0477: Draft Environmental Impact Statement San Juan Basin Energy Connect Project; San Juan County, New Mexico and La Plata County, Colorado...

  10. Notice of Intent (NOI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2011 EIS-0477: Notice of Intent to Prepare Environmental Impact Statement San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado...

  11. EIS-0477: Notice of Intent to Prepare Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement EIS-0477: Notice of Intent to Prepare Environmental Impact Statement San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado...

  12. EIS-0355: DOE Notice of Availability of the Final Environmental...

    Office of Environmental Management (EM)

    Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final ...

  13. Axio Power | Open Energy Information

    Open Energy Info (EERE)

    Axio Power Jump to: navigation, search Name: Axio Power Place: San Juan Capistrano, California Zip: 92675 Product: San Juan Capistrano-headquartered developer of utility-scale PV...

  14. EIS-0477: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    77: Draft Environmental Impact Statement EIS-0477: Draft Environmental Impact Statement San Juan Basin Energy Connect Project; San Juan County, New Mexico and La Plata County,...

  15. EIS-0477: Notice of Intent to Prepare Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, ... transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado. ...

  16. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement

    Office of Environmental Management (EM)

    5-01 DOE-STD-6005-01 April 30, 2001 Industrial Hygiene Practices This standard recommends industrial hygiene practices to support components of the Worker Protection Program required by Department of Energy (DOE) Order 440.1A, “Worker Protection Management for DOE Federal and Contractor Employees. PDF icon DOE-STD-6005-01, Industrial Hygiene Practices More Documents & Publications Independent Oversight Special Review, Department of Energy sites - February 2008 FAQS Gap Analysis

  17. EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Western’s programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  18. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect (OSTI)

    N /A

    2005-08-05

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

  19. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  20. CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Kevin McClure; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  1. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  2. DOE/EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Westerns programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  3. NREL Response to the Report Study of the Effects on Employment of Public Aid to Renewable Energy Sources from King Juan Carlos University (Spain)

    Broader source: Energy.gov [DOE]

    Job generation has been a part of the national dialogue surrounding energy policy and renewable energy (RE) for many years. RE advocates tout the ability of renewable energy to support new job opportunities in rural locations and the manufacturing sector. Others argue that spending on renewable energy is an inefficient allocation of resources and can result in job losses in the broader economy.

  4. Record of Decision for the Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, UT (DOE/EIS-0355) (09/21/05)

    Office of Environmental Management (EM)

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  5. Native American Heritage Month Celebration at the DOE Headquarters

    Broader source: Energy.gov [DOE]

    All employees are welcome to attend DOE’s celebration of Native American Heritage Month on November 20, 2013. Joining us are guest speakers Hankie Ortiz and William Mendoza.

  6. The (Scientific) Flight of the Falcon - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed by Laufer Wind and NREL that may decrease the number of bird interactions with wind turbines. Photo by Ismael Mendoza, NREL A trained falcon named Houdini darts and...

  7. U.S. Air Force Energy Program Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Force Energy Program Presentation U.S. Air Force Energy Program Presentation Omar Mendoza, U.S. Air Force, presentation on the U.S. Air Force Energy Program at the Advanced Biofuels Industry Roundtable. PDF icon 6_mendoza_roundtable.pdf More Documents & Publications Advanced Biofuels Industry Roundtable - List of Participants Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Advanced Drop-In Biofuels Initiative Agenda

  8. EIS-0355: DOE Notice of Availability of the Draft Environmental...

    Office of Environmental Management (EM)

    Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The purpose of the Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, ...

  9. EIS-0378-SA-01: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -SA-01: Supplement Analysis EIS-0378-SA-01: Supplement Analysis Port Angeles-Juan de Fuca Transmssion Project Supplement Analysis for the Port Angeles-Juan de Fuca Transmssion...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter by Author Bokoch, Michael P. (1) Choi, Hee-Jung (1) Fung, Juan Jos (1) Kobilka, ... Daniel M. ; Fung, Juan Jos ; Choi, Hee-Jung ; Thian, Foon Sun ; Kobilka, Tong Sun ; et ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Bozarth, Jeffrey M. (1) Cheney, Daniel L. (1) Choi, Hee-Jung (1) Fung, Juan Jos (1) ... Daniel M. ; Fung, Juan Jos ; Choi, Hee-Jung ; Thian, Foon Sun ; Kobilka, Tong Sun ; et ...

  12. Former Principal Investigators | Center for Gas SeparationsRelevant to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Technologies | Blandine Jerome Former Principal Investigators Previous Next List Jean Frechet Giulia Galli Giulia Galli Alices Koniges Alices Koniges Krishna Krishna David Luebke David Luebke Juan Meza Juan Meza svec Frantisek Svec

  13. Notice of Availability of the Remediation of the Moab Uranium Mill Tailings Final Environmental Impact Statement, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355) (08/05/05)

    Office of Environmental Management (EM)

    80 Federal Register / Vol. 70, No. 150 / Friday, August 5, 2005 / Notices that is cross referenced by the individual's name on a separate list. SAFEGUARDS: All physical access to the Department's site, and the site of the Department's contractor where this system of records is maintained, is controlled and monitored by security personnel. The computer system employed by the Department offers a high degree of resistance to tampering and circumvention. This computer system limits data access to

  14. Solventus Industrial SL | Open Energy Information

    Open Energy Info (EERE)

    Name: Solventus Industrial SL Place: Alczar de San Juan, Spain Zip: 13600 Product: Spanish project developer and engineering. References: Solventus Industrial SL1 This...

  15. Browse by Discipline -- E-print Network Subject Pathways: Fission...

    Office of Scientific and Technical Information (OSTI)

    (Universidad Rey Juan Carlos) - Departamento de Ciencias de la Naturaleza y Fsica Aplicada Ribando, Robert J. (Robert J. Ribando) - Department of Mechanical and ...

  16. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wise, Juan Aguilar, Doug Rybarski, and Christina Agular. The soil vapor extraction trailer is shown near Hanfords Plutonium Finishing Plant. The soil vapor extraction...

  17. October 2001 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Future Challenges .pdf file (947KB) Dave Bader, Office of Science, SC-74 ASCAC Biotechnology Subcommittee Report .pdf file (28KB) Juan Meza, ASCAC Advisory Committee Member ...

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Price movements were stronger in the Rockies during the week owing to pipeline maintenance in the San Juan Basin that cut supply routes from the region. Before a...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price movements were stronger in the Rockies during the week owing to pipeline maintenance in the San Juan Basin that cut supply routes from the region. Before a...

  20. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design, microelectronics, materials, ceramics, precision fabrication, ion gas loading, engineering, and detection calibration, Juan says. He also credits manager Mike Eatough...

  1. Sculpting bespoke mountains: Determining free energies with basis...

    Office of Scientific and Technical Information (OSTI)

    ; McGovern, Michael 2 ; de Pablo, Juan J. 3 + Show Author Affiliations Department of Chemical and Biomolecular Engineering, University of Notre Dame du Lac, Notre Dame,...

  2. LOS ALAMOS, New Mexico, August 25, 2011-Earl Salazar is Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Chief Financial Officer," said Government Affairs Office Director Patrick Woehrle.Salazar was governor of Ohkay - 2 - Owingeh Pueblo (formerly San Juan Pueblo) during...

  3. jduchim1 | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jduchim1 Ames Laboratory Profile Juan Duchimaza Student Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: jduchim1

  4. BLM California Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    California Desert District Office Jump to: navigation, search Name: California Desert District Office Address: 22835 Calle San Juan De Los Lagos Place: Moreno Valley, CA Zip: 92553...

  5. Sociedad Eolica de Andalucia SA SEA | Open Energy Information

    Open Energy Info (EERE)

    Sociedad Eolica de Andalucia SA SEA Jump to: navigation, search Name: Sociedad Eolica de Andalucia SA (SEA) Place: San Juan de Aznalfarache, Sevilla, Spain Zip: 41920 Product:...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Fluorescent single walled nanotubesilica composite materials Dattelbaum, Andrew M. ; Gupta, Gautam ; Duque, Juan G. ; Doorn, Stephen K. ; Hamilton, Christopher E. ; DeFriend ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Carbon nanomaterials in silica aerogel matrices Hamilton, Christopher E ; Chavez, Manuel E ; Duque, Juan G ; Gupta, Gautam ; Doorn, Stephen K ; Dattelbaum, Andrew M ; Obrey, ...

  8. Fluorescent single walled nanotube/silica composite materials...

    Office of Scientific and Technical Information (OSTI)

    Authors: Dattelbaum, Andrew M. ; Gupta, Gautam ; Duque, Juan G. ; Doorn, Stephen K. ; Hamilton, Christopher E. ; DeFriend Obrey, Kimberly A. Publication Date: 2013-03-12 OSTI ...

  9. RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...

    U.S. Energy Information Administration (EIA) Indexed Site

    ISLANDS, U.S.",5,0,0,,,,,," " "applicationvnd.ms-excel","ATLANTIC TRADING MARKETING ",1,130,"Motor Gas, Conventional, Other",4909,"SAN JUAN, PR","PUERTO...

  10. Environmental Impact Statements (EIS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah September 3, 2004 EIS-0346: Draft Environmental Impact Statement Salmon...

  11. Notices of Availability (NOA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management (BLM) has prepared a Draft Environmental Impact Statement (EIS) for the San Juan Basin Energy Connect Project (Project) and by this notice is announcing the opening of...

  12. DOE Publishes Notice of Public Meeting for Smart Grid-connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time, in Golden, Colorado at the National Renewable Energy Laboratory (NREL), San Juan Room Conference Room, on the South Table Mountain Campus, 15013 Denver West Parkway,...

  13. DOE Prepares Programmatic Environmental Impact Statement for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety; Mesa County Board of Commissioners; Montrose County Board of Commissioners; San Juan County Commission; Southern Ute Indian Tribe; and the Navajo Nation. Additional...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Chudakov, Eugene (1) Cisbani, Evaristo (1) Cornejo, Juan (1) Cusanno, Francesco (1) Save ... Laboratory at 6 GeV Subedi, Ramesh R. ; Deng Xiaoyan ; Wang Diancheng ; Zheng ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... ; van Overbeek, Megan ; Donigian, Jill R. ; Baciu, Paul ; de Lange, Titia ; Lei, Ming ... Jin ; Zhou, Yuanzhe ; Li, Song ; Chen, Juan ; Brunzelle, Joseph S ; Zeng, Zhixiong ; ...

  16. High-resolution crystal structure of human protease-activated...

    Office of Scientific and Technical Information (OSTI)

    H. ; Fung, Juan Jose ; Palmer, Daniel ; Zheng, Yaowu ; Green, Hillary F. ; Pandey, Anjali ; Dror, Ron O. ; Shaw, David E. ; Weis, William I. ; Coughlin, Shaun R. ; Kobilka, ...

  17. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575 ...

  18. Algorithms and tools for high-throughput geometry-based analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Previous Next List Thomas F. Willems, Chris H. Rycroft, Michaeel Kazi, Juan C....

  19. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    Partners, LP Place: San Juan Capistrano, California Zip: 92675 Product: Boutique investment banking and investment advisory firm with clean energy focus References: Access Fund...

  20. PRELIMINARY DEMONSTRATION REACTOR POINT DESIGN FOR THE FLUORIDE...

    Office of Scientific and Technical Information (OSTI)

    HIGH-TEMPERATURE REACTOR Authors: Qualls, A L 1 ; Betzler, Benjamin R 1 ; Brown, Nicholas R 1 ; Carbajo, Juan 1 ; Greenwood, Michael Scott 1 ; Hale, Richard...

  1. Possible Bose-condensate behavior in a quantum phase originating...

    Office of Scientific and Technical Information (OSTI)

    Leilani L. ; Costello, Alison L. ; Hess, Nancy J. ; Lander, Gerard H. ; Llobet, Anna ; Martucci, Mary B. ; Leon, Jose Mustre de ; Nordlund, Dennis ; Lezama-Pacheco, Juan S. ...

  2. Possible Bose-condensate Behavior in a Quantum Phase Originating...

    Office of Scientific and Technical Information (OSTI)

    Leilani L. ; Costello, Alison L. ; Hess, Nancy J. ; Lander, Gerard H. ; Llobet, Anna ; Martucci, Mary B. ; Leon, Jose Mustre de ; Nordlund, Dennis ; Lezama-Pacheco, Juan S. ...

  3. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    author Rush Robinett, Juan Torres year 2008 Our nation depends on secure, reliable, sustainable, and cost effective supplies of energy to support economic development and to...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Chirapatpimol, Khem (1) Chudakov, Eugene (1) Cisbani, Evaristo (1) Cornejo, Juan (1) Cusanno, Francesco (1) Dalton, Mark (1) Save Results Save this search to My Library Excel ...

  5. File:EIA-PSJ-NW-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Description Paradox-San Juan Basin, Northwest Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  6. File:EIA-PSJ-SE-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Description Paradox-San Juan Basin, Southeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  7. BPA-2013-00946-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requested the following: All documents, including electronic documents, regarding the Port-Angeles-Juan de Fuca Transmission (or Sea Breeze) Project. In a phone conversation with...

  8. BPA-2013-01170-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (BPA). You requested the following: All DOE documents regarding the Port-Angeles-Juan de Fuca Transmission (or Sea Breeze) Project. The enclosed CD has DOE...

  9. Oxygen-vacancy-induced polar behavior in (LaFeO3)2/(SrFeO3) superlatti...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mishra, Rohan 1 ; Kim, Young-Min 1 ; Salafranca Laforga, Juan I 1 ; Kim, Seong Keun 2 ; Chang, Seohyoung 2 ; Bhattacharya, Anand 2 ; Fong, Dillon 2 ; ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter by Author Campuzano, Juan Carlos (2) Bauer, Tobias (1) Czasch, Achim (1) Doerner, ... Wallauer, Robert ; Voss, Stefan ; Bauer, Tobias ; Schneider, Deborah ; Titze, ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Available April 1999 High-energy high luminosity musup +musup minus collider design Robert B. Palmer ; Richard Fernow ; Juan C. Gallardo ; Y.Y. Lee ; Yagmur Torun ; David...

  12. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in Alberta, Chicago Citygate, Houston Ship Channel, San Juan Basin, Southern California border, Transco Zone 6, Northwest Pipeline Rockies, and Panhandle Eastern Pipe Line Co....

  13. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in Alberta, Chicago Citygate, Houston Ship Channel, San Juan Basin, Southern California border, Transco Zone 6, Northwest Pipeline Rockies, and Panhandle Eastern Pipe Line Co....

  14. SHIF'ROCK, NEW MEXICO

    Office of Legacy Management (LM)

    ... This location is on the San Juan River where the floodplain drainage channel discharges ... METALS AND MAJOR CATIONS ANALYSIS The determination of calcium, copper, iron, magnesium, ...

  15. Possible demonstration of ionization cooling using absorbers...

    Office of Scientific and Technical Information (OSTI)

    collider. Authors: Richard C. Fernow ; Juan C. Gallardo ; H. G. Kirk ; T. Kycia ; Y. Y. Lee ; L. Littenberg ; Robert B. Palmer ; V. Polychronakos ; I. Stumer ; David Neuffer ;...

  16. Categorical Exclusion Determinations: Legacy Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Locations on the San Juan River Floodplain near Shiprock, New Mexico, Disposal Site. ... Install 200 Kilowatt Solar Photovoltaic System and Routine Maintenance Actions CX(s) ...

  17. EIS-0378: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement EIS-0378: Final Environmental Impact Statement Port Angeles-Juan de Fuca Transmission Project Sea Breeze Olympic Converter LP (Sea Breeze) has...

  18. EIS-0378: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Record of Decision EIS-0378: Record of Decision Port Angeles-Juan de Fuca Transmssion Project The Department of Energy announces its decision to implement its proposed actions...

  19. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 07, 2016 Articles RESEARCHER JUAN ELIZONDO-DECANINI (2624) holds two compact, high-voltage nonlinear transmission lines. Got Solitons? Sandia researcher sees problem as a...

  20. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  1. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Protein folding via divide and conquer optimization Oliva Ricardo Crivelli Silvia Meza Juan APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory Berkeley CA US...

  2. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Fung, Juan Jos" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent Journal Article Miscellaneous Patent Program Document Software Manual Technical Report...

  3. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    "Campuzano, Juan Carlos" Name Name ORCID Search Authors Type: All BookMonograph ConferenceEvent Journal Article Miscellaneous Patent Program Document Software Manual Technical...

  4. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture...

    Office of Scientific and Technical Information (OSTI)

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate ...

  5. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Albright, Brian James (1) Barber, John L. (1) Barnes, Cris William Los Alamos National Laboratory (1) Fernandez, Juan Carlos (1) Kippen, Karen Elizabeth (1) Kober, Edward Martin ...

  7. US COALBED METHANE The Past: Production The Present: Reserves

    Gasoline and Diesel Fuel Update (EIA)

    ... & Mining VA Dept. of Mines, Minerals & Energy WV Geological & Economic Survey (L. ... Powder River San Juan Central Appalachian Greater Green River Arkoma Piceance Black ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Brunzelle, Joseph S (1) Cash, Darian D. (1) Chan, Henry (1) Chen, Juan (1) Hong, Kyungah ... and interactions Jiang, Jiansen ; Chan, Henry ; Cash, Darian D. ; Miracco, Edward J. ; ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Cascio, Duilio (1) Cash, Darian D. (1) Chan, Henry (1) Chen, Juan (1) Feigon, Juli (1) ... and interactions Jiang, Jiansen ; Chan, Henry ; Cash, Darian D. ; Miracco, Edward J. ; ...

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Hale, Richard Edward (1) Hall, Andrew (1) Harrison, Thomas J. (1) Jarrett, Michael (1) ... ; Carbajo, Juan ; Hale, Richard Edward ; Harrison, Thomas J. ; Powers, Jeffrey J. ; Robb, ...

  11. January 2013 Most Viewed Documents for Power Generation And Distributi...

    Office of Scientific and Technical Information (OSTI)

    Jose O.; Acosta Aradillas, Juan Instituto de Investigaciones Electricas, Cuernavaca (Mexico) A Study on the Development of Standard Measuring System for Switching Impulse ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Band structure of topological insulators from noise measurements in tunnel junctions Cascales, Juan Pedro, E-mail: juanpedro.cascales@uam.es ; Martnez, Isidoro ; Aliev, Farkhad ...

  13. Advanced Simulation Capability for Environmental Management ...

    Office of Scientific and Technical Information (OSTI)

    in the prediction of uncertainty and to visualize the relationships between model input and output. less Authors: Meza, Juan ; Hubbard, Susan ; Freshley, Mark D. ; Gorton, Ian ; ...

  14. Microsoft Word - Index of PDs.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Carbonated or Leached Cement on Corrosion of Mild Steel ... MST-8 StructureProperty Relations Name: Juan ... Picosecond Temperature Measurement in Condensed Phases ...

  15. Reductive Sequestration Of Pertechnetate (99TcO4-) By Nano Zerovalent...

    Office of Scientific and Technical Information (OSTI)

    Authors: Fan, Dimin ; Anitori, Roberto ; Tebo, Bradley M. ; Tratnyek, Paul G. ; Lezama Pacheco, Juan S. ; Kukkadapu, Ravi K. ; Engelhard, Mark H. ; Bowden, Mark E. ; Kovarik, Libor ...

  16. Oxidative Remobilization of Technetium Sequestered by Sulfide...

    Office of Scientific and Technical Information (OSTI)

    Authors: Fan, Dimin ; Anitori, Roberto ; Tebo, Bradley M. ; Tratnyek, P. G. ; Lezama Pacheco, Juan S. ; Kukkadapu, Ravi K. ; Kovarik, Libor ; Engelhard, Mark H. ; Bowden, Mark E. ...

  17. ARM - Publications: Science Team Meeting Documents: Measuring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Solar Irradiance from Space: The SOlar Radiation and Climate Experiment Harder, Jerry LASP University of Colorado Fontenla, Juan LASP University of Colorado Kopp, Greg...

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mr. Castillo-Veremis; Javier Rojas Viquez (Costa Rica); Marcelo Suarez Salvia (Argentina); Lilian Colsant (Brazil). Back row, from left: Juan Estrada (Fermilab); Jose...

  19. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Qualls, A. L. 1 ; Betzler, Benjamin R. 1 ; Carbajo, Juan 1 ; Hale, Richard Edward 1 ; Harrison, Thomas J. 1 ; Powers, Jeffrey J. 1 ; Robb, Kevin R. 1 ; ...

  20. Hidalgo County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas San Juan, Texas San Manuel-Linn, Texas Scissors, Texas South Alamo, Texas Sullivan City, Texas Villa Verde, Texas Weslaco, Texas West Sharyland, Texas Retrieved from...

  1. From Pandemic Preparedness to Biofuel Production: Tobacco Finds...

    Office of Scientific and Technical Information (OSTI)

    ... Becher, M.L.; Farran, I.; Sander, V.A.; Corigliano, M.G.; Yacono, M.L.; Pariani, S.; Lopez... PLoS ONE 2015, 10, e0118096. 99. Salazar-Gonzalez, J.A.; Rosales-Mendoza, S.; Romero-Maldo...

  2. Nov 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ASCR 4:00 PM- 4:30 PM APPLIED MATHEMATICS COV REPORT Juan Meza .pdf file (32KB), ASCAC 4:30 PM- 4:45 PM DISCUSSION AND VOTE ON APPLIED MATHEMATICS COV REPORT Juan Meza ASCAC 4:45 ...

  3. CX-005284: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Mexico-County-San JuanCX(s) Applied: A9, B2.5, B5.1Date: 02/09/2011Location(s): San Juan County, New MexicoOffice(s): Energy Efficiency and Renewable Energy

  4. September 2012 Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  5. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Lidar Validation Experiment - ALIVE B. Schmid and N.-N. Truong Bay Area Environmental Research Institute Sonoma, California R. Ferrare and M. Clayton National Aeronautics and Space Administration/Langley Research Center Hampton, Virginia D. Turner University of Wisconsin Madison, Wisconsin C. Flynn, A. Mendoza, D. Petty, and L. Roeder Pacific Northwest National Laboratory Richland, Washington B. Cairns and K. Knobelspiesse Columbia University New York, New York R. Dominguez, W. Gore, R.

  6. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray

    Office of Scientific and Technical Information (OSTI)

    Observatory () | Data Explorer High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory Title: High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger

  7. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Albert Mendoza" Name Name ORCID Search Authors Type: Select Type Animations/Simulations Figures/Plots Genome/Genetics Data Interactive Data Map(s) Multimedia Numeric Data Specialized Mix Still Images or Photos Software Host Website: Subject: Identifier Numbers: Research Org: Sponsoring Org: Contributing Orgs: Publication Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Limit to: All records Datasets Data Collections Close Clear All

  8. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Mendoza,Albert" Name Name ORCID Search Authors Type: Select Type Animations/Simulations Figures/Plots Genome/Genetics Data Interactive Data Map(s) Multimedia Numeric Data Specialized Mix Still Images or Photos Software Host Website: Subject: Identifier Numbers: Research Org: Sponsoring Org: Contributing Orgs: Publication Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Limit to: All records Datasets Data Collections Close Clear All

  9. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology

    Office of Scientific and Technical Information (OSTI)

    (ASSIST): channel 1 data (Dataset) | Data Explorer Data Explorer Search Results ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Authors: Albert Mendoza ; Connor Flynn Publication Date: 2012-12-07 OSTI Identifier: 1095589 DOE Contract Number:

  10. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology

    Office of Scientific and Technical Information (OSTI)

    (ASSIST): channel 2 data (Dataset) | Data Explorer channel 2 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 2 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 2 data Authors: Albert Mendoza ; Connor Flynn Publication Date: 2012-12-07 OSTI Identifier: 1095590 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM)

  11. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology

    Office of Scientific and Technical Information (OSTI)

    (ASSIST): engineering data (Dataset) | Data Explorer engineering data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Authors: Albert Mendoza ; Connor Flynn Publication Date: 2012-12-07 OSTI Identifier: 1095591 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement

  12. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology

    Office of Scientific and Technical Information (OSTI)

    (ASSIST): summary data (Dataset) | Data Explorer summary data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Authors: Albert Mendoza ; Connor Flynn Publication Date: 2012-12-07 OSTI Identifier: 1095592 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive,

  13. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST)

    Office of Scientific and Technical Information (OSTI)

    Handbook (Dataset) | Data Explorer Data Explorer Search Results Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook Title: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST), like the AERI, measures infrared spectral zenith radiance at high spectral resolution. Authors: Flynn,Connor ; Mendoza,Albert Publication Date: 2016-03-01 OSTI Identifier:

  14. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labor/Work Force Derek Donley Thomas Carpenter Melanie Meyers Lynn Davison Rebecca Holland Local Environment Gene Van Liew Local Government Maynard Plahuta Pam Larsen Art Tackett Rob Davis Jerry Peltier Gary Garnant Bob Parks Tribal Government Russell Jim Gabe Bohnee Armand Minthorn Public Health Tony Brooks John Howieson University Gregory Korshin Richard Stout Public-at-Large Jan Catrell Rudy Mendoza Sam Dechter Bob Suyama Regional Environ- ment/Citizen Shelley Cimon Steve Hudson Floyd Hodges

  15. HANFORD ADVISORY BOARD A Site Specific Advisory Board, Chartered under the Federal Advisory Committee Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harold Heacock Labor/Work Force Derek Donley Thomas Carpenter Melanie Meyers Lynn Davison Rebecca Holland Local Environment Gene Van Liew Local Government Maynard Plahuta Pam Larsen Art Tackett Rob Davis Jerry Peltier Gary Garnant Bob Parks Tribal Government Russell Jim Gabe Bohnee Armand Minthorn Public Health Tony Brooks Jon Howieson University Gregory Korshin Richard Stout Public-at-Large Jan Catrell Rudy Mendoza Sam Dechter Bob Suyama Regional Environ- ment/Citizen Shelley Cimon Steve Hudson

  16. The Aerosol Lidar Validation Experiment … ALIVE 1Schmid, B., 2Ferrare, R., 3Turner,D., 4Flynn, C., 5Cairns, B., 6Dominguez, R., 6Gore, W., 7Groff, D., 8Herman, B., 9Hovelman, B., 10Jefferson, A., 6Johnson, R., 5Knobelspiesse, K., 4Mendoza, A., 10Ogren, J., 4Petty, D., ?Russell, E., 6Russell, P., 4Roeder, L., 6Truong, N. 1BAER Institute, 2NASA Langley Res. Center, 3Univ. Of Wisconsin-Madison, 4Pacific Northwest Natl. Lab., 5Columbia Univ., 6NASA Ames Res. Center, 7ARM SGP, 8City Univ. of New York, 9Sky Research, Inc., 10NOAA CMDL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  17. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1 (Shallow) Site, San Juan Power Plant 1 ... Water Treatment, and Electricity Cost Scenarios 1 ... (e.g., 10,000 grams of salt per 1,000,000 grams of ...

  18. RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL CO ",442,"EL DORADO","AR","ARKANSAS",3 41305,"ATLANTIC TRADING MARKETING ",1,215,"Jet Fuel, Kerosene-Type",4909,"SAN JUAN, PR","PUERTO RICO",6,940,"VENEZUELA...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Terrani, Kurt A. (3) Betzler, Benjamin R. (2) Bratton, Ryan (2) Brown, Nicholas R. (2) Carbajo, Juan (2) Clarno, Kevin T (2) Gehin, Jess C ORNL (2) Gehin, Jess C. (2) Save ...

  20. Photocathode Device Using Diamondoid and Cesium Bromide Films...

    Office of Scientific and Technical Information (OSTI)

    Title: Photocathode Device Using Diamondoid and Cesium Bromide Films Authors: Clay, William A.:a Juan R.Maldonado ; Pianetta, Piero ; Dahl, Jeremy E.P. ; Carlson, Robert M.K. ; ...

  1. Protein-folding via divide-and-conquer optimization (Conference...

    Office of Scientific and Technical Information (OSTI)

    Authors: Oliva, Ricardo ; Crivelli, Silvia ; Meza, Juan Publication Date: 2004-07-11 OSTI Identifier: 882903 Report Number(s): LBNL--55869 R&D Project: 365969; BnR: YN0100000 DOE ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Collins, Jack L (Knoxville, TN) (1) Delcul, Guillermo D (1) Delcul, Guillermo D. (1) Dole, Leslie R (Knoxville, TN) (1) Ferrada, Juan J (Knoxville, TN) (1) Forsberg, Charles W (Oak ...

  3. EIS-0355: Record of Decision | Department of Energy

    Office of Environmental Management (EM)

    EIS-0355: Record of Decision Remediation of the Moab Uranium Mill Tailings, Grand and San ... identified in the Remediation of the Moab Uranium Mill Tailings, Grand and San Juan ...

  4. Characterization and Valorization of Aqueous Phases Derived from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Suh-Jane Lee 24 * Diana Tran * Juan Lopez-Ruiz * Vanessa Dagle * Kurt Spies * ... AIChE 2015 Spring Meeting April 27, 2015. Austin, TX. 5. Karl O. Albrecht*, Alan R. ...

  5. BPA-2013-01170-FOIACorrespondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agency about your request. You requested the following: All DOE documents regarding the Port-Angeles-Juan de Fuca Transmission (or Sea Breeze) Project. DOE is forwarding all of...

  6. BPA-2013-00946-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    97208 -2tf3 0 4 9,4& - F Re: Freedom of Information Act Request: Documents Regarding Port-Angeles-Juan de Fuca Transmission (or Sea Breeze) Project Dear Ms. Munro: Pursuant to...

  7. BPA-2013-01170-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 3c21 MAy 1 2013 3 ZAI Re: Freedom of Information Act Request: Documents Regarding Port-Angeles-Juan de Fuca Transmission (or Sea Breeze) Project (OE Docket No PP-299) Dear...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Estrad, Snia (1) Frontera, Carlos (1) Fung, Juan Jos (1) Granier, Sbastien (1) Kao, Chi-Chang (1) Kruse, Andrew C. (1) Krycka, Kathryn L. (1) Liu, Corey W. (1) ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Huang, Jing (2) Yang, Yuting (2) Brunzelle, Joseph S (1) Chang, Howard Y. (1) Chen, Juan ... Yuting ; Protacio, Angeline ; Dou, Yali ; Chang, Howard Y. ; Lei, Ming ; HHMI) Ash2L is a ...

  10. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Although prices in the West were generally lower on the week by a dime or less, a turbine outage on El Paso Natural Gas in the San Juan Basin boosted prices temporarily. El...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Although prices in the West were generally lower on the week by a dime or less, a turbine outage on El Paso Natural Gas in the San Juan Basin boosted prices temporarily. El...

  12. CX-012770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shiprock Access Road Repair Project San Juan County, New Mexico CX(s) Applied: B1.3Date: 41858 Location(s): New MexicoOffices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012357: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shiprock Substation Stormwater Erosion Control Maintenance, San Juan County, New Mexico CX(s) Applied: B1.33 Date: 07/01/2014 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. COLLOQUIUM: Quantum Mechanics and Spacetime Geometry | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 25, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Quantum Mechanics and Spacetime Geometry Professor Juan Maldacena Institute for Advanced Study Quantum...

  15. Microsoft Word - 13035181 13035182 DVP.docx

    Office of Legacy Management (LM)

    ... X San Juan River about 1500' below dist. Channel 1118 X Seep sump (423426) U, SO4, N as ... MIS-A-039 Chromium Gross Alpha Gross Beta Iron Lead Magnesium X X 5 SW-846 6010 LMM-01 ...

  16. Complete genome sequence of Thauera aminoaromatica strain MZ1T...

    Office of Scientific and Technical Information (OSTI)

    ; Sims, David 4 ; Brettin, Thomas S 1 ; Detter, J. Chris 3 ; Han, Cliff 4 ; Chang, Yun-Juan 1 ; Larimer, Frank W 1 ; Land, Miriam L 1 ; Hauser, Loren John 1 ; ...

  17. G-protein-coupled receptor Bokoch, Michael P.; Zou, Yaozhong...

    Office of Scientific and Technical Information (OSTI)

    W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan Jos; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R....

  18. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan Jos; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R....

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    G F Liu Corey W Nygaard Rie Rosenbaum Daniel M Fung Juan Jos Choi Hee Jung Thian Foon Sun Kobilka Tong Sun Puglisi Joseph D Weis William I Pardo Leonardo Prosser R Scott Mueller...

  20. Record of Decision (ROD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Shepherds Flat Wind Energy Project June 10, 2008 EIS-0378: Record of Decision Port Angeles-Juan de Fuca Transmssion Proj June 4, 2008 EIS-0183: Record of Decision Electrical...

  1. Microsoft Word - U0186500.doc

    Office of Legacy Management (LM)

    ... An overview of the site's physical setting and climate, a history of the former milling ... The climate, vegetation types, and topography in the floodplain area along the San Juan ...

  2. Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon...

    Office of Scientific and Technical Information (OSTI)

    www.ntis.gov. Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere...

  3. Property:NEPA PreApplicationMeetingDate | Open Energy Information

    Open Energy Info (EERE)

    2010 + NVN-89274 + 26 October 2010 + S San Juan Basin EC + 5 November 2008 + Sigurd Red Butte No2 + 19 December 2008 + Southline Transmission Line + 4 April 2012 + Sun Valley...

  4. Property:NEPA EA EIS Report | Open Energy Information

    Open Energy Info (EERE)

    On Line Appendicies Volume.pdf +, ... S San Juan Basin EC + SJBEC DraftEIS.pdf + Sigurd Red Butte No2 + USFS SRB ROD 2012.pdf +, BLM SRB ROD 2012.pdf + Southline Transmission Line...

  5. Sandia National Laboratories: Got Solitons? Sandia researcher...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would take advantage of nonlinearity in analog hardware as a physical barrier against hacking. Juan says the concept needs more work, but the idea is that a user punches in a code...

  6. Categorical Exclusion Determinations: New Mexico | Department...

    Office of Environmental Management (EM)

    ... July 1, 2014 CX-012357: Categorical Exclusion Determination Shiprock Substation Stormwater Erosion Control Maintenance, San Juan County, New Mexico CX(s) Applied: B1.33 Date: 07...

  7. Microsoft Word - RIN 11094067 & 11094068 DVP

    Office of Legacy Management (LM)

    ... potential, pH, and temperature were collected in the field. ... Juan River. * It was noted that the river was low and muddy. ...212011 Location: 1109 TREATMENT SYSTEM Sump to the Trench ...

  8. Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Angel Rivera Berrios, a retired police officer living in San Juan is one of them. He and his wife, a retired school teacher, live in a one story, concrete house. They received two ...

  9. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    U.S. Energy Information Administration (EIA) Indexed Site

    AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All ... UPUT (Uinta-Piceance Basin and Utah). Map created June 2005; projection is UTM-13, ...

  10. EIS-0355: Final Environmental Impact Statement | Department of Energy

    Office of Environmental Management (EM)

    Final Environmental Impact Statement EIS-0355: Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and

  11. On Extended-Term Dynamic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation Ricky Concepcion, Ryan Elliott Sandia National Laboratories Albuquerque, NM 87185 {rconcep, rtellio}@sandia.gov Matt Donnelly Montana Tech Butte, MT 59701 mdonnelly@mtech.edu Juan Sanchez-Gasca GE Energy Schenectady, NY 12345 juan1.sanchez@ge.com Abstract-The uncontrolled intermittent availability of renew- able energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative

  12. Sandia researcher turns "problem" of nonlinear capacitors into a solution |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Sandia researcher turns "problem" of nonlinear capacitors into a solution Friday, January 22, 2016 - 2:00am NNSA Blog Sandia National Laboratories' Researcher Juan Elizondo-Decanini holds two compact, high-voltage nonlinear transmission lines. He leads a project on nonlinear behavior in materials - behavior that's usually shunned because it's so unpredictable. (Photo by Randy Montoya) Sandia National Laboratories' Juan Elizondo-Decanini

  13. EIS-0355: DOE Notice of Availability of the Draft Environmental Impact

    Office of Environmental Management (EM)

    Statement | Department of Energy DOE Notice of Availability of the Draft Environmental Impact Statement EIS-0355: DOE Notice of Availability of the Draft Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The purpose of the Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Draft Environmental Impact Statement is to provide information on the environmental impacts of the U.S. Department of Energy's

  14. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  15. The (Scientific) Flight of the Falcon - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The (Scientific) Flight of the Falcon April 22, 2015 Photo of a man with a peregrine falcon with a GPS and a very high frequency radio tracker before a flight. NREL researcher Jason Roadman, right, works with falconer Sam Dollar and Houdini, a peregrine falcon. The falcon is part of a research project to test radar technology being developed by Laufer Wind and NREL that may decrease the number of bird interactions with wind turbines. Photo by Ismael Mendoza, NREL A trained falcon named Houdini

  16. Bahattin Buyuksahin

    Gasoline and Diesel Fuel Update (EIA)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO

  17. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO

  18. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC

  19. BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC

  20. BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blackholes Dear Juan, You asked: according to scientists,inside a black hole's event horizon nothing is able to come out, even light. also it is believed that gravity is produced by gravitrons, just like the strong force is produced by gluons,right?ok here is my question.If the gravitrons act like the gluons,how do they come out of the event horizon to atrract bodies floating outside the black hole's event horizon. or do they atract bodies just by circling at the edge of the event horizon Juan

  2. labnews01-08-16.qxp_la02_02-20-04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Got Solitons? S andia's Juan Elizondo-Decanini turned a long-standing problem into an idea he believes could lead to better and less expensive machines, from cell phones to pres- sure sensors. "This is one of those cases where it appears it's going to result in substantial savings and it's going to generate a whole suite of new gadgets," he says. Juan (2624) leads a project on nonlinear behavior in materials - behavior that's usually shunned as too unpre- dictable. Instead of avoiding

  3. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  4. LM 06-15 | Department of Energy

    Energy Savers [EERE]

    5 LM 06-15 NEPA ID: LM 06-15 Short Title: Obtain subsurface soil samples from five locations on the San Juan River floodplain near Shiprock, New Mexico, Disposal Site. Determination: B3.1 PDF icon LM 06-15 More Documents & Publications CX-013456: Categorical Exclusion Determination LM 17-15 LM 13-14

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... E-mail: jiufulu@163.com ; Hong-Guang, Ge ; Juan, Shi Reaction of 2-(1-methyl-1,2-dihydroim... The final Rsup 1 0.0711 and wRsup 2 0.1903 for reflections withmore I > 2(I). ...

  6. CX-001280: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Conduct Energy and Water Audits of County-Owned Buildings/FacilitiesCX(s) Applied: A9, B5.1Date: 12/04/2009Location(s): San Juan, New MexicoOffice(s): Energy Efficiency and Renewable Energy

  7. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Meza, Juan [LBNL Computational Research Division

    2010-09-01

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  8. Top 100 Oil and Gas Fields of 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information ... NEW ARK EAST TX 1794.6 1981 1 2 SAN JUAN BAS IN G AS A RE A CO & NM 1295.2 1927 2 3 ...

  9. EIS-0477: Notice of Availability of Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    In accordance with the National Environmental Policy Act of 1969, as amended (NEPA), the Bureau of Land Management (BLM) has prepared a Draft Environmental Impact Statement (EIS) for the San Juan Basin Energy Connect Project (Project) and by this notice is announcing the opening of the comment period.

  10. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Protein-folding via divide-and-conquer optimization","Oliva, Ricardo; Crivelli, Silvia; Meza, Juan","2004-07-11T04:00:00Z",882903,,"LBNL--55869","DE-AC02-05CH11231","R&D Project:...

  11. CX-013456: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Obtain Subsurface Soil Samples from Five Locations on the San Juan River Floodplain near Shiprock, New Mexico, Disposal Site. CX(s) Applied: B3.1Date: 03/26/2015 Location(s): New MexicoOffices(s): Legacy Management

  12. VisGreenWorkshop Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Visualization Greenbook" Future Visualization Needs of the DOE Computational Science Community Hosted at NERSC Report Prepared by: Bernd Hamann, UC Davis E. Wes Bethel, LBNL/NERSC Horst Simon, LBNL/NERSC Juan Meza, LBNL/NERSC October 2002 Lawrence Berkeley National Laboratory - 1 - 1 Executive Summary .................................................................................................... 3 2

  13. Geographic information system (G.I.S.) research project at Navajo Community College - Shiprock Campus

    SciTech Connect (OSTI)

    Yazzie, R.; Peter, C.; Aaspas, B.; Isely, D.; Grey, R.

    1995-12-31

    The Navajo and Hopi GIS Project was established to assess the feasibility and impact of implementing GIS techology at Tribal institutions. Los Alamos and Lawrence Livermore National Laboratories funded the Navajo and Hopi Geographic Information System (G.I.S.) Project and assigned a mentor from LANL to help guide the project for three summer months of 1995. The six organizations involved were: LANL, LLNL, Navajo Community College, Navajo Nation Land Office, Northern Arizona University and San Juan College. The Navajo Land Office provided the system software, hardware and training. Northern Arizona University selected two students to work at Hopi Water Resource Department. Navajo Community College provided two students and two faculty members. San Juan College provided one student to work with the N.C.C. group. This made up two project teams which led to two project sites. The project sites are the Water Resource Department on the Hopi reservation and Navajo Community College in Shiprock, New Mexico.

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Whitelam Whitelam Staff Scientist, Theory of Nanostructured Materials swhitelam@lbl.gov 510.495.2769 personal website Biography Steve Whitelam got his Ph.D. in theoretical physics in 2004 from Oxford University, where he used statistical mechanics to study the dynamics of model glass-forming liquids. He was supervised by Juan P. Garrahan and David Sherrington. From 2004 - 2007 he did a postdoc with Phillip Geissler at UC Berkeley, using theory and simulation to study protein complex

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No increase in background, manmade radioactivity for Los Alamos area March 19, 2013 Two aerial flyovers of the Los Alamos area to determine the presence of background and manmade radioactivity found that radioisotopes and their associated exposure rates are consistent with those expected from normal background radiation. "These surveys were well worth the effort," said Juan Griego, acting manager for the Los Alamos Field Office of the NNSA, referring to the aerial flyovers in August

  16. Faces of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our People Faces of Science Contact Us Division Leader David Morris Deputy Division Leader Mark McCleskey Acting Deputy Division Leader George Havrilla Division Office (505) 667-4457 Email C-AAC Becky Chamberlin C-NR Susan Hanson - Video C-IIAC Eva Birnbaum, (SPO-SC) Program Manager for Isotope Production - Video John Gordon - Video C-PCS Juan Duque - Video Harshini Mukundan - Video In the News Research Highlights Faces of Science Our People Resources Periodic Table Publications

  17. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen

    Office of Scientific and Technical Information (OSTI)

    Detection in Human Blood. (Conference) | SciTech Connect Conference: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen Detection in Human Blood. Abstract not provided. Authors: Mai, Junyu ; Piccini, Matthew Ernest ; Hatch, Anson V. ; Abhyankar, Vinay V. ; Olano, Juan ; Willson, Richard Publication Date: 2014-01-01 OSTI Identifier: 1140705

  18. High-resolution crystal structure of human protease-activated receptor 1

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect High-resolution crystal structure of human protease-activated receptor 1 Citation Details In-Document Search Title: High-resolution crystal structure of human protease-activated receptor 1 Authors: Zhang, Cheng ; Srinivasan, Yoga ; Arlow, Daniel H. ; Fung, Juan Jose ; Palmer, Daniel ; Zheng, Yaowu ; Green, Hillary F. ; Pandey, Anjali ; Dror, Ron O. ; Shaw, David E. ; Weis, William I. ; Coughlin, Shaun R. ; Kobilka, Brian K. [1] ; D.E. Shaw) [2] ;

  19. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon

    Office of Scientific and Technical Information (OSTI)

    Emission Statistics of Carbon Nanotubes (Journal Article) | SciTech Connect Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes Citation Details In-Document Search This content will become publicly available on July 1, 2016 Title: Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes Authors: Ma, Xuedan ; Roslyak, Oleskiy ; Duque, Juan G. ; Pang, Xiaoying ; Doorn,

  20. Mathematical and Statistical Opportunities in Cyber Security

    Office of Scientific and Technical Information (OSTI)

    Mathematical and Statistical Opportunities in Cyber Security ∗ Juan Meza † Scott Campbell ‡ David Bailey § Abstract The role of mathematics in a complex system such as the Internet has yet to be deeply explored. In this paper, we summarize some of the important and pressing problems in cyber security from the viewpoint of open science environments. We start by posing the question "What fundamental problems exist within cyber security research that can be helped by advanced

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Juan José" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Juan, Shi" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo,

  3. Final Report - Streamlined and Standardized Permitting and Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes for Rooftop PV in Puerto Rico | Department of Energy Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Final Report - Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Awardee: Puerto Rico Energy Affairs Administration Location: San Juan, Puerto Rico Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The plan to transform the rooftop photovoltaic (PV) market in Puerto

  4. The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST

    Office of Scientific and Technical Information (OSTI)

    complex (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST complex Citation Details In-Document Search Title: The Tetrahymena telomerase p75-p45-p19 subcomplex is a unique CST complex Authors: Wan, Bingbing ; Tang, Ting ; Upton, Heather ; Shuai, Jin ; Zhou, Yuanzhe ; Li, Song ; Chen, Juan ; Brunzelle, Joseph S ; Zeng, Zhixiong ; Collins, Kathleen ; Wu, Jian ; Lei, Ming [1] + Show Author

  5. A Numerical Comparison

    Office of Scientific and Technical Information (OSTI)

    Numerical Comparison of Rule Ensemble Methods and Support Vector Machines Juan Meza ∗ Mark Woods † December 18, 2009 Abstract Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few examples. Statistical learning can be described as "learning from data", with the goal of making a

  6. Algorithms and tools for high-throughput geometry-based analysis of

    Office of Scientific and Technical Information (OSTI)

    crystalline porous materials (Journal Article) | SciTech Connect Journal Article: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Citation Details In-Document Search Title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials Authors: Willems, Thomas F ; Rycroft, Chris ; Kazi, Michael ; Meza, Juan Colin ; Haranczyk, Maciej Publication Date: 2012-01-01 OSTI Identifier: 1065948 DOE Contract Number:

  7. UNITED STATES GOVERNMENT DEPARTMENT OF ENERGY

    Energy Savers [EERE]

    STATES GOVERNMENT DEPARTMENT OF ENERGY memorandum National Nuclear Security Administration Los Alamos Site Ofice Los Alamos, New Mexico UTRQQ= DATE: Nk= NN= Q=OMNN= REPLY TO ATN OF: Juan L. Griego SUBJECT: Submittal of Annual National Environmental Policy Act Planning Summary for Calendar Year 2013 for the Los Alamos Site Ofce TO: Gregory Woods, General Counsel, GC-1, HQ/FORS NNSADOE Reference: 1. DOE Memorandum to Secretarial Offcers and Heads of Field Organizations fom G. Woods, General

  8. Summary: Draft Uranium Leasing Program Programmatic Environmental Impact Statement: DOE/EIS 0472-D, March 2013

    Energy Savers [EERE]

    Summary: Draft ULP PEIS March 2013 COVER SHEET 1 2 3 Lead Agency: U.S. Department of Energy (DOE) 4 5 Cooperating Agencies: The cooperating agencies are U.S. Department of the Interior (DOI), 6 Bureau of Land Management (BLM); U.S. Environmental Protection Agency (EPA); Colorado 7 Department of Transportation (CDOT); Colorado Division of Reclamation, Mining, and Safety 8 (CDRMS); Colorado Parks and Wildlife (CPW); Mesa County Commission; Montrose County 9 Commission; San Juan County Commission;

  9. Newton's Method (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Newton's Method Citation Details In-Document Search Title: Newton's Method Radajaxpanel1,ActiveElement,btnRADUpload; Authors: Meza, Juan C. Publication Date: 2010-03-01 OSTI Identifier: 983171 Report Number(s): LBNL-3311E TRN: US201014%%580 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Technical Report Research Org: Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) Sponsoring Org: Computational Research Division Country of Publication: United States Language:

  10. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) Citation Details In-Document Search Title: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind

  11. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) Citation Details In-Document Search Title: Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series) The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies

  12. Renewable Systems Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Juan J. Torres Manager, Energy Systems Analysis Sandia National Laboratories jjtorre@sandia.gov Renewable Systems Interconnection Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Driving the market: Climate change Cost reductions Market Risk: As PV production approaches ~5% of installed generating capacity, grid impacts could create barriers to future growth. Significant

  13. Relativistic Laser-Matter Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relativistic Laser-Matter Interactions Relativistic Laser-Matter Interactions Enabling the next generation of intense particle accelerators Contact Juan Fernandez (505) 667-6575 Email Short-pulse ion acceleration The Trident facility is a world-class performer in the area of ion acceleration from laser-solid target interactions. Trident has demonstrated over 100 MeV protons at intensities of 8x1020 W/cm2 with efficiencies approaching 5%. These intense relativistic interactions can be diagnosed

  14. Ricardo Oliva

    Office of Scientific and Technical Information (OSTI)

    Protein folding via divide-and-conquer optimization Ricardo Oliva collaborators Silvia Crivelli, Juan Meza Computational Sciences Division Lawrence Berkeley National Laboratory This premise brings the protein-folding problem into the realm of numerical optimization algorithms (e.g. LBFGS) Compute an X * that minimizes E(X), where X is the vector of atom coordinates, and E is a potential energy function (e.g. Amber). This is a challenging problem: * Potential function E is only a model. *

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Carbajo, Juan J" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

  16. Microsoft Word - Sandia-VT M-1 Summary Report_FINAL.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector Summary of Activities Completed Through the Department of Energy Power Systems Fellowship Program Under Inter-Entity Work Order Number M610000767 Laurie Burnham, Robert Q. Hwang and Juan J. Torres Prepared by Sandia National Laboratories A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector 2 A Model for the Nation: Promoting Education and Innovation in Vermont's

  17. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Office of Environmental Management (EM)

    Processes for Rooftop PV in Puerto Rico | Department of Energy Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Final Report - Streamlined and Standardized Permitting and Interconnection Processes for Rooftop PV in Puerto Rico Awardee: Puerto Rico Energy Affairs Administration Location: San Juan, Puerto Rico Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The plan to transform the rooftop photovoltaic (PV) market in Puerto

  18. 1st Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (short tons of ore per day) 2015 1st quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 Undeveloped Undeveloped Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Pinon Ridge

  19. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain

  20. Microsoft Word - S06815_2010 Ann Rpt

    Office of Legacy Management (LM)

    4-1 4.0 Performance Summary This section summarizes the findings of the most recent (April 2009 through March 2010) assessment of the floodplain and terrace groundwater remediation systems at the Shiprock site, marking the end of the seventh year of active groundwater remediation. * Groundwater in the floodplain system is currently being extracted from two wells (wells 1089 and 1104) adjacent to the San Juan River north of the disposal cell, two collection trenches (Trench 1 and Trench 2), and a

  1. Microsoft Word - S07834_2011 Ann Rpt_ag comment revs

    Office of Legacy Management (LM)

    3 4.0 Performance Summary This section summarizes the findings of the most recent (April 2010 through March 2011) assessment of the floodplain and terrace groundwater remediation systems at the Shiprock site, marking the end of the eighth year of active groundwater remediation. * Groundwater in the floodplain system is currently being extracted from two wells (wells 1089 and 1104) adjacent to the San Juan River north of the disposal cell, two collection trenches (Trench 1 and Trench 2), and a

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Cornejo, Juan" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Chen, Juan" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

  4. Agenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda Agenda This page may be updated as needed - please check back. Agenda Click here for pdf Monday, April 29 Workshop Registration: 1700-1900 (Main level, near Tewa Bay 1 Meeting Room) Christy Archuleta Pam Valdez Randy Fraser Dan Beach Tuesday, April 30 Welcome: 0700-0800 (Tewa Bay 1 Meeting Room) Charlie McMillan Juan Griego Introduction Mike Lansing Mike Duvall NMSSUP Phase II Project Overview Mike Lansing Ty Troutman Transition / Readiness Verification: Goals and Objectives Randy Fraser

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  6. Student Intern: Non-Traditional Water Resources | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Student Intern: Non-Traditional Water Resources Share Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses. Browse By - Any - Energy -Energy efficiency --Vehicles

  7. newton2.dvi

    Office of Scientific and Technical Information (OSTI)

    Solving a Class of Nonlinear Eigenvalue Problems by Newton's Method ∗ Weiguo Gao Department of Mathematics Fudan University Shanghai, China wggao@fudan.edu.cn Chao Yang and Juan Meza Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 {cyang,jcmeza}@lbl.gov July 6, 2009 Abstract We examine the possibility of using the standard Newton's method for solving a class of nonlinear eigenvalue problems arising from electronic structure calculation. We show that the

  8. Los Alamos plasma research shows promise for future compact accelerators |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Los Alamos plasma research shows promise for future compact accelerators Tuesday, January 12, 2016 - 12:00am NNSA Blog The team in front of Los Alamos' Trident Laser Target Chamber. Back, from left: Tom Shimada, Sha-Marie Reid, Adam Sefkow, Miguel Santiago, and Chris Hamilton. Front, from left: Russ Mortensen, Chengkun Huang, Sasi Palaniyappan, Juan Fernandez, Cort Gautier and Randy Johnson. A transformative breakthrough in controlling ion beams

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 6, 2010 [Facility News] Call for Abstracts for Aquatic Sciences Meeting in 2011 Bookmark and Share The next biennial American Society for Limnology and Oceanography (ASLO) Aquatic Sciences Meeting will be held in San Juan, Puerto Rico, February 13-18, 2011. The goal of this conference is to bring together aquatic scientists from around the world to meet the challenge of global climate change and explore the wide range of aquatic systems impacted by humans. Abstracts are due October 11,

  10. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect (OSTI)

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  11. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  12. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect (OSTI)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  13. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect (OSTI)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  14. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  15. Texas County "Flips The Switch" On New Energy-Efficient Complex |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Texas County "Flips The Switch" On New Energy-Efficient Complex Texas County "Flips The Switch" On New Energy-Efficient Complex March 7, 2011 - 5:17pm Addthis Fifth graders from Pharr-San Juan-Alamo Independent School District’s North Alamo Elementary celebrate the opening of the new Precinct 2 Multi-Purpose Facility and Administration Complex in Hidalgo County, TX. The students received tours of the facility and heard presentations from vendors

  16. James A. Turi selected Site Manager for Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    James A. Turi selected Site Manager for Jefferson Lab James A. Turi James A. Turi, Jefferson Lab Site Manager James A. Turi selected Site Manager for Jefferson Lab April 16, 2003 NEWS MEDIA CONTACTS: Frank Juan, (865) 576-0885 Linda Ware, (757) 269-7689 The U.S. Department of Energy (DOE) has recently selected James A. Turi as the new Site Manager for the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. In his new position, Turi will be responsible for DOE programs and

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 4 Search for: All records Creators/Authors contains: "Meza, Juan" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 1 of 4 1 » Next » Everything35 Electronic Full Text26 Citations5 Multimedia3 Datasets0 Software1 Filter Results Filter by Subject electronic structure (11) optimization (11) algorithms (10) general and

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 2 of 4 Search for: All records Creators/Authors contains: "Meza, Juan" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Select page number Go to page: 2 of 4 2 » Next » Everything35 Electronic Full Text26 Citations5 Multimedia3 Datasets0 Software1 Filter Results Filter by Subject electronic structure (11) optimization (11) algorithms (10) general and

  19. Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters

    Wind Powering America (EERE)

    % % % % % % % % % % % % % % % % % % % % % 19-JUN-2007 1.1.1 U.S. Department of Energy National Renewable Energy Laboratory Puerto Rico and U.S. Virgin Islands - 50 m Wind Power Mayaguez 20 0 20 40 60 80 100 Kilometers 20 0 20 40 60 Miles Ponce San Juan Charlotte Amalie Cruz Bay PUERTO RICO VIRGIN ISLANDS Wind Power Class 1 2 3 4 5 Resource Potential Poor Marginal Fair Good Excellent Wind Power Density at 50 m W/m 0 - 200 200 - 300 300 - 400 400 - 500 500 - 600 2 Wind Speed at 50 m m/s 0.0 - 5.9

  20. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  1. DOE, Tribes sign a renewal of the Agreement in Principle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE, Tribes sign a renewal of the Agreement in Principle FORT HALL--The Shoshone-Bannock Tribes and the Department of Energy - Idaho Operations Office recently signed a new Agreement in Principle, thus renewing the formal relationship between the two parties for another five-year period. Lee Juan Tyler, Vice Chairman of the Shoshone-Bannock Tribes (left) and Elizabeth Sellers, manager, DOE Idaho Operations Office (Right) Photo courtesy of Lori Edmo-Suppah, Sho-Ban News. The photo shows the

  2. Denise Thronas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thronas Denise Thronas-Balancing family, pueblo life and a career Denise Thronas lives in Ohkay Owingeh Pueblo (formerly San Juan) and during her morning drive to Los Alamos often reflects on how the women in her family have balanced their family and community life with the ability to seek varying levels of education and earn a living. March 23, 2015 Denise Thronas Denise Thronas "The sense of community is at the core of the tribal experience, but while it's important and nourishing to

  3. Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Cheng, Robert K; Meza, Juan

    2011-06-08

    Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Oxygen-vacancy-induced polar behavior in (LaFeO3)2/(SrFeO3) superlattices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Oxygen-vacancy-induced polar behavior in (LaFeO3)2/(SrFeO3) superlattices Citation Details In-Document Search Title: Oxygen-vacancy-induced polar behavior in (LaFeO3)2/(SrFeO3) superlattices Authors: Mishra, Rohan [1] ; Kim, Young-Min [1] ; Salafranca Laforga, Juan I [1] ; Kim, Seong Keun [2] ; Chang, Seohyoung [2] ; Bhattacharya, Anand [2] ; Fong, Dillon [2] ; Pennycook, Stephen J [1] ; Pantelides, Sokrates T [1] ; Borisevich, Albina Y [1] + Show Author

  5. Protein-folding via divide-and-conquer optimization (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Protein-folding via divide-and-conquer optimization Citation Details In-Document Search Title: Protein-folding via divide-and-conquer optimization Authors: Oliva, Ricardo ; Crivelli, Silvia ; Meza, Juan Publication Date: 2004-07-11 OSTI Identifier: 882903 Report Number(s): LBNL--55869 R&D Project: 365969; BnR: YN0100000 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Conference Resource Relation: Conference: SIAM Conference on the Life Sciences, Portland,OR, July 11-14,

  6. Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle

    Office of Scientific and Technical Information (OSTI)

    2.0) (Conference) | SciTech Connect Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0) Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle

  7. Determination of the Surface Structure of CeO2(111) by Low-Energy Electron

    Office of Scientific and Technical Information (OSTI)

    Diffraction. (Journal Article) | SciTech Connect Determination of the Surface Structure of CeO2(111) by Low-Energy Electron Diffraction. Citation Details In-Document Search Title: Determination of the Surface Structure of CeO2(111) by Low-Energy Electron Diffraction. Abstract not provided. Authors: McCarty, Kevin F. ; Siegel, David A ; El Gabaly Marquez, Farid ; Chueh, William ; de la Figuera, Juan ; Blanco-Rey, Maria Publication Date: 2013-06-01 OSTI Identifier: 1113313 Report Number(s):

  8. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocket Science? No, It's Harder Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Rocket Science? No, It's Harder "Sometimes our subsea engineers joke that it is more difficult than rocket science to put a machine on the ocean floor, under extreme pressures and in a highly corrosive environment", says Juan

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Campuzano, Juan Carlos" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything2 Electronic Full Text0 Citations1 Multimedia1 Datasets0 Software0 Filter Results Filter by Subject algorithms (1) analog-to-digital converters (1) antiferromagnetic materials (1) charge carriers (1) charge

  10. Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Protein-folding via divide-and-conquer optimization Citation Details In-Document Search Title: Protein-folding via divide-and-conquer optimization Authors: Oliva, Ricardo ; Crivelli, Silvia ; Meza, Juan Publication Date: 2004-07-11 OSTI Identifier: 882903 Report Number(s): LBNL--55869 R&D Project: 365969; BnR: YN0100000 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Conference Resource Relation: Conference: SIAM Conference on the Life Sciences, Portland,OR, July 11-14,

  11. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Jacob's Room at US ITER In Jacob's Room at US ITER College Student Models, Simulates and Designs a Cooling Subsystem for the ITER Tokamak -Agatha Bardoel Published June 24, 2011 US ITER Project Manger Ned Sauthoff and ITER Director-General Osamu Motojima Jacob Clary is working under the guidance of Dr. Juan Ferrada to develop a cooling loop model. Nineteen-year-olds are not often found modeling and simulating a novel design for a cooling subsystem of the giant international Tokamak reactor

  12. monticello_esd.cdr

    Office of Legacy Management (LM)

    The U.S. Department of Energy (DOE) has prepared an Explanation of Significant Difference (ESD) to provide the rationale for reevaluating the selected remedy for Operable Unit (OU) III, Surface Water and Ground Water, of the Monticello Mill Tailings Site (MMTS). The MMTS, added to the U.S. Environmental Protection Agency National Priorities List in 1989, is located in southeast Utah, in and near the City of Monticello in San Juan County. OU III is one of three operable units at the MMTS and

  13. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    D Photographs of Utah and San Juan County-Listed Noxious Weeds and Undesirable Weeds Photographs taken from: Weeds of the West, Tom D. Whitson, Editor published by The Western Society of Weed Science, Newark, California 9th Edition, 2002 U n c o n t r o l l e d c o p y Annual sunflower, Helianthus annuus Undesirable Bermudagrass, Cynodon dactylon Noxious (on list) U n c o n t r o l l e d c o p y Buffalobur, Solanum rostratum Noxious (found near site) Camelthorn, Alhagi maurorum Noxious (on list)

  14. Microsoft Word - Final Draft Recommendation 2013-03 (FY '15 Priorities)

    Office of Environmental Management (EM)

    May 9, 2013 Mr. Juan Griego Acting Manager Los Alamos Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544 Mr. Pete Maggiore Assistant Manager for Environmental Operations Los Alamos Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544 Dear Messrs. Griego and Maggiore, I am pleased to enclose Recommendation 2013-03, unanimously adopted by the Northern New Mexico Citizens' Advisory Board at its May 8 th meeting in Pojoaque. Please call Lee Bishop, DDFO or Menice Santistevan,

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Zhou, Yuanzhe" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything1 Electronic Full Text0 Citations1 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject Filter by Author Brunzelle, Joseph S (1) Chen, Juan (1) Collins, Kathleen (1) Lei, Ming (1) Li, Song (1) Shuai, Jin (1)

  16. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  18. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  19. Mines in the Four Corners anticipate growth

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-02-15

    Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines are isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.

  20. Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds

    SciTech Connect (OSTI)

    Scott R. Reeves

    2003-03-31

    In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U.S. coalbeds is estimated to be about 90 Gt. Of this, about 38 Gt is in Alaska (even after accounting for high costs associated with this province), 14 Gt is in the Powder River basin, 10 Gt is in the San Juan basin, and 8 Gt is in the Greater Green River basin. By comparison, total CO{sub 2} emissions from power generation plants is currently about 2.2 Gt/year. (2) The ECBM recovery potential associated with this sequestration is estimated to be over 150 Tcf. Of this, 47 Tcf is in Alaska (even after accounting for high costs associated with this province), 20 Tcf is in the Powder River basin, 19 Tcf is in the Greater Green River basin, and 16 Tcf is in the San Juan basin. By comparison, total CBM recoverable resources are currently estimated to be about 170 Tcf. (3) Between 25 and 30 Gt of CO{sub 2} can be sequestered at a profit, and 80-85 Gt can be sequestered at costs of less than $5/ton. These estimates do not include any costs associated with CO{sub 2} capture and transportation, and only represent geologic sequestration. (4) Several Rocky Mountain basins, including the San Juan, Raton, Powder River and Uinta appear to hold the most favorable conditions for sequestration economics. The Gulf Coast and the Central Appalachian basin also appear to hold promise as economic sequestration targets, depending upon gas prices. (5) In general, the 'non-commercial' areas (those areas outside the main play area that are not expected to produce primary CBM commercially) appear more favorable for sequestration economics than the 'commercial' areas. This is because there is more in-place methane to recover in these settings (the 'commercial' areas having already been largely depleted of methane).

  1. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  2. Comparison of high-pressure CO2 sorption isotherms on Eastern and Western US coals

    SciTech Connect (OSTI)

    Romanov, V; Hur, T -B; Fazio, J; Howard, B

    2013-10-01

    Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.

  3. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    SciTech Connect (OSTI)

    Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.; Daughton, William S.; Flippo, Kirk A.; Weber, Thomas; Awe, Thomas J.; Kim, Yong Ho

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  4. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  5. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  6. Corrective Action Investigation Plan for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    CAU 568 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 568, which comprises the following corrective action sites (CASs): • 03-23-17, S-3I Contamination Area • 03-23-19, T-3U Contamination Area • 03-23-20, Otero Contamination Area • 03-23-22, Platypus Contamination Area • 03-23-23, San Juan Contamination Area • 03-23-26, Shrew/Wolverine Contamination Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report.

  7. Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I

    SciTech Connect (OSTI)

    Strongin, O.

    1980-09-30

    As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

  8. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  9. Origins of relief along contacts between eolian sandstones and overlying marine strata

    SciTech Connect (OSTI)

    Eschner, T.B.; Kocurek, G.

    1988-08-01

    Origins of large-scale relief along eolian-marine unit contacts, which form significant stratigraphic traps for hydrocarbons, can be recognized as inherited, reworked, and/or erosional. The Permian Rotliegende-Weissliegende Sandstone and Yellow Sands of Europe may best exemplify inherited relief in that dunes are preserved largely intact. Reworked relief, which shows significant destruction of original dune topography but with remnants of the bedforms preserved, is shown by relict Holocene dunes of coastal Australia, the Jurassic Entrada Sandstone of the San Juan basin, and the Pennsylvanian-Permian Minnelusa Formation of Wyoming. Erosional relief results from post-eolian processes and is exemplified by the Jurassic Entrada Sandstone of northeastern Utah. 11 figs., 1 tab.

  10. How an independent put inexpensive 3-D seismic to good use in New Mexico

    SciTech Connect (OSTI)

    Nester, D.C. (Landmark/Concurrent Solutions, Houston, TX (US)); Emdsley, D. (Merrion Oil and Gas Corp., Farmington, NM (US))

    1992-03-23

    This paper reports that as major oil companies focus their attention offshore and overseas, independents in the U.S. continue to find and develop onshore reserves using their traditional strengths. Those strengths have been low overhead, nimble decisionmaking, and hard-won experience within a particular geologic region. Today many of these companies are emerging as even tougher competitors by applying 3-D seismic along with the multidisciplinary know-how and the interactive workstations needed to interpret it. The recent experience of Merrion Oil and Gas Corp., Farmington, N.M., offers a case in point. When oil prices collapsed in 1986, Merrion saw the chance to venture into exploration at low cost. Ever since, the company has devoted its resources to exploring for oil in the San Juan basin's Entrada sand dunes, a complex stratigraphic play found at 6,000 ft.

  11. Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration

    SciTech Connect (OSTI)

    Lepinski, James

    2013-09-30

    A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and the potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.

  12. Saga of coal bed methane, Ignacio Blanco gas field, Colorado

    SciTech Connect (OSTI)

    Boyce, B.C.; Harr, C.L.; Burch, L.C. )

    1989-09-01

    Prior to the 1977 discovery of the Cedar Hill Basal Fruitland pool (the first officially designated coal-bed methane field in the western US) 28.5 bcf of gas had been produced from Fruitland Formation coal seams in the Ignacio Blanco Fruitland-Pictured Cliffs field, Northern San Juan basin, Colorado. The discovery well for the field, Southern Ute D-1, was drilled and completed in 1951 on the Ignacio anticline, La Plata County, Colorado. Initial completion was attempted in the Pictured Cliffs Sandstone. The well was plugged back after making water from the Pictured Cliffs and was completed in the lower coal-bearing section of the Fruitland Formation. The well produced 487,333 mcf of gas in nine years and was abandoned in 1959 due to water encroachment. Additionally, 52 similarly completed Ignacio anticline Fruitland wells were abandoned by the early 1970s due to the nemesis of If it's starting to kick water, you're through. Under today's coal-bed methane technology and economics, Amoco has twinned 12 of the abandoned wells, drilled five additional wells, and is successfully dewatering and producing adsorbed methane from previously depleted coal sections of the Ignacio structure. Field-wide drilling activity in 1988 exceeded all previous annual levels, with coal-seam degasification projects leading the resurgence. Drilling and completion forecasts for 1989 surpass 1988 levels by 50%.

  13. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect (OSTI)

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  14. Ecology of Pacific Northwest coastal sand dunes: a community profile

    SciTech Connect (OSTI)

    Wiedemann, A.M.

    1984-03-01

    Sand dunes occur in 33 localities along the 950 km of North American Pacific coast between the Straits of Juan de Fuca (49/sup 0/N) and Cape Mendocino (40/sup 0/). The dune landscape is a mosaic of dune forms: transverse ridge, oblique dune, retention ridge, foredune, parabola dune, sand hummock, blowout, sand plain, deflation plain, dune ridge, swale, remnant forest, and ponds and lakes. These forms are the basic morphological units making up the four dune systems: parallel ridge, parabola dune, transverse ridge, and bay dune. Vegetation is well-developed on stabilized dunes. Of the 21 plant communities identified, nine are herbaceous, five are shrub, and seven are forest. A wide variety of vertebrate animals occur in seven distinct habitats: open dunes, grassland and meadow, shrub thicket, forest, marsh, riparian, and lakes and ponds. Urban development, increased rate of stabilization due to the introduction of European beachgrass (Ammophila arenaria (L.) Link), and massive disturbance resulting from heavy off-road vehicle traffic are the greatest threats to the long-term survival and stability of a number of sand dune habitats. Two animals and three plants dependent on dune habitats are listed as rare, threatened, or endangered. 93 references, 52 figures, 13 tables.

  15. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  16. Carbon Sequestration Atlas and Interactive Maps from the Southwest Regional Partnership on Carbon Sequestration

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McPherson, Brian

    In November of 2002, DOE announced a global climate change initiative involving joint government-industry partnerships working together to find sensible, low cost solutions for reducing GHG emissions. As a result, seven regional partnerships were formed; the Southwest Regional Partnership on Carbon Sequestration (SWP) is one of those. These groups are utilizing their expertise to assess sequestration technologies to capture carbon emissions, identify and evaluate appropriate storage locations, and engage a variety of stakeholders in order to increase awareness of carbon sequestration. Stakeholders in this project are made up of private industry, NGOs, the general public, and government entities. There are a total of 44 current organizations represented in the partnership including electric utilities, oil and gas companies, state governments, universities, NGOs, and tribal nations. The SWP is coordinated by New Mexico Tech and encompasses New Mexico, Arizona, Colorado, Oklahoma, Utah, and portions of Kansas, Nevada, Texas, and Wyoming. Field test sites for the region are located in New Mexico (San Juan Basin), Utah (Paradox Basin), and Texas (Permian Basin).[Taken from the SWP C02 Sequestration Atlas] The SWP makes available at this website their CO2 Sequestration Atlas and an interactive data map.

  17. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts

    SciTech Connect (OSTI)

    Mason, Olivia U.; Di Meo-Savoie, Carol A.; Van Nostrand, Joy D.; Zhou, Jizhong; Fisk, Martin R.; Giovannoni, Stephen J.

    2008-09-30

    We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 oN, from the rift axis of the Juan de Fuca Ridge, and from neighboring seamounts. Cluster analysis of 16S rDNA Terminal Restriction Fragment Polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure. Cloning and sequencing of bacterial and archaeal 16S rRNA genes revealed twelve different phyla and sub-phyla associated with basalts. These include the Gemmatimonadetes, Nitrospirae, the candidate phylum SBR1093 in the c, andin the Archaea Marine Benthic Group B, none of which have been previously reported in basalts. We delineated novel ocean crust clades in the gamma-Proteobacteria, Planctomycetes, and Actinobacteria that are composed entirely of basalt associated microflora, and may represent basalt ecotypes. Finally, microarray analysis of functional genes in basalt revealed that genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation are present, suggesting that basalts harbor previously unrecognized metabolic diversity. These novel processes could exert a profound influence on ocean chemistry.

  18. Production of energy and high-value chemicals from municipal solid waste

    SciTech Connect (OSTI)

    Colucci-Raeos, J.A.; Saliceti-Piazza, L.; Herncndez, A.

    1996-12-31

    Landfills have been used for decades in Puerto Rico as the only alternative for the disposal of municipal solid waste (MSW). In the present, 7,300 metric tons (8,000 tons) of MSW are generated on a daily basis, of which about 43% are generated in the San Juan Metropolitan Area. Garbage dumps in the Metropolitan Area have an estimated useful life of two years from now. Furthermore, Puerto Rico`s average daily per capita generation exceeds that of US and is almost as twice as that of Europe. A novel alternative for the disposal of MSW needs to be implemented. The University of Puerto Rico (Department of Chemical Engineering), in a collaborative effort with the Sandia National Laboratory, the National Renewable Energy Laboratory, Puerto Rico`s Energy Affairs Administration, and the Institute of Chemical Engineers of Puerto Rico, have conceptualized a research program that would address the utilization of MSW and other agricultural residues for the generation of energy and/or high-value chemical products. The concept, {open_quotes}biorefinery{close_quotes} would consist of the collection of MSW and other agricultural wastes, separation of materials for recycling (glass, ceramics, metals), and use of gasification and/or hydrolysis of the screened material to produce energy and/or chemicals (such as alcohols and oxyaromatics).

  19. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  20. The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada

    SciTech Connect (OSTI)

    Bowman, D.L.

    1984-02-01

    During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms of size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.

  1. Gasbuggy Site Assessment and Risk Evaluation

    SciTech Connect (OSTI)

    2011-03-01

    This report describes the geologic and hydrologic conditions and evaluates potential health risks to workers in the natural gas industry in the vicinity of the Gasbuggy, New Mexico, site, where the U.S. Atomic Energy Commission detonated an underground nuclear device in 1967. The 29-kiloton detonation took place 4,240 feet below ground surface and was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation in the San Juan Basin, Rio Arriba County, New Mexico, on land administered by Carson National Forest. A site-specific conceptual model was developed based on current understanding of the hydrologic and geologic environment. This conceptual model was used for establishing plausible contaminant exposure scenarios, which were then evaluated for human health risk potential. The most mobile and, therefore, the most probable contaminant that could result in human exposure is tritium. Natural gas production wells were identified as having the greatest potential for bringing detonation-derived contaminants (tritium) to the ground surface in the form of tritiated produced water. Three exposure scenarios addressing potential contamination from gas wells were considered in the risk evaluation: a gas well worker during gas-well-drilling operations, a gas well worker performing routine maintenance, and a residential exposure. The residential exposure scenario was evaluated only for comparison; permanent residences on national forest lands at the Gasbuggy site are prohibited

  2. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  3. Displaying and evaluating engineering properties and natural hazards using geomorphic mapping techniques: Telluride, Colorado

    SciTech Connect (OSTI)

    Gunawan, I.; Giardino, J.R.; Tchakerian, V.P. . Geography Dept.)

    1992-01-01

    Telluride, located in the San Juan mountains of southwestern Colorado, is situated in a glacially carved, fluvially modified alpine valley. Today this chic setting is experiencing rapid urban development resulting from flourishing tourist traffic during both the winter ski season and the summer vacation period. A new development, Mountain Village, is being built on an extensive and complex landslide that has only received superficial scrutiny. Recent fast growth is placing considerable pressure on pristine, undeveloped land. This timely quandary incorporates the interaction between prospective development, geomorphic processes, engineering factors, economic feasibility, and landuse adjudication. In an attempt to respond to these issues the State of Colorado enacted Senate Bill 35 (1972) and House Bills 1034 (1974) and 1041 (1974), all mandating assessment of the natural hazards of an area, preparatory to development. The key to evaluating the natural hazards is to comprehend the geomorphic processes. The area is highly-faulted with associated mineralization. Whereas the upper slopes are composed of massive rhyodacitic-tuff breccias and flows, the valley is sculpted from shales, sandstones, and conglomerates. Several periods of glaciation occurred in the area. Glacial till, talus slopes, avalanche chutes and cones, rock glaciers, alluvium, and landslides have been identified in the field and mapped on aerial photographs. Many of the slopes in the area are active. The authors have constructed a geomorphic map (1:12,500) that shows geology, landforms, geomorphic processes and engineering properties. This map can be used by regulatory agencies in identifying areas of natural hazards potentially sensitive to development.

  4. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.

    2009-10-01

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  5. Hot spot-ridge crest convergence in the northeast Pacific

    SciTech Connect (OSTI)

    Karsten, J.L.; Delaney, J.R. )

    1989-01-10

    Evolution of the Juan de Fuca Ridge during the past 7 m.y. has been reconstructed taking into account both the propagating rift history and migration of the spreading center in the 'absolute' (fixed hot spot) reference frame. Northwestward migration of the spreading center (at a rate of 30 km/m.y.) has resulted in progressive encroachment of the ridge axis on the Cobb Hot Spot and westward jumping of the central third of the ridge axis more recently than 0.5 Ma. Seamounts in the Cobb-Eickelberg chain are predicted to display systematic variations in morphology and petrology, and a reduction in the age contrast between the edifice and underlying crust, as a result of the ridge axis approach. Relative seamount volumes also indicate that magmatic output of the hot spot varied during this interval, with a reduction in activity between 2.5 and 4.5 Ma, compared with relatively more robust activity before and after this period. Spatial relationships determined in this reconstruction allow hypotheses relating hot spot activity and rift propagation to be evaluated. In most cases, rift propagation has been directed away from the hot spot during the time period considered. Individual propagators show some reduction in propagation rate as separation between the propagating rift tip and hot spot increases, but cross comparison of multiple propagators does not uniformly display the same relationship. No obvious correlation exists between propagation rate and increasing proximity of the hot spot to the ridge axis or increasing hot spot output. Taken together, these observations do not offer compelling support for the concept of hot spot driven rift propagation. However, short-term reversals in propagation direction at the Cobb Offset coincide with activity of the Heckle melting anomaly, suggesting that local propagation effects may be related to excess magma supply at the ridge axis.

  6. Methane recovery from coalbeds project. Monthly progress report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Progress made on the Methane Recovery from Coalbeds Project (MRCP) is reported in the Raton Mesa Coal Region. The Uinta and Warrior basin reports have been reviewed and will be published and delivered in early December. A cooperative core test with R and P Coal Company on a well in Indiana County, Pennsylvania, was negotiated. In a cooperative effort with the USGS Coal Branch on three wells in the Wind River Basin, desorption of coal samples showed little or no gas. Completed field testing at the Dugan Petroleum well in the San Juan Basin. Coal samples showed minimal gas. Initial desorption of coal samples suggests that at least a moderate amount of gas was obtained from the Coors well test in the Piceance Basin. Field work for the Piceance Basin Detailed Site Investigation was completed. In the Occidental Research Corporation (ORC) project, a higher capacity vacuum pump to increase CH/sub 4/ venting operations has been installed. Drilling of Oxy No. 12 experienced delays caused by mine gas-offs and was eventually terminated at 460 ft after an attempt to drill through a roll which produced a severe dog leg and severely damaged the drill pipe. ORC moved the second drill rig and equipment to a new location in the same panel as Oxy No. 12 and set the stand pipe for Oxy No. 13. Drill rig No. 1 has been moved east of the longwall mining area in anticipation of drilling cross-panel on 500 foot intervals. Waynesburg College project, Equitable Gas Company has received the contract from Waynesburg College and has applied to the Pennsylvania Public Utilities Commission for a new tariff rate. Waynesburg College has identified a contractor to make the piping connections to the gas line after Equitable establishes their meter and valve requirements.

  7. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.; Virden, Daniel J.; Myers, Joshua R.; Maxwell, Adam R.

    2012-09-01

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objects recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.

  8. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect (OSTI)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  9. Applications of permeable barrier technology to ground water contamination at the Shiprock, NM, UMTRA site

    SciTech Connect (OSTI)

    Thomson, B.M.; Henry, E.J.; Thombre, M.S.

    1996-12-31

    The Shiprock uranium mill tailings pile in far northwestern New Mexico consists of approximately 1.5 million tons of uranium mill tailings from an acid leach mill which operated from 1954 to 1968. Located on land owned by the Navajo Nation, it was one of the first tailings piles stabilized under the Uranium Mill Tailings Remedial Action (UMTRA) project. Stabilization activities were completed in 1986 and consisted principally of consolidating the tailings, contouring the pile to achieve good drainage, and covering the pile with a multi-layer cap to control infiltration of water, radon emanation, and surface erosion. No ground water protection or remediation measures were implemented other than limiting infiltration of water through the pile, although a significant ground water contamination plume exists in the flood plain adjacent to the San Juan River. The major contaminants at the Shiprock site include high concentrations of sulfate, nitrate, arsenic, and uranium. One alternative for remediation may be the use of a permeable barrier in the flood plain aquifer. As proposed for the Shiprock site, the permeable barrier would be a trench constructed in the flood plain that would be backfilled with a media that is permeable to ground water, but would intercept or degrade the pollutants. Work to date has focused on use of a mixed microbial population of sulfate and nitrate reducing organisms. These organisms would produce strongly reducing conditions which would result in precipitation of the metal contaminants (i.e., Se(IV) and U(IV)) in the barrier. One of the first considerations in designing a permeable barrier is developing an understanding of ground water flow at the site. Accordingly, a steady state numerical model of the ground water flow at the site was developed using the MODFLOW code.

  10. FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY

    SciTech Connect (OSTI)

    Raymond L. Mazza

    2004-11-30

    These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

  11. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  12. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect (OSTI)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  13. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    SciTech Connect (OSTI)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.; Munoz-Ramos, Karina

    2016-01-01

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.

  14. UMTRA Project Site Observational Work Plan, Mexican Hat, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Surface cleanup activities at the Mexican Hat UMTRA processing site are nearing completion. Ground Water contamination at the Mexican Hat site is a result of uranium milling operations. The extent of residual process water has been identified, and it is limited to the uppermost aquifer in the vicinity of the site. Deeper aquifers are not affected because of an upward hydraulic gradient and the presence of a confining unit (the deeper aquifers are protected by hydrogeologic isolation). The uppermost unit is returning to its pre-milling, mainly unsaturated state. The unit that contains the contaminated water is not a ground water resource because it qualifies as Class III (limited use) based on limited yield. Ground water in the uppermost unit is currently not used and is not anticipated to be used as a ground water resource. The nearby San Juan River and a converted oil exploration well provide all of the water needs for the area. There are no current threats to human health or livestock; and, because the zone of contamination does not represent a ground water resource, none are anticipated in the future. There are, however, seeps where contaminated water is exposed at land surface. The seeps create potential exposure pathways for plants and wildlife. It is not known at this time if there is a risk to the environment. Additional investigations are needed and are described in this document to confirm the presence or absence of potential environmental risks. Additional hydrogeologic investigations are not required. The proposed ground water compliance strategy for the site is no remediation, because the ground water in the uppermost aquifer (which is also the zone of contamination) qualifies for supplemental standards based on Class III, limited yield, and because there are no threats to human health. Domestic and agricultural water is pumped from a deeper aquifer that is isolated from the contaminated zone.

  15. Decision Support for Water Planning: the ZeroNet Water-Energy Initiative.

    SciTech Connect (OSTI)

    Rich, P. M.; Weintraub, Laura H. Z.; Ewers, Mary E.; Riggs, T. L.; Wilson, C. J.

    2005-01-01

    Rapid population growth and severe drought are impacting water availability for all sectors (agriculture, energy, municipal, industry...), particularly in arid regions. New generation decision support tools, incorporating recent advances in informatics and geographic information systems (GIS), are essential for responsible water planning at the basin scale. The ZeroNet water-energy initiative is developing a decision support system (DSS) for the San Juan River Basin, with a focus on drought planning and economic analysis. The ZeroNet DSS provides a computing environment (cyberinfrastructure) with three major components: Watershed Tools, a Quick Scenario Tool, and a Knowledge Base. The Watershed Tools, based in the Watershed Analysis Risk Management Framework (WARMF), provides capabilities (1) to model surface flows, both the natural and controlled, as well as water withdrawals, via an engineering module, and (2) to analyze and visualize results via a stakeholder module. A new ZeroNet module for WARMF enables iterative modeling and production of 'what if' scenario libraries to examine consequences of changes in climate, landuse, and water allocation. The Quick Scenario Tool uses system dynamics modeling for rapid analysis and visualization for a variety of uses, including drought planning, economic analysis, evaluation of management alternatives, and risk assessment. The Knowledge Base serves simultaneously as the 'faithful scribe' to organize and archive data in easily accessible digital libraries, and as the 'universal translator' to share data from diverse sources and for diverse uses. All of the decision tools depend upon GIS capabilities for data/model integration, map-based analysis, and advanced visualization. The ZeroNet DSS offers stakeholders an effective means to address complex water problems.

  16. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  17. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  18. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montgomery-Brown, E. K.; Syracuse, E. M.

    2015-09-17

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluidsmore » and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.« less

  19. Tremor–genic slow slip regions may be deeper and warmer and may slip slower than non–tremor–genic regions

    SciTech Connect (OSTI)

    Montgomery-Brown, E. K.; Syracuse, E. M.

    2015-09-17

    The slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kilauea Volcano, Hawaii, the Boso Peninsula, Japan, {near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor including: slip velocity, pressure, temperature, fluids and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kilauea Volcano (~10⁻⁶ m/s) and Boso Peninsula (~10⁻⁷ m/s) are among the fastest SSEs worldwide. Kilauea Volcano, the Boso Peninsula and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. {Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kilauea or Boso. We suggest that the relatively faster slip velocities at Kilauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  20. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  1. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite Volume Coastal Ocean Model (FVCOM) framework and the Integrated Compartment Model (CE QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5?20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan De Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.

  2. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect (OSTI)

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  3. Sedimentology and depositional environments of Lower Permian Yeso Formation in northwestern New Mexico

    SciTech Connect (OSTI)

    Stanesco, J.D. (Geological Survey, Denver, CO (USA))

    1989-09-01

    The northwesternmost exposures of the Lower Permian (Leonardian) Yeso Formation are in uplifts that bound the southern half of the San Juan basin in northwestern New Mexico. The Yeso comprises the Meseta Blanca member and overlying San Ysidro Member. The latter is called the Los Vallos Member in the southern part of the study area. The Meseta Blanca consists of cross-stratified and horizontal to wavy-bedded sandstones of eolian-dune, sand-sheet, and sabkha origin. These facies also occur in the San Ysidro (Los Vallos), which additionally includes mud-draped, ripple-laminated sandstones of supratidal mud-flat origin, gypsiferous sandstones and siltstones of sabkha origin, and evaporite-carbonate rocks of intertidal to marine-shelf origin. Paleocurrent analysis indicates that eolian dunes in the Meseta Blanca migrated southward in the northern part of the study area. These dunes may have been extensions of the DeChelly Sandstone erg to the northwest. Dunes in the southern part of the study area shifted under variable north-south winds. This variability may reflect a seasonal onshore/offshore wind regime. Lateral facies changes in the San Ysidro (Los Vallos) indicate a juxtaposition of eolian-dune and sand-dominated sabkha environments in the northern part of the study area, with coastal-sabkha, tidal, and shelf environments in the southern part. Eolian dunes prograded southward over coastal sabkhas at least 12 times during deposition of the Yeso. A northward shift of all facies during middle San Ysidro deposition suggests a marine transgression from the south.

  4. PROPER-MOTION STUDY OF THE MAGELLANIC CLOUDS USING SPM MATERIAL

    SciTech Connect (OSTI)

    Vieira, Katherine; Girard, Terrence M.; Van Altena, William F.; Casetti-Dinescu, Dana I.; Korchagin, Vladimir I.; Herrera, David, E-mail: kvieira@cida.v, E-mail: terry.girard@yale.ed, E-mail: william.vanaltena@yale.ed [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2010-12-15

    Absolute proper motions are determined for stars and galaxies to V = 17.5 over a 450 deg{sup 2} area that encloses both Magellanic Clouds. The proper motions are based on photographic and CCD observations of the Yale/San Juan Southern Proper Motion program, which span a baseline of 40 years. Multiple, local relative proper-motion measures are combined in an overlap solution using photometrically selected Galactic disk stars to define a global relative system that is then transformed to absolute using external galaxies and Hipparcos stars to tie into the ICRS. The resulting catalog of 1.4 million objects is used to derive the mean absolute proper motions of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC); ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub LMC} = (1.89, + 0.39) {+-} (0.27, 0.27) masyr{sup -1} and ({mu}{sub {alpha}}cos {delta}, {mu}{sub {delta}}){sub SMC} = (0.98, - 1.01) {+-} (0.30, 0.29) masyr{sup -1}. These mean motions are based on best-measured samples of 3822 LMC stars and 964 SMC stars. A dominant portion (0.25 mas yr{sup -1}) of the formal errors is due to the estimated uncertainty in the inertial system of the Hipparcos Catalog stars used to anchor the bright end of our proper motion measures. A more precise determination can be made for the proper motion of the SMC relative to the LMC; ({mu}{sub {alpha}cos {delta}}, {mu}{sub {delta}}){sub SMC-LMC} = (-0.91, - 1.49) {+-} (0.16, 0.15) masyr{sup -1}. This differential value is combined with measurements of the proper motion of the LMC taken from the literature to produce new absolute proper-motion determinations for the SMC, as well as an estimate of the total velocity difference of the two clouds to within {+-}54 km s{sup -1}. The absolute proper-motion results are consistent with the Clouds' orbits being marginally bound to the Milky Way, albeit on an elongated orbit. The inferred relative velocity between the Clouds places them near their binding energy limit and, thus, no definitive conclusion can be made as to whether or not the Clouds are bound to one another.

  5. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    SciTech Connect (OSTI)

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  6. Gasbuggy Site Assessment and Risk Evaluation

    SciTech Connect (OSTI)

    2011-03-01

    The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

  7. Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    SciTech Connect (OSTI)

    Brandenberger, Jill M.; Louchouarn, Patrick; Kuo, Li-Jung; Crecelius, Eric A.; Cullinan, Valerie I.; Gill, Gary A.; Garland, Charity R.; Williamson, J. B.; Dhammapala, R.

    2010-07-05

    The results of the Phase 1 Toxics Loading study suggested that runoff from the land surface and atmospheric deposition directly to marine waters have resulted in considerable loads of contaminants to Puget Sound (Hart Crowser et al. 2007). The limited data available for atmospheric deposition fluxes throughout Puget Sound was recognized as a significant data gap. Therefore, this study provided more recent or first reported atmospheric deposition fluxes of PAHs, PBDEs, and select trace elements for Puget Sound. Samples representing bulk atmospheric deposition were collected during 2008 and 2009 at seven stations around Puget Sound spanning from Padilla Bay south to Nisqually River including Hood Canal and the Straits of Juan de Fuca. Revised annual loading estimates for atmospheric deposition to the waters of Puget Sound were calculated for each of the toxics and demonstrated an overall decrease in the atmospheric loading estimates except for polybrominated diphenyl ethers (PBDEs) and total mercury (THg). The median atmospheric deposition flux of total PBDE (7.0 ng/m2/d) was higher than that of the Hart Crowser (2007) Phase 1 estimate (2.0 ng/m2/d). The THg was not significantly different from the original estimates. The median atmospheric deposition flux for pyrogenic PAHs (34.2 ng/m2/d; without TCB) shows a relatively narrow range across all stations (interquartile range: 21.2- 61.1 ng/m2/d) and shows no influence of season. The highest median fluxes for all parameters were measured at the industrial location in Tacoma and the lowest were recorded at the rural sites in Hood Canal and Sequim Bay. Finally, a semi-quantitative apportionment study permitted a first-order characterization of source inputs to the atmosphere of the Puget Sound. Both biomarker ratios and a principal component analysis confirmed regional data from the Puget Sound and Straits of Georgia region and pointed to the predominance of biomass and fossil fuel (mostly liquid petroleum products such as gasoline and/or diesel) combustion as source inputs of combustion by-products to the atmosphere of the region and subsequently to the waters of Puget Sound.

  8. Site Characterization Work Plan for Gasbuggy, New Mexico

    SciTech Connect (OSTI)

    DOE/NV

    2000-12-14

    Project Gasbuggy was the first of three joint government-industry experiments conducted to test the effectiveness of nuclear explosives to fracture deeply buried, low-permeability natural gas reservoirs to stimulate production. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the Project Gasbuggy Site. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate if further remedial action is required to achieve permanent closure of the site that is both protective of human health and the environment. The Gasbuggy Site is located approximately 55 air miles east of Farmington, New Mexico, in Rio Arriba County within the Carson National Forest in the northeast portion of the San Juan Basin. Historically, Project Gasbuggy consisted of the joint government-industry detonation of a nuclear device on December 10, 1967, followed by reentry drilling and gas production testing and project evaluation activities in post-detonation operations from 1967 to 1976. Based on historical documentation, no chemical release sites other than the mud pits were identified; additionally, there was no material buried at the Gasbuggy Site other than drilling fluids and construction debris. Although previous characterization and restoration activities including sensitive species surveys, cultural resources surveys, surface geophysical surveys, and limited soil sampling and analysis were performed in 1978 and again in 2000, no formal closure of the site was achieved. Also, these efforts did not adequately address the site's potential for chemical contamination at the surface/shallow subsurface ground levels or the subsurface hazards for potential migration outside of the current site subsurface intrusion restrictions. Additional investigation activities will focus on the surface/shallow subsurface sampling and modeling. Suspected potential contaminants of concern for investigative analysis at the Gasbuggy Site include total petroleum hydrocarbons (diesel- and gasoline-range), volatile organic compounds, semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and radionuclides. The results of this characterization and risk assessment will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-site disposal of contaminated waste which will be presented in a subsequent corrective action decision document.

  9. Site Characterization Work Plan for Gasbuggy, New Mexico (Rev.1, Jan. 2002)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-01-25

    Project Gasbuggy was the first of three joint government-industry experiments conducted to test the effectiveness of nuclear explosives to fracture deeply buried, low-permeability natural gas reservoirs to stimulate production. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the Project Gasbuggy Site. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate if further remedial action is required to achieve permanent closure of the site that is both protective of human health and the environment. The Gasbuggy Site is located approximately 55 air miles east of Farmington, New Mexico, in Rio Arriba County within the Carson National Forest in the northeast portion of the San Juan Basin. Historically, Project Gasbuggy consisted of the joint government-industry detonation of a nuclear device on December 10, 1967, followed by reentry drilling and gas production testing and project evaluation activities in post-detonation operations from 1967 to 1976. Based on historical documentation, no chemical release sites other than the mud pits were identified; additionally, there was no material buried at the Gasbuggy Site other than drilling fluids and construction debris. Although previous characterization and restoration activities including sensitive species surveys, cultural resources surveys, surface geophysical surveys, and limited soil sampling and analysis were performed in 1978 and again in 2000, no formal closure of the site was achieved. Also, these efforts did not adequately address the site's potential for chemical contamination at the surface/shallow subsurface ground levels or the subsurface hazards for potential migration outside of the current site subsurface intrusion restrictions. Additional investigation activities will focus on the surface/shallow subsurface sampling and deep subsurface modeling. Suspected potential contaminants of concern for investigative analysis at the Gasbuggy Site include total petroleum hydrocarbons (diesel- and gasoline-range), volatile organic compounds, semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and radionuclides. The results of this characterization and risk assessment will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-site disposal of contaminated waste which will be presented in a subsequent corrective action decision document.

  10. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  11. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1)#3; Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of Puerto Rico-Rio Piedras (Carlos Malca). The students H. Moreno and C. Malca has been directly supervised by Dr. Mendez and S. Santiesteban supervised by Dr. Ramirez. During the last 13 years, our group have graduated 23 MS students on experimental High Energy Physics data analysis and applied hardware techniques. Most of the students have been supported by DOE grants, included this grant. Since 2001, Dr. Mendez have directly supervised eleven students, Dr. Ramirez three students and the former PI (Dr. Lopez) nine students. These theses work are fully documented in the group web page (http://charma.uprm.edu). The High Energy Physics group at Mayaguez is small and presently consists of three Physics faculty members, the Senior Investigators Dr. Hector Mendez (Professor) and Dr. Juan Eduardo Ramirez (Professor), and Dr. Sudhir Malik who was just hired in July 2014. Dr. Ramirez is in charge of the UPRM Tier-3 computing and will be building the network bandwidth infrastructure for the campus, while Dr. Mendez will continues his effort in finishing the heavy quark physics data analysis and moving to work on SUSY analysis for the 2015 data. Our last grant application in 2012 was awarded only for 2013-2014. As a result our postdoc position was lost last month of March. Since then, we have hired Dr. Malik as a new faculty in order to reinforce the group and to continue our efforts with the CMS experiment. Our plan is to hire another junior faculty in the next two years to strengthen the HEP group even further. Dr. Mendez continues with QuarkNet activities involving an ever larger group of high school physics teachers from all around Puerto Rico.

  12. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  13. NW-MILO Acoustic Data Collection

    SciTech Connect (OSTI)

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNLs Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the signatures of small vessels. The sampling rate of 8 kHz and low pass filtering to 2 kHz results in an alias-free signal in the frequency band that is appropriate for small vessels. Calibration was performed using a Lubell underwater speaker so that the raw data signal levels can be converted to sound pressure. Background noise is present due to a nearby pump and as a result of tidal currents. More study is needed to fully characterize the noise, but it does not pose an obstacle to using the acoustic data for the purposes of vessel detection and signature analysis. The detection range for a small vessel was estimated using the calibrated voltage response of the system and a cylindrical spreading model for transmission loss. The sound pressure of a typical vessel with an outboard motor was found to be around 140 dB mPa, and could theoretically be detected from 10 km away. In practical terms, a small vessel could reliably be detected from 3 - 5 km away. The data is archived in netCDF files, a standard scientific file format that is "self describing". This means that each data file contains the metadata - timestamps, units, origin, etc. - needed to make the data meaningful and portable. Other file formats, such as XML, are also supported. A visualization tool has been developed to view the acoustic data in the form of spectrograms, along with the coincident radar track data and camera images.

  14. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from these analyses indicates late dolomitization, saddle dolomite, and dolomite cement precipitation, as well as sulfides and brecciation, may have developed from hydrothermal events that can greatly improve reservoir quality. The result can be the formation of large, diagenetic-type, hydrocarbon traps. The reservoir characteristics, particularly diagenetic overprinting and history, can be applied regionally to other fields and exploration trends in the Paradox Basin. Stable carbon and oxygen isotope data indicate that all Lisbon field Leadville dolomites were likely associated with brines whose composition was enriched in {sup 18}O compared with Late Mississippian seawater. The Leadville replacement dolomite's temperatures of precipitation ranged from about 140 to 194 F ({approx} 60 to 90 C). Saddle dolomite cements were precipitated at temperatures greater than 194 F (>90 C).

  15. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0