Sample records for membranes cxs applied

  1. Path integrals for stiff polymers applied to membrane physics

    E-Print Network [OSTI]

    D. S. Dean; R. R. Horgan

    2007-04-11T23:59:59.000Z

    Path integrals similar to those describing stiff polymers arise in the Helfrich model for membranes. We show how these types of path integrals can be evaluated and apply our results to study the thermodynamics of a minority stripe phase in a bulk membrane. The fluctuation induced contribution to the line tension between the stripe and the bulk phase is computed, as well as the effective interaction between the two phases in the tensionless case where the two phases have differing bending rigidities.

  2. Membrane shape as a reporter for applied forces Supplemental Material

    E-Print Network [OSTI]

    Phillips, Rob

    by the canonical theory of bilayer membranes, proposed independently by Helfrich, Canham and Evans [1­3]: E = M d2G is the Gaussian bending modulus. By the Gauss- Bonnet theorem, the second term in the bending energy k

  3. Magic angle spinning NMR applied to membrane protein 2D crystals : the structure and function of VDAC

    E-Print Network [OSTI]

    Eddy, Matthew T. (Matthew Thomas)

    2012-01-01T23:59:59.000Z

    Membrane proteins mediate critical functions in biological systems and are important drug targets for a number of diseases. Determining the three-dimensional structure and function of membrane proteins under physologically ...

  4. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3Appliance andApplicationBerkeleyAppliedApply

  5. A Comparison of Biomimetic Design and TRIZ Applied to the Design of a Proton Exchange Membrane Fuel Cell

    E-Print Network [OSTI]

    Shu, Lily H.

    Engineering, University of Toronto *shu@mie.utoronto.ca Abstract The Proton Exchange Membrane (PEM) fuel cell Introduction A proton exchange membrane (PEM) fuel cell converts the stored chemical energy in a fuel, e.g., hydrogen, into electrical energy. An important and current challenge in PEM fuel cells involves water

  6. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  7. CX-010528: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Durability Investigation for Quarternary Phosphonium-based Polymer Hydroxide Exchange Membranes CX(s) Applied: B3.6 Date: 09182012 Location(s):...

  8. CX-003877: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003877: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

  9. CX-010910: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010910: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

  10. CX-003876: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003876: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

  11. CX-004394: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-004394: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 1105...

  12. CX-010911: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010911: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

  13. Multicomponent membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01T23:59:59.000Z

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  14. Electrical properties of polar membranes

    E-Print Network [OSTI]

    Lars D. Mosgaard; Karis A. Zecchi; Thomas Heimburg

    2014-11-25T23:59:59.000Z

    Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity and piezoelectricity in the same language.

  15. Gas Separation Using Membranes

    E-Print Network [OSTI]

    Koros, W. J.; Paul, D. R.

    1984-01-01T23:59:59.000Z

    constant diffusion coefficient applies to the diffusion process, von Wroblewski showed that the permeability, P, is equal to the product of the solubility and diffusivity coefficients, i.e., D(C 2 P = _N_ -0 (dC/dx) C 1 ) -~-...:..... = OS (4....6 0.15 1.4 ?u ITS OF PERMEABILITY ARE BARRERS. 1 HARRER Such membranes offered flux increases of as much as 50- to 100-fold compared to their I-mil silicone rubber counterpart s. The membranes were typi ca 11 y supported in a plate...

  16. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25T23:59:59.000Z

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  17. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24T23:59:59.000Z

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  18. CX-012018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Portable, Two-Stage, Antifouling Hollow Fiber Membrane Nanofiltration Process CX(s) Applied: A9, A11, B3.6 Date: 04/28/2014 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  19. CX-012019: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Portable, Two-Stage, Antifouling Hollow Fiber Membrane Nanofiltration Process CX(s) Applied: A9, A11, B3.6 Date: 04/28/2014 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  20. CX-012185: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Novel Ceramic Membranes for the Efficient Utilization of Natural Gas CX(s) Applied: B3.6 Date: 04/02/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-011105: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications CX(s) Applied: B3.6 Date: 08/26/2013 Location(s): Colorado, Michigan, Minnesota Offices(s): Golden Field Office

  2. CX-008289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: A9 Date: 05/01/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  3. CX-008311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: B3.6 Date: 04/24/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  4. CX-011805: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Carbon Dioxide Capture By Cold Membrane Operation with Actual Coal-Fired Power Plant Flue Gas CX(s) Applied: A1, A9, B3.6, B5.5 Date: 01282014...

  5. CX-012676: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zeolite Membranes for Krypton/Xenon Separation from Spent Nuclear Fuel Reprocessing Off-Gas – Georgia Tech Research Corporation CX(s) Applied: B3.6Date: 41863 Location(s): GeorgiaOffices(s): Nuclear Energy

  6. CX-010199: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): New York Offices(s): National Energy Technology Laboratory

  7. CX-010198: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  8. CX-010200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Hydrogen Transport Membranes for Coal Gasification CX(s) Applied: B3.6 Date: 04/04/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

  9. CX-008259: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slipstream Testing of a Membrane Carbon Dioxide Capture Process for Existing Coal-Fired Power Plants CX(s) Applied: A9, B3.6 Date: 03282012 Location(s): Alabama Offices(s):...

  10. Cleaning a semipermeable membrane in a papermaking machine

    DOE Patents [OSTI]

    Beck, David A.

    2004-01-06T23:59:59.000Z

    A method of cleaning a semipermeable membrane, the semipermeable membrane being configured for carrying a fiber web, includes the steps of providing a cleaning fluid and applying the cleaning fluid on the semipermeable membrane. Further, an air press configured for carrying the semipermeable membrane therethrough is provided, and the air press has pressurized air therein. The semipermeable membrane is conveyed through the air press and is subjected to the pressurized air within the air press. The pressurized air thereby flushes the cleaning fluid through the semipermeable membrane.

  11. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    SciTech Connect (OSTI)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01T23:59:59.000Z

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  12. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  13. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05T23:59:59.000Z

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  14. Effective interactions between fluid membranes

    E-Print Network [OSTI]

    Bing-Sui Lu; Rudolf Podgornik

    2015-05-01T23:59:59.000Z

    A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. The steric constraint is implemented via a representation of the Heaviside function, which enables one to transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero mode fluctuations of the membranes, and the other by thermal bending fluctuations. For membranes of cross-sectional area $S$, we find that the bending fluctuation part scales with the inter-membrane separation $d$ as $d^{-2}$ for $d \\ll \\sqrt{S}$, but crosses over to $d^{-4}$ scaling for $d \\gg \\sqrt{S}$, whereas the zero mode part of the steric potential always scales as $d^{-2}$. For membranes interacting exclusively via the steric potential, we obtain exact nonlinear expressions for the effective interaction potential and for the rms undulation amplitude $\\sigma$, which becomes small at low temperatures $T$ and/or large bending stiffnesses $\\kappa$. Moreover, $\\sigma$ scales as $d$ for $d \\ll \\sqrt{S}$, but saturates at $\\sqrt{k_{{\\rm B}} T S/\\kappa}$ for $d \\gg \\sqrt{S}$. In addition, using variational Gaussian theory, we apply our self-consistent treatment to study inter-membrane interactions subject to three different types of potential: (i)~the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii)~an attractive square well, (iii)~the Morse potential, and (iv)~a combination of hydration and van der Waals interactions.

  15. Reactor process using metal oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.

    1994-05-03T23:59:59.000Z

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  17. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  19. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh (Albuquerque, NM); Brinker, Charles Jeffrey (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  20. Composite fuel cell membranes

    SciTech Connect (OSTI)

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  1. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05T23:59:59.000Z

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  2. Enhanced membrane gas separations

    SciTech Connect (OSTI)

    Prasad, R.

    1993-07-13T23:59:59.000Z

    An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

  3. Membrane-electrode assemblies for electrochemical cells

    DOE Patents [OSTI]

    Swathirajan, Sundararajan (Troy, MI); Mikhail, Youssef M. (Sterling Heights, MI)

    1993-01-01T23:59:59.000Z

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  4. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

    1998-01-13T23:59:59.000Z

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  5. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, I.; Morisato, Atsushi

    1998-01-13T23:59:59.000Z

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  6. Siloxane-grafted membranes

    DOE Patents [OSTI]

    Friesen, D.T.; Obligin, A.S.

    1989-10-31T23:59:59.000Z

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  7. Membrane Separations Research

    E-Print Network [OSTI]

    Fair, J. R.

    applicabilily of separation mel hods for the removal of carbon dioxide frum gas streams. Another application of hybrid systems deals with hydrogen recovery. As discussed earlier, this separation may be made by membrane petmeation, but classically it has also... box; altemate schemes have this sequence reversed. Sal6S gas Feed Membrane ~ Acid gas Amine conlactor Acid gas Amine stripper Figure 7. Hybrid system for the removal of acid gases from nalural gas. MEMBRANE UNIT COLD BOX HYDROGEN PRODUCT...

  8. Anion exchange membrane

    DOE Patents [OSTI]

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07T23:59:59.000Z

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  9. Co-evolution of primordial membranes and membrane proteins

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    not only the origin of membrane bioenergetics but also of membranes themselves. We argue that evolution- brane bioenergetics. Membrane evolution and the last universal common ancestor A topologically closed

  10. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01T23:59:59.000Z

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  11. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14T23:59:59.000Z

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  12. Microporous alumina ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04T23:59:59.000Z

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  13. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15T23:59:59.000Z

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  14. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect (OSTI)

    Rogers, J.D.

    1994-08-04T23:59:59.000Z

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  15. Nanocomposite Membranes for Complex Separations

    E-Print Network [OSTI]

    Yeu, Seung Uk

    2010-10-12T23:59:59.000Z

    membranes for reverse-selective removal of alkanes from light gases, 2) defect-free inorganic nanocomposite membranes that have uniform pores, and 3) nanocomposite membranes for minimizing protein fouling in microfiltration applications. Reverse-selective...

  16. Nanoengineered membrane electrode assembly interface

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-08-06T23:59:59.000Z

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  17. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27T23:59:59.000Z

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  18. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03T23:59:59.000Z

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  19. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13T23:59:59.000Z

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  20. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  1. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  2. Cable tensioned membrane solar collector module with variable tension control

    DOE Patents [OSTI]

    Murphy, L.M.

    1984-01-09T23:59:59.000Z

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  3. Cable tensioned membrane solar collector module with variable tension control

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1985-01-01T23:59:59.000Z

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  4. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  5. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  6. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W. (Highland Park, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Des Plaines, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  7. Microprobes aluminosilicate ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (2114 Chadbourne Ave., Madison, WI 53705); Sheng, Guangyao (45 N. Orchard St., Madison, WI 53715)

    1993-01-01T23:59:59.000Z

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  8. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21T23:59:59.000Z

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  10. Preparation of titanium oxide ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Xu, Q.

    1992-03-17T23:59:59.000Z

    A procedure is disclosed for the reliable production of either particulate or polymeric titanium ceramic membranes by a highly constrained sol-gel procedure. The critical constraints in the procedure include the choice of alkyl alcohol solvent, the amount of water and its rate of addition, the pH of the solution during hydrolysis, and the limit of sintering temperature applied to the resulting gels.

  11. CENTRIFUGAL MEMBRANE FILTRATION

    SciTech Connect (OSTI)

    William A. Greene; Patricia A. Kirk; Richard Hayes; Joshua Riley

    2005-10-28T23:59:59.000Z

    SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, has engineered and developed a system for use within the U.S. Department of Energy (DOE) Environmental Management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. SpinTek II High Shear Rotary Membrane Filtration System is a unique compact crossflow membrane system that has large, demonstrable advantages in performance and cost compared to currently available systems: (1) High fluid shear prevents membrane fouling even with very high solids content; hazardous and radioactive components can be concentrated to the consistency of a pasty slurry without fouling. (2) Induced turbulence and shear across the membrane increases membrane flux by a factor of ten over existing systems and allows operation on fluids not otherwise treatable. (3) Innovative ceramic membrane and mechanical sealing technology eliminates compatibility problems with aggressive DOE waste streams. (4) System design allows rapid, simple disassembly for inspection or complete decontamination. (5) Produces colloidal- and suspended-solids-free filtrate without the addition of chemicals. The first phase of this project (PRDA maturity stage 5) completed the physical scale-up of the SpinTek unit and verified successful scale-up with surrogate materials. Given successful scale-up and DOE concurrence, the second phase of this project (PRDA maturity stage 6) will provide for the installation and operation of the full-scale two-stage SpinTek unit for treatment of a DOE waste-stream at the Los Alamos National Laboratory. This technology has very broad application across the DOE system. Nineteen DOE technical needs areas (Appendix C) have been identified. Following successful full-scale demonstration for treatment of DOE wastes, this innovative technology will be rapidly deployed on a wide range of waste and process streams throughout the DOE system.

  12. Tunable water desalination across Graphene Oxide Framework membranes

    SciTech Connect (OSTI)

    Nicolai, Adrien [Rensselaer Polytechnic Institute (RPI)] [Rensselaer Polytechnic Institute (RPI); Sumpter, Bobby G [ORNL] [ORNL; Meunier, V. [Rensselaer Polytechnic Institute (RPI)] [Rensselaer Polytechnic Institute (RPI)

    2014-01-01T23:59:59.000Z

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.

  13. Surface tension in bilayer membranes with fixed projected area

    E-Print Network [OSTI]

    Alberto Imparato

    2006-04-05T23:59:59.000Z

    We study the elastic response of bilayer membranes with fixed projected area to both stretching and shape deformations. A surface tension is associated to each of these deformations. By using model amphiphilic membranes and computer simulations, we are able to observe both the types of deformation, and thus, both the surface tensions, related to each type of deformation, are measured for the same system. These surface tensions are found to assume different values in the same bilayer membrane: in particular they vanish for different values of the projected area. We introduce a simple theory which relates the two quantities and successfully apply it to the data obtained with computer simulations.

  14. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  15. Membrane Bioreactors: Past, Present and Future?

    E-Print Network [OSTI]

    Hermanowicz, Slav W

    2011-01-01T23:59:59.000Z

    scale municipal membrane bioreactor - Characterisation ofin a submerged membrane bioreactor at high mixed liquorA brief description of membrane bioreactor (MBR) historical

  16. Advanced Materials for Proton Exchange Membranes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  18. Nanocomposite Membranes for Complex Separations 

    E-Print Network [OSTI]

    Yeu, Seung Uk

    2010-10-12T23:59:59.000Z

    membranes showed exceptionally high propane/nitrogen selectivities. This result was ascribed to the presence of stable residual solvent that affects the solubility of hydrocarbon species. Mesoporous silica-ceramic nanocomposite membranes have been fabricated...

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  20. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05T23:59:59.000Z

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  1. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  2. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29T23:59:59.000Z

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  3. Automotive Perspective on Membrane Evaluation

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  4. Recycling of used perfluorosulfonic acid membranes

    DOE Patents [OSTI]

    Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

    2007-08-14T23:59:59.000Z

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  5. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07T23:59:59.000Z

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  8. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice (Des Plaines, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1986-01-01T23:59:59.000Z

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  9. Membranes on an Orbifold

    E-Print Network [OSTI]

    Neil Lambert; David Tong

    2008-04-15T23:59:59.000Z

    We harvest clues to aid with the interpretation of the recently discovered N=8 supersymmetric Chern-Simons theory with SO(4) gauge symmetry. The theory is argued to describe two membranes moving in the orbifold R8/Z2. At level k=1 and k=2, the classical moduli space M coincides with the infra-red moduli space of SO(4) and SO(5) super Yang-Mills theory respectively. For higher Chern-Simons level, the moduli space is a quotient of M. At a generic point in the moduli space, the massive spectrum is proportional to the area of the triangle formed by the two membranes and the orbifold fixed point.

  10. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01T23:59:59.000Z

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  11. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOE Patents [OSTI]

    Ho, W. S. Winston

    2012-10-02T23:59:59.000Z

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  12. Influence of electrode stress on proton exchange membrane fuel cell performance : experimental characterization and power optimization

    E-Print Network [OSTI]

    Gallant, Betar M. (Betar Maurkah)

    2008-01-01T23:59:59.000Z

    Compressive stress applied to the electrode area of a Proton Exchange Membrane (PEM) fuel cell is known to significantly affect power output. In practice, electrode stress arises during operation due to the clamping force ...

  13. Ultrathin epitaxially grown bismuth (111) membranes

    SciTech Connect (OSTI)

    Payer, T.; Rajkovic, I.; Ligges, M.; Linde, D. von der [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany); Horn-von Hoegen, M.; Meyer zu Heringdorf, F.-J. [Fachbereich Physik, Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany); Center for Nanointegration (CeNIDE), Universitaet Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg (Germany)

    2008-09-01T23:59:59.000Z

    An ex situ cleaning and etching technique was applied to NaCl single crystals to prepare atomically flat and clean NaCl surfaces. These were used as substrates for molecular beam epitaxial growth of ultrathin continuous Bi(111) films. The high film quality - as studied with low energy electron diffraction, atomic force microscopy, and transmission electron diffraction - is attributed to the commensurate 10:7 ratio of the lattice constants. Dissolving the NaCl substrates in water allows the fabrication of freestanding 20 nm thin Bi(111) membranes of centimeter size.

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  16. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01T23:59:59.000Z

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01T23:59:59.000Z

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  18. High Temperature Membrane Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Using Advanced Polymeric Membranes BESP 20 Michael Heben NREL Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity BESP 21 G. Kane Jennings...

  19. Operation of staged membrane oxidation reactor systems

    DOE Patents [OSTI]

    Repasky, John Michael

    2012-10-16T23:59:59.000Z

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  20. CX-100010: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Geothermal Thermoelectric Generation (G-TEG) with integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction Award Number: DE-EE0006746 CX(s) Applied: A9, B3.6 Date: 08/27/2014 Location(s): Georgia Offices(s): Golden Field Office Technology Office: Geothermal Technologies

  1. CX-008996: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications CX(s) Applied: A9, B3.6 Date: 08/02/2012 Location(s): Minnesota, Wisconsin, Michigan, New York, California Offices(s): Golden Field Office

  2. CX-011461: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Test of a Nanoporous, Super-Hydrophobic Membrane Contactor Process for Post-Combustion Carbon Dioxide (CO2)... CX(s) Applied: A1, A9, B3.6 Date: 11/04/2013 Location(s): Alabama, Massachusetts, Texas, New Jersey, Illinois Offices(s): National Energy Technology Laboratory

  3. CX-010800: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

  5. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30T23:59:59.000Z

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  6. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30T23:59:59.000Z

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

  7. Single Molecule Probes of Lipid Membrane Structure

    E-Print Network [OSTI]

    Livanec, Philip W.

    2009-12-14T23:59:59.000Z

    Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein ...

  8. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2014-09-30T23:59:59.000Z

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 oC and 600 oC) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  9. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16T23:59:59.000Z

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  10. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11T23:59:59.000Z

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  11. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20T23:59:59.000Z

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31T23:59:59.000Z

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  14. Sandia National Laboratories: fuel cell membrane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

  15. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  16. Apparatus for tensioning a heliostat membrane

    DOE Patents [OSTI]

    Sallis, Daniel V. (P.O. Box 554, Littleton, CO 80120)

    1986-01-01T23:59:59.000Z

    An apparatus for pneumatically or hydraulically tensioning a membrane, which stretched membrane can support a reflective surface for use as a heliostat in a solar energy collection system.

  17. New Membranes for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Membranes for PEM Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  18. Extracorporeal membrane oxygenation promotes long chain fatty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation...

  19. Fullerene-Nafion Composite Recast Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Fullerene-Nafion Composite Recast Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  20. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  1. Gas Separations using Ceramic Membranes

    SciTech Connect (OSTI)

    Paul KT Liu

    2005-01-13T23:59:59.000Z

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  2. Poxvirus entry and membrane fusion

    SciTech Connect (OSTI)

    Moss, Bernard [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445 (United States)]. E-mail: bmoss@nih.gov

    2006-01-05T23:59:59.000Z

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  3. Analysis of Nonlinear Elastic Membrane Oscillations by Eigenfunction Expansion

    E-Print Network [OSTI]

    Balogh, Andras - Department of Mathematics, University of Texas

    of elas- tic membranes. Unattended ground sensors can have as their basic element a circular membrane

  4. Thermal casting process for the preparation of membranes

    DOE Patents [OSTI]

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10T23:59:59.000Z

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  5. HOUSING GUARANTEE Apply Online

    E-Print Network [OSTI]

    Mease, Kenneth D.

    THE UCI HOUSING GUARANTEE Apply Online 1 Log in to your MyAdmission account via the tab of Admission fee. 3 Complete the Online Housing Application and pay the $20 non-refundable fee. Freshmen apply for the residence halls. Transfer students apply for Arroyo Vista theme houses and on-campus apartments. Students 25

  6. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  8. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11T23:59:59.000Z

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  9. Computational and experimental study of nanoporous membranes for water desalination and decontamination.

    SciTech Connect (OSTI)

    Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

    2008-11-01T23:59:59.000Z

    Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

  10. New developments in hydrogen permselective membranes

    SciTech Connect (OSTI)

    Gavalas, G.R.

    1994-10-01T23:59:59.000Z

    The objectives of the original project were to develop silica hydrogen permselective membranes and to evaluate the economic feasibility of these membranes in hydrogen production from coal gas. The objectives of the work reported here were to increase the membrane permeance by developing new precursors or deposition conditions, and to carry out fundamental permeability measurements of the membrane at different stages of pore narrowing.

  11. An emergency response team for membrane repair

    E-Print Network [OSTI]

    Kirchhausen, Tomas

    events, which we focus on here. As discussed later, Ca2+ influx at the site of plasma membrane-fusion events are required to repair a torn plasma membrane, and we propose that this emergency products and the plasma membrane. Reseal or die. Plasma-membrane disruption is a normal event in the life

  12. Hydrogen purifier module with membrane support

    DOE Patents [OSTI]

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24T23:59:59.000Z

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  13. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  14. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31T23:59:59.000Z

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  15. Tensioning device for a stretched membrane collector

    DOE Patents [OSTI]

    Murphy, L.M.

    1984-01-01T23:59:59.000Z

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  17. Anisotropic surface tension of buckled fluid membrane

    E-Print Network [OSTI]

    Hiroshi Noguchi

    2011-06-01T23:59:59.000Z

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is also found phase synchronization occurs between multilayered buckled membranes.

  18. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Innovation Computing CCS Division CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable...

  19. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  20. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  1. Liquid membrane purification of biogas

    SciTech Connect (OSTI)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

    1991-03-01T23:59:59.000Z

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  2. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04T23:59:59.000Z

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  3. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  4. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    SciTech Connect (OSTI)

    William C. Conner

    2007-08-02T23:59:59.000Z

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  5. Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research

    Broader source: Energy.gov [DOE]

    This presentation on maximizing the return of high temperature PEM membrane research was given at the High Temperature Membrane Working Group Meeting in May 2007.

  6. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  7. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01T23:59:59.000Z

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  8. Spectroscopic studies of tryptophan and membrane- associated peptides

    E-Print Network [OSTI]

    Schlamadinger, Diana Elizabeth

    2011-01-01T23:59:59.000Z

    Thermodynamics of membrane protein folding measured byThermodynamics of Membrane Protein Folding: Lessons from theKim, Thermodynamics of membrane protein folding measured by

  9. Quantitative analysis of cell surface membrane proteins using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by...

  10. Continuous production of polymethylpentene membranes

    DOE Patents [OSTI]

    Epperson, Bonnie J. (San Diego, CA); Burnett, Lowell J. (San Diego, CA); Helm, Verne D. (Plains, MT)

    1983-11-15T23:59:59.000Z

    Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

  11. Nanocomposite MembranesNanocomposite Membranes for Energy andfor Energy and

    E-Print Network [OSTI]

    Lightsey, Glenn

    Including:Including: Oil & gasOil & gas Chemical processingChemical processing Water purification membranes 44 Example: oil & gas applicationExample: oil & gas application Residue ~5,000 m2/m3 Feed H2 CO2 H 4 Selectivity Nominal volume fraction filler Rubbery Polymer Order-of-magnitude increase

  12. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOE Patents [OSTI]

    Laible, Philip D; Hanson, Deborah K

    2013-06-04T23:59:59.000Z

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  13. Essays in applied microeconomics

    E-Print Network [OSTI]

    Aron-Dine, Aviva

    2012-01-01T23:59:59.000Z

    This dissertation consists of three chapters on topics in applied microeconomics. In the first chapter. I investigate whether voters are more likely to support additional spending on local public services when they perceive ...

  14. Engineering and Applied

    E-Print Network [OSTI]

    Stowell, Michael

    > Computer Science > Electrical, Computer, and Energy Engineering > Mechanical Engineering 11, Computational Science and Engineering, Energy Systems and Environmental Sustainability, Materials ScienceCollege of Engineering and Applied Science Contact Robert H. Davis, Engineering Dean 303

  15. Applying for Research Awards

    E-Print Network [OSTI]

    ... 53.22 KB APPLYING FOR RESEARCH AWARDS The Eastern Bird Banding Association seeks applicants for its annual $500 research awards in aid of research using banding techniques or bird banding data. ...

  16. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24T23:59:59.000Z

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  17. Hybrid Membranes for Light Gas Separations

    E-Print Network [OSTI]

    Liu, Ting

    2012-07-16T23:59:59.000Z

    separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin...

  18. Development of energy efficient membrane distillation systems

    E-Print Network [OSTI]

    Summers, Edward K

    2013-01-01T23:59:59.000Z

    Membrane distillation (MD) has shown potential as a means of desalination and water purification. As a thermally driven membrane technology which runs at relatively low pressure, which can withstand high salinity feed ...

  19. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

    1988-06-14T23:59:59.000Z

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  20. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01T23:59:59.000Z

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  1. Challenges in Bio-Inspired Membranes

    Broader source: Energy.gov [DOE]

    Presentation by Jun Lin (Pacific Northwest National Laboratory, PNNL) for the Membrane Technology Workshop held July 24, 2012

  2. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  3. Nafion-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nafion®-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance, characterized and integrated in Membrane-Electrodes Assembly to be tested in fuel cell operating conditions, mobile or stationary), Proton Exchange Membrane Fuel Cells (PEMFC) are amongst the most studied fuel

  4. A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment

    E-Print Network [OSTI]

    A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater that some of these systems require wastewater aeration. Treatment technologies such as membrane bioreactors

  5. Corrugated Membrane Fuel Cell Structures

    SciTech Connect (OSTI)

    Grot, Stephen [President, Ion Power Inc.] President, Ion Power Inc.

    2013-09-30T23:59:59.000Z

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  6. ADVANCED MATERIALS Membranes for Clean Water

    E-Print Network [OSTI]

    ADVANCED MATERIALS Membranes for Clean Water Objective This project provides measurement solutions that probe the surface and internal structure of polymer membranes used in water purification, and correlate that structure to the transport of water and other species through the membrane. Our methods are focused

  7. Membrane Cells in Chlor Alkali Application

    E-Print Network [OSTI]

    Lesker, K.

    there is a stfluorinated Inembrallt~ dates 30 years age. Since then a lot of research has been performed to reach an economical. commercial chloralkali industry: 1962 Invention... of the per fluorinated ion exchange membrane 1968-72 Development of the membrane process 1 30% of NaOH IY81 first conversion of a diaphragm plant In a membrane chloralkali...

  8. IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND

    E-Print Network [OSTI]

    SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H2 WGS H2 operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2 Operational Experience Under High Pressure Differential SUMMARY OF ELTRON OXYGEN TRANSPORT MEMBRANE SYNGAS

  9. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science and...

  10. PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

    Broader source: Energy.gov (indexed) [DOE]

    Virginia Tech University (Academic)- Membrane Development Collaborations 3M Fuel Cell Components Program- NSTF Catalyst & Membrane Entegris - Carbon Cell...

  11. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20T23:59:59.000Z

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  12. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos G. (San Jose, CA)

    1997-05-20T23:59:59.000Z

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  13. Surface selective membranes for carbon dioxide separation

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01T23:59:59.000Z

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  14. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21T23:59:59.000Z

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  15. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  16. Applied Microbiology and Biotechnology

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    1 23 Applied Microbiology and Biotechnology ISSN 0175-7598 Appl Microbiol Biotechnol DOI 10.1007/s-Cohen #12;1 23 Your article is protected by copyright and all rights are held exclusively by Springer in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version

  17. Dialysis membrane for separation on microchips

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2010-07-13T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  18. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26T23:59:59.000Z

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  19. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14T23:59:59.000Z

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  20. Photo-switchable membrane and method

    SciTech Connect (OSTI)

    Marshall, Kenneth L; Glowacki, Eric

    2013-05-07T23:59:59.000Z

    Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

  1. Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby

    DOE Patents [OSTI]

    Swathirajan, S.; Mikhail, Y.M.

    1994-05-31T23:59:59.000Z

    A method is described for making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane. 10 figs.

  2. Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby

    DOE Patents [OSTI]

    Swathirajan, Sundararajan (Troy, MI); Mikhail, Youssef M. (Sterling Heights, MI)

    1994-01-01T23:59:59.000Z

    A method of making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  3. Proton Exchange Membranes for Fuel Cells

    SciTech Connect (OSTI)

    Devanathan, Ramaswami

    2010-11-01T23:59:59.000Z

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation of PEMs based on an understanding of chemistry, membrane morphology and proton transport obtained from experiment, theory and computer simulation.

  4. Evaluation of ultrafiltration membranes in the purification of guayule resin

    E-Print Network [OSTI]

    Jeyaseelan, Ranjit S.

    1991-01-01T23:59:59.000Z

    : Methanol at 370 ml/nun 150 MWCO Membrane Feed: Water at 20 psi 150 MWCO Membrane Feed: Water at 50 psi 200 MWCO Membrane Feed: AVater at 370 ml/min 200 MWCO Membrane Feed: Methanol at 370 ml/min 20 27 30 31 200 MWCO Membrane Feed: Guayule Resin... at 370 ml/min . . . 33 350 MWCO Membrane Feed: AVater at 86. 8 ml/min 10 12 13 14 350 MWCO Membrane Feed: Water at 20 psi 350 MWCO Membrane Feed: Water at 40 psi 350 MWCO Membrane Iced: Methanol at 86. 8 ml/min 350 MWCO Membrane Feed: Methanol...

  5. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect (OSTI)

    Korzeniewski, Carol

    2014-01-20T23:59:59.000Z

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  6. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05T23:59:59.000Z

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  7. Removal mechanisms of organic and inorganic solutes in raw, upland drinking water by nanofiltration: influence of solute-solute and solute-membrane interactions 

    E-Print Network [OSTI]

    De Munari, Annalisa; Munari, Annalisa de

    2012-11-29T23:59:59.000Z

    Nanofiltration (NF) membranes have been applied successfully for the removal of inorganic and organic pollutants, including micropollutants, from drinking water for the past two decades. However, a complete and quantitative ...

  8. New mechanism of membrane fusion

    E-Print Network [OSTI]

    M. Mueller; K. Katsov; M. Schick

    2001-10-10T23:59:59.000Z

    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.

  9. Membrane Separations of Liquid Mixtures

    E-Print Network [OSTI]

    Lloyd, D. R.

    [35,36]. By reducing the diameter of the tubular membrane discussed above to 0.5 to 1.5 cm for UF and 50 to 100 um for RO, the surface-to-volume ratio is increased to as much as 1200 m 2 /m 3 and fluid velocities in the fiber lumen... restricts the passage of molecules or ions in the size range 0.1 to 3.0 nm (molecular weights less than 500) and requires a pressure gradient of 500 to 10 000 kPa. Ultrafiltration (UF) is used to remove dissolved molecules in the range 1.0 to 20.0 nm...

  10. Membranes - Phosphazene - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod Eggert ImageMeetingsMembranes - Phosphazene

  11. Measuring Physical Properties of Polymer Electrolyte Membranes

    Broader source: Energy.gov [DOE]

    Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

  12. High Temperature Membrane Working Group Meeting Minutes

    Broader source: Energy.gov (indexed) [DOE]

    who also introduced the first speaker, Ahmet Kusoglu, who was presenting for Adam Weber of LBL. Kusoglu began with a discussion of the continuum modeling of membrane...

  13. Class II virus membrane fusion proteins

    SciTech Connect (OSTI)

    Kielian, Margaret [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 (United States)]. E-mail: kielian@aecom.yu.edu

    2006-01-05T23:59:59.000Z

    Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.

  14. Myocardial Reloading after Extracorporeal Membrane Oxygenation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Synthesis. Abstract: Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after...

  15. Tensile strain mapping in flat germanium membranes

    SciTech Connect (OSTI)

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28T23:59:59.000Z

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ?4 ?m spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  16. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09T23:59:59.000Z

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  17. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.

    1996-03-26T23:59:59.000Z

    A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

  18. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

    1996-01-01T23:59:59.000Z

    A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

  19. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect (OSTI)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18T23:59:59.000Z

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mech

  20. Cellular membrane trafficking of mesoporous silica nanoparticles

    SciTech Connect (OSTI)

    Fang, I-Ju

    2012-06-21T23:59:59.000Z

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.

  1. Membranes for corrosive oxidations. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2010-02-01T23:59:59.000Z

    The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

  2. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammels, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  3. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  4. Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes.

    SciTech Connect (OSTI)

    Rempe, Susan B.

    2010-09-01T23:59:59.000Z

    Affordable clean water is both a global and a national security issue as lack of it can cause death, disease, and international tension. Furthermore, efficient water filtration reduces the demand for energy, another national issue. The best current solution to clean water lies in reverse osmosis (RO) membranes that remove salts from water with applied pressure, but widely used polymeric membrane technology is energy intensive and produces water depleted in useful electrolytes. Furthermore incremental improvements, based on engineering solutions rather than new materials, have yielded only modest gains in performance over the last 25 years. We have pursued a creative and innovative new approach to membrane design and development for cheap desalination membranes by approaching the problem at the molecular level of pore design. Our inspiration comes from natural biological channels, which permit faster water transport than current reverse osmosis membranes and selectively pass healthy ions. Aiming for an order-of-magnitude improvement over mature polymer technology carries significant inherent risks. The success of our fundamental research effort lies in our exploiting, extending, and integrating recent advances by our team in theory, modeling, nano-fabrication and platform development. A combined theoretical and experimental platform has been developed to understand the interplay between water flux and ion rejection in precisely-defined nano-channels. Our innovative functionalization of solid state nanoporous membranes with organic protein-mimetic polymers achieves 3-fold improvement in water flux over commercial RO membranes and has yielded a pending patent and industrial interest. Our success has generated useful contributions to energy storage, nanoscience, and membrane technology research and development important for national health and prosperity.

  5. Biological Hydrogen Production Using a Membrane Bioreactor

    E-Print Network [OSTI]

    Biological Hydrogen Production Using a Membrane Bioreactor Sang-Eun Oh,1 Prabha Iyer,1,2 Mary Ann bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated were used. B 2004 Wiley Periodicals, Inc. Keywords: membrane bioreactor; hydrogen production

  6. Thermodynamic Modeling of a Membrane Dehumidification System

    E-Print Network [OSTI]

    Bynum, John 1983-

    2012-11-28T23:59:59.000Z

    ............................................................... 157 4.5 Original and ARPA-E condition COP results for cooling tower approach of 5?F detailed simulation results for five evaporative cooling steps and membrane cooling combined system... evaporative cooling steps and membrane cooling combined system for ARPA-E inlet and outlet conditions ................................................................... 163 4.13 Cooling tower approach of 5?F detailed simulation results for five...

  7. Developmental Cell MPK-1 ERK Controls Membrane

    E-Print Network [OSTI]

    Developmental Cell Article MPK-1 ERK Controls Membrane Organization in C. elegans Oogenesis via/ERK in the proximal germ- line to control plasma membrane biogenesis and organization during oogenesis and oocyte production is dramatically downregulated. The RTK-RAS-ERK pathway relays physiological and devel

  8. Fuel cell using novel electrolyte membrane

    SciTech Connect (OSTI)

    Polak, A.J.; Beuhler, A.J.

    1986-06-10T23:59:59.000Z

    An apparatus is described for producing electricity from a fuel gas having a gaseous component which is capable, in the presence of a catalytic agent, of dissociating to yield hydrogen ions comprising: (a) a thin film organic-inorganic membrane which comprises a single phase blend from about 1% to about 70% by weight of a heteropoly acid and salts; (b) a membrane housing comprising a fuel gas chamber and an oxidant gas chamber separated by a substantially imporous partition comprising the membrane defined in element (a), the membrane having a first surface in communication with the fuel gas chamber and a second surface in communication with the oxidant gas chamber; (c) two separate portions of catalytic agent effective to promote dissociation and combination, one portion in contact with the first surface of the membrane and one portion in contact with the second surface of the membrane; and, (d) means for forming electrical connection in operative contact with the catalytic agent in contact with the first surface of the membrane and in operative contact with the catalytic agent in contact with the second surface of the membrane.

  9. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  10. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27T23:59:59.000Z

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  11. Improved filtration membranes through self-organizing amphiphilic comb copolymers

    E-Print Network [OSTI]

    Asatekin Alexiou, Ayse

    2009-01-01T23:59:59.000Z

    The operating cost of a membrane filtration system is generally determined by two major factors: the permeability of the membrane to water, and the lifetime of the membrane. Both of these are strongly affected by the ...

  12. Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers

    E-Print Network [OSTI]

    Mather, Patrick T.

    membranes for hydrogen/air and direct methanol proton- exchange membrane (PEM) fuel cells. Such new membranes must possess the requisite transport properties (e.g., high proton conductivity and low gas

  13. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26T23:59:59.000Z

    This research explores a novel application of catalytic membrane reactors for high- purity hydrogen extraction from bioethanol reforming. Conventional membrane systems employ hydrogen permselective materials such as palladium, polymer membranes...

  14. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOE Patents [OSTI]

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28T23:59:59.000Z

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  15. Liners for ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2010-08-10T23:59:59.000Z

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  16. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06T23:59:59.000Z

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  17. Fission of a multiphase membrane tube

    E-Print Network [OSTI]

    Jean-Marc Allain; Cornelis Storm; Aurelien Roux; Martine Ben Amar; Jean-Francois Joanny

    2004-09-01T23:59:59.000Z

    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings.

  18. Immobilized fluid membranes for gas separation

    DOE Patents [OSTI]

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18T23:59:59.000Z

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  19. Lateral diffusion of receptor-ligand bonds in membrane adhesion zones: Effect of thermal membrane roughness

    E-Print Network [OSTI]

    H. Krobath; G. J. Schuetz; R. Lipowsky; T. R. Weikl

    2007-03-19T23:59:59.000Z

    The adhesion of cells is mediated by membrane receptors that bind to complementary ligands in apposing cell membranes. It is generally assumed that the lateral diffusion of mobile receptor-ligand bonds in membrane-membrane adhesion zones is slower than the diffusion of unbound receptors and ligands. We find that this slowing down is not only caused by the larger size of the bound receptor-ligand complexes, but also by thermal fluctuations of the membrane shape. We model two adhering membranes as elastic sheets pinned together by receptor-ligand bonds and study the diffusion of the bonds using Monte Carlo simulations. In our model, the fluctuations reduce the bond diffusion constant in planar membranes by a factor close to 2 in the biologically relevant regime of small bond concentrations.

  20. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean and Academic Director, Information Technology and Management Programs: C. Robert Carlson Director of Operations

  1. School of Applied Technology School of Applied Technology

    E-Print Network [OSTI]

    Heller, Barbara

    School of Applied Technology School of Applied Technology Daniel F. and Ada L. Rice Campus Illinois Institute of Technology 201 E. Loop Road Wheaton, IL 60187 630.682.6000 www.iit.edu/applied tech/ Dean Technology and Management Programs: Mazin Safar Director, Marketing & Development: Scott Pfeiffer Director

  2. Phosphazene membranes for gas separations

    DOE Patents [OSTI]

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11T23:59:59.000Z

    A polyphosphazene having a glass transition temperature ("Tg") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a Tg ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]. The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  3. The Membrane Paradigm and Firewalls

    E-Print Network [OSTI]

    Tom Banks; Willy Fischler; Sandipan Kundu; Juan F. Pedraza

    2013-10-02T23:59:59.000Z

    Following the Membrane Paradigm, we show that the stretched horizon of a black hole retains information about particles thrown into the hole for a time of order the scrambling time m ln(m/M_P), after the particles cross the horizon. One can, for example, read off the proper time at which a particle anti-particle pair thrown into the hole, annihilates behind the horizon, if this time is less than the scrambling time. If we believe that the Schwarzschild geometry exterior to the horizon is a robust thermodynamic feature of the quantum black hole, independent of whether it is newly formed, or has undergone a long period of Hawking decay, then this classical computation shows that the "firewall" resolution of the AMPS paradox is not valid.

  4. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04T23:59:59.000Z

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

  6. Alternate Fuel Cell Membranes at the University of Southern Mississipp...

    Office of Environmental Management (EM)

    Alternate Fuel Cell Membranes at the University of Southern Mississippi Alternate Fuel Cell Membranes at the University of Southern Mississippi April 16, 2013 - 12:00am Addthis...

  7. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Alkaline Membrane Fuel Cell Workshop Final Report B. Pivovar National Renewable Energy Laboratory Proceedings from the Alkaline Membrane Fuel Cell Workshop Arlington, Virginia...

  8. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse...

  9. Folding amphipathic helices into membranes: Amphiphilicity trumps hydrophobicity

    E-Print Network [OSTI]

    Fernández-Vidal, Mónica; Jayasinghe, Sajith; Ladokhin, Alexey S; White, Stephen H

    2007-01-01T23:59:59.000Z

    C. (1999). Membrane protein folding and stability: PhysicalA. S. & Hristova, K. (1998). Protein folding in membranes:Mutational analysis of protein folding and stability. In

  10. Graphene as the Ultimate Membrane for Gas Separation Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

  11. Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research...

  12. Model Compound Studies of Fuel Cell Membrane Degradation

    Broader source: Energy.gov [DOE]

    Presentation on Model Compound Studies of Fuel Cell Membrane Degradation to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  13. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  14. advanced membrane filtration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages...

  15. acinar cell membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on progress (more) Alaefour, Ibrahim 2012-01-01 26 Durable, Low-cost, Improved Fuel Cell Membranes Renewable Energy Websites Summary: .5 KPaabs Membrane Conductivity at...

  16. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  17. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry. Membrane-Based Emitter for Coupling Microfluidics with...

  18. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  19. absorption membrane reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diagram and critical exponents for phantom membranes and discuss the generalization to self-avoiding membranes. M. Bowick; S. Catterall; S. Warner; G. Thorleifsson; M. Falcioni...

  20. Process Intensification with Integrated Water-Gas-Shift Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor water-gas-shift.pdf More Documents &...

  1. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  2. Table I: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell...

  3. Analysis of the Durability of PEM FC Membrane Electrode Assemblies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications...

  4. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    problems 20 2.3.1 Classes 20 2.3.2 Types of classi cation problems 20 2.3.3 Learning and test sets 21 2Applied inductive learning Louis Wehenkel University of Li`ege Faculty of Applied Sciences Course;#12;APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li#12;ege

  5. Applied inductive learning Louis Wehenkel

    E-Print Network [OSTI]

    Wehenkel, Louis

    .3.2 Types of classification problems 20 2.3.3 Learning and test sets 21 2.3.4 Decision or classificationApplied inductive learning Louis Wehenkel University of Liâ??ege Faculty of Applied Sciences Courseâ??e'' #12; #12; APPLIED INDUCTIVE LEARNING COURSE NOTES : OCTOBER 2000 LOUIS A. WEHENKEL University of Li

  6. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  7. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  8. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  9. applying membrane-bound form: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    corroborate asymmetry of catalysis in F0F1-ATP synthase. Zarrabi, Nawid; Diez, Manuel; Graeber, Peter; Wrachtrup, Joerg; Boersch, Michael 2007-01-01 18 Two-Dimensional Continuous...

  10. DNA sequencing using fluorescence background electroblotting membrane

    DOE Patents [OSTI]

    Caldwell, Karin D. (Salt Lake City, UT); Chu, Tun-Jen (Salt Lake City, UT); Pitt, William G. (Orem, UT)

    1992-01-01T23:59:59.000Z

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  11. Surface Nanostructuring of Polysulfone Membranes by Atmospheric Pressure Plasma-Induced Graft Polymerization (APPIGP)

    E-Print Network [OSTI]

    Kim, Soo Min

    2013-01-01T23:59:59.000Z

    from ethanol through polyimide composite membranes. Journalal. , Preparation of polyimide composite membranes grafted

  12. Growth of aqueous foam on flexible membranes

    E-Print Network [OSTI]

    Hiroyuki Shima

    2009-05-30T23:59:59.000Z

    In this paper, I study the coarsening dynamics of two-dimensional dry foam sandwiched by deformable membranes. The time-varying deformation of the confining membranes gives rise to a significant alteration in the evolution of polygonal cells of bubbles when compared to the case of rigid membranes. This alteration is attributed to the correlation between the rate of inter-cell gas transfer and temporal fluctuation in surface curvature within a cell domain. The existing material constants are referred to understand the utility of the correlation effect toward the artificial control of the coarsening dynamics.

  13. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    SciTech Connect (OSTI)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.] [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01T23:59:59.000Z

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  14. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  15. Performance of ceramic membrane filters

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Im, K.H.; Geyer, H.K. [Argonne National Lab., IL (United States); Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1996-08-01T23:59:59.000Z

    CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

  16. Thermodynamic Modeling of a Membrane Dehumidification System 

    E-Print Network [OSTI]

    Bynum, John 1983-

    2012-11-28T23:59:59.000Z

    optimizations to meet the target performance: condenser pressure optimization and the use of multiple membrane segments operating at different pressures. The latent only COP including the optimizations was a maximum of 4.23. A second model was then developed...

  17. Membrane and MEA Accelerated Stress Test Protocols

    Broader source: Energy.gov (indexed) [DOE]

    and MEA Accelerated Stress Test Protocols Presented at High Temperature Membrane Working Group Meeting Washington, DC May 14, 2007 T.G. Benjamin Argonne National Laboratory 2 0 10...

  18. Development of active-transport membrane devices

    SciTech Connect (OSTI)

    Laciak, D.V.

    1994-07-01T23:59:59.000Z

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  19. Catalytic carbon membranes for hydrogen production

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  20. IFITM Proteins Restrict Viral Membrane Hemifusion

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    an intermediate of fusion, referred to as a cold arrestedcold arrested state (CAS), PLOS Pathogens | www.plospathogens.org January 2013 | Volume 9 | Issue 1 | e1003124 Restriction of Viral Membrane Fusion

  1. Supported Ionic Liquid Membranes for Gas Separation

    SciTech Connect (OSTI)

    Myers, C.R.; Ilconich, J.B.; Pennline, H.W.; Luebke, D.R.

    2007-08-01T23:59:59.000Z

    Ionic liquids have been rapidly gaining attention for various applications including solvent separation and gas capture. These substances are noted for extremely low vapor pressure and high CO2 solubility making them ideal as transport or capture media for CO2 abatement in power generation applications. Ionic liquids, combined with various supports to form membranes, have been proven selective in CO2 separation. Several ionic liquids and a variety of polymer supports have been studied over a temperature range from 37°C to 300°C and have been optimized for stability. The membranes have demonstrated high permeability and high selectivity since the supported ionic liquid membranes incorporate functionality capable of chemically complexing CO2. A study aimed at improving supported ionic liquid membranes will examine their durability with greater transmembrane pressures and the effects on CO2 permeance, CO2/H2 selectivity and thermal stability.

  2. Fuel cell electrolyte membrane with acidic polymer

    DOE Patents [OSTI]

    Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2009-04-14T23:59:59.000Z

    An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

  3. Diffuse charge effects in fuel cell membranes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, ...

  4. A membrane paradigm at large D

    E-Print Network [OSTI]

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Mohan, Ravi; Saha, Arunabha

    2015-01-01T23:59:59.000Z

    We study $SO(d+1)$ invariant solutions of the classical vacuum Einstein equations in $p+d+3$ dimensions. In the limit $d \\to \\infty$ with $p$ held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together with a `velocity' field that lives on this membrane. We demonstrate that our metrics can be corrected to nonsingular solutions at first sub-leading order in $\\frac{1}{d}$ if and only if the membrane shape and `velocity' field obey equations of motion which we determine. These equations define a well posed initial value problem for the membrane shape and this `velocity' and so completely determinethe dynamics of the black hole. They may be viewed as governing the non-linear dynamics of the light quasi normal modes of Emparan, Suzuki and Tanabe.

  5. Separations by supported liquid membrane cascades

    DOE Patents [OSTI]

    Danesi, P.R.

    1983-09-01T23:59:59.000Z

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  6. A membrane paradigm at large D

    E-Print Network [OSTI]

    Sayantani Bhattacharyya; Anandita De; Shiraz Minwalla; Ravi Mohan; Arunabha Saha

    2015-04-24T23:59:59.000Z

    We study $SO(d+1)$ invariant solutions of the classical vacuum Einstein equations in $p+d+3$ dimensions. In the limit $d \\to \\infty$ with $p$ held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together with a `velocity' field that lives on this membrane. We demonstrate that our metrics can be corrected to nonsingular solutions at first sub-leading order in $\\frac{1}{d}$ if and only if the membrane shape and `velocity' field obey equations of motion which we determine. These equations define a well posed initial value problem for the membrane shape and this `velocity' and so completely determinethe dynamics of the black hole. They may be viewed as governing the non-linear dynamics of the light quasi normal modes of Emparan, Suzuki and Tanabe.

  7. Small membranes under negative surface tension

    E-Print Network [OSTI]

    Avital, Yotam Y

    2015-01-01T23:59:59.000Z

    We use computer simulations and a simple free energy model to study the response of a bilayer membrane to the application of a negative (compressive) mechanical tension. Such a tension destabilizes the long wavelength undulation modes of giant vesicles, but it can be sustained when small membranes and vesicles are considered. Our negative tension simulation results reveal two regimes - (i) a weak negative tension regime characterized by stretching-dominated elasticity, and (ii) a strong negative tension regime featuring bending-dominated elastic behavior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration experiment in giant unilamellar vesicles (GUVs) [Phys, Rev. Lett. {\\bf 64}, 2094 (1990)]. However, while in GUVs the crossover between the two elasticity regimes occurs at a small positive surface tension, in smaller membranes it takes place at a moderate negative tension. Another interesting observation concerning the response of a small membrane to negative surface tension ...

  8. Arylene-fluorinated-sulfonimide ionomers and membranes for fuel cells

    DOE Patents [OSTI]

    Teasley, Mark F. (Landenberg, PA)

    2011-11-15T23:59:59.000Z

    The preparation of aromatic sulfonimide polymers useful as membranes in electrochemical cells is described.

  9. Membrane Proteins DOI: 10.1002/anie.201107343

    E-Print Network [OSTI]

    Wallace, Mark

    is hampered by a lack of high-throughput methods for their study. Membrane proteins remain such challengingMembrane Proteins DOI: 10.1002/anie.201107343 Quantification of Membrane Protein Inhibition. Wallace* Despite the importance of membrane proteins as drug targets the discovery of new compounds

  10. New Membranes for High Temperature Proton Exchange Membrane Fuel Cells Based on Heteropoly Acids

    Broader source: Energy.gov [DOE]

    "Summary of Colorado School of Mines heteropolyacid research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 "

  11. Dehydration processes using membranes with hydrophobic coating

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30T23:59:59.000Z

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  12. Separations by supported liquid membrane cascades

    DOE Patents [OSTI]

    Danesi, Pier R. (Clarendon Hills, IL)

    1986-01-01T23:59:59.000Z

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  13. Experimental Investigation of Cell Membrane Nano-mechanics and Plasma Membrane-Cytoskeletal Interactions Using Optical Tweezers

    E-Print Network [OSTI]

    Khatibzadeh, Nima

    2012-01-01T23:59:59.000Z

    energy as a measure of local membrane- cytoskeleton interactions. The results indicated the independency

  14. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect (OSTI)

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01T23:59:59.000Z

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech? conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  15. Supported Molten Metal Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Datta, Ravindra; Ma, Yi Hua; Yen, Pei-Shan; Deveau, Nicholas; Fishtik, Ilie; Mardilovich, Ivan

    2013-09-30T23:59:59.000Z

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM.1 The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 ºC has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and permeation process in these molten metal membranes. For this, a comprehensive microkinetic model was developed for hydrogen permeation in dense metal membranes, and tested against data for Pd membrane over a broad range of temperatures.3 It is planned to obtain theoretical and experimental estimates of the parameters to corroborate the model against mental results for SMMM.

  16. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  17. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05T23:59:59.000Z

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  18. Graphene as a Prototype Crystalline Membrane

    E-Print Network [OSTI]

    Mikhail I. Katsnelson; Annalisa Fasolino

    2013-02-07T23:59:59.000Z

    The understanding of the structural and thermal properties of membranes, low-dimensional flexible systems in a space of higher dimension, is pursued in many fields from string theory to chemistry and biology. The case of a two-dimensional (2D) membrane in three dimensions is the relevant one for dealing with real materials. Traditionally, membranes are primarily discussed in the context of biological membranes and soft matter in general. The complexity of these systems hindered a realistic description of their interatomic structures based on a truly microscopic approach. Therefore, theories of membranes were developed mostly within phenomenological models. From the point of view of statistical mechanics, membranes at finite temperature are systems governed by interacting long-range fluctuations. Graphene, the first truly two-dimensional system consisting of just one layer of carbon atoms, provides a model system for the development of a microscopic description of membranes. In this Account, we review key results in the microscopic theory of structural and thermal properties of graphene and compare them with the predictions of phenomenological theories. The two approaches are in good agreement for the various scaling properties of correlation functions of atomic displacements. However, some other properties, such as the temperature dependence of the bending rigidity, cannot be understood based on phenomenological approaches. We also consider graphene at very high temperature and compare the results with existing models for two-dimensional melting. The melting of graphene presents a different scenario, and we describe that process as the decomposition of the graphene layer into entangled carbon chains.

  19. Fabrication of porous silicon membranes

    E-Print Network [OSTI]

    Yue, Wing Kong

    1988-01-01T23:59:59.000Z

    efficiencies. The silicon difluoride, SiFq, is an unstable substance. It reacts with hydrofluoric acid forming silicic acid (HqSiFs) and hydrogen gas(Hq): SiFs + 2HF ? & SiF4+ Hs, (2) Si F4 + 2 H F ~ Hr Si Fs. In dilute HF solution, silicon can also react.... In step 1, the surface of silicon is covered with fluorine ions. In step 2, when an electric field is applied across the interface, holes move towards the surface. In step 3, some of the holes are trapped at the surface, and they weaken the silicon...

  20. Department of Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    , computational mathematics, discrete applied mathematics, and stochas- tics. More detailed descriptions of Philosophy in Collegiate Mathematics Education (joint program with the Department of Mathematics and Science Education) Research Facilities The department provides students with office space equipped with computers

  1. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect (OSTI)

    Elangovan, S.

    2012-12-31T23:59:59.000Z

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  2. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    E-Print Network [OSTI]

    Mao, Mao; Hu, Guohui

    2013-01-01T23:59:59.000Z

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current--voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow...

  3. Constant pressure high throughput membrane permeation testing system

    DOE Patents [OSTI]

    Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

    2014-09-02T23:59:59.000Z

    The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

  4. Modeling applied to problem solving

    E-Print Network [OSTI]

    Pawl, Andrew

    We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...

  5. IIT SCHOOL OF APPLIED TECHNOLOGY

    E-Print Network [OSTI]

    Heller, Barbara

    INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

  6. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  7. Membrane Extraction for Detoxification of Biomass Hydrolysates

    SciTech Connect (OSTI)

    Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

    2012-05-01T23:59:59.000Z

    Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

  8. E-Print Network 3.0 - asymmetric ultrafiltration membrane Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membranes 4, composite membrane supports 4, bioreactors 5, and screen-printing media 6... , K.L. Smith, Asymmetric membrane tablet coating for osmotic drug- delivery,...

  9. Control of size and charge selectivity in amphiphilic graft copolymer nanofiltration membranes

    E-Print Network [OSTI]

    Lovell, Nathan Gary

    2010-01-01T23:59:59.000Z

    The throughput and efficiency of membrane separations make polymer filtration membranes an important resource for the pharmaceutical, food and wastewater treatment industries. Nanofiltration (NF) membranes fill an important ...

  10. High permeance sulfur tolerant Pd/Cu alloy membranes

    DOE Patents [OSTI]

    Ma, Yi Hua; Pomerantz, Natalie

    2014-02-18T23:59:59.000Z

    A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

  11. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  12. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  13. CX-010574: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Applied Materials - Kerf-less Crystaline-Silicon Photovoltaic: Gas to Modules CX(s) Applied: B3.6 Date: 05162013 Location(s): California,...

  14. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  15. Hydrogen separation membrane on a porous substrate

    DOE Patents [OSTI]

    Song, Sun-Ju (Orland Park, IL); Lee, Tae H. (Naperville, IL); Chen, Ling (Woodridge, IL); Dorris, Stephen E. (LaGrange Park, IL); Balachandran, Uthamalingam (Hinsdale, IL)

    2011-06-14T23:59:59.000Z

    A hydrogen permeable membrane is disclosed. The membrane is prepared by forming a mixture of metal oxide powder and ceramic oxide powder and a pore former into an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  16. Quantum Sticking of Atoms on Membranes

    E-Print Network [OSTI]

    Dennis P. Clougherty

    2014-12-05T23:59:59.000Z

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  17. Effective free energy for pinned membranes

    E-Print Network [OSTI]

    Thomas Speck

    2011-04-21T23:59:59.000Z

    We consider membranes adhered through specific receptor-ligand bonds. Thermal undulations of the membrane induce effective interactions between adhesion sites. We derive an upper bound to the free energy that is independent of interaction details. To lowest order in a systematic expansion we obtain two-body interactions which allow to map the free energy onto a lattice gas with constant density. The induced interactions alone are not strong enough to lead to a condensation of individual adhesion sites. A measure of the thermal roughness is shown to depend on the inverse square root of the density of adhesion sites, which is in good agreement with previous computer simulations.

  18. Membrane separation advances in FE hydrogen program

    SciTech Connect (OSTI)

    NONE

    2007-12-31T23:59:59.000Z

    Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

  19. Novel Metallic Membranes for Hydrogen Separation

    SciTech Connect (OSTI)

    Dogan, Omer

    2011-02-27T23:59:59.000Z

    To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

  20. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Shane E. Roark

    2006-03-31T23:59:59.000Z

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  1. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2

  2. Integration of Non-Traditional Membranes into MEAs

    Broader source: Energy.gov (indexed) [DOE]

    MEAS was possible when thinner membranes with lower degree of grafting were used" Fuel Cells, (2005) 5, 317. * Bae et al., "The MEA composed of SPS-g-PP composite membrane...

  3. The Path a Proton Takes Through a Fuel Cell Membrane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path a Proton Takes Through a Fuel Cell Membrane The Path a Proton Takes Through a Fuel Cell Membrane October 11, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Franklin,...

  4. Synthesis and design of optimal thermal membrane distillation networks

    E-Print Network [OSTI]

    Nyapathi Seshu, Madhav

    2006-10-30T23:59:59.000Z

    Thermal membrane distillation is one of the novel separation methods in the process industry. It involves the simultaneous heat and mass transfer through a hydrophobic semipermeable membrane through the use of thermal energy to bring about...

  5. Data SheetProduct Selection Guide Ultrafiltration Membranes

    E-Print Network [OSTI]

    Lebendiker, Mario

    processing systems. Product Features · Composite PES membrane provides a stable hydraulic environment and an overview of the key criteria and product characteristics to consider when selecting an UF membrane for your

  6. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  7. Gas Separation Membrane Use in the Refinery and Petrochemical Industries

    E-Print Network [OSTI]

    Vari, J.

    Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

  8. acid liquid membrane: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bulk solutions of polyelectrolyte bounded by semipermeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the...

  9. REGULAR ARTICLE Mapping the membrane proteome of Corynebacterium

    E-Print Network [OSTI]

    Roegner, Matthias

    REGULAR ARTICLE Mapping the membrane proteome of Corynebacterium glutamicum Daniela Schluesener proteins. For analysis of the membrane proteome from Corynebacterium glutamicum, we replaced the first exchange chromatography / Corynebacterium glutamicum / Intrinsic mem- brane protein / Mass spectrometry

  10. High temperature ceramic membrane for CO? reuse and syngas production

    E-Print Network [OSTI]

    Chang, Le, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    In recent years, membrane based technologies have attracted much attention thanks to their simplicity in reactor design. The concept proposed is to use mixed ionic-electronic conducting membrane (MIEC) in CO2 reuse and ...

  11. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While...

  12. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01T23:59:59.000Z

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  13. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31T23:59:59.000Z

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  14. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    SciTech Connect (OSTI)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20T23:59:59.000Z

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  15. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect (OSTI)

    Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

    2012-05-15T23:59:59.000Z

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  16. BIOMEDICAL VIGNETTE Mineral Surface Directed Membrane Assembly

    E-Print Network [OSTI]

    Heller, Eric

    components and the input of energy and material from the environment to execute very basic cellular processes can play a critical role in organizing proto-biological materials in a way that could have led membrane vesicles from fatty acids. This ability of clay to influence the formation of supramolecular

  17. DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL OVERVIEW Current/Completed Plug Power to garner SCAQMD funding for fuel cell testing GenCore system is sensitive to diluents · As built design stream to compensate for removal of EGR · Functionality of the modified GenCore Fuel Cell system

  18. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04T23:59:59.000Z

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  19. Testing the membrane paradigm with holography

    E-Print Network [OSTI]

    Jan de Boer; Michal P. Heller; Natalia Pinzani-Fokeeva

    2015-01-19T23:59:59.000Z

    One version of the membrane paradigm states that as far as outside observers are concerned, black holes can be replaced by a dissipative membrane with simple physical properties located at the stretched horizon. We demonstrate that such a membrane paradigm is incomplete in several aspects. We argue that it generically fails to capture the massive quasinormal modes, unless we replace the stretched horizon by the exact event horizon, and illustrate this with a scalar field in a BTZ black hole background. We also consider as a concrete example linearized metric perturbations of a five-dimensional AdS-Schwarzschild black brane and show that a spurious excitation appears in the long-wavelength response that is only removed from the spectrum when the membrane paradigm is replaced by ingoing boundary conditions at the event horizon. We interpret this excitation in terms of an additional Goldstone boson that appears due to symmetry breaking by the classical solution ending on the stretched horizon rather than the event horizon.

  20. Anion-Conducting Polymer, Composition, and Membrane

    DOE Patents [OSTI]

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2008-10-21T23:59:59.000Z

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  1. Single, stretched membrane, structural module experiments

    SciTech Connect (OSTI)

    Wood, R.L.

    1986-02-01T23:59:59.000Z

    This report describes tests done on stretched-membrane heliostats used to reflect solar radiation onto a central receiver. The tests were used to validate prior analysis and mathematical models developed to describe module performance. The modules tested were three meters in diameter and had reflective polymer film laminated to the membrane. The frames were supported at three points equally spaced around the ring. Three modules were pneumatically attached with their weight suspended at the bottom support, two were pneumatically attached with their weight suspended from the upper mounts, and one was rigidly attached with its weight suspended at the bottom mount. By varying the membrane tension we could simulate a uniform wind loading normal to the mirror's surface. A video camera 15+ meters away from the mirror recorded the virtual image of a target grid as reflected by the mirrors' surface. The image was digitized and stored on a microcomputer. Using the law of reflection and analytic geometry, we computed the surface slopes of a sampling of points on the surface. The dominant module response was consistent with prior SERI analyses. The simple analytical model is quite adequate for designing and sizing single-membrane modules if the initial imperfections and their amplification are appropriately controlled. To avoid potential problems resulting from the fundamentally n = 2 deformation phenomena, we advise using either relatively stiffer ring frames or more than three support points.

  2. COMMUNICATION Protein Chemistry at Membrane Interfaces

    E-Print Network [OSTI]

    White, Stephen

    of hydrophobic (ÁGHÈ) and electrostatic (ÁGES) free energies. If these are simply addi- tive, then the observed free energy of binding (ÁGobs) will be given by ÁGobs ÁGHÈ ÁGES, where ÁGHÈ À sNPANP and ÁGES z suggest that hydrophobic and electrostatic binding free energies of proteins at membrane interfaces

  3. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Hamrock, Steven J. (Stillwater, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2010-11-23T23:59:59.000Z

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  4. Molecular sieving silica membrane fabrication process

    DOE Patents [OSTI]

    Raman, N.K.; Brinker, C.J.

    1999-08-10T23:59:59.000Z

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  5. Anion-conducting polymer, composition, and membrane

    DOE Patents [OSTI]

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2009-09-01T23:59:59.000Z

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  6. Anion-conducting polymer, composition, and membrane

    DOE Patents [OSTI]

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2010-12-07T23:59:59.000Z

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  7. Anion-conducting polymer, composition, and membrane

    DOE Patents [OSTI]

    Pivovar, Bryan S. (Los Alamos, NM); Thorn, David L. (Los Alamos, NM)

    2011-11-22T23:59:59.000Z

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  8. Membrane disruption by optically controlled microbubble cavitation

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Membrane disruption by optically controlled microbubble cavitation PAUL PRENTICE1 , ALFRED October 2005; doi:10.1038/nphys148 I n fluids, pressure-driven cavitation bubbles have a nonlinear underpinning phenomena such as sonoluminescence1 and plasma formation2 . If cavitation occurs near a rigid

  9. Procedure for Performing In-Plane Membrane Conductivity Testing

    Broader source: Energy.gov [DOE]

    Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

  10. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  11. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  12. Array of planar membrane modules for producing hydrogen

    DOE Patents [OSTI]

    Vencill, Thomas R. (Albuquerque, NM); Chellappa, Anand S. (Albuquerque, NM); Rathod, Shailendra B. (Hillsboro, OR)

    2012-05-08T23:59:59.000Z

    A shared or common environment membrane reactor containing a plurality of planar membrane modules with top and bottom thin foil membranes supported by both an intermediary porous support plate and a central base which has both solid extended members and hollow regions or a hollow region whereby the two sides of the base are in fluid communication. The membrane reactor operates at elevate temperatures for generating hydrogen from hydrogen rich feed fuels.

  13. Processing-Performance Relationships for Perfluorosulfonate Ionomer Membrane

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  14. Advanced membrane devices. Interim report for October 1996--September 1997

    SciTech Connect (OSTI)

    Laciak, D.V.; Langsam, M.; Lewnard, J.J.; Reichart, G.C.

    1997-12-31T23:59:59.000Z

    Under this Cooperative Agreement, Air Products and Chemicals, Inc. has continued to investigate and develop improved membrane technology for removal of carbon dioxide from natural gas. The task schedule for this reporting period included a detailed assessment of the market opportunity (Chapter 2), continued development and evaluation of membranes and membrane polymers (Chapter 3) and a detailed economic analysis comparing the potential of Air Products membranes to that of established acid gas removal processes (Chapter 4).

  15. Synthesis and design of optimal thermal membrane distillation networks 

    E-Print Network [OSTI]

    Nyapathi Seshu, Madhav

    2006-10-30T23:59:59.000Z

    of oil. An overview of Direct Contact Membrane Distillation (DCMD) reports the narrow range of applications of membrane distillation in the industry, such as desalination and water purification (Burgoyne and Vahdati, 2000; Cath et al., 2004). Gryta... crystalliser and air gap membrane distillation as a solution to geothermal water desalination. Desalination 152 (1-3), 237-244. Burgoyne, A, Vahdati, M.M. 2000. Direct contact membrane distillation.Separation Science and Technology 35 (8), 1257...

  16. An Industrial Wish List for Membrane-Based Separations

    Broader source: Energy.gov [DOE]

    Presentation by Shawn Feist (The Dow Chemical Company) for the Membrane Technology Workshop held July 24, 2012

  17. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Tunesi, Simonetta (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01T23:59:59.000Z

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

  18. Membrane Durability in PEM Fuel Cells: Chemical Degradation

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  19. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  20. Economical Large Scale Advanced Membrane and Sorbent Strategies

    Broader source: Energy.gov [DOE]

    Presentation by William Koros (Georgia Institute of Technology) for the Membrane Technology Workshop held July 24, 2012

  1. Strategy for Aging Tests of Fuel Cell Membranes (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C.

  2. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07T23:59:59.000Z

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  3. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  4. Polymer-electrolyte membrane, electrochemical fuel cell, and related method

    DOE Patents [OSTI]

    Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

    2014-12-09T23:59:59.000Z

    A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

  5. Integration of Non-Traditional Membranes into MEAs

    Broader source: Energy.gov [DOE]

    Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

  6. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03T23:59:59.000Z

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  7. Membrane bioreactor fouling behaviour assessment through principal component analysis and fuzzy clustering

    E-Print Network [OSTI]

    Membrane bioreactor fouling behaviour assessment through principal component analysis and fuzzy Keywords: Factor analysis Fuzzy clustering Membrane bioreactor Membrane fouling Monitoring Principal component analysis a b s t r a c t Adequate membrane bioreactor operation requires frequent evaluation

  8. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOE Patents [OSTI]

    Friesen, D.T.; Babcock, W.C.

    1989-11-28T23:59:59.000Z

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  9. Four-port gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P. (Redwood City, CA); Fulton, Donald A. (Fairfield, CA); Lokhandwala, Kaaeid A. (Fremont, CA); Kaschemekat, Jurgen (Campbell, CA)

    2010-07-20T23:59:59.000Z

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  10. Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West- 2H2O e- e- e- e- e- H+ H+ H+ Membrane + Schematic of a PEMFC Operation #12;PFR PEM Fuel Cell Plug for membrane Two-phase flow in channels #12;CSTR PEM Fuel Cell Continuous Stirred-Tank Reactor (CSTR) "Perfect

  11. Membrane processes relevant for the polymer electrolyte fuel cell

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Membrane processes relevant for the polymer electrolyte fuel cell Aleksander Kolstad Chemical. The important aspects concerning the Polymer Electrolyte Membrane Fuel Cell, more commonly known as Proton Exchange Membrane Fuel Cell (PEMFC), have been studied in two separate parts. Part 1 of the thesis

  12. Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Victoria, University of

    Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells by Roongrojana of Proton Exchange Membrane Fuel Cells by Roongrojana Songprakorp BSc, Prince of Songkhla University to the modeling and under- standing of the dynamic behavior of proton exchange membrane fuel cells (PEMFCs

  13. Doctoral Defense "Low-Temperature Anaerobic Membrane Bioreactor for

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Low-Temperature Anaerobic Membrane Bioreactor for Energy Recovery from Domestic such as anaerobic membrane bioreactors (AnMBRs) are emerging as one option to recover energy during domestic highlighting microbial community shifts in the bioreactor and biofilm during changes in membrane fouling

  14. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Hibbs, Michael (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM); Norman, Kirsten (Albuquerque, NM); Hickner, Michael A. (State College, PA)

    2010-10-19T23:59:59.000Z

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  15. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{

    E-Print Network [OSTI]

    developments in the synthesis of inorganic materials have allowed chemists to create single-site catalysts these inorganic materials, mesoporous anodic aluminium oxide (AAO) membranes have received great attention.4 functionalized membrane material. To this end, we have explored the use of commercially available AAO membranes

  16. Carbon Molecular Sieve Membrane as Reactor/Separator

    E-Print Network [OSTI]

    Methane Reforming SMR HTS-WGS 320 to 470ºC Ferrochrome LTS-WGS 180 to 270ºC Cu/Zn-based Separation stability (physical & chemical), Heat transfer, Large scale defect free membrane, Steam effect on hydrogen, not the membrane material development. · Our CMS membranes demonstrate excellent chemical and material stability

  17. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    E-Print Network [OSTI]

    Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks Geoffrey is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt resistance of the membranes separating different salt concentration solutions has implications for modeling

  18. Microfluidic Generation of Lipidic Mesophases for Membrane Protein Crystallization

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Microfluidic Generation of Lipidic Mesophases for Membrane Protein Crystallization Sarah L. Perry Mathews AVenue, Urbana, Illinois 61801 ReceiVed March 11, 2009 ABSTRACT: We report on a microfluidic conditions of membrane proteins from a membrane-like phase in sub-20 nL volumes. This integrated microfluidic

  19. Cellular mechanisms of membrane protein folding William R Skach

    E-Print Network [OSTI]

    Cai, Long

    Cellular mechanisms of membrane protein folding William R Skach The membrane protein­folding. This Perspective will focus on emerging evidence that the RTC functions as a protein-folding machine that restricts. The process of polytopic (multispanning) membrane protein folding can be viewed as a series of sequential

  20. Self-assembling membranes and related methods thereof

    SciTech Connect (OSTI)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20T23:59:59.000Z

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  1. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    DOE Patents [OSTI]

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02T23:59:59.000Z

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  2. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect (OSTI)

    Mei Hong; Richard D. Noble; John L. Falconer

    2006-09-24T23:59:59.000Z

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4} separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 molxm-2xs-1xPa-1, and the H{sub 2}/CO{sub 2} separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H{sub 2} with high selectivity; and it was thermally stable. However, silylation decreased H{sub 2} permeance more than one order of magnitude. The H{sub 2} separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Increasing the membrane feed pressure also increased the H{sub 2} flux and the H{sub 2} mole fraction in the permeate stream for both mixtures. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO{sub 2} adsorption inhibited H{sub 2} adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO{sub 2}/H{sub 2} separation selectivities of a SAPO-34 membrane were greater than 100 with CO{sub 2} permeances of about 3 x 10-8 mol m-2 s-1 Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H{sub 2} recompression because H{sub 2} remained in the retentate stream at a higher pressure. The CO{sub 2}/H{sub 2} separation selectivity exhibited a maximum with CO{sub 2} feed concentration possibly caused by a maximum in the CO{sub 2}/H{sub 2} sorption selectivity with increased CO{sub 2} partial pressure. The SAPO-34 membrane separated H{sub 2} from CH{sub 4} because CH{sub 4} is close to the SAPO-34 pore size so its diffusivity is much lower than the H{sup 2} diffusivity. The H{sub 2}/CH{sub 4} separation selectivity was almost independent of temperature, pressure, and feed composition. Silylation on SAPO-34 membranes increased H{sup 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} selectivities but did not increase H{sub 2}/CO{sub 2} and H{sub 2}/N{sub 2} selectivities because silylation only blocked defects in SAPO-34 membranes. Hydr

  3. Journal of Applied Ecology 2006

    E-Print Network [OSTI]

    Thomas, Len

    Journal of Applied Ecology 2006 43, 377­384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal

  4. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  5. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  6. California Energy Commission Apply Today!

    E-Print Network [OSTI]

    including HVAC and thermal energy storage system upgrades, stadium light conversion and a microturbineCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

  7. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  8. Effects of water chemistry on NF/RO membrane structure and performance

    E-Print Network [OSTI]

    Mo, Yibing

    2013-01-01T23:59:59.000Z

    contaminants by a membrane bioreactor‚granular activatedA combination of a membrane bioreactor (MBR) and GAC for

  9. LIGHT INDUCED SURFACE POTENTIAL CHANGES IN PURPLE MEMBRANES AND BACTERIORHODOPSIN LIPOSOMES

    E-Print Network [OSTI]

    Carmeli, C.

    2011-01-01T23:59:59.000Z

    Workshop on Membrane Bioenergetics, Detroit, MI, July 5-7,and L. PACKER Membrane Bioenergetics Group, University of

  10. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator

    SciTech Connect (OSTI)

    Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E. [Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-03-28T23:59:59.000Z

    As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not only the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.

  11. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    E-Print Network [OSTI]

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01T23:59:59.000Z

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  12. EFFECT OF COMPRESSION ON CONDUCTIVITY AND MORPHOLOGY OF PFSA MEMBRANES

    SciTech Connect (OSTI)

    Kusoglu, Ahmet; Weber, Adam; Jiang, Ruichin; Gittleman, Craig

    2011-07-20T23:59:59.000Z

    Polymer-Electrolyte-Fuel-Cells (PEFCs) are promising candidates for powering vehicles and portable devices using renewable-energy sources. The core of a PEFC is the solid electrolyte membrane that conducts protons from anode to cathode, where water is generated. The conductivity of the membrane, however, depends on the water content of the membrane, which is strongly related to the cell operating conditions. The membrane and other cell components are typically compressed to minimize various contact resistances. Moreover, the swelling of a somewhat constrained membrane in the cell due to the humidity changes generates additional compressive stresses in the membrane. These external stresses are balanced by the internal swelling pressure of the membrane and change the swelling equilibrium. It was shown using a fuel-cell setup that compression could reduce the water content of the membrane or alter the cell resistance. Nevertheless, the effect of compression on the membrane’s transport properties is yet to be understood, as well as its implications in the structure-functions relationships of the membrane. We previously studied, both experimentally and theoretically, how compression affects the water content of the membrane.6 However, more information is required the gain a fundamental understanding of the compression effects. In this talk, we present the results of our investigation on the in-situ conductivity of the membrane as a function of humidity and cell compression pressure. Moreover, to better understand the morphology of compressed membrane, small-angle X-ray-scattering (SAXS) experiments were performed. The conductivity data is then analyzed by investigating the size of the water domains of the compressed membrane determined from the SAXS measurements.

  13. A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-

    E-Print Network [OSTI]

    A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow electro- chemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3 ). INTRODUCTION

  14. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28T23:59:59.000Z

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  15. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect (OSTI)

    Air Products and Chemicals

    2008-09-30T23:59:59.000Z

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  16. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    J. Douglas Way; Paul M. Thoen

    2005-08-31T23:59:59.000Z

    This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

  17. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04T23:59:59.000Z

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  18. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect (OSTI)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-01-06T23:59:59.000Z

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  19. Method for dialysis on microchips using thin porous polymer membrane

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2009-05-19T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  20. Dialysis on microchips using thin porous polymer membranes

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2007-09-04T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  1. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    SciTech Connect (OSTI)

    Mei Hong; Richard Noble; John Falconer

    2007-09-24T23:59:59.000Z

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

  2. Fuel cell membranes and crossover prevention

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); York, Cynthia A. (Newington, CT); Waszczuk, Piotr (White Bear Lake, MN); Wieckowski, Andrzej (Champaign, IL)

    2009-08-04T23:59:59.000Z

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  3. Budding of domains in mixed bilayer membranes

    E-Print Network [OSTI]

    Jean Wolff; Shigeyuki Komura; David Andelman

    2015-01-10T23:59:59.000Z

    We propose a model that accounts for budding behavior of domains in lipid bilayers, where each of the bilayer leaflets has a coupling between its local curvature and local lipid composition. The compositional asymmetry between the two monolayers leads to an overall spontaneous curvature. The membrane free-energy contains three contributions: bending energy, line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams which contain fully-budded, dimpled and flat states. In particular, for some range of membrane parameters, the phase diagrams exhibit a tricritical behavior as well as three-phase coexistence region. The global phase diagrams can be divided into three types and are analyzed in terms of the curvature-composition coupling parameter and domain size.

  4. Reverse-selective diffusion in nanocomposite membranes

    E-Print Network [OSTI]

    Reghan J. Hill

    2005-10-27T23:59:59.000Z

    The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction (Merkel et al., Science, 296, 2002). This intriguing observation contradicts even qualitative expectations based on Maxwell's classical theory of conduction/diffusion in composites with homogeneous phases. This letter presents a simple theoretical interpretation based on classical models of diffusion and polymer physics. An essential feature of the theory is a polymer-segment depletion layer at the inclusion-polymer interface. The accompanying increase in free volume leads to a significant increase in the local penetrant diffusivity, which, in turn, increases the bulk permeability while exhibiting reverse selectivity. This model captures the observed dependence of the bulk permeability on the inclusion size and volume fraction, providing a straightforward connection between membrane microstructure and performance.

  5. Fluctuation induced interactions between domains in membranes

    E-Print Network [OSTI]

    D. S. Dean; M. Manghi

    2006-09-06T23:59:59.000Z

    We study a model lipid bilayer composed of a mixture of two incompatible lipid types which have a natural tendency to segregate in the absence of membrane fluctuations. The membrane is mechanically characterized by a local bending rigidity $\\kappa(\\phi)$ which varies with the average local lipid composition $\\phi$. We show, in the case where $\\kappa$ varies weakly with $\\phi$, that the effective interaction between lipids of the same type can either be everywhere attractive or can have a repulsive component at intermediate distances greater than the typical lipid size. When this interaction has a repulsive component, it can prevent macro-phase separation and lead to separation in mesophases with a finite domain size. This effect could be relevant to certain experimental and numerical observations of mesoscopic domains in such systems.

  6. Nanostructured polymer membranes for proton conduction

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18T23:59:59.000Z

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  7. Mixed conducting membranes for syngas production

    DOE Patents [OSTI]

    Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

    2002-01-01T23:59:59.000Z

    This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

  8. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect (OSTI)

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01T23:59:59.000Z

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  9. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  10. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    1998-01-01T23:59:59.000Z

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.

  11. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, J.H.; Schwartz, M.; Sammells, A.F.

    1998-10-13T23:59:59.000Z

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.

  12. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    SciTech Connect (OSTI)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28T23:59:59.000Z

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.

  13. Applying to Teacher Education Program at Purdue

    E-Print Network [OSTI]

    David Drasin

    2012-12-02T23:59:59.000Z

    Apply to the Teacher Education Program (TEP). Please remember to apply to the TEP(Gate A) if you wish to officially enroll in the. Professional Education ...

  14. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc Jump to:Applied

  15. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H. (Boulder, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2.ltoreq.x.ltoreq.0.5, and y is a number sufficient to neutralize the charge in the mixed metal oxide material.

  16. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect (OSTI)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15T23:59:59.000Z

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  17. CO2-selective, Hybrid Membranes by Silation of Alumina

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  18. Membranes for nanometer-scale mass fast transport

    DOE Patents [OSTI]

    Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

    2011-10-18T23:59:59.000Z

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect (OSTI)

    Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

    1991-01-01T23:59:59.000Z

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  20. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    SciTech Connect (OSTI)

    Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2002-01-01T23:59:59.000Z

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  1. Active membrane having uniform physico-chemically functionalized ion channels

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24T23:59:59.000Z

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  2. Solid-State Nuclear Magnetic Resonance Evidence for an Extended Strand Conformation of the Membrane-Bound HIV-1 Fusion Peptide

    E-Print Network [OSTI]

    Weliky, David

    Solid-State Nuclear Magnetic Resonance Evidence for an Extended Strand Conformation of the Membrane-Bound HIV-1 Fusion Peptide Jun Yang, Charles M. Gabrys, and David P. Weliky* Department of ChemistryVed May 4, 2001 ABSTRACT: Solid-state nuclear magnetic resonance (NMR) spectroscopy was applied

  3. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage

    E-Print Network [OSTI]

    Mao Mao; Sandip Ghosal; Guohui Hu

    2013-05-16T23:59:59.000Z

    Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current--voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations.

  4. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect (OSTI)

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12T23:59:59.000Z

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  5. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect (OSTI)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30T23:59:59.000Z

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  6. Ultraviolet resonance Raman spectroscopy of the integral membrane protein OmpA : elucidating structure and tryptophan microenvironment of folded and unfolded states

    E-Print Network [OSTI]

    Neary, Tiffany Jonean

    2008-01-01T23:59:59.000Z

    Intermediates in Membrane Protein Folding,” Biochemistry (Intermediates in Membrane Protein Folding,” Biochemistry (Engelman. “ Membrane-Protein Folding and Oligomerization -

  7. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15T23:59:59.000Z

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  8. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14T23:59:59.000Z

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  9. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOE Patents [OSTI]

    Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01T23:59:59.000Z

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  10. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect (OSTI)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29T23:59:59.000Z

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

  11. Protein separations using porous silicon membranes 

    E-Print Network [OSTI]

    Pass, Shannon Marie

    1992-01-01T23:59:59.000Z

    ) 61 IX LIST OF TABLES 1. The L9 Orthogonal Array 34 2. Experimental Factors and Levels . 3. Results of Silicon Etching Trials . 35 40 4. Results of Silicon Membrane Separation Experiments 44 5. Results of Single Solute Experiments Using... charge or as the absence of an electron in the crystal structure of silicon. The properties of boron doped siTicon are exploited experimentally by setting up an etch cell in which one surface of the silicon serves as the anode and by using...

  12. Membrane Bioreactor Systems | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier Solar SolutionsMelinkMembrane

  13. anion exchange membrane: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PEMFC) are amongst the most studied fuel Boyer, Edmond 13 Computational modeling and optimization of proton exchange membrane fuel cells. Open Access Theses and Dissertations...

  14. anion exchange membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PEMFC) are amongst the most studied fuel Boyer, Edmond 13 Computational modeling and optimization of proton exchange membrane fuel cells. Open Access Theses and Dissertations...

  15. antagonizes sanpodo membrane: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garcia-Arencibia, Moises; Sadiq, Oana; Corrochano, Silvia; Carter, Sarah; Brown, Steve D. M.; Acevedo-Arozena, Abraham; Rubinsztein, David C. 2013-06-25 5 Anisotropic Membranes...

  16. alcohol membrane reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors...

  17. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate...

  18. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen...

  19. Membrane degradation Accelerated Stress Test | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Membrane degradation Accelerated Stress Test Re-direct Destination: Abstract Not Provided times redirected to final destination ShortURL Code Published Current state Most recent...

  20. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Broader source: Energy.gov (indexed) [DOE]

    and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton"...

  1. axonal membrane glycoprotein: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cootauco; Richard Quarles 1989-01-01 16 Letter to NeuroscienceLetter to Neuroscience ACROLEIN INFLICTS AXONAL MEMBRANE DISRUPTION AND Engineering Websites Summary: AND CONDUCTION...

  2. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    "Fuel Cells for Portable Power." Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides More Documents & Publications Novel Materials...

  3. 2006 Alkaline Membrane Fuel Cell Workshop Final Report

    Broader source: Energy.gov (indexed) [DOE]

    cells, in that membrane based systems avoid issues of electrolyte migration, mitigate corrosion concerns, can be operated with differential pressures, prevent carbonate...

  4. Active Fusion and Fission Processes on a Fluid Membrane

    E-Print Network [OSTI]

    Madan Rao; Sarasij R C

    2001-02-26T23:59:59.000Z

    We investigate the steady states and dynamical instabilities resulting from ``particles'' depositing on (fusion) and pinching off (fission) a fluid membrane. These particles could be either small lipid vesicles or isolated proteins. In the stable case, such fusion/fission events suppress long wavelength fluctuations of the membrane. In the unstable case, the membrane shoots out long tubular structures reminiscent of endosomal compartments or folded structures as in internal membranes like the endoplasmic reticulum or Golgi. We argue that these fusion/fission events should be strongly affected by tension.

  5. Performance evaluation of organic emulsion liquid membrane on phenol removal

    E-Print Network [OSTI]

    Ng, Y S; Hashim, M A

    2014-01-01T23:59:59.000Z

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  6. PEM Electrolyzer Incorporating an Advanced Low Cost Membrane...

    Office of Environmental Management (EM)

    PEM Electrolyzer Incorporating an Advanced Low Cost Membrane 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  7. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic...

  8. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26T23:59:59.000Z

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  9. anion selective membrane: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wastewater treatment, (more) Xiao, Li 2014-01-01 23 Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium ion selective...

  10. amniotic membrane graft: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by grafting of Engineering Websites Summary: of polyamide thin-film composite membranes. The structure of nanofiltration (NF) and reverse osmosis (RO.V. All rights...

  11. aromatic ionomer membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation and characterization of disulfonated polysulfone films and polyamide thin film composite membranes for desalination. Open Access Theses and Dissertations Summary:...

  12. active membrane properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85 Improving the Performance and Antifouling Properties of Thin-Film Composite Membranes for Water Separation Technologies. Open Access Theses and Dissertations Summary: ??...

  13. acid composite membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation and characterization of disulfonated polysulfone films and polyamide thin film composite membranes for desalination. Open Access Theses and Dissertations Summary:...

  14. aromatic polyamide membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of an interfacially polymerized polyamide substrate, and these thin-film-composite membranes were studied for (more) Zhang, Ying 2013-01-01 16 Original article Polyamide...

  15. activated composite membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization of disulfonated polysulfone films and polyamide thin film composite membranes for desalination. Open Access Theses and Dissertations Summary: ??The current...

  16. Membranes and MEAs for Dry, Hot Operating Conditions

    Broader source: Energy.gov (indexed) [DOE]

    durability and performance characteristics making them useful in stationary fuel cell applications. Membranes and MEA's for Dry, Hot Operating Conditions - Kick off 4 3...

  17. Ohio State Develops Breakthrough Membranes for Carbon Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membrane "is a breakthrough that could potentially lower costs associated with clean coal technologies." So, thanks to the efforts of a group of dedicated researchers who saw...

  18. Probing the membrane potential of living cells by dielectric spectroscopy

    E-Print Network [OSTI]

    Corina Bot; Camelia Prodan

    2008-12-17T23:59:59.000Z

    In this paper we demonstrate a quantitative way to measure the membrane potential of live cells by dielectric spectroscopy. We also show that the values of the membrane potential obtained using our technique are in good agreement with those obtained using traditional methods-voltage sensitive dyes. The membrane potential is determined by fitting the experimental dielectric dispersion curves with the dispersion curves obtain from a theoretical model. Variations in the membrane potential were induced by modifying the concentration of potassium chloride in the solution of the cell suspension in the presence of valinomycin. For exemplification of the method, E. coli were chosen for our experiments.

  19. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SANDIA REPORT SAND2011-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Joseph W. Pratt,...

  20. Atomistic Simulation of Nafion Membrane: 2. Dynamics of Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Dynamics of Water Molecules and Hydronium Ions. Atomistic Simulation of Nafion Membrane: 2. Dynamics of Water Molecules and Hydronium Ions. Abstract: We have performed a...

  1. Membrane Performance and Durability Overview for Automotive Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    September 14, 2006 Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Tom Greszler General Motors Corporation Fuel Cell Activities Honeoye...

  2. alloy composite membranes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    precious metals to Nafion a perfluorosulfonated ionomer developed by DuPont membrane surfaces, in which nanosized metal Heflin, Randy 233 Biomolecular simulations of...

  3. Alkaline Membrane Fuel Cell Workshop Welcome and OverviewInnovation

    Broader source: Energy.gov (indexed) [DOE]

    Alkaline Membrane Fuel Cell Workshop Welcome and Overview Innovation for Our Energy Future Bryan Pivovar National Renewable Energy Laboratory AMFC Workshop May 8, 2011 Innovation...

  4. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom...

  5. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Tunesi, S.; Xu, Q.

    1991-07-30T23:59:59.000Z

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

  6. apical membrane vesicles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were incorporated at low levels (up to 5 mol %) in vesicles composed of 1 Smith, Bradley D. 2 TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane...

  7. Diffraction-Based Density Restraints for Membrane and Membrane-Peptide Molecular Dynamics Simulations

    E-Print Network [OSTI]

    White, Stephen

    or neutron scattering-length density projected along the bilayer normal (5). These profiles represent, California; and z NIST Center for Neutron Research, National Institute of Standards and Technology. INTRODUCTION X-ray and neutron diffraction are commonly used for studying the structure of membrane systems (1

  8. Sorting of inner nuclear membrane-directed proteins at the endoplasmic reticulum membrane

    E-Print Network [OSTI]

    Saksena, Suraj

    2006-04-12T23:59:59.000Z

    protein ODV-E66 (E66) showed that E66 trafficking to the INM is mediated via an INM sorting signal (Sorting Motif or SM). In this study, using a site-specific crosslinking approach we demonstrate that following ER membrane integration, the SM is adjacent...

  9. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices

    SciTech Connect (OSTI)

    Susan Agro, Anthony DeCarmine, Shari Williams

    2005-12-30T23:59:59.000Z

    Our work will fucus on developing higher temperature MEAs based on SPEKK polymer blends. Thse MEAs will be designed to operatre at 120 degrees C Higher temperatures, up to 200 degrees C will also be explored. This project will develop Nafion-free MEAs using only SPEKK blends in both membrane and catalytic layers.

  10. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties

    SciTech Connect (OSTI)

    Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

    2011-01-01T23:59:59.000Z

    With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

  11. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  12. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  13. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  14. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  15. CX-012632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration

  16. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  17. CX-004196: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-004196: Categorical Exclusion Determination Infrared and Raman Spectroscopy of Biological Safety Level-1 Biological Samples CX(s) Applied:...

  18. CX-000331: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5,...

  19. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  20. CX-012089: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-012089: Categorical Exclusion Determination Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04172014...

  1. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  2. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  3. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  4. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  5. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  6. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  7. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  8. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  9. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. CX-006471: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-006471: Categorical Exclusion Determination Air Awareness Campaign Electric Car Charging Station CX(s) Applied: B5.1 Date: 08042011 Location(s): Greenville, South...

  11. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  12. CX-012015: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-012015: Categorical Exclusion Determination Enhanced Wind Resource Assessment with Sonic Ranging and Detection at Tooele Army Depot CX(s) Applied:...

  13. CX-012110: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Defense Logistics Agency, Tracy, California, Wind Resource Assessment CX(s) Applied: A9, B3.1 Date: 05072014 Location(s): California...

  14. CX-002753: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-002753: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment CX(s) Applied: B3.1 Date: 06212010 Location(s): Deadwood, South...

  15. CX-002823: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002823: Categorical Exclusion Determination Nebraska College of Technical Agriculture Biomass Facility CX(s) Applied: B5.1 Date: 06242010 Location(s): Curtis, Nebraska...

  16. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  17. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  18. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  20. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  1. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  2. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  3. CX-012724: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Electronic Message Board Installation CX(s) Applied: B1.7Date: 41830 Location(s): IdahoOffices(s): Nuclear Energy

  4. CX-002964: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002964: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions CX(s) Applied: B3.11, A9 Date: 07092010...

  5. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  6. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  7. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  8. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  10. CX-001724: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-001724: Categorical Exclusion Determination Recovery Act City of Boise Energy Efficiency and Conservation Block Grant (EECBG) CX(s) Applied: B5.1 Date: 04122010...

  11. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  12. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  13. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  14. CX-009465: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  15. CX-009462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  16. CX-011295: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011295: Categorical Exclusion Determination Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10172013 Location(s): Pennsylvania...

  17. CX-009463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

  18. CX-009464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

  19. CX-012776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office

  20. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office