Powered by Deep Web Technologies
Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Path integrals for stiff polymers applied to membrane physics  

E-Print Network [OSTI]

Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk membrane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed, as well as the effective interaction between the two phases in the tensionless case where the two phases have differing bending rigidities.

D. S. Dean; R. R. Horgan

2007-04-11T23:59:59.000Z

2

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energy and  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energyst century for reliable, sustainable, efficient access to clean energy and clean water for Excellence in Industrial Gases Technology (2008), and the Strategic Environmental Research and Development

Crawford, T. Daniel

3

E-Print Network 3.0 - applying membrane-bound form Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Conformational changes of colicin Ia channel-forming domain upon membrane binding: a solid-state NMR study Summary: of membrane-bound colicins, but gave ambiguous results....

4

A Comparison of Biomimetic Design and TRIZ Applied to the Design of a Proton Exchange Membrane Fuel Cell  

E-Print Network [OSTI]

Engineering, University of Toronto *shu@mie.utoronto.ca Abstract The Proton Exchange Membrane (PEM) fuel cell Introduction A proton exchange membrane (PEM) fuel cell converts the stored chemical energy in a fuel, e.g., hydrogen, into electrical energy. An important and current challenge in PEM fuel cells involves water

Shu, Lily H.

5

CX-003132: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06022010...

6

CX-003463: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08232010...

7

CX-003663: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003663: Categorical Exclusion Determination Oxy-combustion Oxygen Transport Membrane Development CX(s) Applied: B3.6 Date: 08272010 Location(s):...

8

CX-003675: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003675: Categorical Exclusion Determination Oxy-combustion Oxygen Transport Membrane Development CX(s) Applied: B3.6 Date: 09012010 Location(s):...

9

CX-000591: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

10

CX-003877: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003877: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

11

CX-010910: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010910: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

12

CX-003876: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003876: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

13

CX-004394: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004394: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 1105...

14

CX-010911: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010911: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

15

APPLIED PHYSICS APPLIED PHYSICS  

E-Print Network [OSTI]

MSc APPLIED PHYSICS #12;MSc APPLIED PHYSICS This taught Masters course is based on the strong research in Applied Physics in the University's Department of Physics. The department has an impressive photonics and quantum optics, Physics and the Life Sciences, and solid state physics. The knowledge gained

Mottram, Nigel

16

Multicomponent membranes  

DOE Patents [OSTI]

A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

1988-01-01T23:59:59.000Z

17

Electrical properties of polar membranes  

E-Print Network [OSTI]

Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity and piezoelectricity in the same language.

Lars D. Mosgaard; Karis A. Zecchi; Thomas Heimburg

2014-11-25T23:59:59.000Z

18

CX-004063: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 10012010 Location(s): Wilsonville,...

19

CX-004064: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 10012010 Location(s): Holbrook,...

20

CX-011461: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Super-Hydrophobic Membrane Contactor Process for Post-Combustion Carbon Dioxide (CO2)... CX(s) Applied: A1, A9, B3.6 Date: 11042013 Location(s): Alabama, Massachusetts,...

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CX-010199: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): New York Offices(s): National Energy Technology Laboratory

22

CX-010198: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

23

CX-010200: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

24

CX-008259: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Slipstream Testing of a Membrane Carbon Dioxide Capture Process for Existing Coal-Fired Power Plants CX(s) Applied: A9, B3.6 Date: 03282012...

25

CX-012025: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Recovery Act: Slipstream Testing of a Membrane Carbon Dioxide Capture Process for Existing Coal-Fired Power Plants CX(s) Applied: A1, A9,...

26

CX-012024: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Recovery Act: Slipstream Testing of a Membrane Carbon Dioxide Capture Process for Existing Coal-Fired Power Plants CX(s) Applied: A1, A9,...

27

CX-012185: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Novel Ceramic Membranes for the Efficient Utilization of Natural Gas CX(s) Applied: B3.6 Date: 04/02/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

28

CX-011105: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications CX(s) Applied: B3.6 Date: 08/26/2013 Location(s): Colorado, Michigan, Minnesota Offices(s): Golden Field Office

29

CX-012018: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

A Portable, Two-Stage, Antifouling Hollow Fiber Membrane Nanofiltration Process CX(s) Applied: A9, A11, B3.6 Date: 04/28/2014 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

30

CX-012019: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

A Portable, Two-Stage, Antifouling Hollow Fiber Membrane Nanofiltration Process CX(s) Applied: A9, A11, B3.6 Date: 04/28/2014 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

31

Advanced membrane electrode assemblies for fuel cells  

DOE Patents [OSTI]

A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

Kim, Yu Seung; Pivovar, Bryan S

2014-02-25T23:59:59.000Z

32

The model of stress distribution in polymer electrolyte membrane  

E-Print Network [OSTI]

An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

2014-01-01T23:59:59.000Z

33

The model of stress distribution in polymer electrolyte membrane  

E-Print Network [OSTI]

An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

Vadim V. Atrazhev; Tatiana Yu. Astakhova; Dmitry V. Dmitriev; Nikolay S. Erikhman; Vadim I. Sultanov; Timothy Patterson; Sergei F. Burlatsky

2014-01-17T23:59:59.000Z

34

Microcomposite Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

35

Nanoengineered membranes for controlled transport  

DOE Patents [OSTI]

A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

2010-01-05T23:59:59.000Z

36

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

37

Reactor process using metal oxide ceramic membranes  

DOE Patents [OSTI]

A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

Anderson, M.A.

1994-05-03T23:59:59.000Z

38

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

39

Membrane fluids and Dirac membrane fluids  

E-Print Network [OSTI]

There are two different methods to describe membrane (string) fluids, which use different field content. The relation between the methods is clarified by construction of combined method. Dirac membrane field appears naturally in new approach. It provides a possibility to consider new aspects of electrodynamics-type theories with electric and magnetic sources. The membrane fluid models automatically prohibit simulatenos existence of electric and magnetic currents. Possible applications to the dark energy problem are mentioned.

M. G. Ivanov

2005-05-04T23:59:59.000Z

40

Applied Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration onto MeasurementsApplied

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Membrane Technology Workshop  

Broader source: Energy.gov [DOE]

At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

42

Composite zeolite membranes  

DOE Patents [OSTI]

A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

43

Hybrid adsorptive membrane reactor  

DOE Patents [OSTI]

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

44

Supported inorganic membranes  

DOE Patents [OSTI]

Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

1998-01-01T23:59:59.000Z

45

Membrane Technology Workshop  

Broader source: Energy.gov [DOE]

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

46

Composite fuel cell membranes  

SciTech Connect (OSTI)

A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

1997-01-01T23:59:59.000Z

47

Membrane Separations Research  

E-Print Network [OSTI]

MEMBRANE SEPARATIONS RESEARCH James R. Fair Chemical Engineering Department The University of Texas at Austin Austin, TX 78712 ABSTRACT The use of membranes for separating gaseous and liquid mixtures has grown dramatically in the past 15... years. Applications have been dominated by light gas separations and water purification. During this pioneering period, equipment containing the membrane suIfaces has been developed to a point where failures are minimal and the membranes themselves...

Fair, J. R.

48

Composite fuel cell membranes  

DOE Patents [OSTI]

A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

1997-08-05T23:59:59.000Z

49

Cadmium sulfide membranes  

DOE Patents [OSTI]

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1991-10-22T23:59:59.000Z

50

Cadmium sulfide membranes  

DOE Patents [OSTI]

A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

1992-07-07T23:59:59.000Z

51

Meniscus Membranes For Separation  

DOE Patents [OSTI]

Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

2005-09-20T23:59:59.000Z

52

Meniscus membranes for separations  

DOE Patents [OSTI]

Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

2004-01-27T23:59:59.000Z

53

Polyphosphazene semipermeable membranes  

DOE Patents [OSTI]

A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

Allen, Charles A. (Idaho Falls, ID); McCaffrey, Robert R. (Idaho Falls, ID); Cummings, Daniel G. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID); Jessup, Janine S. (Darlington, ID); McAtee, Richard E. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

54

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

55

Lipid membrane instability and poration driven by capacitive charging  

E-Print Network [OSTI]

A new model for the interaction of an electric pulse with a lipid membrane is proposed. Using this model we show that when a DC electric pulse is applied to an insulating lipid membrane separating fluids with different conductivities, the capacitive charging current through the membrane drives electrohydrodynamic flow that destabilizes the membrane. The instability is transient and decays as the membrane charges. The bulk conductivity mismatch plays an essential role in this instability because it results in a different rate of charge accumulation on the membrane's physical surfaces. Shearing stresses created by the electric field acting on its own induced free charge are non-zero as long as the charge imbalance exists. Accordingly, the most unstable mode is related to the ratio of membrane charging time and the electrohydrodynamic time.

Jonathan T. Schwalbe; Petia M. Vlahovska; Michael J. Miksis

2010-05-03T23:59:59.000Z

56

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

57

Substituted polyacetylene separation membrane  

DOE Patents [OSTI]

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

58

Polyarylether composition and membrane  

DOE Patents [OSTI]

A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

Hung, Joyce (Auburn, AL); Brunelle, Daniel Joseph (Burnt Hills, NY); Harmon, Marianne Elisabeth (Redondo Beach, CA); Moore, David Roger (Albany, NY); Stone, Joshua James (Worcester, NY); Zhou, Hongyi (Niskayuna, NY); Suriano, Joseph Anthony (Clifton Park, NY)

2010-11-09T23:59:59.000Z

59

Siloxane-grafted membranes  

DOE Patents [OSTI]

Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

Friesen, D.T.; Obligin, A.S.

1989-10-31T23:59:59.000Z

60

Anion exchange membrane  

DOE Patents [OSTI]

An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

2013-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Membrane module assembly  

DOE Patents [OSTI]

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

62

Microporous alumina ceramic membranes  

DOE Patents [OSTI]

Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

Anderson, M.A.; Guangyao Sheng.

1993-05-04T23:59:59.000Z

63

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

64

Nanocomposite Membranes for Complex Separations  

E-Print Network [OSTI]

membranes for reverse-selective removal of alkanes from light gases, 2) defect-free inorganic nanocomposite membranes that have uniform pores, and 3) nanocomposite membranes for minimizing protein fouling in microfiltration applications. Reverse-selective...

Yeu, Seung Uk

2010-10-12T23:59:59.000Z

65

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect (OSTI)

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

66

Original article Flat ceramic membranes  

E-Print Network [OSTI]

membranes. The orig- inal intellectual concept is protected by two international patents. Strategically of investment and functioning costs while keeping the interest of ceramics. ceramic membrane / plate / tubular

Paris-Sud XI, Université de

67

Catalytic nanoporous membranes  

DOE Patents [OSTI]

A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

2013-08-27T23:59:59.000Z

68

Cyclic membrane separation process  

DOE Patents [OSTI]

A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

Bowser, John

2004-04-13T23:59:59.000Z

69

Cyclic membrane separation process  

DOE Patents [OSTI]

A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

Nemser, Stuart M.

2005-05-03T23:59:59.000Z

70

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

71

Composite metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

72

Rotating bubble membrane radiator  

DOE Patents [OSTI]

A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

1988-12-06T23:59:59.000Z

73

Wrinkling in polygonal membranes  

E-Print Network [OSTI]

boundary conditions of the polygons. When pressurised, the polygonal membranes naturally reach a parabolic shape towards their centre, the extent of which varies greatly depending on a large number of parameters, including most particularly pre...

Bonin, Arnaud Stephane

2012-02-07T23:59:59.000Z

74

Hydrogen transport membranes  

DOE Patents [OSTI]

Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

Mundschau, Michael V.

2005-05-31T23:59:59.000Z

75

Gas Separation Using Membranes  

E-Print Network [OSTI]

Commercial membrane-based gas separator systems based upon high-flux, asymmetric polysulfone hollow fibers were first introduced in 1977 by Monsanto. These systems were packaged in compact modules containing large amounts of permeation surface area...

Koros, W. J.; Paul, D. R.

1984-01-01T23:59:59.000Z

76

Membrane separation of hydrocarbons  

DOE Patents [OSTI]

Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

1986-01-01T23:59:59.000Z

77

Membrane reference electrode  

DOE Patents [OSTI]

A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

Redey, L.; Bloom, I.D.

1988-01-21T23:59:59.000Z

78

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

79

Microprobes aluminosilicate ceramic membranes  

DOE Patents [OSTI]

Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

Anderson, Marc A. (2114 Chadbourne Ave., Madison, WI 53705); Sheng, Guangyao (45 N. Orchard St., Madison, WI 53715)

1993-01-01T23:59:59.000Z

80

SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION  

SciTech Connect (OSTI)

Mixed-conducting membranes have the ability to conduct oxygen with perfect selectivity at elevated temperatures, which makes them an extremely attractive alternative for oxygen separation and membrane reactor applications. The ability to reliably fabricate these membranes in thin or thick films would enable solid-state divisional limitations to be minimized, thus providing higher oxygen flux. Based on that motivation, the overall objective for this project is to develop and demonstrate a strategy for the fabrication of supported Wick film ceramic mixed conducting membranes, and improve the understanding of the fundamental issues associated with reliable fabrication of these membranes. The project has focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} because of its superior permeability and stability in reducing atmospheres. The fabrication strategy employed involves the deposition of SrCo{sub 0.5}FeO{sub x} thick films onto porous supports of the same composition. In the second year of this project, we completed characterization of the sintering and phase behavior of the porous SrCo{sub 0.5}FeO{sub x} supports, leading to a standard support fabrication methodology. Using a doctor blade method, pastes made from aerosol-derived SrCo{sub 0.5}FeO{sub x} powder dispersed with polyethylene glycol were applied to the supports, and the sintering behavior of the thick film membranes was examined in air and nitrogen atmospheres. It has been demonstrated that the desired crystalline phase content can be produced in the membranes, and that the material in the membrane layer can be highly densified without densifying the underlying support. However, considerable cracking and opening of the film occurred when films densified to a high extent. The addition of MgO into the SrCo{sub 0.5}FeO{sub x} supports was shown to inhibit support sintering so that temperatures up to 1300 C, where significant liquid formation occurs, could be used for film sintering. This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

Timothy L. Ward

2000-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

82

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

83

Cable tensioned membrane solar collector module with variable tension control  

DOE Patents [OSTI]

Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

Murphy, Lawrence M. (Lakewood, CO)

1985-01-01T23:59:59.000Z

84

Cable tensioned membrane solar collector module with variable tension control  

DOE Patents [OSTI]

Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

Murphy, L.M.

1984-01-09T23:59:59.000Z

85

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-11-01T23:59:59.000Z

86

CENTRIFUGAL MEMBRANE FILTRATION  

SciTech Connect (OSTI)

SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and operation of the full-scale two-stage SpinTek unit for treatment of a DOE waste-stream at the Los Alamos National Laboratory. This technology has very broad application across the DOE system. Nineteen DOE technical needs areas (Appendix C) have been identified. Following successful full-scale demonstration for treatment of DOE wastes, this innovative technology will be rapidly deployed on a wide range of waste and process streams throughout the DOE system.

William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

2005-10-28T23:59:59.000Z

87

Membrane heat pipe development for space radiator applications  

SciTech Connect (OSTI)

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

88

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

89

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

90

Surface tension in bilayer membranes with fixed projected area  

E-Print Network [OSTI]

We study the elastic response of bilayer membranes with fixed projected area to both stretching and shape deformations. A surface tension is associated to each of these deformations. By using model amphiphilic membranes and computer simulations, we are able to observe both the types of deformation, and thus, both the surface tensions, related to each type of deformation, are measured for the same system. These surface tensions are found to assume different values in the same bilayer membrane: in particular they vanish for different values of the projected area. We introduce a simple theory which relates the two quantities and successfully apply it to the data obtained with computer simulations.

Alberto Imparato

2006-04-05T23:59:59.000Z

91

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

92

Supported microporous ceramic membranes  

DOE Patents [OSTI]

A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

Webster, Elizabeth (Madison, WI); Anderson, Marc (Madison, WI)

1993-01-01T23:59:59.000Z

93

Supported microporous ceramic membranes  

DOE Patents [OSTI]

A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

Webster, E.; Anderson, M.

1993-12-14T23:59:59.000Z

94

Advanced Materials for Proton Exchange Membranes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

95

Colloidal fouling of reverse osmosis membranes  

E-Print Network [OSTI]

the rate of fouling of reverse osmosis membranes treating32, 127-135. fouling of reverse osmosis membranes." Buros,Colloidal fouling of reverse osmosis membranes." J. Colloid

Elimelech, Menachem

1994-01-01T23:59:59.000Z

96

Composite oxygen transport membrane  

DOE Patents [OSTI]

A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

Christie, Gervase Maxwell; Lane, Jonathan A.

2014-08-05T23:59:59.000Z

97

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-02-01T23:59:59.000Z

98

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

99

Hydrogen-selective membrane  

DOE Patents [OSTI]

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

100

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Membrane Scientist Los Angeles, CA  

E-Print Network [OSTI]

and working hands on to ensure quality and commercial viability of reverse osmosis products including hand cast and commercial reverse osmosis membrane testing and synthesis, prototype membrane testing and new

Alpay, S. Pamir

102

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

103

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing CCS Division Applied Computer Science Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific...

104

Automotive Perspective on Membrane Evaluation  

Broader source: Energy.gov [DOE]

Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

105

Recycling of used perfluorosulfonic acid membranes  

DOE Patents [OSTI]

A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

2007-08-14T23:59:59.000Z

106

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

107

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

108

Membrane separation of hydrocarbons  

DOE Patents [OSTI]

Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

1986-01-01T23:59:59.000Z

109

Solid-state membrane module  

DOE Patents [OSTI]

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

110

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-07-01T23:59:59.000Z

111

Membrane Applications at Ceramatec  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinalMeltonMembrane

112

Novel Catalytic Membrane Reactors  

SciTech Connect (OSTI)

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

113

Membranes, methods of making membranes, and methods of separating gases using membranes  

DOE Patents [OSTI]

Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

Ho, W. S. Winston

2012-10-02T23:59:59.000Z

114

POSITION OPENING APPLIED STATISTICS  

E-Print Network [OSTI]

: Assistant or Associate Professor of Applied Statistics. Employment Beginning: September 16, 2012 DescriptionPOSITION OPENING APPLIED STATISTICS Department of Decision Sciences Charles H. Lundquist College at the University of Oregon is seeking to fill one tenure-track faculty position in Applied Statistics. Rank

Shepp, Larry

115

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

116

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

117

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

118

Influence of electrode stress on proton exchange membrane fuel cell performance : experimental characterization and power optimization  

E-Print Network [OSTI]

Compressive stress applied to the electrode area of a Proton Exchange Membrane (PEM) fuel cell is known to significantly affect power output. In practice, electrode stress arises during operation due to the clamping force ...

Gallant, Betar M. (Betar Maurkah)

2008-01-01T23:59:59.000Z

119

CX-012042: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in Integrated Gasification Combined Cycle CX(s) Applied: A1, A9, B3.6 Date: 04/08/2014 Location(s): Pennsylvania, Pennsylvania Offices(s): National Energy Technology Laboratory

120

CX-012030: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in Integrated Gasification Combined Cycle CX(s) Applied: A9, B3.6 Date: 04/18/2014 Location(s): Utah Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CX-010948: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Robust and Energy Efficient Dual-Stage Membrane-Based Process for Enhanced Carbon Dioxide (CO2) Recovery CX(s) Applied: A1, A9 Date: 09/17/2013 Location(s): California Offices(s): National Energy Technology Laboratory

122

CX-010800: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

123

Supported liquid membrane electrochemical separators  

DOE Patents [OSTI]

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

124

Applied quantum mechanics 1 Applied Quantum Mechanics  

E-Print Network [OSTI]

that describe the time-dependent state . If can be expressed as a power series in the perturbing potential of a one dimensional har- monic oscillator. At time t = 0 a perturbation is applied where V0-dimensional rectangular potential well for which in the range and elsewhere. It is decided to control the state

Levi, Anthony F. J.

125

High Temperature Membrane Working Group  

Broader source: Energy.gov (indexed) [DOE]

Using Advanced Polymeric Membranes BESP 20 Michael Heben NREL Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity BESP 21 G. Kane Jennings...

126

A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-  

E-Print Network [OSTI]

-6 By excluding oxygen from the system and applying an additional voltage to the circuit, hydrogen is evolved and Engineering Division, Water Desalination and Reuse Center, Thuwal 23955-6900, Saudi Arabia King Abdullah University of Science and Technology, Advanced Membranes and Porous Materials Research Center, Thuwal 23955

127

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-05-01T23:59:59.000Z

128

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

129

High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors  

SciTech Connect (OSTI)

We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

Buxbaum, Robert

2010-06-30T23:59:59.000Z

130

Oxygen Transport Membranes  

SciTech Connect (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

131

Apply early! Limited enrollment.  

E-Print Network [OSTI]

volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

132

Applied Computer Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

133

Analytical Chemistry Applied Mathematics  

E-Print Network [OSTI]

Analytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture Management

Heller, Barbara

134

How To Apply  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSCEEE undergraduate students are encouraged to apply. Required Materials Current Resume Official University Transcript (with spring courses posted andor a copy of Spring...

135

Applied Geosciences Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Geosciencs Links USGS Mercury Research Uniteds States Geological Survey (USGS) investigations provide information to guide environmental planning and management. This...

136

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

137

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

138

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

139

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

140

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

S. Bandopadhyay; T. Nithyanantham

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

142

Single Molecule Probes of Lipid Membrane Structure  

E-Print Network [OSTI]

Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein ...

Livanec, Philip W.

2009-12-14T23:59:59.000Z

143

New Membranes for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Presentation on New Membranes for PEM Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

144

Acid Doped Membranes for High Temperature PEMFC  

Broader source: Energy.gov [DOE]

Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

145

Extracorporeal membrane oxygenation promotes long chain fatty...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation...

146

ADVANCED MATERIALS Membranes for Clean Water  

E-Print Network [OSTI]

and security. Polymer-based membrane separation technologies based on reverse osmosis, forward osmosis active layer used in reverse osmosis membranes, interfacial polymerization of trimesoyl chloride (TMC

147

Controlling membrane protein folding using photoresponsive surfactant.  

E-Print Network [OSTI]

??Membrane proteins perform a number of roles in biological function. Membrane lipids can self assembly into numerous different phases in aqueous solution, including micelles, vesicles… (more)

Chang, Chia Hao

2012-01-01T23:59:59.000Z

148

Some durability considerations for proton exchange membranes  

Broader source: Energy.gov (indexed) [DOE]

creates an aggressive environment for the electrolyte membrane. This includes: - Mechanical stresses related to changes in the level of membrane hydration. - Thermal...

149

Some durability considerations for proton exchange membranes...  

Broader source: Energy.gov (indexed) [DOE]

Oct. 14, 2010 hightemphamrock.pdf More Documents & Publications New Membranes for PEM Fuel Cells Model Compound Studies of Fuel Cell Membrane Degradation Processing-Performance...

150

Fullerene-Nafion Composite Recast Membranes  

Broader source: Energy.gov [DOE]

Presentation on Fullerene-Nafion Composite Recast Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

151

Apparatus for tensioning a heliostat membrane  

DOE Patents [OSTI]

An apparatus for pneumatically or hydraulically tensioning a membrane, which stretched membrane can support a reflective surface for use as a heliostat in a solar energy collection system.

Sallis, Daniel V. (P.O. Box 554, Littleton, CO 80120)

1986-01-01T23:59:59.000Z

152

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

153

Poxvirus entry and membrane fusion  

SciTech Connect (OSTI)

The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

Moss, Bernard [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445 (United States)]. E-mail: bmoss@nih.gov

2006-01-05T23:59:59.000Z

154

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

155

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-10-01T23:59:59.000Z

156

Fabrication of porous silicon membranes  

E-Print Network [OSTI]

OF THE FILTER APPLICATION OF POROUS SILICON A. Density of Porous Silicon B. Stabilization of Porous Silicon Membranes C. Flow Test D. Porous Polycrystalline Silicon 54 58 62 65 vn TABLE OF CONTENTS (Continued) CHAPTER VI EXTENSIONS AND CONCLUSIONS... Membranes 13. Density Change of Porous Silicon at 125'C 14. Density Change oi' Porous Silicon at 250 C 15. Nitrogen Flow on a Porous Silicon Membrane Page 15 16 33 39 39 44 46 54 59 59 62 LIST OF FIGURES Figure 10. 12. 14. 17. 18. 19...

Yue, Wing Kong

1988-01-01T23:59:59.000Z

157

Thermally tolerant multilayer metal membrane  

DOE Patents [OSTI]

A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

158

Thermal casting process for the preparation of membranes  

DOE Patents [OSTI]

Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

Caneba, G.T.M.; Soong, D.S.

1985-07-10T23:59:59.000Z

159

AEROSPACE SCIENCES Applied aerodynamics  

E-Print Network [OSTI]

AEROSPACE SCIENCES Applied aerodynamics This year saw significant progress in industry, research labs, and academia in the development of flow-control concepts, novel configuration aerodynamic concepts, and aerodynamic im- provement technologies for enhancing the fuel efficiency and performance

Xu, Kun

160

Engineering and Applied  

E-Print Network [OSTI]

> Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

Stowell, Michael

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-02-01T23:59:59.000Z

162

Layered plasma polymer composite membranes  

DOE Patents [OSTI]

Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

Babcock, W.C.

1994-10-11T23:59:59.000Z

163

Gas separation membrane module assembly  

DOE Patents [OSTI]

A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

2009-03-31T23:59:59.000Z

164

Membrane Separations of Liquid Mixtures  

E-Print Network [OSTI]

MEMBRANE SEPARATIONS OF LIQUID MIXTURES Douglas R. Lloyd Separations Research Program Department of Chemical Engineering The University of Texas at Austin Austin, Texas In recent years considerable attention has been given to the need... for reduced energy costs in the chemical processing industry. A major portion of the energy consumed in this industry is associated with the separation and recovery of chemicals. Membrane processes offer energy-efficient, cost effective methods...

Lloyd, D. R.

165

Fast Membranes Hemifusion via Dewetting between Lipid Bilayers  

E-Print Network [OSTI]

The behavior of lipid bilayer is important to understand the functionality of cells like the trafficking of ions between cells. Standard procedures to explore the properties of lipid bilayer and hemifused states typically use either supported membranes or vesicles. Both techniques have several shortcoming in terms of bio relevance or accessibility for measurements. In this article the formation of individual free standing hemifused states between model cell membranes is studied using an optimized microfluidic scheme which allows for simultaneous optical and electrophysiological measurements. In a first step, two model membranes are formed at a desired location within a microfluidic device using a variation of the droplet interface bilayer (DiB) technique. In a second step, the two model membranes are brought into contact forming a single hemifused state. For all tested lipids, the hemifused state between free standing membranes form within hundreds of milliseconds, i.e. several orders of magnitude faster than reported in literature. The formation of a hemifused state is observed as a two stage process, whereas the second stage can be explained as a dewetting process in no-slip boundary condition. The formed hemifusion states are long living and a single fusion event can be observed when triggered by an applied electric field as demonstrated for monoolein.

Jose Nabor Vargas; Ralf Seemann; Jean-Baptiste Fleury

2014-09-20T23:59:59.000Z

166

Oxygen Transport Ceramic Membranes Quarterly Report  

E-Print Network [OSTI]

/Reaction rates in Ion 21 Transport Membranes using Isotope Tracer and Transient Kinetic Techniques CONCLUSIONS 30Oxygen Transport Ceramic Membranes Quarterly Report January 2003 ­ March 2003 Principal Authors on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane

Eagar, Thomas W.

167

Engineering Development of Ceramic Membrane Reactor  

E-Print Network [OSTI]

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

168

Ninth International Workshop on Plant Membrane Biology  

SciTech Connect (OSTI)

This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

Not Available

1993-12-31T23:59:59.000Z

169

An emergency response team for membrane repair  

E-Print Network [OSTI]

events, which we focus on here. As discussed later, Ca2+ influx at the site of plasma membrane-fusion events are required to repair a torn plasma membrane, and we propose that this emergency products and the plasma membrane. Reseal or die. Plasma-membrane disruption is a normal event in the life

Kirchhausen, Tomas

170

Hydrogen purifier module with membrane support  

DOE Patents [OSTI]

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

2012-07-24T23:59:59.000Z

171

New developments in hydrogen permselective membranes  

SciTech Connect (OSTI)

The objectives of the original project were to develop silica hydrogen permselective membranes and to evaluate the economic feasibility of these membranes in hydrogen production from coal gas. The objectives of the work reported here were to increase the membrane permeance by developing new precursors or deposition conditions, and to carry out fundamental permeability measurements of the membrane at different stages of pore narrowing.

Gavalas, G.R.

1994-10-01T23:59:59.000Z

172

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

173

Computational and experimental study of nanoporous membranes for water desalination and decontamination.  

SciTech Connect (OSTI)

Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

2008-11-01T23:59:59.000Z

174

Tensioning device for a stretched membrane collector  

DOE Patents [OSTI]

Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

Murphy, L.M.

1984-01-01T23:59:59.000Z

175

Anisotropic surface tension of buckled fluid membrane  

E-Print Network [OSTI]

Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is also found phase synchronization occurs between multilayered buckled membranes.

Hiroshi Noguchi

2011-06-01T23:59:59.000Z

176

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedAppliedApply for Beam

177

Fabrication of catalyzed ion transport membrane systems  

DOE Patents [OSTI]

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

178

SUSTAINABILITY WHO CAN APPLY  

E-Print Network [OSTI]

FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

179

Electrochemical control of ion transport through a mesoporous carbon membrane  

SciTech Connect (OSTI)

The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

Surwade, Sumedh P [ORNL] [ORNL; Chai, Songhai [ORNL] [ORNL; Choi, Jai-Pil [ORNL] [ORNL; Wang, Xiqing [ORNL] [ORNL; Lee, Jeseung [ORNL] [ORNL; Vlassiouk, Ivan V [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

180

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect (OSTI)

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research  

Broader source: Energy.gov [DOE]

This presentation on maximizing the return of high temperature PEM membrane research was given at the High Temperature Membrane Working Group Meeting in May 2007.

182

Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them  

DOE Patents [OSTI]

A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

2001-01-01T23:59:59.000Z

183

Continuous production of polymethylpentene membranes  

DOE Patents [OSTI]

Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

Epperson, Bonnie J. (San Diego, CA); Burnett, Lowell J. (San Diego, CA); Helm, Verne D. (Plains, MT)

1983-11-15T23:59:59.000Z

184

Production of permeable cellulose triacetate membranes  

DOE Patents [OSTI]

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, B.M.

1986-12-23T23:59:59.000Z

185

Production of permeable cellulose triacetate membranes  

DOE Patents [OSTI]

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, Bruce M. (Bend, OR)

1986-01-01T23:59:59.000Z

186

Solvent-resistant microporous polymide membranes  

DOE Patents [OSTI]

An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

Miller, W.K.; McCray, S.B.; Friesen, D.T.

1998-03-10T23:59:59.000Z

187

Solvent-resistant microporous polymide membranes  

DOE Patents [OSTI]

An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

Miller, Warren K. (Bend, OR); McCray, Scott B. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

1998-01-01T23:59:59.000Z

188

Nanocomposite MembranesNanocomposite Membranes for Energy andfor Energy and  

E-Print Network [OSTI]

Including:Including: Oil & gasOil & gas Chemical processingChemical processing Water purification membranes 44 Example: oil & gas applicationExample: oil & gas application Residue ~5,000 m2/m3 Feed H2 CO2 H 4 Selectivity Nominal volume fraction filler Rubbery Polymer Order-of-magnitude increase

Lightsey, Glenn

189

Nanoporous carbon catalytic membranes and method for making the same  

DOE Patents [OSTI]

Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

2002-01-01T23:59:59.000Z

190

Spectroscopic studies of tryptophan and membrane- associated peptides  

E-Print Network [OSTI]

Thermodynamics of membrane protein folding measured byThermodynamics of Membrane Protein Folding: Lessons from theKim, Thermodynamics of membrane protein folding measured by

Schlamadinger, Diana Elizabeth

2011-01-01T23:59:59.000Z

191

Structural design considerations for stretched-membrane heliostat reflector modules with stability and initial imperfection considerations  

SciTech Connect (OSTI)

This report extends the work of several previous reports that present the background leading to the development of stretched-membrane modules and analysis methods to study the structural response of the stretched-membrane module. Specifically, this report presents and discusses the design implications based on our analysis of single- or double-membrane concepts, and the amplification of initial imperfections and deflections caused by loading, which results from stability considerations. In this document, we present analysis results for both single- and double-membrane concepts corresponding to a range of design and loading conditions. Further, we show that stretched-membrane/frame combinations respond quite differently to external loads than can be inferred by studying the decoupled frame and membrane independently. Thus the coupled membrane/frame problem should be considered to assure an accurate description of its response. For idealized configurations and loadings, we discuss the relative merits of various design features for both of these designs. In addition, we studied the structural stability (i.e., the tendency of structural deformation to grow with little increase in applied load) of the tensioned-membrane, compressed-frame combination. Moreover, we demonstrate how stability considerations are important in determining the amplification of both initial displacement imperfection and the deformations caused by wind and weight loading on the structure.

Murphy, L.M.; Simms, D.; Sallis, D.V.

1986-10-01T23:59:59.000Z

192

Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins  

DOE Patents [OSTI]

The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

Laible, Philip D; Hanson, Deborah K

2013-06-04T23:59:59.000Z

193

Apply for Beamtime  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication Acceleration ontoInstrumentationApply for

194

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedApplied Science/Techniques

195

Preparation of gas selective membranes  

DOE Patents [OSTI]

Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

1988-06-14T23:59:59.000Z

196

Preparation of gas selective membranes  

DOE Patents [OSTI]

Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

1988-01-01T23:59:59.000Z

197

Development of energy efficient membrane distillation systems  

E-Print Network [OSTI]

Membrane distillation (MD) has shown potential as a means of desalination and water purification. As a thermally driven membrane technology which runs at relatively low pressure, which can withstand high salinity feed ...

Summers, Edward K

2013-01-01T23:59:59.000Z

198

Engineering supported membranes for cell biology  

E-Print Network [OSTI]

membranes in structural biology. J Struct Biol 168:1–2 50.supported membranes for cell biology Cheng-han Yu • Jay T.range problems in cell biology. Because lateral mobility of

Yu, Cheng-han; Groves, Jay T.

2010-01-01T23:59:59.000Z

199

Hybrid Membranes for Light Gas Separations  

E-Print Network [OSTI]

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas...

Liu, Ting

2012-07-16T23:59:59.000Z

200

Energy Conservation Possibilities Using Gas Separating Membranes  

E-Print Network [OSTI]

The separation of gases using semi permeable membranes is a viable unit operation. A novel composite membrane combined with hollow fiber spinning technology enable Monsanto Co. to offer PRISM (TM); Separators to the industrial market. The separator...

Knieriem, H.; Henis, J. M. S.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Tetrakis-amido high flux membranes  

DOE Patents [OSTI]

Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

McCray, S.B.

1989-10-24T23:59:59.000Z

202

Predicting the vibrations of a spinning inflated membrane  

SciTech Connect (OSTI)

The primary difficulty of computing the vibration of spinning inflated membranes arises from the low natural frequencies of such systems. When such systems are rotated near their own natural frequencies the dynamics equations must account for higher order kinematics than is necessary for more rigid structures. These complications results from the membrane loads that develop within the bodies in reaction to the accelerations of the overall body. When second order kinematics act against these membrane loads, the resulting energies become of the same order as the potential and kinetic energies of the vibrations that would be calculated by first order kinematics. These complications apply to the problem addressed here. Here we consider a spin-stabilized, inflated membrane, spinning around its minor axis. This structure is very flexible and somewhat viscoelastic, so vibrations excited by the overall motion of the structure will dissipate energy of the system, thus reducing the kinetic energy. A reduction in kinetic energy consistent with a conservation of angular momentum results in coning and, eventually, tumbling. Here we must address the excitation of vibration by the rigid-body motion and then we must address the retarding effect of the energy dissipation on the rigid-body motion.

Segalman, D.J.; Slavin, A.

1993-04-01T23:59:59.000Z

203

Corrugated Membrane Fuel Cell Structures  

SciTech Connect (OSTI)

One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.] President, Ion Power Inc.

2013-09-30T23:59:59.000Z

204

Challenges in Bio-Inspired Membranes  

Broader source: Energy.gov [DOE]

Presentation by Jun Lin (Pacific Northwest National Laboratory, PNNL) for the Membrane Technology Workshop held July 24, 2012

205

Agenda: High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

206

Nafion-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance.  

E-Print Network [OSTI]

1 Nafion®-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance, characterized and integrated in Membrane-Electrodes Assembly to be tested in fuel cell operating conditions, mobile or stationary), Proton Exchange Membrane Fuel Cells (PEMFC) are amongst the most studied fuel

Boyer, Edmond

207

Journal of Membrane Science 239 (2004) 1726 Highly conductive ordered heterogeneous ion-exchange membranes  

E-Print Network [OSTI]

in the matrix required for reasonable ion transport through the membrane is 50­70 wt.% [2Journal of Membrane Science 239 (2004) 17­26 Highly conductive ordered heterogeneous ion-exchange membranes are used in electrodialysis (ED) as ion-selective membranes and in power sources (such as fuel

Freger, Viatcheslav "Slava"

208

IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND  

E-Print Network [OSTI]

SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H2 WGS H2 operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2 Operational Experience Under High Pressure Differential SUMMARY OF ELTRON OXYGEN TRANSPORT MEMBRANE SYNGAS

209

Dynamics of membranes driven by actin polymerization  

E-Print Network [OSTI]

A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wave-like, corresponding to membrane ruffling and actin-waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.

Nir Gov; Ajay Gopinathan

2005-03-04T23:59:59.000Z

210

CX-011250: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-011250: Categorical Exclusion Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied:...

211

Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization  

E-Print Network [OSTI]

Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization Abstract theoretical model of polyamide membrane formation via interfacial polymerization. #12;

Freger, Viatcheslav "Slava"

212

Process for restoring membrane permeation properties  

DOE Patents [OSTI]

A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos G. (San Jose, CA)

1997-05-20T23:59:59.000Z

213

Process for restoring membrane permeation properties  

DOE Patents [OSTI]

A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

Pinnau, I.; Toy, L.G.; Casillas, C.G.

1997-05-20T23:59:59.000Z

214

Ion transport membrane module and vessel system  

SciTech Connect (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

215

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

216

Photo-switchable membrane and method  

SciTech Connect (OSTI)

Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

Marshall, Kenneth L; Glowacki, Eric

2013-05-07T23:59:59.000Z

217

Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby  

DOE Patents [OSTI]

A method is described for making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane. 10 figs.

Swathirajan, S.; Mikhail, Y.M.

1994-05-31T23:59:59.000Z

218

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

Heller, Barbara

219

School of Applied Technology School of Applied Technology  

E-Print Network [OSTI]

School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

Heller, Barbara

220

Evaluation of ultrafiltration membranes in the purification of guayule resin  

E-Print Network [OSTI]

: Methanol at 370 ml/nun 150 MWCO Membrane Feed: Water at 20 psi 150 MWCO Membrane Feed: Water at 50 psi 200 MWCO Membrane Feed: AVater at 370 ml/min 200 MWCO Membrane Feed: Methanol at 370 ml/min 20 27 30 31 200 MWCO Membrane Feed: Guayule Resin... at 370 ml/min . . . 33 350 MWCO Membrane Feed: AVater at 86. 8 ml/min 10 12 13 14 350 MWCO Membrane Feed: Water at 20 psi 350 MWCO Membrane Feed: Water at 40 psi 350 MWCO Membrane Iced: Methanol at 86. 8 ml/min 350 MWCO Membrane Feed: Methanol...

Jeyaseelan, Ranjit S.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures  

SciTech Connect (OSTI)

The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

Korzeniewski, Carol

2014-01-20T23:59:59.000Z

222

New mechanism of membrane fusion  

E-Print Network [OSTI]

We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.

M. Mueller; K. Katsov; M. Schick

2001-10-10T23:59:59.000Z

223

Removal mechanisms of organic and inorganic solutes in raw, upland drinking water by nanofiltration: influence of solute-solute and solute-membrane interactions   

E-Print Network [OSTI]

Nanofiltration (NF) membranes have been applied successfully for the removal of inorganic and organic pollutants, including micropollutants, from drinking water for the past two decades. However, a complete and quantitative ...

De Munari, Annalisa; Munari, Annalisa de

2012-11-29T23:59:59.000Z

224

Sorting of inner nuclear membrane-directed proteins at the endoplasmic reticulum membrane  

E-Print Network [OSTI]

The current "diffusion-retention" model for protein trafficking to the inner nuclear membrane (INM) proposes that INM proteins diffuse laterally from the membrane of the endoplasmic reticulum into the INM and are then retained in the INM by binding...

Saksena, Suraj

2006-04-12T23:59:59.000Z

225

Class II virus membrane fusion proteins  

SciTech Connect (OSTI)

Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.

Kielian, Margaret [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 (United States)]. E-mail: kielian@aecom.yu.edu

2006-01-05T23:59:59.000Z

226

Measuring Physical Properties of Polymer Electrolyte Membranes  

Broader source: Energy.gov [DOE]

Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

227

Composite membranes and methods for making same  

DOE Patents [OSTI]

Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

Routkevitch, Dmitri; Polyakov, Oleg G

2012-07-03T23:59:59.000Z

228

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

229

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

230

Partially fluorinated cyclic ionic polymers and membranes  

DOE Patents [OSTI]

Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

Yang, Zhen-Yu

2013-04-09T23:59:59.000Z

231

High Temperature Membrane Working Group Meeting Minutes  

Broader source: Energy.gov (indexed) [DOE]

membranes. He discussed the motivation for the work; electrochemistry and mechanical loads co-exist but are usually modeled separately. Additionally, there is a concern...

232

Myocardial Reloading after Extracorporeal Membrane Oxygenation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Synthesis. Abstract: Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after...

233

Tensile strain mapping in flat germanium membranes  

SciTech Connect (OSTI)

Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ?4 ?m spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

2014-04-28T23:59:59.000Z

234

Fluorous membrane-based separations and reactions.  

E-Print Network [OSTI]

??Porous alumina membranes were rendered compatible with fluorous liquids by surface modification with a carboxylic acid terminated perfluoropolyether (Krytox 157FSH). FTIR and contact angle measurements… (more)

Yang, Yanhong

2011-01-01T23:59:59.000Z

235

Alternate Fuel Cell Membranes for Energy Independence  

SciTech Connect (OSTI)

The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mech

Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

2012-12-18T23:59:59.000Z

236

Dynamical Scaling of Polymerized Membranes  

E-Print Network [OSTI]

Monte Carlo simulations have been performed to analyze the sub-diffusion dynamics of a tagged monomer in self-avoiding polymerized membranes in the flat phase. By decomposing the mean square displacement into the out-of-plane ($\\parallel$) and the in-plane ($\\perp$) components, we obtain good data collapse with two distinctive diffusion exponents $2 \\alpha_{\\parallel} = 0.36 \\pm 0.01$ and $2 \\alpha_{\\perp} = 0.21 \\pm 0.01$, and the roughness exponents $\\zeta_{\\parallel} = 0.6 \\pm 0.05$ and $\\zeta_{\\perp} = 0.25 \\pm 0.05 $, respectively for each component. Their values are consistent with the relation from the rotational symmetry. We derive the generalized Langevin equations to describe the sub-diffusional behaviors of a tagged monomer in the intermediate time regime where the collective effect of internal modes in the membrane dominate the dynamics to produce negative memory kernels with a power-law. We also briefly discuss how the long-range hydrodynamic interactions alter the exponents.

Ken-ichi Mizuochi; Hiizu Nakanishi; Takahiro Sakaue

2014-07-17T23:59:59.000Z

237

Cellular membrane trafficking of mesoporous silica nanoparticles  

SciTech Connect (OSTI)

This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.

Fang, I-Ju

2012-06-21T23:59:59.000Z

238

Journal of Membrane Science 257 (2005) 8598 Membrane contactor processes for wastewater reclamation in space  

E-Print Network [OSTI]

Journal of Membrane Science 257 (2005) 85­98 Membrane contactor processes for wastewater membrane processes for reclamation and reuse of wastewater in future space missions was evaluated and used in estimating the specific energy cost of treating the wastewater generated in space. The weight

239

Journal of Membrane Science 257 (2005) 111119 Membrane contactor processes for wastewater reclamation in space  

E-Print Network [OSTI]

Journal of Membrane Science 257 (2005) 111­119 Membrane contactor processes for wastewater for treatment of metabolic wastewater Tzahi Y. Cath, Dean Adams, Amy E. Childress University of Nevada of an innovative dual membrane contactor process for treatment of combined hygiene and metabolic wastewater

240

Membranes for corrosive oxidations. Final CRADA report.  

SciTech Connect (OSTI)

The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

Snyder, S. W.; Energy Systems

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Romanian sources on applied mechanics  

SciTech Connect (OSTI)

This note provides a list of journals and recent books published in Romania covering topics in applied mechanics, with information on bow to obtain them.

Popescu, M.E. [Civil Engineering Inst., Bucharest (Romania)

1992-06-01T23:59:59.000Z

242

Thermodynamic Modeling of a Membrane Dehumidification System  

E-Print Network [OSTI]

............................................................... 157 4.5 Original and ARPA-E condition COP results for cooling tower approach of 5?F detailed simulation results for five evaporative cooling steps and membrane cooling combined system... evaporative cooling steps and membrane cooling combined system for ARPA-E inlet and outlet conditions ................................................................... 163 4.13 Cooling tower approach of 5?F detailed simulation results for five...

Bynum, John 1983-

2012-11-28T23:59:59.000Z

243

Ceramic membrane treatment of petrochemical wastewater  

SciTech Connect (OSTI)

Ceramic alumina microfiltration membranes were evaluated for treatment of 3 aqueous streams containing heavy metals, oils, and solids at petrochemical manufacturing facilities. To the best of the author's knowledge, this is the first reported use of ceramic alumina membranes for process water and wastewater treatment in a US petrochemical plant. In a pilot test at a vinyl chloride monomer (VCM) plant, precipitated heavy metal solids were filtered with the membranes. On another stream at that site, the ceramic membrane pilot system successfully treated emulsions of 1,2-dichloroethane (EDC), water, and solids. Membrane filtration of a linear alkyl benzene (LAB) oily wastewater stream produced water with less than 5 ppmw oil and grease, after pretreatment with HCl and ferric chloride. A preliminary financial analysis shows that the installed system cost for a ceramic membrane unit is comparable to other membrane technologies, while operating costs are anticipated to be lower. Specific process conditions that are particularly amenable to treatment by ceramic membrane microfiltration are also given in the paper. 10 refs., 11 figs., 7 tabs.

Lahiere, R.J. (Vista Chemical Co., Houston, TX (United States)); Goodboy, K.P.

1993-05-01T23:59:59.000Z

244

Catalyst containing oxygen transport membrane  

SciTech Connect (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

245

Phosphazene membranes for gas separations  

DOE Patents [OSTI]

A polyphosphazene having a glass transition temperature ("Tg") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a Tg ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]. The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

2006-07-11T23:59:59.000Z

246

Liners for ion transport membrane systems  

SciTech Connect (OSTI)

Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2010-08-10T23:59:59.000Z

247

Fuel cell subassemblies incorporating subgasketed thrifted membranes  

DOE Patents [OSTI]

A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

2014-01-28T23:59:59.000Z

248

Immobilized fluid membranes for gas separation  

DOE Patents [OSTI]

Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

2014-03-18T23:59:59.000Z

249

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

250

Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes.  

SciTech Connect (OSTI)

Affordable clean water is both a global and a national security issue as lack of it can cause death, disease, and international tension. Furthermore, efficient water filtration reduces the demand for energy, another national issue. The best current solution to clean water lies in reverse osmosis (RO) membranes that remove salts from water with applied pressure, but widely used polymeric membrane technology is energy intensive and produces water depleted in useful electrolytes. Furthermore incremental improvements, based on engineering solutions rather than new materials, have yielded only modest gains in performance over the last 25 years. We have pursued a creative and innovative new approach to membrane design and development for cheap desalination membranes by approaching the problem at the molecular level of pore design. Our inspiration comes from natural biological channels, which permit faster water transport than current reverse osmosis membranes and selectively pass healthy ions. Aiming for an order-of-magnitude improvement over mature polymer technology carries significant inherent risks. The success of our fundamental research effort lies in our exploiting, extending, and integrating recent advances by our team in theory, modeling, nano-fabrication and platform development. A combined theoretical and experimental platform has been developed to understand the interplay between water flux and ion rejection in precisely-defined nano-channels. Our innovative functionalization of solid state nanoporous membranes with organic protein-mimetic polymers achieves 3-fold improvement in water flux over commercial RO membranes and has yielded a pending patent and industrial interest. Our success has generated useful contributions to energy storage, nanoscience, and membrane technology research and development important for national health and prosperity.

Rempe, Susan B.

2010-09-01T23:59:59.000Z

251

The Foundations of Applied Mathematics  

E-Print Network [OSTI]

The Foundations of Applied Mathematics John Baez Category-Theoretic Foundations of Mathematics Workshop May 5, 2013 #12;We often picture the flow of information about mathematics a bit like this: SCIENCE AND ENGINEERING APPLIED MATHEMATICS PURE MATHEMATICS FOUNDATIONS OF MATHEMATICS #12;Of course

Baez, John

252

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing that might guide management decisions. We tested whether ideas from landscape ecology (local vs. landscape-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than

Holl, Karen

253

Improved filtration membranes through self-organizing amphiphilic comb copolymers  

E-Print Network [OSTI]

The operating cost of a membrane filtration system is generally determined by two major factors: the permeability of the membrane to water, and the lifetime of the membrane. Both of these are strongly affected by the ...

Asatekin Alexiou, Ayse

2009-01-01T23:59:59.000Z

254

Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness  

E-Print Network [OSTI]

The adhesion of cells is mediated by membrane receptors that bind to complementary ligands in apposing cell membranes. It is generally assumed that the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane adhesion zones is slower than the diffusion of unbound receptors and ligands. We find that this slowing down is not only caused by the larger size of the bound receptor-ligand complexes, but also by thermal fluctuations of the membrane shape. We model two adhering membranes as elastic sheets pinned together by receptor-ligand bonds and study the diffusion of the bonds using Monte Carlo simulations. In our model, the fluctuations reduce the bond diffusion constant in planar membranes by a factor close to 2 in the biologically relevant regime of small bond concentrations.

H. Krobath; G. J. Schuetz; R. Lipowsky; T. R. Weikl

2007-03-19T23:59:59.000Z

255

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Presentation...

256

Model Compound Studies of Fuel Cell Membrane Degradation  

Broader source: Energy.gov [DOE]

Presentation on Model Compound Studies of Fuel Cell Membrane Degradation to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

257

Membrane Performance and Durability Overview for Automotive Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by...

258

Novel Application of Air Separation Membranes Reduces NOx Emissions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted...

259

advanced membrane filtration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages...

260

acinar cell membranes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on progress (more) Alaefour, Ibrahim 2012-01-01 26 Durable, Low-cost, Improved Fuel Cell Membranes Renewable Energy Websites Summary: .5 KPaabs Membrane Conductivity at...

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Temperature Polymer Membrane Development at Argonne National...  

Broader source: Energy.gov (indexed) [DOE]

Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high temperature polymer...

262

Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research...

263

Membranes and MEAs for Dry Hot Operating Conditions  

Broader source: Energy.gov (indexed) [DOE]

of this collaborative effort are to develop new proton exchange membranes (PEM's) for fuel cells, integrate them into membrane electrode assemblies (MEA's), and demonstrate in...

264

Folding amphipathic helices into membranes: Amphiphilicity trumps hydrophobicity  

E-Print Network [OSTI]

C. (1999). Membrane protein folding and stability: PhysicalA. S. & Hristova, K. (1998). Protein folding in membranes:Mutational analysis of protein folding and stability. In

Fernández-Vidal, Mónica; Jayasinghe, Sajith; Ladokhin, Alexey S; White, Stephen H

2007-01-01T23:59:59.000Z

265

Membrane Stresses Induced by Overproduction of Free Fatty Acids...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Abstract:...

266

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

267

Development of Advanced High Temperature Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

268

absorption membrane reactors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diagram and critical exponents for phantom membranes and discuss the generalization to self-avoiding membranes. M. Bowick; S. Catterall; S. Warner; G. Thorleifsson; M. Falcioni...

269

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

270

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

271

High Temperature Polymer Membrane Development at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

272

Alternate Fuel Cell Membranes at the University of Southern Mississipp...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternate Fuel Cell Membranes at the University of Southern Mississippi Alternate Fuel Cell Membranes at the University of Southern Mississippi April 16, 2013 - 12:00am Addthis...

273

Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry. Membrane-Based Emitter for Coupling Microfluidics with...

274

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

275

Sustainable FACULTY OF APPLIED SCIENCE  

E-Print Network [OSTI]

Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

Michelson, David G.

276

temperature heat pumps applied to  

E-Print Network [OSTI]

Very high- temperature heat pumps applied to energy efficiency in industry Application June 21th 2012 Energy efficiency : A contribution to environmental protection Kyoto Copenhage Emission, plastics Partnership : EDF R&D Bil

Oak Ridge National Laboratory

277

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network [OSTI]

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

278

Modeling applied to problem solving  

E-Print Network [OSTI]

We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

Pawl, Andrew

279

Ceramic membranes with enhanced thermal stability  

DOE Patents [OSTI]

A method of creating a ceramic membrane with enhanced thermal stability is disclosed. The method involves combining quantities of a first metal alkoxide with a second metal, the quantities selected to give a preselected metal ratio in the resultant membrane. A limited amount of water and acid is added to the combination and stirred until a colloidal suspension is formed. The colloid is dried to a gel, and the gel is fired at a temperature greater than approximately 400.degree. C. The porosity and surface area of ceramic membranes formed by this method are not adversely affected by this high temperature firing.

Anderson, Marc A. (Madison, WI); Xu, Qunyin (Plainsboro, NJ); Bischoff, Brian L. (Madison, WI)

1993-01-01T23:59:59.000Z

280

Performance of ceramic membrane filters  

SciTech Connect (OSTI)

CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

Ahluwalia, R.K.; Im, K.H.; Geyer, H.K. [Argonne National Lab., IL (United States); Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Anisotropic membranes for gas separation  

DOE Patents [OSTI]

A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

Gollan, Arye Z. (Newton, MA)

1987-01-01T23:59:59.000Z

282

Anisotropic membranes for gas separation  

DOE Patents [OSTI]

A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

Gollan, A.Z.

1987-07-21T23:59:59.000Z

283

Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

None

2010-03-01T23:59:59.000Z

284

Diffuse charge effects in fuel cell membranes  

E-Print Network [OSTI]

It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, ...

Biesheuvel, P. M.

285

Development of active-transport membrane devices  

SciTech Connect (OSTI)

This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

Laciak, D.V.

1994-07-01T23:59:59.000Z

286

IFITM Proteins Restrict Viral Membrane Hemifusion  

E-Print Network [OSTI]

an intermediate of fusion, referred to as a cold arrestedcold arrested state (CAS), PLOS Pathogens | www.plospathogens.org January 2013 | Volume 9 | Issue 1 | e1003124 Restriction of Viral Membrane Fusion

2013-01-01T23:59:59.000Z

287

Fuel cell electrolyte membrane with acidic polymer  

DOE Patents [OSTI]

An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2009-04-14T23:59:59.000Z

288

New Membranes for PEM Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Membranes for PEM Fuel Cells Steve Hamrock 3M Fuel Cell Components Program 3M Center 201-1W-28 St Paul MN 55144 USA HTMWG Meeting 52705 This research was supported in part by the...

289

Small membranes under negative surface tension  

E-Print Network [OSTI]

We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes - (i) a weak negative tension regime characterized by stretching-dominated elasticity, and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [Phys, Rev. Lett. {\\bf 64}, 2094 (1990)]. However, while in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension ...

Avital, Yotam Y

2015-01-01T23:59:59.000Z

290

Catalytic carbon membranes for hydrogen production  

SciTech Connect (OSTI)

Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

Damle, A.S.; Gangwal, S.K.

1992-01-01T23:59:59.000Z

291

Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes  

DOE Patents [OSTI]

A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

Cabasso, Israel (131 Buckingham Ave., Syracuse, NY 13210); Korngold, Emmanuel (P.O. Box 1025, Beer-Sheva 84110, IL)

1988-01-01T23:59:59.000Z

292

Dehydration processes using membranes with hydrophobic coating  

DOE Patents [OSTI]

Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

2013-07-30T23:59:59.000Z

293

New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids  

Broader source: Energy.gov [DOE]

"Summary of Colorado School of Mines heteropolyacid research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 "

294

E-Print Network 3.0 - affinity membrane membrane Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anne 2008 N d'ordre 897 Summary: 2009 12;Abstract A competing membrane process to Reverse Osmosis (RO) for brackish water desalination... for brackish water desalination is...

295

Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium ion selective membrane electrodes  

E-Print Network [OSTI]

Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium and naofibers, which has potential use in protection of agricultural products from hailing. We developed

Singh, Jayant K.

296

Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks  

E-Print Network [OSTI]

,3,4 Selective transport of ions through the membranes creates an electric potential across pairs of AEMs by changing the membrane polymer chemistry and/or membrane form factor.9-13 The ion transport properties on either side of the membrane on ion transport properties must be studied to improve our under- standing

297

Supporting Information for: Salt concentration differences alter membrane  

E-Print Network [OSTI]

). The membrane area available for ion transport was 11.4 cm2 . Platinum mesh electrodes that spanned the crossS1 Supporting Information for: Salt concentration differences alter membrane resistance in reverse-814-867-1847 #12;S2 Membrane resistance measurement Without a concentration difference Membrane resistance

298

Membrane Proteins DOI: 10.1002/anie.201107343  

E-Print Network [OSTI]

is hampered by a lack of high-throughput methods for their study. Membrane proteins remain such challengingMembrane Proteins DOI: 10.1002/anie.201107343 Quantification of Membrane Protein Inhibition. Wallace* Despite the importance of membrane proteins as drug targets the discovery of new compounds

Wallace, Mark

299

Arylene-fluorinated-sulfonimide ionomers and membranes for fuel cells  

DOE Patents [OSTI]

The preparation of aromatic sulfonimide polymers useful as membranes in electrochemical cells is described.

Teasley, Mark F. (Landenberg, PA)

2011-11-15T23:59:59.000Z

300

Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage  

E-Print Network [OSTI]

Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current--voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow...

Mao, Mao; Hu, Guohui

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Supported Molten Metal Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 şC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and permeation process in these molten metal membranes. For this, a comprehensive microkinetic model was developed for hydrogen permeation in dense metal membranes, and tested against data for Pd membrane over a broad range of temperatures.3 It is planned to obtain theoretical and experimental estimates of the parameters to corroborate the model against mental results for SMMM.

Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

2013-09-30T23:59:59.000Z

302

Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells  

SciTech Connect (OSTI)

Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech? conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

Record, K.A.; Haley, B.T.; Turner, J.

2006-01-01T23:59:59.000Z

303

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect (OSTI)

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

304

apply skills & experience build skills  

E-Print Network [OSTI]

senior apply skills & experience junior build skills sophomore research & execute freshman explore options1 2 3 4 s u p p o r t4-year career action plan parent about the center for career development Remind your student that it is never too soon or too late to seek an internship or summer job. build

Alvarez, Pedro J.

305

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING  

E-Print Network [OSTI]

APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

Rogina, Mladen

306

California Energy Commission Apply Today!  

E-Print Network [OSTI]

of Flyer Public Programs Office (916) 654-4147 pubprog@energy.state.ca.us June 2006 #12;DON'T MISS electricity usage by about 30 percent. Electricity Savings: 2,262,207 kWh Demand Savings: 575 kW EnergyCalifornia Energy Commission Apply Today! "The college is using cutting edge on- site generation

307

APPLIED THERMAL ENGINEERING Manuscript Draft  

E-Print Network [OSTI]

the heat pump from the grid during the two hours of electrical peak power · Design of a new heat exchangerAPPLIED THERMAL ENGINEERING Manuscript Draft TITLE: Experimental assessment of a PCM to air heat This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating

Paris-Sud XI, Université de

308

Journal of Applied Ecology 2004  

E-Print Network [OSTI]

herbivores provide goods and income to rural communities, have major impacts on land use and habitats-Bianchet REVIEW The management of wild large herbivores to meet economic, conservation and environmental is applied to their management across the globe. To be effective, however, management has to be science

Festa-Bianchet, Marco

309

Journal of Applied Ecology 2006  

E-Print Network [OSTI]

Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

Thomas, Len

310

Applied Sustainability Political Science 319  

E-Print Network [OSTI]

1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

Young, Paul Thomas

311

Graphene as a Prototype Crystalline Membrane  

E-Print Network [OSTI]

The understanding of the structural and thermal properties of membranes, low-dimensional flexible systems in a space of higher dimension, is pursued in many fields from string theory to chemistry and biology. The case of a two-dimensional (2D) membrane in three dimensions is the relevant one for dealing with real materials. Traditionally, membranes are primarily discussed in the context of biological membranes and soft matter in general. The complexity of these systems hindered a realistic description of their interatomic structures based on a truly microscopic approach. Therefore, theories of membranes were developed mostly within phenomenological models. From the point of view of statistical mechanics, membranes at finite temperature are systems governed by interacting long-range fluctuations. Graphene, the first truly two-dimensional system consisting of just one layer of carbon atoms, provides a model system for the development of a microscopic description of membranes. In this Account, we review key results in the microscopic theory of structural and thermal properties of graphene and compare them with the predictions of phenomenological theories. The two approaches are in good agreement for the various scaling properties of correlation functions of atomic displacements. However, some other properties, such as the temperature dependence of the bending rigidity, cannot be understood based on phenomenological approaches. We also consider graphene at very high temperature and compare the results with existing models for two-dimensional melting. The melting of graphene presents a different scenario, and we describe that process as the decomposition of the graphene layer into entangled carbon chains.

Mikhail I. Katsnelson; Annalisa Fasolino

2013-02-07T23:59:59.000Z

312

A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment  

E-Print Network [OSTI]

Biocathode for Wastewater Treatment Lilian Malaeb,,§ Krishna P. Katuri,,§ Bruce E. Logan, Husnul Maab, S. P-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good

313

CX-010574: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

314

CX-009419: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

315

CX-009418: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

316

CX-009420: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

317

Novel, Ceramic Membrane System For Hydrogen Separation  

SciTech Connect (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

318

Thermomechanical characterization of a membrane deformable mirror  

SciTech Connect (OSTI)

A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C.

Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

2008-10-10T23:59:59.000Z

319

Constant pressure high throughput membrane permeation testing system  

DOE Patents [OSTI]

The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

2014-09-02T23:59:59.000Z

320

System performance analysis of stretched membrane heliostats  

SciTech Connect (OSTI)

The optical performance of both focused and unfocused stretched membrane heliostats was examined in the context of the overall cost and performance of central receiver systems. The sensitivity of optical performance to variations in design parameters such as the system size (capacity), delivery temperature, heliostat size, and heliostat surface quality was also examined. The results support the conclusion that focused stretched membrane systems provide an economically attractive alternative to current glass/metal heliostats over essentially the entire range of design parameters studied. In addition, unfocused stretched membrane heliostats may be attractive for a somewhat more limited range of applications, which would include the larger plant sizes (e.g., 450 MW) and lower delivery temperatures (e.g., 450/sup 0/C), or situations in which the heliostat size could economically be reduced.

Anderson, J.V.; Murphy, L.M.; Short, W.; Wendelin, T.

1985-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Effective free energy for pinned membranes  

E-Print Network [OSTI]

We consider membranes adhered through specific receptor-ligand bonds. Thermal undulations of the membrane induce effective interactions between adhesion sites. We derive an upper bound to the free energy that is independent of interaction details. To lowest order in a systematic expansion we obtain two-body interactions which allow to map the free energy onto a lattice gas with constant density. The induced interactions alone are not strong enough to lead to a condensation of individual adhesion sites. A measure of the thermal roughness is shown to depend on the inverse square root of the density of adhesion sites, which is in good agreement with previous computer simulations.

Thomas Speck

2011-04-21T23:59:59.000Z

322

Metal oxide membranes for gas separation  

DOE Patents [OSTI]

A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

Anderson, M.A.; Webster, E.T.; Xu, Q.

1994-08-30T23:59:59.000Z

323

Metal oxide membranes for gas separation  

DOE Patents [OSTI]

A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

Anderson, Marc A. (Madison, WI); Webster, Elizabeth T. (Madison, WI); Xu, Qunyin (Plainsboro, NJ)

1994-01-01T23:59:59.000Z

324

Novel Metallic Membranes for Hydrogen Separation  

SciTech Connect (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

325

Membrane separation advances in FE hydrogen program  

SciTech Connect (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

326

Quantum Sticking of Atoms on Membranes  

E-Print Network [OSTI]

A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

Dennis P. Clougherty

2014-12-05T23:59:59.000Z

327

Hydrogen separation membrane on a porous substrate  

DOE Patents [OSTI]

A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

2011-06-14T23:59:59.000Z

328

High permeance sulfur tolerant Pd/Cu alloy membranes  

DOE Patents [OSTI]

A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

Ma, Yi Hua; Pomerantz, Natalie

2014-02-18T23:59:59.000Z

329

Control of size and charge selectivity in amphiphilic graft copolymer nanofiltration membranes  

E-Print Network [OSTI]

The throughput and efficiency of membrane separations make polymer filtration membranes an important resource for the pharmaceutical, food and wastewater treatment industries. Nanofiltration (NF) membranes fill an important ...

Lovell, Nathan Gary

2010-01-01T23:59:59.000Z

330

Membrane porters of ATP-binding cassette transport systems are polyphyletic  

E-Print Network [OSTI]

in Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transport

Wang, Bin

2010-01-01T23:59:59.000Z

331

E-Print Network 3.0 - asymmetric ultrafiltration membrane Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membranes 4, composite membrane supports 4, bioreactors 5, and screen-printing media 6... , K.L. Smith, Asymmetric membrane tablet coating for osmotic drug- delivery,...

332

Applying to Teacher Education Program at Purdue  

E-Print Network [OSTI]

Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

David Drasin

2012-12-02T23:59:59.000Z

333

Fuel cell electrolyte membrane with basic polymer  

DOE Patents [OSTI]

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

2012-12-04T23:59:59.000Z

334

Fuel cell electrolyte membrane with basic polymer  

DOE Patents [OSTI]

The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

2010-11-23T23:59:59.000Z

335

Nanosecond Lipid Dynamics in Membranes Containing Cholesterol  

SciTech Connect (OSTI)

Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered domains of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476 4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the longwavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ~220 A. Moreover, from the relaxation rate of the collective lipid diffusion of lipid lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.

Armstrong, Clare L [McMaster University] [McMaster University; Haeussler, Wolfgang [FRM-II, Technische Universitaet Munchen] [FRM-II, Technische Universitaet Munchen; Seydel, Tilo [Institut Laue-Langevin (ILL)] [Institut Laue-Langevin (ILL); Katsaras, John [ORNL] [ORNL; Rheinstadter, Maikel C [McMaster University] [McMaster University

2014-01-01T23:59:59.000Z

336

Single, stretched membrane, structural module experiments  

SciTech Connect (OSTI)

This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

Wood, R.L.

1986-02-01T23:59:59.000Z

337

DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL  

E-Print Network [OSTI]

DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL OVERVIEW Current/Completed Plug Power reformer from GE · Use of GenCore to investigate effects of fuel quality and dynamic changes in fuel to garner SCAQMD funding for fuel cell testing GenCore system is sensitive to diluents · As built design

Mease, Kenneth D.

338

Membrane disruption by optically controlled microbubble cavitation  

E-Print Network [OSTI]

LETTERS Membrane disruption by optically controlled microbubble cavitation PAUL PRENTICE1 , ALFRED October 2005; doi:10.1038/nphys148 I n fluids, pressure-driven cavitation bubbles have a nonlinear underpinning phenomena such as sonoluminescence1 and plasma formation2 . If cavitation occurs near a rigid

Loss, Daniel

339

Molecular sieving silica membrane fabrication process  

DOE Patents [OSTI]

A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

Raman, Narayan K. (Monroeville, PA); Brinker, Charles Jeffrey (Albuquerque, NM)

1999-01-01T23:59:59.000Z

340

Testing the membrane paradigm with holography  

E-Print Network [OSTI]

One version of the membrane paradigm states that as far as outside observers are concerned, black holes can be replaced by a dissipative membrane with simple physical properties located at the stretched horizon. We demonstrate that such a membrane paradigm is incomplete in several aspects. We argue that it generically fails to capture the massive quasinormal modes, unless we replace the stretched horizon by the exact event horizon, and illustrate this with a scalar field in a BTZ black hole background. We also consider as a concrete example linearized metric perturbations of a five-dimensional AdS-Schwarzschild black brane and show that a spurious excitation appears in the long-wavelength response that is only removed from the spectrum when the membrane paradigm is replaced by ingoing boundary conditions at the event horizon. We interpret this excitation in terms of an additional Goldstone boson that appears due to symmetry breaking by the classical solution ending on the stretched horizon rather than the event horizon.

Jan de Boer; Michal P. Heller; Natalia Pinzani-Fokeeva

2015-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

3D assembly and actuation of nanopatterned membranes using nanomagnets  

E-Print Network [OSTI]

A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

Nichol, Anthony John

2011-01-01T23:59:59.000Z

342

The Path a Proton Takes Through a Fuel Cell Membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Path a Proton Takes Through a Fuel Cell Membrane The Path a Proton Takes Through a Fuel Cell Membrane October 11, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Franklin,...

343

High temperature ceramic membrane for CO? reuse and syngas production  

E-Print Network [OSTI]

In recent years, membrane based technologies have attracted much attention thanks to their simplicity in reactor design. The concept proposed is to use mixed ionic-electronic conducting membrane (MIEC) in CO2 reuse and ...

Chang, Le, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

344

acid liquid membrane: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bulk solutions of polyelectrolyte bounded by semipermeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the...

345

Gas Separation Membrane Use in the Refinery and Petrochemical Industries  

E-Print Network [OSTI]

Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

Vari, J.

346

Integration of Non-Traditional Membranes into MEAs  

Broader source: Energy.gov (indexed) [DOE]

MEAS was possible when thinner membranes with lower degree of grafting were used" Fuel Cells, (2005) 5, 317. * Bae et al., "The MEA composed of SPS-g-PP composite membrane...

347

Quantitative analysis of cell surface membrane proteins using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD)...

348

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

349

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies  

SciTech Connect (OSTI)

Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

2013-09-20T23:59:59.000Z

350

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

351

Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water  

SciTech Connect (OSTI)

An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

2012-05-15T23:59:59.000Z

352

Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes  

DOE Patents [OSTI]

A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

2003-06-03T23:59:59.000Z

353

Strategy for Aging Tests of Fuel Cell Membranes (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C.

354

Integration of Non-Traditional Membranes into MEAs  

Broader source: Energy.gov [DOE]

Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

355

Processing-Performance Relationships for Perfluorosulfonate Ionomer Membrane  

Broader source: Energy.gov [DOE]

Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

356

An Industrial Wish List for Membrane-Based Separations  

Broader source: Energy.gov [DOE]

Presentation by Shawn Feist (The Dow Chemical Company) for the Membrane Technology Workshop held July 24, 2012

357

A Role for the Membrane in Regulating Chlamydomonas Flagellar Length  

E-Print Network [OSTI]

to the ‘‘old’’ flagellar proteins? Axonemal components can be recycled to form new flagella [55] and some cilia may recycle membrane by endocytosis [42]. However, algal and mammalian cilia also shed membrane from their tips [1], [44]–[46] and data reported here... is shed from flagellar tips, the lack of membrane resupply may stimulate the flagellar disassembly reported here. Inhibition of secretion should affect both protein and membrane delivery to flagella. CX, a protein synthesis inhibitor, inhibits protein...

Dentler, William L., Jr

2013-01-24T23:59:59.000Z

358

Procedure for Performing In-Plane Membrane Conductivity Testing  

Broader source: Energy.gov [DOE]

Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

359

2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells  

SciTech Connect (OSTI)

In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

Wheeler, D.; Sverdrup, G.

2008-03-01T23:59:59.000Z

360

Array of planar membrane modules for producing hydrogen  

DOE Patents [OSTI]

A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.

Vencill, Thomas R. (Albuquerque, NM); Chellappa, Anand S. (Albuquerque, NM); Rathod, Shailendra B. (Hillsboro, OR)

2012-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nitrogen removal from natural gas using two types of membranes  

DOE Patents [OSTI]

A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

2003-10-07T23:59:59.000Z

362

Advanced membrane devices. Interim report for October 1996--September 1997  

SciTech Connect (OSTI)

Under this Cooperative Agreement, Air Products and Chemicals, Inc. has continued to investigate and develop improved membrane technology for removal of carbon dioxide from natural gas. The task schedule for this reporting period included a detailed assessment of the market opportunity (Chapter 2), continued development and evaluation of membranes and membrane polymers (Chapter 3) and a detailed economic analysis comparing the potential of Air Products membranes to that of established acid gas removal processes (Chapter 4).

Laciak, D.V.; Langsam, M.; Lewnard, J.J.; Reichart, G.C.

1997-12-31T23:59:59.000Z

363

Membrane Durability in PEM Fuel Cells: Chemical Degradation  

Broader source: Energy.gov [DOE]

Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

364

Polymer-electrolyte membrane, electrochemical fuel cell, and related method  

DOE Patents [OSTI]

A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

2014-12-09T23:59:59.000Z

365

Agenda for the High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

366

High Temperature Membrane Working Group Meeting, May 14, 2007  

Broader source: Energy.gov [DOE]

This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

367

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

E-Print Network [OSTI]

Materials Modeling in Pem Fuel Cells, A  Combination Model Ionomer Membranes for Pem?Fuel Cells," Electrochimica Acta, 

Kienitz, Brian

2010-01-01T23:59:59.000Z

368

Membrane for hydrogen recovery from streams containing hydrogen sulfide  

DOE Patents [OSTI]

A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

Agarwal, Pradeep K.

2007-01-16T23:59:59.000Z

369

Economical Large Scale Advanced Membrane and Sorbent Strategies  

Broader source: Energy.gov [DOE]

Presentation by William Koros (Georgia Institute of Technology) for the Membrane Technology Workshop held July 24, 2012

370

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4} separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 molxm-2xs-1xPa-1, and the H{sub 2}/CO{sub 2} separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H{sub 2} with high selectivity; and it was thermally stable. However, silylation decreased H{sub 2} permeance more than one order of magnitude. The H{sub 2} separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Increasing the membrane feed pressure also increased the H{sub 2} flux and the H{sub 2} mole fraction in the permeate stream for both mixtures. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO{sub 2} adsorption inhibited H{sub 2} adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO{sub 2}/H{sub 2} separation selectivities of a SAPO-34 membrane were greater than 100 with CO{sub 2} permeances of about 3 x 10-8 mol m-2 s-1 Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H{sub 2} recompression because H{sub 2} remained in the retentate stream at a higher pressure. The CO{sub 2}/H{sub 2} separation selectivity exhibited a maximum with CO{sub 2} feed concentration possibly caused by a maximum in the CO{sub 2}/H{sub 2} sorption selectivity with increased CO{sub 2} partial pressure. The SAPO-34 membrane separated H{sub 2} from CH{sub 4} because CH{sub 4} is close to the SAPO-34 pore size so its diffusivity is much lower than the H{sup 2} diffusivity. The H{sub 2}/CH{sub 4} separation selectivity was almost independent of temperature, pressure, and feed composition. Silylation on SAPO-34 membranes increased H{sup 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} selectivities but did not increase H{sub 2}/CO{sub 2} and H{sub 2}/N{sub 2} selectivities because silylation only blocked defects in SAPO-34 membranes. Hydr

Mei Hong; Richard D. Noble; John L. Falconer

2006-09-24T23:59:59.000Z

371

Chlorine-resistant composite membranes with high organic rejection  

DOE Patents [OSTI]

A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

McCray, Scott B. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Barss, Robert P. (Bend, OR); Nelson, Leslie D. (The Dalles, OR)

1996-01-01T23:59:59.000Z

372

Ultrathin-skinned asymmetric membranes by immiscible solvents treatment  

DOE Patents [OSTI]

Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR)

1989-01-01T23:59:59.000Z

373

Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells by Roongrojana of Proton Exchange Membrane Fuel Cells by Roongrojana Songprakorp BSc, Prince of Songkhla University to the modeling and under- standing of the dynamic behavior of proton exchange membrane fuel cells (PEMFCs

Victoria, University of

374

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells  

E-Print Network [OSTI]

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West- 2H2O e- e- e- e- e- H+ H+ H+ Membrane + Schematic of a PEMFC Operation #12;PFR PEM Fuel Cell Plug for membrane Two-phase flow in channels #12;CSTR PEM Fuel Cell Continuous Stirred-Tank Reactor (CSTR) "Perfect

Petta, Jason

375

Characterization of a plasma membrane zinc transporter in rat brain  

E-Print Network [OSTI]

Ireland Ltd. Keywords: Ion transport; Membrane vesicles; Excitotoxicity; Zinc homeostasis; TransitionCharacterization of a plasma membrane zinc transporter in rat brain Robert A. Colvin* Department transport in the brain. This report provides convincing evidence of a zinc transporter in plasma membrane

376

Membrane Transport Chloride Transport Across Vesicle and Cell  

E-Print Network [OSTI]

Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects the formation of an ion pair.[4a­g] Anion transport by purely electroneutral systems is still quite rare.[4j

Smith, Bradley D.

377

Futile cycling at the plasma membrane: a hallmark of  

E-Print Network [OSTI]

. Transport systems catalyzing ion influx across the plasma membrane of root cells fall into two broadFutile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport Dev T. Britto-affinity transport systems in the plasma membranes of root cells. In this Opinion article, we illustrate that for six

Britto, Dev T.

378

Topical Review Fluctuations and Fractal Noise in Biological Membranes  

E-Print Network [OSTI]

and transport of ions and molecules across biological membranes. We know that ion transport through mem- branes in electrical properties associated with cell membrane ion transport. Key words: Brownian motion -- Cell membrane elec- trical properties -- Fractals -- Gaussian noise -- Ion transport -- Nonlinear dynamics

379

THE VITELLINE MEMBRANE OF THE UNFERTILIZED HEN'S EGG  

E-Print Network [OSTI]

membrane is charged and asymmetrical. It's directional specificity to ion transport and accompanying volumeTHE VITELLINE MEMBRANE OF THE UNFERTILIZED HEN'S EGG : ELECTROLYTE AND WATER TRANSPORT T. RYMEN J more than just the result of the membrane's ion exchange behaviour and that it may involve an enzymatic

Paris-Sud XI, Université de

380

Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1  

E-Print Network [OSTI]

1 Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1 , Jacek Mikisz2 , and Stanislaw various models of ion transport through cell membrane channels. Recent experimental data shows that sizes for the life of a cell. In particular, a fundamental phenomenon is a transport of ions through cell membranes

Miekisz, Jacek

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Membrane processes relevant for the polymer electrolyte fuel cell  

E-Print Network [OSTI]

Membrane processes relevant for the polymer electrolyte fuel cell Aleksander Kolstad Chemical. The important aspects concerning the Polymer Electrolyte Membrane Fuel Cell, more commonly known as Proton Exchange Membrane Fuel Cell (PEMFC), have been studied in two separate parts. Part 1 of the thesis

Kjelstrup, Signe

382

Self-assembled lipid and membrane protein polyhedral nanoparticles  

E-Print Network [OSTI]

Self-assembled lipid and membrane protein polyhedral nanoparticles Tamara Bastaa,1 , Hsin-Jui Wub,1 for review January 28, 2012) We demonstrate that membrane proteins and phospholipids can self-assemble for the self-assembly of lipids and membrane proteins into closed polyhedral structures that can potentially

Stowell, Michael

383

Cellular mechanisms of membrane protein folding William R Skach  

E-Print Network [OSTI]

Cellular mechanisms of membrane protein folding William R Skach The membrane protein­folding. This Perspective will focus on emerging evidence that the RTC functions as a protein-folding machine that restricts. The process of polytopic (multispanning) membrane protein folding can be viewed as a series of sequential

Cai, Long

384

Microfluidic Generation of Lipidic Mesophases for Membrane Protein Crystallization  

E-Print Network [OSTI]

Microfluidic Generation of Lipidic Mesophases for Membrane Protein Crystallization Sarah L. Perry Mathews AVenue, Urbana, Illinois 61801 ReceiVed March 11, 2009 ABSTRACT: We report on a microfluidic conditions of membrane proteins from a membrane-like phase in sub-20 nL volumes. This integrated microfluidic

Kenis, Paul J. A.

385

Ultrathin-skinned asymmetric membranes by immiscible solvents treatment  

DOE Patents [OSTI]

Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

Friesen, D.T.; Babcock, W.C.

1989-11-28T23:59:59.000Z

386

Measurement of Water Transport Properties Through Membrane-Electrode Assemblies  

E-Print Network [OSTI]

a similar apparatus with Pd/H electrodes and obtained EOD equal to 2.5 and 0.9 at 30°C for a fully hydratedMeasurement of Water Transport Properties Through Membrane-Electrode Assemblies I. Membranes of Ag/AgCl electrodes to derive a constant current across a membrane in contact on both sides with a 0

387

Four-port gas separation membrane module assembly  

DOE Patents [OSTI]

A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

Wynn, Nicholas P. (Redwood City, CA); Fulton, Donald A. (Fairfield, CA); Lokhandwala, Kaaeid A. (Fremont, CA); Kaschemekat, Jurgen (Campbell, CA)

2010-07-20T23:59:59.000Z

388

Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes  

DOE Patents [OSTI]

An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

Hibbs, Michael (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM); Norman, Kirsten (Albuquerque, NM); Hickner, Michael A. (State College, PA)

2010-10-19T23:59:59.000Z

389

Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane  

DOE Patents [OSTI]

An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

Zettl, Alexander K.; Meyer, Jannik Christian

2013-04-02T23:59:59.000Z

390

Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator  

SciTech Connect (OSTI)

As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not only the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.

Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E. [Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

2014-03-28T23:59:59.000Z

391

FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER  

SciTech Connect (OSTI)

This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced at SNL and Clemson. These membranes also exhibit good chemical stability and conductivity in concentrated sulfuric acid solutions and, thus, serve as promising candidates for the SDE. Therefore, we recommend further testing of these membranes including electrolyzer testing to determine if the reduced SO{sub 2} transport eliminates the formation of sulfur-containing films at the membrane/cathode interface. SO{sub 2} transport measurements in the custom built characterization cell identified experimental limitations of the original design. During the last quarter of FY08 we redesigned and fabricated a new testing cell to overcome the previous limitations. This cell also offers the capability to test membranes under polarized conditions as well as test the performance of MEAs under selected electrolyzer conditions.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-09-01T23:59:59.000Z

392

Electrochemical Membrane for Carbon Dioxide Separation and Power Generation  

SciTech Connect (OSTI)

uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

2012-12-28T23:59:59.000Z

393

Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane  

E-Print Network [OSTI]

Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

2015-01-01T23:59:59.000Z

394

EFFECT OF COMPRESSION ON CONDUCTIVITY AND MORPHOLOGY OF PFSA MEMBRANES  

SciTech Connect (OSTI)

Polymer-Electrolyte-Fuel-Cells (PEFCs) are promising candidates for powering vehicles and portable devices using renewable-energy sources. The core of a PEFC is the solid electrolyte membrane that conducts protons from anode to cathode, where water is generated. The conductivity of the membrane, however, depends on the water content of the membrane, which is strongly related to the cell operating conditions. The membrane and other cell components are typically compressed to minimize various contact resistances. Moreover, the swelling of a somewhat constrained membrane in the cell due to the humidity changes generates additional compressive stresses in the membrane. These external stresses are balanced by the internal swelling pressure of the membrane and change the swelling equilibrium. It was shown using a fuel-cell setup that compression could reduce the water content of the membrane or alter the cell resistance. Nevertheless, the effect of compression on the membrane’s transport properties is yet to be understood, as well as its implications in the structure-functions relationships of the membrane. We previously studied, both experimentally and theoretically, how compression affects the water content of the membrane.6 However, more information is required the gain a fundamental understanding of the compression effects. In this talk, we present the results of our investigation on the in-situ conductivity of the membrane as a function of humidity and cell compression pressure. Moreover, to better understand the morphology of compressed membrane, small-angle X-ray-scattering (SAXS) experiments were performed. The conductivity data is then analyzed by investigating the size of the water domains of the compressed membrane determined from the SAXS measurements.

Kusoglu, Ahmet; Weber, Adam; Jiang, Ruichin; Gittleman, Craig

2011-07-20T23:59:59.000Z

395

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

SciTech Connect (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

396

Novel Membranes and Processes for Oxygen Enrichment  

SciTech Connect (OSTI)

The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

Lin, Haiqing

2011-11-15T23:59:59.000Z

397

Ultrafiltration membrane performance when processing oilseed protein extracts  

E-Print Network [OSTI]

feed pressure and 654C feed temperature. The UCARSEP ABR membrane was manufactured by Union Carbide Inc. , Tarrytown, NY. The basic membrane consists of a 0. 24-inch ID tube, 48-inches long. The system, as tested consisted of two tubes connected... or peanut protein isolation by UF and RO membranes 2. Simplified flow diagram for cottonseed protein isolation by UF and RO membranes 10 3. Effect of temperature on flux of the UCARSEP membrane when processing SP extract at 1. 8% solids 19 4. Effect...

Hensley, Donald Wayne

1979-01-01T23:59:59.000Z

398

Method of producing a carbon coated ceramic membrane and associated product  

DOE Patents [OSTI]

A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

1993-11-16T23:59:59.000Z

399

Method of producing a carbon coated ceramic membrane and associated product  

DOE Patents [OSTI]

A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

Liu, Paul K. T. (O'Hara Township, Allegheny County, PA); Gallaher, George R. (Oakmont Borough, PA); Wu, Jeffrey C. S. (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

400

Budding of domains in mixed bilayer membranes  

E-Print Network [OSTI]

We propose a model that accounts for budding behavior of domains in lipid bilayers, where each of the bilayer leaflets has a coupling between its local curvature and local lipid composition. The compositional asymmetry between the two monolayers leads to an overall spontaneous curvature. The membrane free-energy contains three contributions: bending energy, line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams which contain fully-budded, dimpled and flat states. In particular, for some range of membrane parameters, the phase diagrams exhibit a tricritical behavior as well as three-phase coexistence region. The global phase diagrams can be divided into three types and are analyzed in terms of the curvature-composition coupling parameter and domain size.

Jean Wolff; Shigeyuki Komura; David Andelman

2015-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mixed conducting membranes for syngas production  

DOE Patents [OSTI]

This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

2002-01-01T23:59:59.000Z

402

Nanostructured polymer membranes for proton conduction  

DOE Patents [OSTI]

Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

Balsara, Nitash Pervez; Park, Moon Jeong

2013-06-18T23:59:59.000Z

403

Fluctuation induced interactions between domains in membranes  

E-Print Network [OSTI]

We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity $\\kappa(\\phi)$ which varies with the average local lipid composition $\\phi$. We show, in the case where $\\kappa$ varies weakly with $\\phi$, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.

D. S. Dean; M. Manghi

2006-09-06T23:59:59.000Z

404

Hydrogen transport membranes for dehydrogenation reactions  

DOE Patents [OSTI]

A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

Balachandran; Uthamalingam (Hinsdale, IL)

2008-02-12T23:59:59.000Z

405

Fuel cell membranes and crossover prevention  

DOE Patents [OSTI]

A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

Masel, Richard I. (Champaign, IL); York, Cynthia A. (Newington, CT); Waszczuk, Piotr (White Bear Lake, MN); Wieckowski, Andrzej (Champaign, IL)

2009-08-04T23:59:59.000Z

406

Budding of domains in mixed bilayer membranes  

E-Print Network [OSTI]

We propose a model that accounts for budding behavior of domains in lipid bilayers, where each of the bilayer leaflets has a coupling between its local curvature and local lipid composition. The compositional asymmetry between the two monolayers leads to an overall spontaneous curvature. The membrane free-energy contains three contributions: bending energy, line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams which contain fully-budded, dimpled and flat states. In particular, for some range of membrane parameters, the phase diagrams exhibit a tricritical behavior as well as three-phase coexistence region. The global phase diagrams can be divided into three types and are analyzed in terms of the curvature-composition coupling parameter and domain size.

Jean Wolff; Shigeyuki Komura; David Andelman

2014-10-14T23:59:59.000Z

407

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

Mei Hong; Richard Noble; John Falconer

2007-09-24T23:59:59.000Z

408

Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation  

SciTech Connect (OSTI)

This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

J. Douglas Way; Paul M. Thoen

2005-08-31T23:59:59.000Z

409

Cellular membrane collapse by atmospheric-pressure plasma jet  

SciTech Connect (OSTI)

Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

2014-01-06T23:59:59.000Z

410

Tubular hydrogen permeable metal foil membrane and method of fabrication  

DOE Patents [OSTI]

A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

2006-04-04T23:59:59.000Z

411

Method for dialysis on microchips using thin porous polymer membrane  

DOE Patents [OSTI]

Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

2009-05-19T23:59:59.000Z

412

Dialysis on microchips using thin porous polymer membranes  

DOE Patents [OSTI]

Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

2007-09-04T23:59:59.000Z

413

The Dynamics of Platinum Precipitation in an Ion Exchange Membrane  

E-Print Network [OSTI]

Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper...

Burlatsky, S F; Atrazhev, V V; Dmitriev, D V; Kuzminyh, N Y; Erikhman, N S

2013-01-01T23:59:59.000Z

414

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

415

Perfluorooctanoic acid rigidifies a model lipid membrane  

E-Print Network [OSTI]

We report a combined dynamic light scattering and neutron spin-echo (NSE) study on vesicles composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine under the influence of varying amounts of perfluorooctanoic acid. We study local lipid bilayer undulations using NSE on time scales up to 200 ns. Similar to the effect evoked by cholesterol, we attribute the observed lipid bilayer stiffening to a condensing effect of the perfluorinated compound on the membrane.

Beate-Annette Bruening; Bela Farago

2014-05-05T23:59:59.000Z

416

Inorganic membranes: The new industrial revolution  

SciTech Connect (OSTI)

Separation systems are a vital part of most industrial processes. These systems account for a large fraction of the capital equipment used and the operating costs of industrial processes. Inorganic membranes have the potential for providing separation systems that can significantly reduce both the capital equipment and operating costs. These separation processes include waste management and recycle as well as the primary production of raw materials and products. The authors are rapidly learning to understand the effect of physical and chemical properties on the different transport mechanisms that occur in inorganic membranes. Such understanding can be expected to provide the information needed to design, engineer and manufacture inorganic membranes to produce very high separation factors for almost any separation function. To implement such a revolution, the authors need to organize a unique partnership between the national laboratories, and industry. The university can provide research to understand the materials and transport mechanisms that produce various separations, the national laboratories the development of an economical fabrication and manufacturing capability, and industry the practical understanding of the operational problems required to achieve inplementation.

Fain, D.E. [Martin Merietta Energy Systems, Oak Ridge, TN (United States)

1994-12-31T23:59:59.000Z

417

Solid state proton and electron mediating membrane and use in catalytic membrane reactors  

DOE Patents [OSTI]

This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.

White, J.H.; Schwartz, M.; Sammells, A.F.

1998-10-13T23:59:59.000Z

418

Bulk liquid membrane for the recovery of chromium(VI) from a hydrochloric acid medium using dicyclohexano-18-crown-6 as extractant-carrier  

SciTech Connect (OSTI)

The solvent extraction and transfer of chromic acid from hydrochloric acid medium through a bulk liquid membrane containing dicyclohexano-18-crown-6 (L) were studied. Extraction experiments pointed out that chromium(VI) was coextracted with the chloride ion which formed the complex ion pair L(H{sub 3}O{sup +})CrO{sub 3}Cl{sup {minus}} in the organic phase. The Donnan equilibrium isotherm based on the extraction, stripping, and CrO{sub 3}Cl{sup {minus}} hydrolysis equilibria allowed prediction of the performance of the semipermeable membrane to concentrate chlorochromic acid in the receiving phase. Transport experiments confirmed the ability of the liquid membrane to recover chlorochromic acid in pure water. The transport kinetics was modeled by using the two-film theory applied to the liquid membrane.

Zouhri, A. [Univ. Ibnou Zohr, Agadir (Morocco). Faulte de Sciences] [Univ. Ibnou Zohr, Agadir (Morocco). Faulte de Sciences; Ernst, B.; Burgard, M. [Ecole Europeenne de Chimie, Polymeres et Materiaux, Strasbourg (France)] [Ecole Europeenne de Chimie, Polymeres et Materiaux, Strasbourg (France)

1999-06-01T23:59:59.000Z

419

ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes  

SciTech Connect (OSTI)

Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

Miao, Y.C.; Liu, C.

2010-12-28T23:59:59.000Z

420

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor  

SciTech Connect (OSTI)

GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.

Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

2012-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY  

E-Print Network [OSTI]

SYLLABUS--GEOGRAPHY (GEOG)-455 APPLIED CLIMATOLOGY Spring 2006 Time: T-R 12:30-1:45 p.m. (BOL B95-455-001-lec@uwm.edu Textbooks: Thompson-Perry, Applied Climatology: principles and practice, (1997, graduate students will prepare a 10 page (2500 word minimum) paper on a project using applied climatology

Saldin, Dilano

422

SCHOOL OF APPLIED SCIENCES THE POSITION  

E-Print Network [OSTI]

DEAN SCHOOL OF APPLIED SCIENCES THE POSITION The University of Mississippi (www.olemiss.edu) seeks applications and nominations for the position of Dean of the School of Applied Sciences. The School of Applied Sciences is a free-standing academic unit whose Dean reports directly to the Vice

Tchumper, Gregory S.

423

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

SciTech Connect (OSTI)

It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

2009-11-19T23:59:59.000Z

424

CO2-selective, Hybrid Membranes by Silation of Alumina  

SciTech Connect (OSTI)

Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

Luebke, D.R.; Pennline, H.W.

2007-09-01T23:59:59.000Z

425

Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems.  

E-Print Network [OSTI]

??This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as… (more)

Miranda, Luis

2013-01-01T23:59:59.000Z

426

CX-003701: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

701: Categorical Exclusion Determination CX-003701: Categorical Exclusion Determination Bio-Diesel Cellulosic Ethanol Research Project CX(s) Applied: A9 Date: 09162010...

427

CX-007108: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-007108: Categorical Exclusion Determination Energy-Saving Opportunities in Water Treatment and Distribution CX(s) Applied: B3.6 Date: 10122011 Location(s): Grand...

428

CX-008797: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

797: Categorical Exclusion Determination CX-008797: Categorical Exclusion Determination Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06042012 Location(s): Tennessee...

429

CX-009105: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009105: Categorical Exclusion Determination 284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08292012 Location(s): South...

430

CX-001500: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001500: Categorical Exclusion Determination Forrest County Geothermal Energy Project CX(s) Applied: B3.1, A9 Date: 04012010 Location(s): Forrest County,...

431

CX-004073: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Energy Efficiency and Conservation Block Grant - Geothermal Energy Demonstration for Organic Produce Packing Facility CX(s) Applied: B5.1 Date: 10...

432

CX-004380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Geothermal Program - Forrest County Geothermal Energy Project (Phase 2) CX(s) Applied: B5.1 Date: 10292010 Location(s): Forrest...

433

CX-000209: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Snohomish County Public Utility District Geothermal Energy Study CX(s) Applied: A9 Date: 11232009 Location(s): Washington Office(s):...

434

CX-002842: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Overcoming Critical Barriers to United States Wind Power; A University-Industry Consortium CX(s) Applied: A9 Date: 07022010 Location(s):...

435

CX-007613: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory

436

CX-010951: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

437

CX-012001: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

01: Categorical Exclusion Determination CX-012001: Categorical Exclusion Determination Meter Installation at Fossil Lake Solar Project CX(s) Applied: B1.7 Date: 04242014...

438

CX-012193: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-012193: Categorical Exclusion Determination "Slatt Substation Meter and Communication Equipment Installation CX(s) Applied: B1.7 Date: 05052014...

439

CX-000016: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000016: Categorical Exclusion Determination Ross-Lexington 1 Meter Project CX(s) Applied: B3.1 Date: 12172009 Location(s): Vancouver, Washington...

440

CX-010133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010133: Categorical Exclusion Determination Establish Digital Density Meter Analytical Capability in 735-A, D-wing CX(s) Applied: B3.6 Date: 03112013...

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CX-010740: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9,...

442

CX-010651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End-of-Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

443

CX-000374: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000374: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: B3.6 Date: 12112009 Location(s):...

444

CX-011505: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End of Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

445

CX-004029: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination State Energy Program American Recovery and Reinvestment Act MKM Machine Tool Company, Incorporated CX(s) Applied: B5.1 Date: 10082010 Location(s):...

446

CX-004126: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004126: Categorical Exclusion Determination Machine Shop Equipment Burn CX(s) Applied: B1.12 Date: 08022010 Location(s): New Mexico...

447

CX-008803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-008803: Categorical Exclusion Determination Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05142012 Location(s): Tennessee...

448

CX-007358: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

449

CX-006593: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006593: Categorical Exclusion Determination Vermont Biofuels Initiative: Renewable Energy Resources CDP-09 CX(s) Applied: B5.1 Date: 08292011 Location(s):...

450

CX-010034: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010034: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01152013 Location(s): South...

451

CX-011482: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011482: Categorical Exclusion Determination Obtain soil samples for potential D-Area borrow sources CX(s) Applied: B6.1 Date: 11072013...

452

CX-004198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004198: Categorical Exclusion Determination Lurance Canyon Burn Site Soil and Groundwater Site Characterization CX(s) Applied: B3.1 Date: 06142010 Location(s):...

453

CX-010031: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010031: Categorical Exclusion Determination Deactivation and Decommissioning of Soil Vapor Extraction Units CX(s) Applied: B1.23 Date: 01172013 Location(s): South...

454

CX-010315: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010315: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 04242013 Location(s): South Carolina...

455

CX-010657: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010657: Categorical Exclusion Determination Western Sector Treatment System Soil Vapor Extraction Wells CX(s) Applied: B3.1 Date: 06182013 Location(s): South Carolina...

456

CX-005672: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

672: Categorical Exclusion Determination CX-005672: Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04...

457

CX-003709: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Economic and Environmental Assessment of Switchgrass Production on High-Fertility Soil and an Assessment of Anaerobic Digesters as an Intermediate Market CX(s) Applied: A9,...

458

CX-011443: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Alabama...

459

CX-011441: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

460

CX-011442: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Sorbent Based Post-Combustion Carbon Dioxide (CO2) Slipstream Testing CX(s) Applied: B3.6 Date: 11132013 Location(s): Colorado...

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-003706: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power Generation CX(s) Applied: A9, B3.6 Date: 09092010...

462

CX-006710: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006710: Categorical Exclusion Determination Binary Power Unit Test (Recurrent Engineering LLC, Geothermal Test) CX(s) Applied: B5.1 Date: 08...

463

CX-010863: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Thermal Diffusivity Evaluation CX(s) Applied: B3.6 Date: 07/02/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

464

CX-009133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

465

CX-002167: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

466

CX-002168: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

467

CX-006748: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

468

CX-007020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

469

CX-001403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

470

CX-011384: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Advanced Controls for the Multi-pod Centipod Wave Energy Converter Device CX(s) Applied: A9 Date: 12022013 Location(s): California...

471

CX-003761: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09032010 Location(s):...

472

CX-005120: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01272011 Location(s):...

473

CX-012002: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

474

CX-010532: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

475

CX-011194: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

476

CX-003518: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

477

CX-008264: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

478

CX-005249: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wisconsin Clean Transportation Program - City of Milwaukee Ruby Avenue Compressed Natural Gas Infrastructure CX(s) Applied: B5.1 Date: 02152011 Location(s): Milwaukee,...

479

CX-008468: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

480

CX-007382: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

Note: This page contains sample records for the topic "membranes cxs applied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CX-008556: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

482

CX-004926: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

926: Categorical Exclusion Determination CX-004926: Categorical Exclusion Determination Radioactive Waste Management Complex ? Analytical Laboratory Operations CX(s) Applied: B3.1...

483

CX-000903: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

484

CX-006171: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Goochland Womens Correctional Facility - Replacing Coal Boiler with Liquefied Petroleum Gas Boiler CX(s) Applied: A1, B5.1 Date: 07132011...

485

CX-006084: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Missouri Independent Energy Efficiency Program: Missouri Plating Company - Boiler Replacement CX(s) Applied: B5.1 Date: 06172011 Location(s): Missouri Office(s):...

486

CX-009151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009151: Categorical Exclusion Determination Simpson College Boiler Plant De-Centralization CX(s) Applied: B5.1 Date: 09242012 Location(s): Iowa...

487

CX-012097: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

488

CX-006678: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Restoration of 54-TPX-10CX(s) Applied: B6.1Date: 01/19/2010Location(s): Casper, WyomingOffice(s): RMOTC

489

CX-008234: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

490

CX-009702: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Columbia Rural Electric Association Walla Walla Hydroelectric Project CX(s) Applied: B4.1 Date: 12212012 Location(s): Washington Offices(s):...

491

CX-003827: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

492

CX-005200: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exclusion Determination CX-005200: Categorical Exclusion Determination Hull Offshore Wind Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Hull,...

493

CX-003818: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

494

CX-002377: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002377: Categorical Exclusion Determination Offshore Wind Technology Data Collection Project CX(s) Applied: A9 Date: 05132010...

495

CX-003825: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

496

CX-012265: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: B3.1 Date: 06262014 Location(s): California,...

497

CX-012266: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles... CX(s) Applied: A9 Date: 06262014 Location(s): California Offices(s):...

498

CX-007380: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007380: Categorical Exclusion Determination National Offshore Wind Energy Grid Interconnection Study CX(s) Applied: A9 Date: 10262011...

499

CX-009014: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009014: Categorical Exclusion Determination "Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...

500

CX-009130: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CX-009130: Categorical Exclusion Determination Hull Municipal Light Plant Offshore Wind Project CX(s) Applied: A9, B3.1 Date: 08022012 Location(s): Massachusetts...