Powered by Deep Web Technologies
Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Weigh-in-motion scale with foot alignment features  

DOE Patents [OSTI]

A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other corner foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the corner foot member.

Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh

2013-03-05T23:59:59.000Z

2

Challenge members to achieve a goal | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge members to achieve a goal Challenge members to achieve a goal Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Partner with ENERGY STAR Encourage members to benchmark Challenge members to achieve a goal Tell members how to save Deliver training to members Give recognition Tie it all together in a campaign Challenge members to achieve a goal Benchmarking and goal-setting go hand-in-hand. No matter what type of

3

Energy-Smart Building Choices: How School Administrators and Board Members Are Improving Learning and Saving Money (Revision)  

SciTech Connect (OSTI)

Most school administrators and board members today must perform a tough juggling act. You're challenged to fulfill increasingly complex educational missions, meet rising community expectations, and serve growing student populations all with constrained operating budgets. As districts consider renovating their facilities or building new schools, many have found that smart energy choices can have lasting benefits for their schools, their communities, and the environment.

Not Available

2002-02-01T23:59:59.000Z

4

Energy-Smart Building Choices: How School Administrators and Board Members Are Improving Learning and Saving Money  

SciTech Connect (OSTI)

Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school administrators and board members, describes how schools can become more energy efficient.

Energy Smart Schools Team

2001-08-06T23:59:59.000Z

5

Formal Design Review Foot Clamp Modification  

SciTech Connect (OSTI)

This report documents the Design Review performed for the foot clamp modification. The report documents the acceptability of the design, identifies the documents that were reviewed, the scope of the review and the members of the review team.

OTEN, T.C.

2000-01-24T23:59:59.000Z

6

Better Buildings Neighborhood Program: Better Buildings Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

7

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and Division Northeast 11.7 7.4 21.2 139 49 88.5 34 898 0.31 571 221 New England 1.7 1.0 3.0 155 49 86.8 33 1,044 0.33 586 223 Middle Atlantic 10.0 6.5 18.2 137 49 88.8 35 877 0.31 568 221

8

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region and Division Northeast 12.2 7.7 23.3 145 48 90.9 35 1,122 0.37 703 272 New England 2.2 1.2 4.2 154 45 85.7 34 1,298 0.38 722 290 Middle Atlantic 10.0 6.4 19.1 143 48 92.0 35 1,089 0.37 699 269

9

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division Northeast 18.3 13.0 35.0 31 12 22.3 8 938 0.35 665 245 New England 4.3 3.1 9.0 31 11 22.6 8 869 0.30 635 227 Middle Atlantic 14.0 9.9 26.0 32 12 22.2 8 959 0.36 674 251

10

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

11

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region and Division Northeast 11.9 7.7 23.6 134 44 86.8 33 952 0.31 615 232 New England 2.0 1.1 3.5 146 45 76.0 29 1,135 0.35 592 227 Middle Atlantic 9.9 6.6 20.1 133 44 89.1 34 923 0.30 620 234

12

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and Division Northeast 11.7 7.5 21.1 125 44 79.2 30 925 0.33 588 221 New England 2.0 1.3 4.2 122 39 80.3 29 955 0.30 626 224 Middle Atlantic 9.7 6.1 16.9 125 45 78.9 30 919 0.33 580 220

13

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division Northeast 1.2 1.1 2.7 29 11 26.2 9 318 0.13 288 94 New England 0.5 0.4 1.0 25 11 22.5 8 282 0.12 250 91 Middle Atlantic 0.7 0.7 1.7 31 12 28.6 9 341 0.13 312 96

14

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

15

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division Northeast 19.0 13.2 36.8 34 12 23.3 9 934 0.34 648 251 New England 4.3 3.0 8.4 33 12 22.9 9 864 0.30 600 234 Middle Atlantic 14.8 10.2 28.4 34 12 23.4 9 954 0.34 661 256

16

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division Northeast 20.3 14.1 43.7 37 12 26.0 11 1,268 0.41 883 362 New England 5.4 4.1 13.2 32 10 24.0 10 1,121 0.35 852 358 Middle Atlantic 14.8 10.0 30.5 40 13 27.0 11 1,328 0.44 894 364

17

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division Northeast 1.4 1.2 2.7 23 10 20.1 7 295 0.13 264 91 New England 0.5 0.4 1.0 31 14 27.6 9 370 0.17 330 114 Middle Atlantic 0.9 0.8 1.8 18 8 15.9 6 253 0.11 226 79

18

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

19

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

97 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and Division Northeast 19.7 15.1 34.6 32 14 25.0 10 1,130 0.49 863 345 New England 5.3 4.2 9.3 31 14 24.0 9 1,081 0.49 854 336 Middle Atlantic 14.4 10.9 25.3 33 14 25.0 10 1,149 0.49 867 349

20

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

22

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division Northeast 17.9 12.1 35.1 33 11 22.1 8 830 0.29 561 195 New England 4.3 2.9 8.3 31 11 21.3 8 776 0.27 531 189 Middle Atlantic 13.7 9.2 26.7 33 11 22.4 8 847 0.29 571 197

23

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1997 Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34 579 218 Census Region and Division Northeast 11.8 8.3 19.9 123 52 86.9 35 1,097 0.46 772 310 New England 1.9 1.4 3.3 123 50 87.0 32 1,158 0.48 819 301 Middle Atlantic 9.9 6.9 16.6 124 52 86.9 36 1,085 0.45 763 312

24

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region and Division Northeast 19.5 13.8 40.1 34 12 24.1 9 1,144 0.39 809 309 New England 5.1 3.7 10.6 33 11 24.1 9 1,089 0.38 797 311 Middle Atlantic 14.4 10.1 29.4 35 12 24.2 9 1,165 0.40 814 309

25

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

26

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

27

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division Northeast 17.7 12.2 34.8 33 12 23.0 8 742 0.26 514 181 New England 4.3 2.9 8.9 34 11 23.1 8 747 0.25 508 177 Middle Atlantic 13.4 9.3 26.0 33 12 22.9 8 740 0.27 516 183

28

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region and Division Northeast 12.5 7.8 25.4 126 39 78.3 33 1,434 0.44 889 372 New England 2.3 1.5 5.5 128 34 82.5 35 1,567 0.42 1,014 428 Middle Atlantic 10.3 6.3 19.9 126 40 77.4 32 1,403 0.45 861 360

29

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

30

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1980 Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 51.6 39.7 88.5 125 56 96.2 34 497 0.22 383 137 Census Region and Division Northeast 10.9 6.5 18.8 144 50 86.6 31 771 0.27 463 168 New England 1.9 0.9 3.1 162 47 78.9 28 971 0.28 472 169 Middle Atlantic 9.0 5.6 15.7 141 51 88.1 32 739 0.27 461 168

31

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and Division Northeast 1.7 1.7 4.5 31 11 29.8 11 538 0.20 519 186 New England 0.7 0.7 2.2 34 11 33.1 12 580 0.19 569 209 Middle Atlantic 1.0 0.9 2.4 29 11 27.4 10 506 0.20 482 169

32

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and Division Northeast 11.6 7.3 21.1 132 46 82.6 31 951 0.33 598 221 New England 2.0 1.3 4.5 126 35 77.9 28 1,062 0.30 658 235 Middle Atlantic 9.6 6.0 16.5 133 49 83.6 31 928 0.34 585 217

33

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

34

Type B Accident Investigation Board Report BNFL, Inc. Employee Foot Injury on December 17, 2003, at the East Tennessee Technology Park Building K-31  

Broader source: Energy.gov [DOE]

On December 17, 2003, at approximately 7:15 a.m., an accident occurred at the U.S. Department of Energy (DOE) East Tennessee Technology Park, Building K-31. An employee (Pipefitter) of British Nuclear Fuels Limited Inc. (BNFL) was injured while attempting to remove concrete block from within a wide-flange, steel column during demolition of the K-31 Control Room (first floor, center of building).

35

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

36

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

37

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

38

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

39

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

40

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

42

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

43

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

44

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

45

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

46

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

47

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

48

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

49

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

50

Better Buildings Federal Award 2012 Competition  

Broader source: Energy.gov [DOE]

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility...

51

Better Buildings Federal Award  

Broader source: Energy.gov [DOE]

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis.

52

IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic  

E-Print Network [OSTI]

IEEEProof IEEE/ASME TRANSACTIONS ON MECHATRONICS 1 Technologies for Powered Ankle-Foot Orthotic-Wecksler, Member, IEEE, William K. Durfee, and G´eza F. Kogler 3 4 Abstract--Ankle-foot orthoses (AFOs) can be used Index Terms--Active assist, ankle-foot orthosis (AFO), fluid17 power, gait.18 I. MOTIVATION19 FOR MOST

Durfee, William K.

53

Effect of foot load changes on foot arch evaluation using foot pressure distribution data  

Science Journals Connector (OSTI)

The foot arch serves important functions in regard to shock absorption and the action of walking. Simple and quantitative classification of foot arch types such as flat foot and high arch would be helpful in heal...

Kazuya Imaizumi; Yumi Iwakami; Kazuhiko Yamashita

2014-04-01T23:59:59.000Z

54

Better Buildings Residential Network Membership Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Are You Already a DOE Partner or Sponsor? (Check if applicable) Better Buildings Alliance Member Building America Team Member Better Buildings Challenge Partner or Ally Home...

55

Dr. James Freihaut is a member of the AE mechanical option faculty. His current research focus is on building systems related  

E-Print Network [OSTI]

energy systems for buildings and communities of buildings in parallel with the design tools curriculum, integrated with his research pursuits, which focus on emerging building science issues. He is on building systems related energy and indoor air quality. Freihaut has developed an indoor aerosol laboratory

Yener, Aylin

56

FTCP Members  

Broader source: Energy.gov [DOE]

Federal Technical Capability Program Members (FTCP) Panel including FTCP Chair, Agents, Alternate Agents and Other Representatives

57

Doing Well by Doing Good? Green Office Buildings  

E-Print Network [OSTI]

estimated for a green building, or to Energy Star. 2008. “square foot) Green rating (1 = yes) Energy Star (1 = yes)square foot) Green rating (1 = yes) Energy Star (1 = yes)

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2009-01-01T23:59:59.000Z

58

Better Buildings Residential Network | Department of Energy  

Energy Savers [EERE]

more. Residential Network Members Welcome Our Newest Members Cascadia Consulting Group Johnson Environmental The Building Performance Center, Inc. *Residential Network members that...

59

Effect of Exercise Intervention and Foot Load Changes on Foot Arch Evaluation Using Foot Pressure Distribution Data  

Science Journals Connector (OSTI)

The foot arch serves important functions in regard to shock absorption and the action of walking. Simple and quantitative classification of foot arch types such as flat foot and high arch would be helpful in heal...

K. Imaizumi; Y. Iwakami; K. Yamashita

2014-01-01T23:59:59.000Z

60

Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands Biomechanical Design of a Powered Ankle-Foot Prosthesis  

E-Print Network [OSTI]

-15, Noordwijk, The Netherlands Biomechanical Design of a Powered Ankle-Foot Prosthesis Samuel K. Au, Jeff Weber, and Hugh Herr Abstract-Although the potential benefits of a powered ankle- foot prosthesis have been well such a development is the challenge of building an ankle-foot prosthesis that matches the size and weight

Herr, Hugh

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Foot-and-Mouth Disease  

Science Journals Connector (OSTI)

...Greenport, New York 11944 Foot-and-mouth disease (FMD...AGENT The recent outbreaks of foot-and-mouth disease (FMD...vesicular lesions on the tongue, feet, snout, and teats (see Pathogenesis...production, and loss of draught power, resulting in a loss in productivity...

Marvin J. Grubman; Barry Baxt

2004-04-01T23:59:59.000Z

62

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493 583 Census Region and Division Northeast 20.3 14.1 43.7 153 49 106.6 44 2,501 0.81 1,741 715 New England 5.4 4.1 13.2 152 47 115.3 48 2,403 0.75 1,825 768 Middle Atlantic 14.8 10.0 30.5 154 50 103.4 42 2,541 0.83 1,710 696

63

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491 Census Region and Division Northeast 19.5 13.8 40.1 173 60 122.4 47 2,157 0.74 1,526 583 New England 5.1 3.7 10.6 168 59 123.1 48 2,094 0.73 1,532 598 Middle Atlantic 14.4 10.1 29.4 175 60 122.1 46 2,180 0.75 1,523 578

64

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417 Census Region and Division Northeast 18.3 13.0 35.0 176 65 125.2 46 2,033 0.75 1,443 533 New England 4.3 3.1 9.0 174 61 127.6 46 2,010 0.70 1,471 527 Middle Atlantic 14.0 9.9 26.0 177 67 124.5 46 2,040 0.77 1,435 535

65

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416 Census Region and Division Northeast 19.0 13.2 36.8 179 64 124.4 48 1,836 0.66 1,276 494 New England 4.3 3.0 8.4 174 61 121.0 47 1,753 0.62 1,222 475 Middle Atlantic 14.8 10.3 28.4 181 65 125.4 48 1,860 0.67 1,292 499

66

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356 Census Region and Division Northeast 17.9 12.1 35.1 194 67 131.6 46 2,016 0.70 1,365 475 New England 4.3 2.9 8.3 181 63 123.9 44 2,018 0.71 1,384 492 Middle Atlantic 13.7 9.2 26.7 199 68 134.0 46 2,016 0.69 1,359 470

67

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330 Census Region and Division Northeast 17.7 12.3 34.8 199 70 138.3 49 1,874 0.66 1,301 459 New England 4.3 2.9 8.9 197 65 134.4 47 1,964 0.65 1,341 466 Middle Atlantic 13.4 9.3 26.0 200 72 139.5 49 1,846 0.66 1,288 456

68

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,034 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,023 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,037 0.70 1,491 555

69

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377 Census Region and Division Northeast 18.0 12.5 34.4 175 64 121.7 44 1,942 0.71 1,353 490 New England 4.2 3.0 9.1 173 56 121.9 43 1,991 0.65 1,402 498 Middle Atlantic 13.7 9.5 25.2 175 66 121.7 44 1,926 0.73 1,338 487

70

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,038 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,028 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,041 0.70 1,491 555

71

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80 1,338 517 Census Region and Division Northeast 19.7 15.1 34.6 158 69 121.0 48 2,153 0.94 1,644 658 New England 5.3 4.2 9.3 156 70 123.0 48 2,085 0.94 1,647 648 Middle Atlantic 14.4 10.9 25.3 159 68 120.0 48 2,179 0.94 1,643 662

72

BigFoot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

216 216 BigFoot Characterizing Land Cover, LAI, and NPP at the Landscape Scale for EOS/MODIS Validation Field Manual Version 2.1 ORNL/TM-1999/216 Environmental Sciences Division BIGFOOT FIELD MANUAL VERSION 2.1 John L. Campbell Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 jlcampb1@students.wisc.edu Sean Burrows Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 burrows@calshp.cals.wisc.edu Stith Tom Gower Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 stgower@facstaff.wisc.edu Warren B. Cohen Forest Science Department, Oregon State University c/o USDA Forest Service, Corvallis, OR 97331 cohenw@ccmail.orst.edu Environmental Sciences Division

73

foote-98.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automated Weather Balloon Radiosonde Automated Weather Balloon Radiosonde Launcher Development J. P. Foote, J. T. Lineberry, and B. R. Thompson ERC, Incorporated Tullahoma, Tennessee Introduction Balloon-borne radiosondes are a primary means used by the Atmospheric Radiation Measurement (ARM) Program to collect atmospheric data. Currently, three radiosondes are launched daily from the Central Facility at the ARM Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site during non-intensive observation periods (IOPs). During IOPs, eight radiosondes are launched daily from the Central Facility and from each of four boundary facilities, for a total of forty daily launches. Launching balloons during IOPs is a major effort, in terms both of logistics and manpower. ERC, Incorporated is currently developing an automated

74

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

75

California Member Connects Solar Adoption With Upgrades  

Broader source: Energy.gov [DOE]

Studies on the connection between solar adoption and energy upgrades by Better Buildings Residential Network member Center for Sustainable Energy (CSE) in California are helping solar companies...

76

Energy Department Announces Winner of the 2013 Better Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings Federal Award challenges agencies to achieve the greatest reduction in annual energy intensity, or energy consumed per gross square foot. This year's winner cut its...

77

AP Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Members Group Members Principal Investigators Etsuko Fujita (Lead PI) Photochemical carbon dioxide reduction using transition-metal complexes; electrocatalysis of hydrogen and carbon dioxide reduction with non-noble metal based catalysts; water oxidation catalysis; kinetics and mechanism of photochemical and redox reactions Javier Concepcion (PI) David Grills (PI) Application of transient infrared spectroscopy to kinetics and catalysis; characterization of reaction intermediates, CO2 reduction in supercritical CO2 Jim Muckerman (PI) Application of theory and computation to photocatalysis and electrocatalysis; mechanistic studies of hydrogen production, carbon dioxide reduction and water oxidation in both homogeneous and heterogeneous systems Dmitry Polyansky (PI)

78

Building Green in Greensburg: City Hall Building  

Broader source: Energy.gov (indexed) [DOE]

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

79

Building Green in Greensburg: Business Incubator Building  

Broader source: Energy.gov (indexed) [DOE]

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

80

Doing Well by Doing Good? Green Office Buildings  

E-Print Network [OSTI]

estimated for a green building, or to Energy Star. 2008. “estate, the evidence on energy savings in green buildings issquare foot) Green rating (1 = yes) Energy Star (1 = yes)

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Performance Database | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the peer group that fall within consistent intervals of energy use intensity (EUI) i.e. the annual energy use per gross square foot of the building. Scatter Plot. The...

82

Better Buildings Federal Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

83

Better Buildings Federal Award 2012 Competition | Department...  

Office of Environmental Management (EM)

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

84

Better Buildings Federal Award 2013 Competition | Department...  

Broader source: Energy.gov (indexed) [DOE]

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

85

Putting your best foot forward: investigating real-world mappings for foot-based gestures  

Science Journals Connector (OSTI)

Foot-based gestures have recently received attention as an alternative interaction mechanism in situations where the hands are pre-occupied or unavailable. This paper investigates suitable real-world mappings of foot gestures to invoke commands and interact ... Keywords: foot gestures, foot-based interaction, mobile device interaction

Jason Alexander; Teng Han; William Judd; Pourang Irani; Sriram Subramanian

2012-05-01T23:59:59.000Z

86

DOE - Better Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

87

Postdoctoral Society of Argonne - Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The PSA is composed of a board of approximately 12 postdocs that organize activities and coordinate functions derived from our mission. Andrew Skipor and Kristene (Tina) Henne oversee the operations of the PSA board. The number of members varies as postdocs enter and exit the program, and we are always looking for new members. Meetings are open to all interested postdocs and are held the third Friday of the month in Building 223, Room L119. Send mail to Kristene (Tina) Henne to inquire. The PSA is composed of a board of approximately 12 postdocs that organize activities and coordinate functions derived from our mission. Andrew Skipor and Kristene (Tina) Henne oversee the operations of the PSA board. The number of members varies as postdocs enter and exit the program, and we are always looking for new members. Meetings are open to all interested postdocs and are held the third Friday of the month in Building 223, Room L119. Send mail to Kristene (Tina) Henne to inquire. PSA Officers: Martin Bettge, CSE (President) Prasanna Balaprakash, MCS (Vice President) Milind Malshe, CSE (Liaison Officer) Board Members: Chithra Kumaran Nair, NE Deepkishore Mukhopadhyay, CNM Kuldeep Mistry, ES Maxim Nikiforov, CNM Shaolin Liao, NE Si Chen, MSD General Members:

88

Building America Retrofit Participation Requirements and Release  

Broader source: Energy.gov [DOE]

This form is for Building America team members and homeowners to complete verifying health and safety requirements have been met.

89

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book [EERE]

0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility (2010) Members Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally...

90

Putting Your Best Foot Forward: Investigating Real-World Mappings for Foot-based Gestures  

E-Print Network [OSTI]

Putting Your Best Foot Forward: Investigating Real-World Mappings for Foot-based Gestures Jason Alexander1 , Teng Han2 , William Judd2 , Pourang Irani3 , Sriram Subramanian2 1 School of Computing

91

Smart prevention device for foot infection  

Science Journals Connector (OSTI)

The device "Power Insoles" is an electronic shoe insole that ... throughout the day, and prevent apparition of foot ulcers by informing the patient through biofeedback...

M Rocklinger; P Vacherand; F Brönnimann; A Mathieu; A Stéphane; Z Pataky

2011-06-01T23:59:59.000Z

92

New York Network Members Join Forces to Create Green Jobs  

Broader source: Energy.gov [DOE]

Better Buildings Residential Network member Rural Ulster Preservation Company (RUPCO) is using its knowledge of the housing market to create energy efficiency contracting jobs with fellow...

93

White House Meeting Honors New Superior Energy Performance Members  

Broader source: Energy.gov [DOE]

New Superior Energy Performance members from industry and the utility sector formally joined the Department of Energy's Better Buildings Industrial Superior Energy Performance Accelerator Program on December 3.

94

A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop  

Science Journals Connector (OSTI)

A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO) to manage foot-drop was developed and tested. Foot-drop is due to a disruption of ... motion during stance, and harvest th...

Robin Chin; Elizabeth T Hsiao-Wecksler…

2009-06-01T23:59:59.000Z

95

Ad Building demolition, recycling completed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

96

Models of foot-and-mouth disease  

Science Journals Connector (OSTI)

...before focusing on the three foot-and-mouth disease models...their prevalence. However, foot-and-mouth disease (FMD...causes blisters on the mouth and feet (hence the name) and a deterioration...recent years, the computational power has become available to solve...

2005-01-01T23:59:59.000Z

97

Building Technologies Office: Building America Research Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

98

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

99

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

MĂĽller, Jens-Dominik

100

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building Energy Software Tools Directory: BuildingAdvice  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

102

Better Buildings Federal Award 2013 Guidelines for Entering ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The...

103

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network [OSTI]

building itself. 4b. A Trombe wall is a south-facing heavywall. The inventor of the Trombe wall discusses some of itsOther windows illuminate Trombe walls of l~ foot concrete. (

Goldstein, David Baird

2011-01-01T23:59:59.000Z

104

Better Buildings Federal Award 2013 Guidelines for Entering  

Broader source: Energy.gov [DOE]

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year.

105

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

106

GreenFoot Technologies | Open Energy Information  

Open Energy Info (EERE)

GreenFoot Technologies GreenFoot Technologies Jump to: navigation, search Logo: GreenFoot Technologies Name GreenFoot Technologies Address 700 108th AVE NE Suite 200 Place Bellevue, Washington Zip 98004 Website http://www.greenfootjobs.com/ Coordinates 47.616506°, -122.195725° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.616506,"lon":-122.195725,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

ORSSAB Members | Department of Energy  

Office of Environmental Management (EM)

Read Bio Claire RowcliffeRead Bio Mary Smalling Member Read Bio Wanda Smith Member Read Bio Coralie (Corkie) Staley Member Read Bio Scott Stout Member...

108

Effects of different restrained foot positions on hand force exertion capability-implications for microgravity operations  

E-Print Network [OSTI]

EFFECTS OF DIFFERENT RESTRAINED FOOT POSITIONS ON HAND FORCE EXERTION CAPABILITY - IMPLICATIONS FOR MICROGRAVITY OPERATIONS A Thesis by SCOTT ALLAN WHALEN Submitted to the Office of Graduate Studies of Texas AkM University in partial... by SCOTT ALLAN WHALEN Submitted to Texas ABcM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Carter' J. Kerk (Chair of Committee) Alfred A. Amendola (Member) mer C...

Whalen, Scott Allan

2012-06-07T23:59:59.000Z

109

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

110

DIMUON PRODUCTION BY HIGH ENERGY NEUTRINOS AND ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER  

E-Print Network [OSTI]

ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBERANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER*ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

Orthel, John L.

2010-01-01T23:59:59.000Z

111

NREL: Buildings Research - Residential Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

112

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

113

Brad Foote Gear Works | Open Energy Information  

Open Energy Info (EERE)

Brad Foote Gear Works Brad Foote Gear Works Jump to: navigation, search Name Brad Foote Gear Works Place Cicero, Illinois Zip 60804-1404 Sector Wind energy Product Gearing systems manufacturer making systems for wind energy, power generation, and oil field equipment in addition to other industries. Coordinates 43.177106°, -76.082399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.177106,"lon":-76.082399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Settlement of footing on compacted ash bed  

SciTech Connect (OSTI)

Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

Ramasamy, G.; Pusadkar, S.S. [IIT Roorkee, Roorkee (India). Dept. of Civil Engineering

2007-11-15T23:59:59.000Z

115

LittleFoot Energy | Open Energy Information  

Open Energy Info (EERE)

LittleFoot Energy LittleFoot Energy Jump to: navigation, search Name LittleFoot Energy Address 240A Elm St Place Somerville, Massachusetts Zip 02144 Sector Efficiency Product Implement thermal storage, geothermal, solar, monitoring and control in hybrid system designs that offset fossil fuel use Website http://littlefootinc.com/ Coordinates 42.395037°, -71.1216881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.395037,"lon":-71.1216881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Building systems optimization controls calibration  

SciTech Connect (OSTI)

During the period between May 9, 1994 and June 2, 1994, Engineered Facility Management (EFM) conducted a comprehensive investigation into the condition and operation of the equipment and systems at a major high-rise building owned by a large California bank. The goal of the project was to improve the project`s energy cost per square foot without major system retrofit and capital expenditure. This report is a compilation of the findings, actions taken and recommendations.

NONE

1995-02-01T23:59:59.000Z

117

building | OpenEI Community  

Open Energy Info (EERE)

building building Home Dc's picture Submitted by Dc(10) Member 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building comfort design improve incentive indoor message sms text Yes 50% (2 votes) No 0% (0 votes) Maybe if I had an incentive 25% (1 vote) Maybe if my reply is confidential and anonymous 0% (0 votes) Maybe if the data will be used to improve building design 25% (1 vote) Total votes: 4 Buildings account for roughly 40% of all U.S. energy use (70% of all electricity): residential buildings account for 22% of all U.S. energy use and commercial buildings account for 18% of all U.S. energy use[i]. There is an unanswered need for information about buildings in use and how building design affects building occupant comfort, productivity, and, by

118

Using Building Commissioning to Improve Performance in State Buildings  

E-Print Network [OSTI]

reports the results of a recent survey of members of the National Association of State Facility Administrators (NASFA) on their use and understanding of commissioning for new construction and existing buildings. The results of two commissioning case...

Haasl, T.; Wilkinson, R.

1998-01-01T23:59:59.000Z

119

Multi-axis Capability for Powered Ankle-Foot Prostheses  

Science Journals Connector (OSTI)

In this chapter, the concept of a multi-axis powered ankle-foot prosthesis is introduced. The feasibility of this ... proposed cable-driven mechanism for the multi-axis powered ankle-foot prosthesis is capable of...

Evandro M. Ficanha; Mohammad Rastgaar; Kenton R. Kaufman

2014-01-01T23:59:59.000Z

120

Foot and mouth disease in Iraq: strategy and control.  

E-Print Network [OSTI]

??Foot-and-mouth disease (FMD) is a highly infectious viral disease of cattle, pigs, sheep, goats, buffalo, and artiodactyl wildlife species. Foot-and-mouth disease virus is endemic and… (more)

Mahdi, Ali Jafar

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

122

Prediction of sinkage depth of footings on soft marine sediments  

E-Print Network [OSTI]

instability on the side walls of the cavity. Footing size and sinkage depth of prototype footings are expected to have a significant effect on side- wall instability. (6) Tests in a geotechnical centrifuge are recommended as one means of studying gravity... instability on the side walls of the cavity. Footing size and sinkage depth of prototype footings are expected to have a significant effect on side- wall instability. (6) Tests in a geotechnical centrifuge are recommended as one means of studying gravity...

Yen, Shihchieh

2012-06-07T23:59:59.000Z

123

Deer Mice and White-Footed Mice  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deer Mice and White-Footed Mice Deer Mice and White-Footed Mice Nature Bulletin No. 545-A November 23. 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation DEER MICE AND WHITE-FOOTED MICE At night, sitting on a wooded shore, waiting for fish to bite or quietly gazing into the coals of a camp fire, you often become aware of mysterious small noises nearby in the darkness. Sometimes it is only a faint scratching on a tree trunk, or a rustling in the fallen leaves. But, again, you may hear a tiny drumming sound or a musical buzzing hum. Spooks? No. The best guess is that you have disturbed the night life of a wild mouse. He makes the drumming sound by rapidly tapping a dry leaf or hollow stem with his front feet. Unlike house mice, his voice is more of a song than a mere squeak. If you catch him in the beam of a flashlight you see an alert animal face with big ears, large black bulging eyes, and a beautiful coat -- rich brown above with snow-white underparts and feet. From these prominent characteristics came the common names of our two local species, the Deer Mouse and the White-footed Mouse.

124

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

125

Residential Network Members Impact More Than 42,000 Households  

Broader source: Energy.gov [DOE]

Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network’s first reporting cycle. In addition, 13 Better...

126

Vermont Member Helps House Hunters Come Home to Energy Savings  

Broader source: Energy.gov [DOE]

Better Buildings Residential Network member NeighborWorks of Western Vermont (NWWVT) has added a realty division and hired a licensed real estate broker to fill a niche in the marketplace for first...

127

Ontogenetic scaling of foot musculoskeletal anatomy in elephants  

Science Journals Connector (OSTI)

...distribution under the elephant's foot during walking, and patterns...the internal structures of the foot are needed for comparison with...an insight into the typical foot loading patterns of large graviportal...scaling exponent of the best-fit power curve. length diameter CSA...

2008-01-01T23:59:59.000Z

128

Does footprint depth correlate with foot motion and pressure?  

Science Journals Connector (OSTI)

...correlations found across the foot by Hatala et al. [11], D'Aout...and in the heel and mid-foot, when depth was compared with...difference in the predictive power of peak pressure and the PT...applied by the trackmaker's foot during print formation is the...

2013-01-01T23:59:59.000Z

129

SAVE THE DATE! Canadian Orthopaedic Foot & Ankle Society Symposium  

E-Print Network [OSTI]

SAVE THE DATE! Canadian Orthopaedic Foot & Ankle Society Symposium 2015 ANNUAL SYMPOSIUM January 30 focused on treating foot and ankle conditions. DRAFT Schedule: 0700-1000 MEETING 1000-1500 LUNCH/SKI BREAK of British Columbia - Department of Orthopaedics, B.C.'s Foot and Ankle Clinic based at Providence Health

Michelson, David G.

130

Collapsable seal member  

DOE Patents [OSTI]

A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.

Sherrell, Dennis L. (Kennewick, WA)

1990-01-01T23:59:59.000Z

131

Bottom-up characterisation of the Spanish building stock – Archetype buildings and energy demand.  

E-Print Network [OSTI]

??In developed economies, such as the European Union’s member states, the largest potential for energy efficiency improvements lies in retrofitting existing buildings. Yet, there is… (more)

Medina Benejam, Georgina

2011-01-01T23:59:59.000Z

132

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

133

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Broader source: Energy.gov (indexed) [DOE]

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

134

BEHAVIORAL BUILDING BLOCKS FOR AUTONOMOUS AGENTS  

E-Print Network [OSTI]

BEHAVIORAL BUILDING BLOCKS FOR AUTONOMOUS AGENTS: DESCRIPTION, IDENTIFICATION, AND LEARNING of Computer Science #12;c Copyright by Ă?zgĂĽr imek 2008 All Rights Reserved #12;BEHAVIORAL BUILDING BLOCKS Mahadevan, Member Andrea R. Nahmod, Member Andrew G. Barto, Department Chair Department of Computer Science

Massachusetts at Amherst, University of

135

Hydraulic Institute Member Benefits  

Broader source: Energy.gov [DOE]

As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic  nstitute (HI) provides its members with timely...

136

Forrestal Building, 1000 Independence Avenue, S.W.,  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, THURSDAY, APRIL 3, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT: F. JAY BREIDT Chair MARK BERNSTEIN Committee Member JOHNNY BLAIR Committee Member JAE EDMONDS Committee Member MOSHE FEDER Committee Member JAMES K. HAMMITT Committee Member NEHA KHANNA Committee Member WILLIAM G. MOSS Committee Member NAGARAJ K. NEERCHAL Committee Member POLLY A. PHIPPS Committee Member RANDY R. SITTER Committee Member ALSO PRESENT: GUY CARUSO Administrator, Energy Information Administration HOWARD GRUENSPECHT Deputy Administrator, EIA BILL WEINIG EIA CALVIN KENT Invited Guest CRYSTAL LINKLETTER Invited Guest

137

Building Technologies Office: Building America: Bringing Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

138

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

139

NREL: Buildings Research - Commercial Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

140

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

142

Project Documentation Group Members  

E-Print Network [OSTI]

agencies to track client services and outcomes, thus providing sound documentation that justifies stateCSC 4330 Project Documentation 11/30/2009 Group Members: Andy Bursavich Justin Farr Will Folse Chris Miceli Michael Miceli #12;Group Answers I. The Title ­ UREC Client Tracking System II. The project

Kundu, Sukhamay

143

Identification, Simulation and Control of an Ankle Foot Orthosis.  

E-Print Network [OSTI]

??Drop foot is a neuromuscular condition affecting many patients with abnormality in the walking pattern. The most common treatment to address this condition is ankle… (more)

Abdollahi Sofla, Mohammadhassan

2012-01-01T23:59:59.000Z

144

Design Feasibility of an Active Ankle-Foot Stabilizer.  

E-Print Network [OSTI]

??Walking is the most common form of mobility in humans. For lower limb mobility impairments, a common treatment is to prescribe an ankle-foot orthosis (AFO)… (more)

Mistry, Taresh D.

2010-01-01T23:59:59.000Z

145

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

146

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

147

The new building for the School of Public Health and Health Services (SPHHS) will be a hub of discovery, learning, and  

E-Print Network [OSTI]

Highlights The new building for the School of Public Health and Health Services (SPHHS The 90-foot building fronts Washington Circle and New Hampshire Avenue. The building's approximate 115 at the intersection of 24th Street, New Hampshire Avenue, and K Street near Washington Circle, the new building

Vertes, Akos

148

Building-integrated photovoltaics  

SciTech Connect (OSTI)

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

149

Rediness Review Team Member Training  

Broader source: Energy.gov (indexed) [DOE]

MEMBER MEMBER TRAINING Idaho National Engineering Laboratory Michael Hillman DOE HQ - HSS Idaho National Engineering Laboratory Dan M. Stover, PE Technical And Professional Services, Inc. 47 James Habersham Blvd Beaufort, SC 29906 Official DOE Team Member Readiness Review Training November 8-9, 2010 Module 1 Module 1 READINESS REVIEW TEAM MEMBER TRAINING Introduction & Course Conduct Readiness Review Readiness Review Official DOE Team Member Readiness Review Training November 2010 TRAINING READINESS REVIEW TEAM MEMBER TRAINING Purpose of this Course Provide Prospective Readiness Review Team members h with: * An understanding of the background behind the Readiness Review Process; e e ocess; * Training in the mechanics of performance and reporting of

150

Better Buildings Federal Award 2012 Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition October 24, 2013 - 1:51pm Addthis The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis. The Federal building that achieves the greatest percentage energy intensity savings for that year wins. 2012 Competition Thank you to all the participants of the 2012 Better Buildings Federal Award competition and congratulations to this year's winner, the U.S. Department of Interior's Brackish Groundwater National Desalination Research Facility! The building achieved an impressive 53.6% reduction in building energy intensity over its September 2011 baseline.

151

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

152

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...  

Gasoline and Diesel Fuel Update (EIA)

Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

153

U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

154

Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch  

Science Journals Connector (OSTI)

...measuring EMG activity during foot loading (experiment 1...digitally converted (Power 1401, Cambridge Electronic...demand, with the intrinsic foot muscles contributing either...generate additional positive power during propulsion [24...the plantar intrinsic foot muscles during various...

2014-01-01T23:59:59.000Z

155

Hand before foot? Cortical somatotopy suggests manual dexterity is primitive and evolved independently of bipedalism  

Science Journals Connector (OSTI)

...thought to have had a grasping foot with an opposable hallux [37] for the power grip required in body support...condition associated with whole-foot power grasping in arboreal propulsion. The grasping foot that lacks the independent...

2013-01-01T23:59:59.000Z

156

NWEC honors BPA for building a cleaner energy future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Conservation Council, its staff and advisory committee members, along with the New Buildings Institute won the award last year. BPA was also recognized for its recent energy...

157

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

158

Protocol for the Foot in Juvenile Idiopathic Arthritis trial (FiJIA): a randomised controlled trial of an integrated foot care programme for foot problems in JIA  

Science Journals Connector (OSTI)

Diagnostic US will be undertaken using established methodologies for the foot and ankle employing B-mode and colour and Power Doppler [36–38]. Accessible aspects of first through fifth metatarsophalangeal (MTP) j...

Gordon J Hendry; Deborah E Turner; John McColl…

2009-06-01T23:59:59.000Z

159

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

160

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Opportunities and Threats of Green Building Design for ABC Engineers, Kansas City  

E-Print Network [OSTI]

,000 organizations that are working to build environmentally responsible, profitable, and healthy buildings. Members includes building owners and end-users, real estate developers, facility managers, architects, designers, engineers, general contractors...

Wikoff, Brandon D.

2008-12-19T23:59:59.000Z

162

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

163

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

164

Homepage | The Better Buildings Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Save the Date! May 7-9, 2014 For the first time, Better Buildings Challenge Partners, Better Buildings Alliance members, and Better Buildings Better Plants Partners will be coming together for the U.S. Department of Energy's annual Better Buildings Summit. Learn more about this distinguished conference. Real-time Energy Management: Improving Energy Efficiency Every 15 Minutes Organizations traditionally rely on monthly utility bills to track whole-building energy use and to benchmark against previous year's usage or other buildings. Tracking energy use at a more granular level can help isolate usage issues and correct them more quickly. Register here. Take the Food Service Energy and Water Survey Complete the survey to help develop an ENERGY STAR 1-100 score for

165

High Performance Buildings Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

166

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

167

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

168

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

169

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

170

High Performance Home Cost Performance Trade-Offs: Production Builders- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research showing how some energy-efficiency measure cost increases can balance again measures that reduce up-front costs: Advanced framing cuts lumber costs, right sizing can mean downsizing the HVAC, moving HVAC into conditioned space cuts installation costs, designing on a 2-foot grid reduces materials waste, etc.

171

LIFE CYCLE ANALYSIS OF THE H.R. MACMILLAN BUILDING, UNIVERSITY OF BRITISH COLUMBIA  

E-Print Network [OSTI]

and operational energy usage of the H.R. MacMillan building on a square foot basis. OnCenter's OnScreen Takeoff.2, developed by the US Environmental Protection Agency (US EPA). The environmental impacts of the building are quantified in eight TRACI impact categories, such as primary energy consumption and global warming potential

172

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

173

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

174

Membership Criteria: Better Buildings Residential network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criteria Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn Better Buildings Residential Network (BBRN) members must be supportive of residential energy efficiency and the mission of the BBRN. Members are expected to be legally incorporated organizations or institutions, rather than individuals, actively engaged in the field of existing residential building energy efficiency with an ability to impact the market. Members should have the ability and capacity to carry out the requirements for membership (i.e., reporting the annual number of upgrades in their sphere of influence, and associated benefits), and actively engage as a member. Members must actively engage in significant work supporting, studying, researching, reporting, and/or

175

Melt containment member  

DOE Patents [OSTI]

A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

Rieken, Joel R.; Heidloff, Andrew J.

2014-09-09T23:59:59.000Z

176

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

177

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

178

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

179

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

180

Building America Building Science Education Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Technologies Office: Building Energy Optimization Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

182

Buildings Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

183

Building Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

184

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

185

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

186

CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS AND GAIT ANALYSIS  

E-Print Network [OSTI]

CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS AND GAIT ANALYSIS CONTROL SYSTEM FOR ACTIVE ANKLE system has mounted into two basic components: insole for the healthy leg and ankle-foot orthoses. Proposed ankle-foot orthosis is with one degree of freedom which foot segment is connected to the shank

Mustakerov, Ivan

187

Building Green in Greensburg: The Peoples Bank  

Broader source: Energy.gov (indexed) [DOE]

The Peoples Bank The Peoples Bank The Peoples Bank building opened its doors to the public on December 21, 2009. With its vault and an adjoining room designed to serve as a storm shelter, the 2,100-square-foot building is about 300 square feet larger than the pre-tornado facility. Its innovative design incorporates a variety of sustainable features that will save energy and money. The building is situated on the lot to take full advantage of the sun and features large, tinted-glass doors on its south side that provide passive solar heating in winter months; south-facing overhangs reduce the need for air-conditioning when the summer sun is at its hottest. ENERGY EFFICIENCY FEATURES * Building orientation takes advantage of southern exposure to reduce heating loads,

188

Mag-Foot: a steel bridge inspection robot  

E-Print Network [OSTI]

A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

Asada, Harry

189

Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy  

E-Print Network [OSTI]

At moderate to fast walking speeds, the human ankle provides net positive work at high-mechanical-power output to propel the body upward and forward during the stance period. On the contrary, conventional ankle-foot ...

Au, Samuel K.

190

Ultimate bearing capacity of footings on coal ash  

Science Journals Connector (OSTI)

Coal ash is recognized as an alternative fill material to the conventional natural soils near a coal fired thermal power station where its large ... This paper presents experimental investigations on footings on

Ashutosh Trivedi; Vijay Kumar Sud

2005-11-01T23:59:59.000Z

191

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foote Mineral Co - PA 27 Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote PA.27-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Zirconium, Possibly Uranium PA.27-1 PA.27-2 PA.27-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Foote Mineral Co.

192

BigFoot GPP and NPP Summaries, 2000-2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GPP and NPP Summaries, 2000-2004 GPP and NPP Summaries, 2000-2004 Reflectance data from MODIS, the Moderate Resolution Imaging Spectrometer onboard NASA's Earth Observing System (EOS) satellite Terra ( http://landval.gsfc.nasa.gov/MODIS/index.html ), is used to produce several science products including land cover, leaf area index (LAI), gross primary production (GPP) and net primary production (NPP). The overall goal of the BigFoot Project was to provide validation of these products. Background information on the BigFoot Project is available at: http://www.fsl.orst.edu/larse/bigfoot/index.html. A set of NPP/GPP summary figures was developed for each of the 9 BigFoot sites. Each set contains images and figures associated with creating the BigFoot NPP and GPP products, comparing them to MODIS products, and

193

Building Technologies Office: Commercial Reference Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

194

Building Technologies Office: Buildings to Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

195

Director's Office Building 510F  

E-Print Network [OSTI]

Director's Office Building 510F P.O. Box 11973-5000 Phone 631 344-5414 Fax 631 344-5820 tkirk to your Proposal, P965, "Proposal to Measure the Efficiency of Electron Charge Sign Determination up to 10 regards, Thomas B.W. Kirk Associate Laboratory Director High Energy and Nuclear Physics Cc: PAC Members D

McDonald, Kirk

196

Foot pressure distribution differences between young adult and older subject: a biomechanical parameters analysis  

Science Journals Connector (OSTI)

Foot problems are common in older people and altered biomechanical parameters under the foot sole may lead to ulceration. Therefore this study evaluates foot pressure distribution parameter Power Ratio (PR) in young adult and older subjects during standing. We acquired foot pressure distribution during standing using PedoPowerGraph(P) system for 20 subjects with age range from 30 to 65 years. Various pedopowergraphic parameters were evaluated and the results were analysed. We observe statistical significant differences in mean PR value (p foot and fore foot region. In addition, older subject had lower mean PR value in medial foot region and higher mean PR value in lateral fore foot region as compared to young adult. Our findings indicate that increase in lateral forefoot and hind foot PR value is prevalent in older subject and may be responsible for higher incidence of foot problems.

R. Periyasamy; Sonal Atreya; Sneh Anand

2013-01-01T23:59:59.000Z

197

Better Buildings Federal Award 2013 Guidelines for Entering | Department of  

Broader source: Energy.gov (indexed) [DOE]

2013 Guidelines for Entering 2013 Guidelines for Entering Better Buildings Federal Award 2013 Guidelines for Entering October 7, 2013 - 4:40pm Addthis Have Questions? A list of frequently asked questions contains answers to a variety of Better Buildings Federal Award queries. The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year. Selecting Applicants Agencies should consider nominating a building based on how well it expects the building to perform in 2013 as compared to 2012, taking into account a wide range of innovative or comprehensive energy management practices being

198

Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES  

Broader source: Energy.gov (indexed) [DOE]

ROADMAP to Sustainable ROADMAP to Sustainable Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES ADDITIONAL RESOURCES ON THE HORIZON LEED TRAINING SUSTAINABILITY GOALS PRE-PROJECT PLANNING ROADMAP INTRODUCTION EXISTING BUILDINGS NEW CONSTRUCTION PROGRAM ADMINISTRATION GREEN BUILDING PROGRAM ACKNOWLEDGEMENT The Roadmap to Sustainable Government Buildings was created through the joint efforts of the U.S. Green Building Council (USGBC) and the National Association of State Facilities Administrators (NASFA). We extend our deepest gratitude to all of our Roadmap committee members who participated in the development of this publication, for their tireless volunteer efforts and constant support of USGBC's mission. Ongoing development of the Roadmap has been made possible through the efforts of many

199

Buildings Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

200

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Better Buildings Neighborhood Program: Better Buildings Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

202

Building Technologies Office: National Laboratories Supporting Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

203

Building Technologies Office: Integrated Building Management System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

204

Energy-Efficient Commercial Buildings Tax Deduction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction < Back Eligibility Commercial Construction Fed. Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate 1.80 per square foot Program Info Start Date 1/1/2006 Program Type Corporate Deduction Rebate Amount 0.30-1.80 per square foot, depending on technology and amount of energy reduction Provider U.S. Internal Revenue Service The federal Energy Policy Act of 2005 established a tax deduction for

205

Better Buildings Alliance Equipment Performance Specifications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

206

Better Buildings Alliance Equipment Performance Specifications  

Broader source: Energy.gov (indexed) [DOE]

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

207

Academy Member Annual Update Report 1Academy Member Update Report  

E-Print Network [OSTI]

Academy Member Annual Update Report 1Academy Member Update Report The annual update report is an important activity associated with active membership in the Academy. These reports are due annually questions. A separate document includes the required report format and directions. Please email omerad

208

Readiness Review Training - Member | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Member November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team member....

209

ancient building system | OpenEI Community  

Open Energy Info (EERE)

ancient building system ancient building system Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

210

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

211

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

212

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

213

Building Technologies Office: About Residential Building Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

214

Members 2006 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

6 6 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges/Reports Charter .pdf file (629KB) NP Committees of Visitors NP Home Members NSAC Members 2006 Print Text Size: A A A RSS Feeds FeedbackShare Page NSAC Members for 2012 | 2011 |2010 | 2009 | 2008 | 2007 | 2006 | 2004-5 | 2004 | 2003 | 2001-2 | 2000-1 DOE/NSF Nuclear Science Advisory Committee Membership List 2006 Ani Aprahamian Department of Physics University of Notre Dame 183 Nieuwland Science Hall Notre Dame , IN 46556 Phone: (574) 631-8120 Fax: (574) 631-5952 Email: aapraham@nd.edu Roy Lacey Department of Chemistry Stony Brook University 459 Chemistry Building Stony Brook , NY 11794-3400 Phone: (631) 632-7955 Fax: (631) 632-7960 Email: roy.lacey@stonybrook.edu Robert E. Tribble (Chair) Cyclotron Institute

215

TFCR Members | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Task Force on CMB Research (TFCR) Panel Member List Task Force on CMB Research (TFCR) Panel Member List High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Charges/Reports Task Force on CMB Research (TFCR) Panel Member List Print Text Size: A A A RSS Feeds FeedbackShare Page Chair- Rainer Weiss weiss@ligo.mit.edu Massachusetts Institute of Technology Department of Physics Building 6-113 77 Massachusetts Avenue Cambridge, MA 02139-4307 617.253.4800 Jamie Bock jjb@astro.caltech.edu Division of Physics, Math and Astronomy California Institute of Technology, Mail Code 59-33 1201 E. California Blvd Pasadena, CA 91125 818 354 0715 Sarah Church schurch@leland.stanford.edu Stanford University Room 212 Varian Physics Bldg 382 Via Pueblo Mall

216

Changes in stationary upright standing and proprioceptive reflex control of foot muscles after fatiguing static foot inversion  

Science Journals Connector (OSTI)

Abstract We searched for the consequences of a maximal static foot inversion sustained until exhaustion on the post-exercise stationary upright standing and the proprioceptive control of the foot muscles. Twelve healthy subjects executed an unilateral maximal static foot inversion during which continuous power spectrum analyses of surface electromyograms of the tibialis anterior (TA), peroneus longus (PL), and gastrocnemius medialis (GM) muscles were performed. Superimposed pulse trains (twitch interpolation) were delivered to the TA muscle to identify “central” or “peripheral” fatigue. Before and after the fatiguing task, we measured (1) the repartition of the plantar and barycentre surfaces with a computerized stationary platform, (2) the peak contractile TA response to electrical stimulation (TA twitch), (3) the tonic vibratory response (TVR) of TA and GM muscles, and (4) the Hoffman reflex. During static exercise, “central” fatigue was diagnosed in 5/12 subjects whereas in the 7 others “peripheral” TA fatigue was deduced from the absence of response to twitch interpolation and the post-exercise decrease in twitch amplitude. The sustained foot inversion was associated with reduced median frequency in TA but not in PL and GM muscles. After static exercise, in all subjects both the mean plantar and rearfoot surfaces increased, indicating a foot eversion, the TVR amplitude decreased in TA but did not vary in GM, and the Hoffman reflex remained unchanged. Whatever was the mechanism of fatigue during the maximal foot inversion task, the facilitating myotatic reflex was constantly altered in foot invertor muscles. This could explain the prevailing action of the antagonistic evertor muscles.

Bruno Vie; Nicolas Gomez; Christelle Brerro-Saby; Jean Paul Weber; Yves Jammes

2013-01-01T23:59:59.000Z

217

The role of foot self-care behavior on developing foot ulcers in diabetic patients with peripheral neuropathy: A prospective study  

Science Journals Connector (OSTI)

AbstractBackground Although foot self-care behavior is viewed as beneficial for the prevention of diabetic foot ulceration, the effect of foot self-care behavior on the development of diabetic foot ulcer has received little empirical investigation. Objective To explore the relationship between foot self-care practice and the development of diabetic foot ulcers among diabetic neuropathy patients in northern Taiwan. Methods A longitudinal study was conducted at one medical center and one teaching hospital in northern Taiwan. Participants A total of 295 diabetic patients who lacked sensitivity to a monofilament were recruited. Five subjects did not provide follow-up data; thus, only the data of 290 subjects were analyzed. The mean age was 67.0 years, and 72.1% had six or fewer years of education. Methods Data were collected by a modified version of the physical assessment portion of the Michigan Neuropathy Screening Instrument and the Diabetes Foot Self-Care Behavior Scale. Cox regression was used to analyze the predictive power of foot self-care behaviors. Results A total of 29.3% (n = 85) of diabetic neuropathy patients developed a diabetic foot ulcer by the one-year follow-up. The total score on the Diabetes Foot Self-Care Behavior Scale was significantly associated with the risk of developing foot ulcers (HR = 1.04, 95% CI = 1.01–1.07, p = 0.004). After controlling for the demographic variables and the number of diabetic foot ulcer hospitalizations, however, the effect was non-significant (HR = 1.03, 95% CI = 1.00–1.06, p = 0.061). Among the foot self-care behaviors, lotion-applying behavior was the only variable that significantly predicted the occurrence of diabetic foot ulcer, even after controlling for demographic variables and diabetic foot ulcer predictors (neuropathy severity, number of diabetic foot ulcer hospitalizations, insulin treatment, and peripheral vascular disease; HR = 1.19, 95% CI = 1.04–1.36, p = 0.012). Conclusions Among patients with diabetic neuropathy, foot self-care practice may be insufficient to prevent the occurrence of diabetic foot ulcer. Instead, lotion-applying behavior predicted the occurrence of diabetic foot ulcers in diabetic patients with neuropathy. Further studies are needed to explore the mechanism of lotion-applying behavior as it relates to the occurrence of diabetic foot ulcer.

Yen-Fan Chin; Jersey Liang; Woan-Shyuan Wang; Brend Ray-Sea Hsu; Tzu-Ting Huang

2014-01-01T23:59:59.000Z

218

Energy Department Announces Winner of the 2013 Better Buildings Federal  

Broader source: Energy.gov (indexed) [DOE]

Winner of the 2013 Better Buildings Winner of the 2013 Better Buildings Federal Award Competition Energy Department Announces Winner of the 2013 Better Buildings Federal Award Competition December 17, 2013 - 3:51pm Addthis The Energy Department today announced that the General Services Administration's (GSA) United States Court House in Wichita, Kansas is the winner of the 2013 Better Buildings Federal Award. The Better Buildings Federal Award challenges agencies to achieve the greatest reduction in annual energy intensity, or energy consumed per gross square foot. This year's winner cut its energy intensity by 20% and saved over $40,000 in utility costs in the 12 month competition period. Building on past energy efficiency improvements funded through the American Recovery and Reinvestment Act, GSA Region 6 implemented energy efficiency

219

Investigation of the March 5, 2011, Building 488, Brookhaven National Laboratory, Tree Felling Injury  

Broader source: Energy.gov [DOE]

On Saturday, March 5, 2011 at approximately 10:20 a.m., a Brookhaven National Laboratory Building and Grounds Utility Worker was felling a pine tree while elevated in a 60-foot articulating and telescoping boom lift approximately 20-feet above the ground on the south side of Building 488. As the gas-powered, 20-inch chainsaw being used by the employee cut through the tree trunk, an approximately 8-foot long, 18-inch diameter, 520 pound section of tree trunk fell toward the aerial lift, striking the employee’s right forearm, and compressing it against the top railing of the aerial lift basket.

220

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers [EERE]

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

222

Building America Building Science Education Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

223

Building Green in Greensburg: Centera Bank  

Broader source: Energy.gov (indexed) [DOE]

Centera Bank Centera Bank After a category EF-5 tornado virtually leveled the entire town of Greensburg in 2007, the owners of Centera Bank were determined to rebuild green. Design plans were drawn up with optimal energy efficiency and sustainability in mind, in keeping with the goals of the City of Greensburg to rebuild green. Situated on a downtown corner lot across the street from the bank's former location, the new 4,000-square-foot building incorporates energy-efficient building principles required to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) certification. ENERGY EFFICIENCY FEATURES * A high-efficiency air-cooled heat pump split system harnesses the benefits of environmentally friendly R-410 refrigeration in both the heating and cooling mode to reduce

224

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

225

Building America Research Teams | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

226

A wearable system for multi-segment foot kinetics measurement  

Science Journals Connector (OSTI)

Abstract This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50 m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima–minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.

H. Rouhani; J. Favre; X. Crevoisier; K. Aminian

2014-01-01T23:59:59.000Z

227

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

228

Chamber transport of ''foot'' pulses for heavy-ion fusion  

SciTech Connect (OSTI)

Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

2002-02-20T23:59:59.000Z

229

Penetration of Ciprofloxacin into the Interstitial Space of Inflamed Foot Lesions in Non-Insulin-Dependent Diabetes Mellitus Patients  

Science Journals Connector (OSTI)

...frequently employed for diabetic foot infections is ciprofloxacin...concentrations in infected diabetic foot ulcers by microdialysis...who presented with a diabetic foot infection severe enough to require...patients had the statistical power to detect a 16 intraindividual...

Markus Müller; Martin Brunner; Ursula Hollenstein; Christian Joukhadar; Rainer Schmid; Erich Minar; Herbert Ehringer; Hans Georg Eichler

1999-08-01T23:59:59.000Z

230

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

231

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

232

A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition  

Science Journals Connector (OSTI)

The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot

Gregory S Sawicki; Daniel P Ferris

2009-06-01T23:59:59.000Z

233

Topical hyperbaric oxygen and low energy laser for the treatment of diabetic foot ulcers  

Science Journals Connector (OSTI)

Fifty patients with chronic diabetic foot ulcers in whom conventional therapy had failed ... oxygen alone or in combination with a low power laser are valuable adjuvants to conventional therapy for diabetic foot

Z. Landau

1998-02-01T23:59:59.000Z

234

Design and evaluation of a cantilever beam-type prosthetic foot for Indian persons with amputations  

E-Print Network [OSTI]

The goal of this work is to design a low cost, high performance prosthetic foot in collaboration with Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS), in Jaipur, India. In order to be adopted, the foot must cost less than ...

Olesnavage, Kathryn M

2014-01-01T23:59:59.000Z

235

E-Print Network 3.0 - ankle foot orthosis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: ankle foot orthosis Page: << < 1 2 3 4 5 > >> 1 An Ankle-Foot Orthosis Powered by Artificial...

236

Locomotor adaptation to a powered ankle-foot orthosis depends on control method  

Science Journals Connector (OSTI)

We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences...

Stephen M Cain; Keith E Gordon…

2007-12-01T23:59:59.000Z

237

Department of Engineering Design Spring 2012 ASME Jaipur Foot  

E-Print Network [OSTI]

of this project was to design a Universal Testing Rig (UTR) to perform automated static testing on the Jaipur to be adjusted for the positions mandated by each test, and additionally enabled the rig to accommodate differentPENNSTATE Department of Engineering Design Spring 2012 ASME Jaipur Foot Overview The purpose

Demirel, Melik C.

238

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

239

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

240

Commercial Buildings Consortium  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficient Buildings Hub  

Broader source: Energy.gov [DOE]

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

242

U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

243

Driving Low-Power Wearable Systems with an Adaptively-Controlled Foot-Strike Scavenging Platform  

E-Print Network [OSTI]

Driving Low-Power Wearable Systems with an Adaptively-Controlled Foot-Strike Scavenging Platform as a means to scavenge energy from foot-strikes and power wearable systems. While they exhibit large energy of foot pressure sensors to realize accurate control of the individual DEs. Statistical techniques

Potkonjak, Miodrag

244

The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation  

E-Print Network [OSTI]

during early stance, increased prosthetic foot peak push-off power and work, increased prosthetic limbThe effects of a controlled energy storage and return prototype prosthetic foot on transtibial a prototype microprocessor- controlled prosthetic foot designed to store some of the energy during loading

Collins, Steven H.

245

ADAPTIVE CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS FOR ANKLE ASSISTING AND REHABILITATION  

E-Print Network [OSTI]

ADAPTIVE CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS FOR ANKLE ASSISTING AND REHABILITATION ADAPTIVE CONTROL SYSTEM FOR ACTIVE ANKLE-FOOT ORTHOSIS FOR ANKLE ASSISTING AND REHABILITATION Ivanka Veneva]. The sensor system has mounted into two basic components: insole for the healthy leg and ankle- foot orthoses

Mustakerov, Ivan

246

INTELLIGENT DEVICE FOR CONTROL OF ACTIVE ANKLE-FOOT Institute of Mechanics, Bulgarian Academy of Sciences,  

E-Print Network [OSTI]

INTELLIGENT DEVICE FOR CONTROL OF ACTIVE ANKLE-FOOT ORTHOSIS Veneva I, Institute of Mechanics, data acquisition and control of active ankle-foot orthosis. The system is composed by microcontroller Prosthetics and Orthotics, Active ankle-foot orthoses, Control, Rehabilitation robotics 1. Introduction Active

Mustakerov, Ivan

247

An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics  

E-Print Network [OSTI]

An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics Samuel K. Au Peter. A lack of understanding of the ankle-foot biomechanics and the dynamic interaction between an amputee and a prosthesis is one of the main obstacles in the development of a biomimetic ankle-foot prosthesis

Herr, Hugh

248

Informing Ankle-Foot Prosthesis Prescription through Haptic Emulation of Candidate Devices  

E-Print Network [OSTI]

Informing Ankle-Foot Prosthesis Prescription through Haptic Emulation of Candidate Devices Joshua M range of devices in a short period of time. We developed a prototype ankle-foot prosthesis emulator Prescription Process The prescription of ankle-foot prostheses has been plagued by uncertainty about which

Collins, Steven H.

249

Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Regents. T.J. Glauthier TJG Energy Associates, LLC T.J. Glauthier is an advisor to energy and "cleantech" companies, VCs and the investment community. He serves on the Boards...

250

Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

County and volunteer Fire Chief. A veteran of the U.S. Navy, he attended schools in marine propulsion and has received certifications in welding from Mt. Hood Community...

251

Building Technologies Office: Building America Research Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

252

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

253

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

254

US CMS Members Picture Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Members Picture Gallery Members Picture Gallery Developed by Ben Sadler, FSU Updated July 29, 2008. Please send comments and corrections to Sharon Hagopian. INSTITUTIONS: Boston University Brown University University of California, Davis University of California, Los Angeles University of California, Riverside University of California, San Diego University of California, Santa Barbara California Institute of Technology Carnegie Mellon University University of Colorado Cornell University Fairfield University Fermi National Accelerator Laboratory University of Florida Florida International University Florida State University Florida Institute of Technology University of Illinois, Chicago University of Iowa Johns Hopkins University University of Kansas Kansas State University Lawrence Livermore National Laboratory

255

A Decision Support Tool for Building Leasing Strategies to Achieve the Executive Order Mandate  

E-Print Network [OSTI]

for Federal Government Green Buildings Members: Alexandre Cheytanov Nathan Bales Paramjeet Khanna Chris Swift to be converted into "Green Buildings" by FY2015 · with annual progress towards 100% compliance Reference: www.fedcenter.gov/programs/eo13514 * Green Buildings are High Performance Sustainable Buildings as outlined by the E.O.13415 #12

256

Building America Update - June 7, 2013  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2013 June 7, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Test Your Skills: "What's Wrong With These Roof Details?" View the latest entry of Building America's ongoing series, "What's Wrong With This Picture?," in the new issue of Green Building Advisor online newsletter. In this installment, readers are invited to spot as many errors as they can in the photo of the roof of a multifamily building in Minneapolis. Members of the NorthernSTAR Building America Partnership team developed this entry, and will provide answers based on their research on

257

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

258

Building Technologies Program: Building America Publications  

Broader source: Energy.gov (indexed) [DOE]

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

259

MR JORDAN KENNY Student Member  

E-Print Network [OSTI]

MR JORDAN KENNY Student Member Students' Union President J ordan Kenny was born in Bristol. He of Bath. Jordan recently graduated from the University with a BA (Hons) in Sport and Social Science. Whilst at the University, Jordan undertook a considerable number of roles encompassing a range of areas

Burton, Geoffrey R.

260

Atlas Project Members Jeffrey Adams  

E-Print Network [OSTI]

#12;#12;Atlas Project Members Jeffrey Adams Dan Barbasch Birne Binegar Bill Casselman Dan Ciubotaru It is not clear that it can be implemented on a computer Atlas of Lie Groups and Representations: #12;Overview this algorithm can be made explicit It is not clear that it can be implemented on a computer Atlas of Lie Groups

Adams, Jeffrey

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Jong K. Keum Staff Member  

E-Print Network [OSTI]

-angle X-ray scattering (GI- SAXS, GI-WAXS), neutron and X-ray reflectometry (NR, XRR), and X for the stratification of P3HT:PCBM blend film studied by neutron reflectometry." Applied Physics Letters (2013), 103Jong K. Keum Staff Member Center For Nanophase Materials Sciences/Spallation Neutron Source, Oak

Pennycook, Steve

262

LBNL-PG&E High Tech Building Initiative  

Broader source: Energy.gov (indexed) [DOE]

www.femp.energy.gov/training Federal Energy Management Program Labs, Data Centers, and High Tech Facilities Dale Sartor, Lawrence Berkeley National Laboratory 2 | FUPWG April 2012 High Tech Buildings are Energy Hogs Comparative Energy Costs High-Tech Facilities vs. Standard Buildings Annual Energy Costs ($/square foot) 3 | FEMP First Thursday Seminars femp.energy.gov/training FEMP First Thursday Seminars Energy Efficiency in Data Centers 4 | FUPWG April 2012 High voltage distribution High efficiency UPS systems Efficient redundancy strategies Use of DC power Better air management Move to liquid cooling Optimized chilled-water plants Use of free cooling Heat recovery Server innovation Virtualization High efficiency power supplies

263

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect (OSTI)

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

264

Building Performance Simulation  

E-Print Network [OSTI]

of  Three  Building  Energy  Modeling  Programs: and D.  Zhu.  Building energy modeling programs comparison: Comparison  of  building  energy  modeling  programs:  HVAC 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

265

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

266

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance,  integrated  building design and operation, Integrated  Design  and  Operation  for  Very  Low  Energy  Buildings

Hong, Tianzhen

2014-01-01T23:59:59.000Z

267

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulation—physics-based calculation of building energy consumption—is a multi-use tool for building energy efficiency.

268

Building Performance Simulation  

E-Print Network [OSTI]

Y (2008). DeST—An integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeST—An integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

269

ION NTM 2007, San Diego CA, 22-24 January 2007 1/9 Foot and Ankle Kinematics During Gait  

E-Print Network [OSTI]

ION NTM 2007, San Diego CA, 22-24 January 2007 1/9 Foot and Ankle Kinematics During Gait Using Foot of field-portable, low cost IMUs for the kinematic analysis of foot/ankle rotations. Three MEMS-based IMU phase. The results were compared against those of a landmark study in foot and ankle kinematics

Calgary, University of

270

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

271

National Advisory Council Member Biographies  

E-Print Network [OSTI]

, a key project is the development of a green, luxury, boutique hotel in Sonoma, CA, a $30- million, 59-room, sustainably designed facility. Darius led the development of Treasure Island, one of the nation's Council on American Politics, Californians Building Bridges and the Green Music Center at Sonoma State

Sekhon, Jasjeet S.

272

National Advisory Council Member Biographies  

E-Print Network [OSTI]

, a key project is the development of a green, luxury, boutique hotel in Sonoma, CA, a $30-million, 59-room, sustainably designed facility. Darius led the development of Treasure Island, one of the nation's Council on American Politics, Californians Building Bridges and the Green Music Center at Sonoma State

Sekhon, Jasjeet S.

273

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book [EERE]

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

274

Foote Creek Rim I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Foote Creek Rim I Wind Farm Foote Creek Rim I Wind Farm Facility Foote Creek Rim I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp/Eugene Water & Electric Board Developer SeaWest/Tomen Energy Purchaser PacifiCorp/Eugene Water & Electric Board Location Carbon County WY Coordinates 41.652605°, -106.189914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.652605,"lon":-106.189914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Department Members | Environmental Sciences | BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department Members Department Members Administration and Support Staff Scientific and Technical Staff Mary Jane Bartholomew William J. Behrens Alexei Belochitski Alice T. Cialella Peter H. Daum Satoshi Endo Arokiasamy J. (AJ) Francis Michele Galletti Scott Giangrande Laurie Gregory John H. Heiser Dong Huang Michael P. Jensen Karen Lee Johnson Paul D. Kalb Lawrence I. Kleinman Chongai Kuang Stefanie Lasota Kathy Lazar Yin-Nan Lee Keith Lewin Ernie R. Lewis Min Liang Wuyin Lin Yangang Liu Edward Luke L. Lynn Ma Robert L. McGraw Andrew McMahon Laurence W. Milian Alistair Rogers Martin Schoonen - Chair Stephen E. Schwartz Arthur J. Sedlacek Gunnar I. Senum Scott Smith Hua Song Stephen R. Springston Terrence Sullivan Ryan Thalman Alison Tilp Tami Toto David Troyan Gabriel J. Vignato Andrew M. Vogelmann Richard Wagener

276

Readiness Review Training - Member | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Member Member Readiness Review Training - Member November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team member. Topics include: An understanding of the background behind the Readiness Review Process; Training in the mechanics of performance and reporting of a Readiness Review; Knowledge of current DOE Orders, Directives, and References for the Readiness Review process; Training in Performance-Based Assessment Processes and Official DOE Team Member Readiness Review Training Methods Readiness Review Training - Member More Documents & Publications Readiness Review Training - Team Leader Readiness Review Training - Development of Criteria And Review Approach Documents

277

Building Technologies Office: Energy Efficient Buildings Hub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

278

Foot pressure distribution variation in pre-obese and non-obese adult subject while standing  

Science Journals Connector (OSTI)

Background To investigate foot pressure distribution parameter-power ratio (PR) difference between pre-obese and non-obese adults subjects during standing and show the correlation between body mass index (BMI) and PR value. Methods We examined 22 healthy adult subjects aged from 20 to 45 years were classified into two groups according to their BMI values, as 11 non-obese and 11 pre-obese subjects. Foot pressure distribution image during standing was obtained using PedoPowerGraph system. Pedopowergraphic parameters such as percentage medial impulse, forefoot to hind foot pressure distribution ratio and PR were evaluated and compared between the groups. Correlation between BMI value and PR value was assessed. Results Our result shows significant change in contact area between the groups in mid foot regions. Also we found significant differences in mid foot PR values (p foot and forefoot PR values. In addition BMI value was found to have positive correlation with right and left mid foot PR value (r = 0.60 & 0.61) for all the subjects. Conclusion This study provides for the first time new insights into foot pressure distribution difference in mid foot among pre-obese subjects as compared to non-obese adult subject while standing. Hence knowledge of high mid foot PR value among pre-obese subjects can provide suitable guidelines for designing orthotic devices.

R. Periyasamy; Ashutosh Mishra; Sneh Anand; A.C. Ammini

2012-01-01T23:59:59.000Z

279

Model Building  

E-Print Network [OSTI]

In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA.

Paul H. Frampton

1997-06-03T23:59:59.000Z

280

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book [EERE]

9 9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 498,407 square feet and 12 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 15.94 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book [EERE]

1 1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 53,608 square feet and 3 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 18.85 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

282

Building Green in Greensburg: Dwane Shank Motors GM Dealership  

Broader source: Energy.gov (indexed) [DOE]

Dwane Shank Motors Dwane Shank Motors GM Dealership The Dwane Shank GM Dealership was completely destroyed by the tornado, but within just a few days the Shank family was up and running and selling cars to residents who had lost their vehicle in the tornado. The dealership also hurried to build their new 8,300-square-foot building and designed it to maximize energy efficiency and green strategies. This was vital to telling the story and demonstrating the commitment of Greensburg, Kansas, to rebuild green. The new building features a tubular daylighting device and high sidelighting panels to maximize natural light in the sales room and service shop. ENERGY EFFICIENCY FEATURES * South-facing building orientation and windows maximize the use of natural light to reduce electrical lighting loads

283

EERE's Building Technologies PowerPoint Presentation Template  

U.S. Energy Information Administration (EIA) Indexed Site

April 2008 April 2008 1 Application of Building Energy Consumption Data in Low-Energy Building Research Drury B. Crawley U. S. Department of Energy April 2008 2 Key Areas of Interest * Energy Use Intensity * What is energy use per floor area? * Floor-area weighting * What is average square foot vs. average building? * End use * What equipment is using the energy? * Climate zone distributions * How are buildings distributed in climate zones per ASHRAE Standard 169-2006? April 2008 3 * Mechanical equipment detail * What systems and component types are being used? * Schedules * How does occupancy and operation vary over time? * Utility pricing structures * What are demand, energy, and service charges really like? Key Areas of Interest (continued) April 2008 4 ASHRAE Standard 169 Climate Zones April 2008

284

DOE/ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING  

Broader source: Energy.gov (indexed) [DOE]

ex-oooos ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING (PROJECT S-227) HANFORD SITE, RICHLAND, WASHINGTON PROPOSED ACTION The U.S. Department of Energy (DOE) proposes to construct an insulated concrete form office building in 200 East Area. The proposed facility provides operational support staff office space and parking for government and private vehicles. LOCATION OF ACTION The location of the proposed action is in the 200 East Area of the Hanford Site. The proposed new building will be directly east of the 2721-E Building. The parking lot will be located south of the proposed new building and south of the 2727-E Building. DESCRIPTION OF PROPOSED ACTION The proposed action will construct a 12,000 square foot insulated concrete form building to

285

Members | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Members Advanced Scientific Computing Advisory Committee (ASCAC) ASCAC Home Meetings Members ASCAC Members Bio Previous ASCAC Members ChargesReports Charter .pdf file (38KB) ASCR...

286

Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits  

Broader source: Energy.gov (indexed) [DOE]

Report Shows Philadelphia-area Building Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings Hub is one of the U.S. Department of Energy’s research centers called Energy Innovation Hubs. | Photo courtesy of EEB Hub This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency

287

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

288

Building Technologies Office: Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

289

Evaluation of the Franz System Foot Control in a simulated adaptive tracking task  

E-Print Network [OSTI]

Transmission of Power Through Rotary Pedals. . . Perception of Leg and Foot Positions . . . Foot versus Hand Control. Adaptive Controls. Adaptive Tracking Task. Objective of Research. 10 METHOD. 15 Subjects. Simulator. Experimental Design. Procedure... (Kroemer, 1971); 3) perception of leg and foot positions and motions (Oavies, 1966; Corlett and Megaw, 1967; Drury, 1967); 4) selection and arrangement of pedals (Woodson and Conover, 1970); 5) transmission of power through rotary pedals (Miller, 1944...

Raab, Charles

2012-06-07T23:59:59.000Z

290

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961   

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

291

Foot drop resulting from degenerative lumbar spinal diseases: Clinical characteristics and prognosis  

Science Journals Connector (OSTI)

Abstract Foot drop is a condition that can substantially add to the disability of patients with degenerative lumbar spinal disorders. The most common degenerative conditions associated with foot drop are lumbar disc herniation and lumbar spinal stenosis. The level most commonly affected is the L4/5 spinal level. Most patients are treated with surgery, although there is insufficient evidence to support that surgery is superior to conservative therapy. In most surgical patients, foot dorsiflexion will improve to some degree. The preoperative power of foot dorsiflexion is the key factor associated with prognosis.

Yue Wang; Andrew Nataraj

2014-01-01T23:59:59.000Z

292

Preliminary investigation of foot pressure distribution variation in men and women adults while standing  

Science Journals Connector (OSTI)

Background Women and men are anatomically and physiologically different in a number of ways. They differ in both shape and size. These differences could potentially mean foot pressure distribution variation in men and women. The purpose of this study was to analyze standing foot pressure image to obtain the foot pressure distribution parameter – power ratio variation between men and women using image processing in frequency domain. Methods We examined 28 healthy adult subjects (14 men and 14 women) aged between 20 and 45 years was recruited for our study. Foot pressure distribution patterns while standing are obtained by using a PedoPowerGraph plantar pressure measurement system for foot image formation, a digital camera for image capturing, a TV tuner PC-add on card, a WinDvr software for still capture and Matlab software with dedicated image processing algorithms have been developed. Various PedoPowerGraphic parameters such as percentage medial impulse (PMI), fore foot to hind foot pressure distribution ratio (F/H), big toe to fore foot pressure distribution ratio (B/F) and power ratio (PR) were evaluated. Results In men, contact area was significantly larger in all regions of the foot compared with women. There were significant differences in plantar pressure distribution but there was no significant difference in F/H and B/F ratio. Mean PR value was significantly greater in men than women under the hind foot and fore foot. PMI value was greater in women than men. As compared to men, women have maximum PR variations in the mid foot. Hence there is significant difference at level p foot and mid foot PR of women as compared to men. Conclusion There was variation in plantar pressure distribution because the contact area of the men foot was larger than that of women foot. Hence knowledge of pressure distributions variation of both feet can provide suitable guidelines to biomedical engineers and doctor for designing orthotic devices for reliving the area of excessively high pressure.

R. Periyasamy; A. Mishra; Sneh Anand; A.C. Ammini

2011-01-01T23:59:59.000Z

293

E-Print Network 3.0 - american orthopaedic foot Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 Summary: from which procedure." Funded by the American Orthopaedic Foot and Ankle Society and the Canadian... ORTHOPAEDICS CAPITAL HEALTH RESEARCH Page 1 CAPITAL HEALTH...

294

E-Print Network 3.0 - ankle foot orthoses Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Your Step Summary: jointYpowered exoskeleton hardware and control. Lightweight carbon fiber ankle-foot orthoses (i... . Comprehensive analysis of dynamic elastic response...

295

Design and evaluation of a stiffness compensating ankle-foot orthosis:.  

E-Print Network [OSTI]

??This study proposes an ankle-foot orthosis (AFO) based on a novel concept to compensate increased ankle joint stiffness by adding negative stiffness to the joint.… (more)

Verbakel, F.

2013-01-01T23:59:59.000Z

296

E-Print Network 3.0 - alters foot mobility Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

robot to alter its global orientation. A few backward foot... navigation strategies for mobile robots, our method is a global method that takes into account the unique... and...

297

Transforming Commercial Building Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

298

Transforming Commercial Building Operations  

Broader source: Energy.gov (indexed) [DOE]

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

299

Dr. John Messner is a Construction option faculty member in the Architectural Engineering Department. He specializes in the  

E-Print Network [OSTI]

to improve building design, construction, and operation. Messner serves as the director of the Computer Integrated Construction (CIC) Research Program at Penn State and he is the Design Tools co-task leader of America Emerging Technologies Committee, and member of the Design-Build Institute of America BIM Committee

Yener, Aylin

300

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

3 3 Federal Building Delivered Energy Consumption Intensities, by Year (1) Year Year FY 1985 123.0 FY 1997 111.9 FY 1986 131.3 FY 1998 107.7 FY 1987 136.9 FY 1999 106.7 FY 1988 136.3 FY 2000 104.8 FY 1989 132.6 FY 2001 105.9 FY 1990 128.6 FY 2002 104.6 FY 1991 122.9 FY 2003 105.2 FY 1992 125.5 FY 2004 104.9 FY 1993 122.3 FY 2005 98.2 FY 1994 120.2 FY 2006 (2) 113.9 FY 1995 117.3 FY 2007 (3) 112.9 FY 1996 115.0 FY 2015 (4) 89.5 Note(s): Source(s): Consumption per Gross Consumption per Gross Square Foot (10^3 Btu/SF) Square Foot (10^3 Btu/SF) 1) See Table 4.3.1 for floorspace. 2) Increase due to change in categorization of Federal buildings. 3) Adjusted for renewable energy purchases and source savings. 4) Executive Order 13423 goal. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Sept. 2006, Table

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking  

Science Journals Connector (OSTI)

...coefficients matrix) of the foot position with respect to the...input variables such as swing foot position and velocity (denoted...variables improve predictive power (see the electronic supplementary...pelvis state P(0) to the next foot position (X foot, Y foot...

2014-01-01T23:59:59.000Z

302

Student UEC Member Goes Above and Beyond  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student UEC Member Goes Above and Beyond Student UEC Member Goes Above and Beyond Print As a student representative to the ALS Users Executive Committee (UEC) for the past two...

303

Commercial Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

304

Home | Better Buildings Workforce  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

305

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

306

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

307

Building Technologies Office: Subscribe to Building America Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

308

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

309

Stratification of foot risk predicts the incidence of new foot disease, but do we yet know that the adoption of routine screening reduces it?  

Science Journals Connector (OSTI)

The review by Monteiro-Soares et al. [1...] collates the available evidence to demonstrate the strong predictive power of foot risk stratification in diabetes. It is very likely that this power will be preserved ...

W. J. Jeffcoate

2011-05-01T23:59:59.000Z

310

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

311

Building Technologies Research and  

E-Print Network [OSTI]

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

312

Building Performance Simulation  

E-Print Network [OSTI]

low  energy  buildings,  with  site  EUI  of  40  or  lower buildings  in  the  US  (EUI  of  90  kBtu/ft˛).   This the  bubble  represents  the  EUI.   These  buildings  were 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

313

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

314

TEC Working Group Members | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Members Members TEC Working Group Members TEC members represent many different national, regional, tribal, state and local governmental, labor, industry and professional groups. To maximize the opportunity for broad-based input and information exchange, no single state, local or tribal governmental, or other entity is itself a member. Instead, membership is composed of organizations representing those perspectives. DOE programs participate in TEC by providing regular updates on key activities and provide resources and work on issues brought to the TEC by members or DOE. Members serve the group in three broad capacities: * Represent their constituent organizations; * Participate actively and consistently in TEC activities; and * Communicate the findings and recommendations of the group back to their

315

Building Green in Greensburg: Kiowa County Memorial Hospital  

Broader source: Energy.gov (indexed) [DOE]

Memorial Hospital The original Kiowa County Hospital was destroyed in the May 2007 tornado. The new hospital's design team took one of the most energy- intensive building types and designed a first-of-its kind energy-efficient hospital, while still meeting functional and safety requirements. Completed in March 2010, the hospital is built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 50,000-square-foot building includes 15 acute-care beds, rural health and specialty clinics, an emergency department with two trauma rooms, physical/occupational therapy and radiology departments, a laboratory, and other support areas. The new hospital is projected to be 32% more energy efficient

316

Building Removal Ongoing at DOE's Paducah Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site August 23, 2012 - 12:00pm Addthis Media Contact Buz Smith Robert.Smith@lex.doe.gov 270-441-6821 PADUCAH, KY - Work is ongoing at the Paducah Gaseous Diffusion Plant (PGDP) to raze a 65,000-square-foot facility known as the C-340 Metals Plant, which was used to make uranium metal during the Cold War. Department of Energy (DOE) cleanup contractor LATA Environmental Services of Kentucky began removing more than 1,500 panels of cement-asbestos siding from the Metals Plant complex Wednesday in anticipation of New Jersey-based LVI Services starting demolition Sept. 19. Demolition work is projected to last through the end of calendar 2012. "This is an important milestone because the C-340 Metals Plant is the

317

Inhibition of Host Cell Ribosomal Ribonucleic Acid Methylation by Foot-and-Mouth Disease Virus  

Science Journals Connector (OSTI)

...chromatography, which has a high resolving power for the nucleic acids (based on secondary...and J. Polatnick. 1968. The site of foot-and-mouth disease virus ribonucleic...and G. Vande Woude. 1966. Studies on foot-and-mouth disease virus ribonucleic...

Richard Ascione; George F. Vande Woude

1969-11-01T23:59:59.000Z

318

Modelling the initial spread of foot-and-mouth disease through animal movements  

Science Journals Connector (OSTI)

...stochastic nature of the epidemic process, its power for predicting the resultant epidemic size...and cattle experimentally infected with foot-and-mouth disease virus. J. Comp...S0021-9975(03)00045-8 . Anderson, I Foot mouth disease 2001: lessons to be learned...

2006-01-01T23:59:59.000Z

319

The role of pre-emptive culling in the control of foot-and-mouth disease  

Science Journals Connector (OSTI)

...the disease is introduced. foot-and-mouth|modelling...encephalopathy, classic swine fever and foot-and-mouth disease (FMD...veterinary inspectors were given the power to cull only parts of a holding...p s , p c , q s and q c are power-law parameters accounting...

2009-01-01T23:59:59.000Z

320

Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus  

Science Journals Connector (OSTI)

...farms. The study has demonstrated the power of forensic genetic tracing for FMDV...Organization World Reference Laboratory for Foot-and-Mouth Disease. We are grateful...and cattle experimentally infected with foot-and-mouth disease virus O UK 2001...

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Degradation of Nuclear Factor Kappa B during Foot-and-Mouth Disease Virus Infection  

Science Journals Connector (OSTI)

...followed by 5 s of sonication at medium power in a Microsom XL2005 apparatus (Heat System...and C. A. Timpone. 1984. Epitopes on foot-and-mouth disease virus outer capsid...A region of the 5 noncoding region of foot-and-mouth disease virus RNA directs...

Teresa de los Santos; Fayna Diaz-San Segundo; Marvin J. Grubman

2007-09-19T23:59:59.000Z

322

Planipes: Mobile Foot Pressure Analysis Samuel Pfaffen, Philipp Sommer, Christian Stocker, Roger Wattenhofer, and Samuel Welten  

E-Print Network [OSTI]

Planipes: Mobile Foot Pressure Analysis Samuel Pfaffen, Philipp Sommer, Christian Stocker, Roger drawback: They are non-mobile or at least obtrusive and therewith in- fluence the measurement. In the case have implemented Planipes, a mobile and versatile foot pressure measurement platform. It consists

323

ORIGINAL ARTICLE The Effect of Foot and Ankle Prosthetic Components on  

E-Print Network [OSTI]

ORIGINAL ARTICLE The Effect of Foot and Ankle Prosthetic Components on Braking and Propulsive, Neptune RR, Walden JG, Rogers WE, Bosker GW. The effect of foot and ankle pros- thetic components-9. Objective: To assess the influence of energy storage and return (ESAR) prosthetic feet and multi-axis ankles

324

Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy  

E-Print Network [OSTI]

Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel Kwok-Wai Au LIBRARIES #12;#12;Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel The human ankle provides a significant amount of net positive work during the stance period of walking

Herr, Hugh

325

A study of factors affecting foot movement time in a braking maneuver  

E-Print Network [OSTI]

; in the stationary vehicle portion of the study, they were not. Mean foot MT for both genders over all conditions were 0.28 seconds for women and 0.22 seconds for men. For older drivers, over all conditions, the mean foot MT was 0.25 seconds, and, for the younger...

Berman, Andrea Helene

2012-06-07T23:59:59.000Z

326

building technology | OpenEI Community  

Open Energy Info (EERE)

93 93 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229493 Varnish cache server building technology Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid

327

Fact Sheet: Better Buildings Residential Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sheet Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of American homes that are energy efficient. Since 2010, the U.S. Department of Energy (DOE), local Better Buildings Neighborhood Program partners, and Home Performance with ENERGY STAR ® Sponsors have leveraged over $1 billion in federal funding and local resources to build more energy-efficient communities. DOE is now expanding this network of residential energy efficiency programs and partners to new members. Who Should Join? Network membership is open to all organizations that are committed to accelerating the pace of energy

328

Building Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

329

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

330

Building Performance Simulation  

E-Print Network [OSTI]

LEED­NC Certified Buildings                                              (courtesy New Building Institute)  Figure 3 – Measured Energy Use Intensities of Big?Box Retails in US and Canada (

Hong, Tianzhen

2014-01-01T23:59:59.000Z

331

GSA Building Energy Strategy  

Broader source: Energy.gov (indexed) [DOE]

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

332

Better Buildings Case Competition Helps Develop Future Clean Energy Leaders  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Case Competition Helps Develop Future Clean Energy Better Buildings Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and Wesley Look. | Photo courtesy of Elena Alschuler. Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher

333

Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking  

Science Journals Connector (OSTI)

People with a lower-extremity amputation that use conventional passive-elastic ankle-foot prostheses encounter a series of stress-related ... adduction moments encountered during walking. An ankle-foot prosthesis...

Alena M Grabowski; Susan D’Andrea

2013-06-01T23:59:59.000Z

334

Solar buildings. Overview: The Solar Buildings Program  

SciTech Connect (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

335

Building Technologies Office: Commercial Building Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

336

Building Technologies Office: Building America 2013 Technical Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

337

The Committee met in Room 8E089 in the Forrestal Building, 1800  

U.S. Energy Information Administration (EIA) Indexed Site

APRIL 4, 2003 APRIL 4, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1800 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT: F. JAY BREIDT, Chair MARK BERNSTEIN, Committee Member JOHNNY BLAIR, Committee Member JAE EDMONDS, Committee Member MOSHE FEDER, Committee Member JAMES K. HAMMITT, Committee Member NEHA KHANNA, Committee Member WILLIAM G. MOSS, Committee Member NAGARAJ K. NEERCHAL, Committee Member POLLY A. PHIPPS, Committee Member RANDY R. SITTER, Committee Member ALSO PRESENT: GUY CARUSO, Administrator, Energy Information Administration HOWARD GRUENSPECHT, Deputy Administrator, EIA NANCY J. KIRKENDALL, Designated Federal Official BILL WEINIG, EIA CALVIN KENT, Invited Guest CRYSTAL LINKLETTER, Invited Guest

338

SPEER: Building a Regional Energy Efficiency Partnership  

E-Print Network [OSTI]

SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

Lewin, D.

2013-01-01T23:59:59.000Z

339

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

340

Building Technologies Office: Better Buildings Neighborhood Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

342

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

343

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

344

Foote Creek Rim II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.663881°, -106.186001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663881,"lon":-106.186001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Foote Creek Rim IV Wind Farm | Open Energy Information  

Open Energy Info (EERE)

IV Wind Farm IV Wind Farm Facility Foote Creek Rim IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.626456°, -106.202095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.626456,"lon":-106.202095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Foote Creek Rim III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Foote Creek Rim III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWestM&N Wind Power Energy Purchaser Xcel Energy Location Carbon County WY Coordinates 41.643488°, -106.198876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.643488,"lon":-106.198876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Mutations That Hamper Dimerization of Foot-and-Mouth Disease Virus 3A Protein Are Detrimental for Infectivity  

Science Journals Connector (OSTI)

...non-structural proteins of foot-and-mouth disease virus...Donaldson. 2001. Outbreak of foot-and-mouth disease virus...and JM Matthews. 2004. The power of two: protein dimerization...cells: a comparative study with foot-and-mouth disease virus...

Mónica González-Magaldi; Raúl Postigo; Beatriz G. de la Torre; Yuri A. Vieira; Miguel Rodríguez-Pulido; Eduardo López-Vińas; Paulino Gómez-Puertas; David Andreu; Leonor Kremer; María F. Rosas; Francisco Sobrino

2012-07-11T23:59:59.000Z

348

The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments  

E-Print Network [OSTI]

The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower sintering Stiffness Background: Passive-dynamic ankle-foot orthoses utilize stiffness to improve gait performance through elastic energy storage and return. However, the influence of ankle-foot orthosis stiffness

349

The influence of solid ankle-foot-orthoses on forward propulsion and dynamic balance in healthy adults during walking  

E-Print Network [OSTI]

The influence of solid ankle-foot-orthoses on forward propulsion and dynamic balance in healthy-stroke hemiparetic subjects, solid polypropylene ankle-foot-orthoses are commonly prescribed to assist in foot clearance during swing while bracing the ankle during stance. Mobility demands, such as changing walking

350

Practice Briefs: Impacting Practice through Evidence. Patients who injure their foot or ankle should be referred for imaging if they  

E-Print Network [OSTI]

Practice Briefs: Impacting Practice through Evidence. Patients who injure their foot or ankle (indicated in black) When does an individual who has sustained an acute ankle or foot injury need imaging? Rationale Imaging of those with acute foot and ankle pain results in many costly radiographs that reveal

Guenther, Frank

351

The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments  

E-Print Network [OSTI]

The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-dynamic ankle-foot orthoses utilize stiffness to improve gait performance through elastic energy storage and return. However, the influence of ankle-foot orthosis stiffness on gait performance has not been

352

Metal buildings study: performance of materials and field validation  

SciTech Connect (OSTI)

A 5000 square-foot metal building located at Brookhaven National Laboratory has been monitored over a winter season. Energy flows through wall sections were monitored using portable calorimeters. Air infiltration was measured using perfluorocarbon tracers, and the associated heat losses were calculated. Slab losses were assessed through a comparison of measured temperature gradients with results obtained through the use of heat-flow meters. The effect of thermal bridges and compressed insulation in locations where support beams are joined to the exterior skin was found to increase heat losses significantly. A retrofit strategy including spray insulation of beams is projected to save 30% on heating energy.

Loss, W.

1987-12-01T23:59:59.000Z

353

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

354

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

355

Building Technologies Office: Building America Climate-Specific Guidance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

356

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

357

Building Technologies Office: Buildings Performance Database Analysis Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

358

Building Technologies Office: About the Commercial Buildings Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

359

Building Technologies Office: Building Energy Data Exchange Specification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

360

URTAC Committee Members | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

URTAC Committee Members URTAC Committee Members URTAC Committee Members 2012-2014 Unconventional Resources Technology Advisory Committee Members Dr. Nancy J. Brown* Senior Scientist and Department Head Lawrence Berkeley National Laboratory Mr. Wayne K. Camp Senior Geological Advisor Anadarko Petroleum Corporation Ms. Jessica J. Cavens Geologist EnCana Oil & Gas (USA) Mr. William S. Daugherty Managing Partner Blackridge Resources Mr. James P. Dwyer VP Region Engineering Baker Hughes Mr. J. Chris Hall President Drilling & Production Co. Dr. Bob A. Hardage* Senior Research Scientist Univ. of Texas at Austin Mr. John A. Harju* Associate Director for Research Energy & Environmental Research Center University of North Dakota Dr. Robert L. Kleinberg Technical Lead, Unconventional Resources

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Interagency Energy Management Task Force Members  

Broader source: Energy.gov [DOE]

The Interagency Energy Management Task Force is led by the Federal Energy Management Program director, and its members include energy and sustainability managers from federal agencies.

362

Commercial Buildings Consortium  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

363

Residential Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

364

Residential Buildings Integration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

365

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

366

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

367

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

368

Wind Aggregation Via Risky Power Markets Yue Zhao, Member, IEEE, Junjie Qin, Student Member, IEEE, Ram Rajagopal, Member, IEEE,  

E-Print Network [OSTI]

.g., Cali- fornia and parts of Europe) is to take all wind power generation into the system as negative load1 Wind Aggregation Via Risky Power Markets Yue Zhao, Member, IEEE, Junjie Qin, Student Member, IEEE Abstract--Aggregation of diverse wind power sources can effectively reduce their uncertainty, and hence

Zhao, Yue

369

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

370

John Anderson Campus UNIVERSITY BUILDINGS  

E-Print Network [OSTI]

John Anderson Campus UNIVERSITY BUILDINGS 1 McCance Building 2 Collins Building 3 Livingstone Tower 4 Accommodation Office 5 Graham Hills Building 6 Turnbull Building 7 Royal College Building 8 Students' Union 9 Centre for Sport & Recreation 10 St Paul's Building/Chaplaincy 11 Thomas Graham Building

Mottram, Nigel

371

Building America System Research  

Broader source: Energy.gov (indexed) [DOE]

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

372

Building Technologies Office: Building Science Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

373

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

374

Building America Expert Meeting: Combustion Safety  

SciTech Connect (OSTI)

This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

Brand, L.

2013-03-01T23:59:59.000Z

375

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

376

Building America Webinar: High Performance Building Enclosures...  

Broader source: Energy.gov (indexed) [DOE]

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

377

A simplified energy audit technique for generic buildings  

SciTech Connect (OSTI)

A simplified energy audit technique for generic buildings is developed. The premise is that buildings in similar climates and with similar patterns of use and thermal characteristics (structural mass and R-value) should have similar total energy usages if operated in an energy efficient manner. The deviation in the actual total energy usage from that expected for energy-efficient operation can then be examined, in conjunction with the findings of a building walk-through, in order to identify opportunities for energy conservation. The index used for comparison is the Energy Utilization Index (EUI), the total site energy used for per square foot per year. The procedure is illustrated by application to the generic class of Mississippi public school buildings. Validation is achieved by examining the sensitivity of building parameters and energy usage and by observations made in using the simplified procedure. The results show that the simplified technique gives results with as much fidelity as more labor intensive energy-auditing procedures and that the the technique is viable for generic classes of buildings.

Hodge, B.K.; Steele, W.G. Jr.; King, R.

1986-01-01T23:59:59.000Z

378

Energy-efficient rehabilitation of multifamily buildings in the Midwest  

SciTech Connect (OSTI)

This report addresses the opportunities available to make multifamily housing more affordable by using energy efficiency practices in housing rehabilitation. Use of the energy conservation measures discussed in this report enables developers of multifamily housing to substantially reduce annual energy costs. The reduction in natural gas usage was found to be approximately 10 Btu per square foot per heating degree-day. The study focuses on a number of Chicago multifamily buildings. The buildings were examined to compare energy efficiency measures that are commonly found in multifamily building rehabilitation with the high-energy-efficiency (HE) techniques that are currently available to community developers but are often unused. The HE measures include R-43 insulation in attics, R-19 insulation in exterior walls, low-emissivity coatings on windows, air infiltration sealing, and HE heating systems. The report describes the HE features and their potential benefits for making housing more affordable. It also describes the factors influencing acceptance. This report makes recommendations for expanding cost-effective energy conservation in the multifamily building sector. Among the recommendations are: expand HE rehab and retrofit techniques to multifamily building rehabs in which demolition of the interior structures is not required (moderate rehabs) or buildings are not vacant (e.g., weatherization upgrades); and expand research into the special opportunities for incorporating energy conservation in low-income communities.

Katrakis, J.T.; Knight, P.A.; Cavallo, J.D. [Argonne National Lab., IL (United States). Policy and Economic Analysis Group

1994-09-01T23:59:59.000Z

379

Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast |  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast American Recovery and Reinvestment Act workers in Oak Ridge are working safely and quickly to complete the demolition of Building K-33, a 1.4 million-square-foot former gaseous diffusion plant in the East Tennessee Technology Park (ETTP). Diligent work from LATA-Sharp Remediation Services employees is creating remarkable results – a 1.4 percent reduction in the superstructure's footprint per day. Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast More Documents & Publications 2011 ARRA Newsletters Workers Complete Y-12's Largest Recovery Act Project Ahead of Schedule Audit Report: ER-B-99-01

380

Buildings Energy Data Book: 3.7 Retail Markets and Companies  

Buildings Energy Data Book [EERE]

6 6 Energy Benchmarks for Newly Constructed Retail Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Climate Zone Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 108.9 0.1 9.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 24,683 square feet and 1 floor. Benchmark interior lighting energy = 19.2 thousand Btu/SF. Interior equipment energy consumption = 7.63 thousand Btu/SF.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office: Partner With DOE and Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

382

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

383

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

384

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

385

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colloidal nanocrystals are considered promising building blocks for electronic and optoelectronic devices. Potentially, they can combine the advantages of crystalline inorganic...

386

Energy Efficient Buildings Hub  

Broader source: Energy.gov (indexed) [DOE]

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

387

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

388

DOE Building Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

389

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

390

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

391

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

392

Powered Ankle-Foot Prosthesis for the Improvement of Amputee Samuel K. Au, Hugh Herr, Jeff Weber, and Ernesto C. Martinez-Villalpando  

E-Print Network [OSTI]

Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation Samuel K. Au, Hugh Herr, control scheme, and clinical evaluation of a novel, motorized ankle-foot prosthesis, called MIT Powered Ankle-Foot Prosthesis. Unlike a conventional passive-elastic ankle-foot prosthesis, this prosthesis can

Herr, Hugh

393

Adiabatic transfer for atomic interferometry Paul D. Featonby, Gilford S. Summy, Jocelyn L. Martin, Huang Wu, Kendrick P. Zetie, Christopher J. Foot,  

E-Print Network [OSTI]

, Huang Wu, Kendrick P. Zetie, Christopher J. Foot, and Keith Burnett Clarendon Laboratory, Department

Summy, Gil

394

Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton  

Science Journals Connector (OSTI)

A simple ankle–foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance ... during a maximal incremental exercise test wit...

Samuel Galle; Philippe Malcolm; Wim Derave…

2014-11-01T23:59:59.000Z

395

The effect of foot orthoses and in-shoe wedges during cycling: a systematic review  

Science Journals Connector (OSTI)

Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; ... and kinetics of the lower limb, and power; and, published in English. Studies wer...

Boon K Yeo; Daniel R Bonanno

2014-05-01T23:59:59.000Z

396

E-Print Network 3.0 - attenuated foot-and-mouth disease Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Evolution. ISSN: 0737-4038 Summary: . F., F. GONZALEZCANDELAS, and A. MOYA. 1992. Does the Vp1 gene of foot-and-mouth-disease virus behave... on the study of...

397

E-Print Network 3.0 - asian foot-and-mouth disease Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Evolution. ISSN: 0737-4038 Summary: . F., F. GONZALEZCANDELAS, and A. MOYA. 1992. Does the Vp1 gene of foot-and-mouth-disease virus behave... on the study of...

398

Elimination of foot-and-mouth disease in South America: lessons and challenges  

Science Journals Connector (OSTI)

...effective vaccines on an industrial scale. In the 1960s...Pan American Zoonoses Center of PAHO contributed...and risk management, assessment and communication competencies...Foot and Mouth Disease Center. 2007 Assessment of the population immunity...

2013-01-01T23:59:59.000Z

399

Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis  

E-Print Network [OSTI]

Commercially available ankle-foot prostheses are passive when in contact with the ground surface, and thus, their mechanical properties remain fixed across different terrains and walking speeds. The passive nature of these ...

Martinez Villalpando, Ernesto Carlos

2006-01-01T23:59:59.000Z

400

Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model  

E-Print Network [OSTI]

Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their ...

Geyer, Hartmut

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A neuromuscular-model based control strategy for powered ankle-foot prostheses  

E-Print Network [OSTI]

In the development of a powered ankle-foot prosthesis, it is desirable to provide the prosthesis with the ability to exhibit human-like dynamics. A simple method for achieving this goal involves trajectory tracking, where ...

Eilenberg, Michael Frederick

2009-01-01T23:59:59.000Z

402

Powered ankle-foot prosthesis for the improvement of amputee walking economy  

E-Print Network [OSTI]

The human ankle provides a significant amount of net positive work during the stance period of walking, especially at moderate to fast walking speeds. On the contrary, conventional ankle-foot prostheses are completely ...

Au, Samuel Kwok-Wai

2007-01-01T23:59:59.000Z

403

Development of an mHealth Open Source Platform for Diabetic Foot Ulcers Tele-consultations  

Science Journals Connector (OSTI)

Diabetes is one of the foremost causes of death in many countries and a leading cause of blindness, renal failure, and non-traumatic amputation. Therefore, diabetic foot ulceration and amputation cause extensi...

George E. Dafoulas; Stylianos Koutsias…

2012-01-01T23:59:59.000Z

404

Dynamic Analysis of 9975 Shipping Package without Overpack Subjected to 55-Foot Drop  

SciTech Connect (OSTI)

This paper discusses the evaluation of the dynamic response of a 9975 shipping package subjected to a load of 55-foot lateral drop without its overpack structure (fiberboard and drum).

Wu, T.

2001-05-30T23:59:59.000Z

405

Sault Tribe Building Efficiency Energy Audits  

SciTech Connect (OSTI)

The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

Holt, Jeffrey W.

2013-09-26T23:59:59.000Z

406

Building Technologies Office: Building America's Top Innovations Advance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

407

Building Technologies Office: Subscribe to Building Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

408

Reference Buildings by Building Type: Strip mall | Department...  

Broader source: Energy.gov (indexed) [DOE]

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

409

Reference Buildings by Building Type: Large Hotel | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

410

DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strong: Building FORTIFIED Homes Part II DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED Homes Part II Watch the video or view the presentation slides below...

411

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

412

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

413

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Broader source: Energy.gov [DOE]

The Building Technologies Office (BTO)’s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD)...

414

Building Technologies Office: Commercial Building Energy Asset Score  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

415

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

416

Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders  

Science Journals Connector (OSTI)

...various members of the HSPB family differ largely, thereby...1. Introduction The family of the mammalian small...act as basic units/building blocks, capable of generating...in fact, several HSPB family members have been shown...Protein aggregation is a multi-step nucleation-dependent...

2013-01-01T23:59:59.000Z

417

Development of a three-dimensional finite element model of a horse's foot  

E-Print Network [OSTI]

of a horse's foot and attempt to validate it using experimentally obtamed strain results. A Suite element model was constructed using geometric data &om traced outlines of slices cut lrom an actual foot. The model was analyzed using the ABAQUS Suite... element analysis code and strain results were obtamed which were found to difFer signi6cantly &om experimental resuhs. Based on iinformation from the literature, it was determmed that the structure of the model is essentially sound and discrepancies...

Hanft, Joseph Thomas

2012-06-07T23:59:59.000Z

418

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

419

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

420

Macallen Building Condominiums  

High Performance Buildings Database

Boston, MA The Macallen Building, a 140-unit condominium building in South Boston, was designed to incorporate green design as a way of marketing a green lifestyle while at the same time increasing revenue from the project.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

422

Lockheed Building 157  

High Performance Buildings Database

Sunnyvale, CA In 1983, Lockheed Missiles and Space Company, Inc. (now Lockheed Martin) moved 2,700 engineers and support staff from an older office building on the Lockheed campus into the new Building 157.

423

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

424

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

425

Special Building Renovations  

Broader source: Energy.gov [DOE]

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

426

Grid-Responsive Buildings  

Broader source: Energy.gov [DOE]

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

427

Sustainable Building Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Sustainable Building Contacts Sustainable Building Contacts For more information about sustainable buildings and campuses, contact: Sarah Jensen...

428

Kinematics and kinetics of single-limb heel rise in diabetes related medial column foot deformity  

Science Journals Connector (OSTI)

AbstractBackground Diabetes-related medial column foot deformities contribute to high plantar pressure, joint instability, ulceration and amputation. Impaired foot function may be an early indicator of foot structural incompetence and contribute to deformity progression. This study examines the ability of single-limb heel rise multi-segmental kinematics and kinetics to identify midfoot and hindfoot dysfunction in those with diabetes-related medial column foot deformity. Methods Single-limb heel rise foot kinematics and kinetics were examined in adults with diabetes mellitus and peripheral neuropathy with and without medial column foot deformity and age-, weight-matched controls. Findings Hindfoot relative to shank plantarflexion, peak and excursion, were reduced in both diabetes groups compared to controls (P power was reduced in the diabetes deformity group compared to controls (P < 0.017). Interpretation The single-limb heel rise task identified movement dysfunction in those with diabetes mellitus and peripheral neuropathy. Failure to plantarflex the forefoot relative to hindfoot may compromise midfoot joint stability and increase the risk of injury and arch collapse.

Mary K. Hastings; James Woodburn; Michael J. Mueller; Michael J Strube; Jeffrey E. Johnson; David R. Sinacore

2014-01-01T23:59:59.000Z

429

Buildings Performance Database  

Broader source: Energy.gov (indexed) [DOE]

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

430

Buildings Performance Database Overview  

Broader source: Energy.gov [DOE]

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

431

Kiowa County Commons Building  

Broader source: Energy.gov [DOE]

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

432

Buildings Sector Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

433

Glossary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C-Factor C-Factor Time rate of steady-state heat flow through the unit area of a material or construction surfaces. Units of C-Factor are Btu/h x ft2 x degrees Fahrenheit. Note that the C-factor does not include soil or air films. CABO The Council of American Building Officials. Cavity Insulation Insulation installed between structural members such as wood studs, metal framing, and Z-clips. CDD Cooling degree day. See "Cooling Degree Days." CDD50 Cooling degree days base 50°F. See "Degree Day Base 50F." CE Combustion efficiency. Ceiling The ceiling requirements apply to portions of the roof and/or ceiling through which heat flows. Ceiling components include the interior surface of flat ceilings below attics, the interior surface of cathedral or vaulted

434

HEEP CENTER Building # 1502  

E-Print Network [OSTI]

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

435

Digital Planetaria: Building Bridges  

E-Print Network [OSTI]

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

436

Link Building Martin Olsen  

E-Print Network [OSTI]

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

437

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

438

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

439

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

440

The Economics of Green Building  

E-Print Network [OSTI]

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

442

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

443

International Editio Member Center: Sign In | Register  

E-Print Network [OSTI]

International Editio Member Center: Sign In | Register SEARCH CNN Pipeline E-mail Newsletters Your muscles" to be used to perform tasks currently impossible for humans, from carrying out dangerous repair

Lin, Xi

444

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book [EERE]

0 0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 73,932 square feet and 1 floor. Benchmark interior lighting energy = 15.80 thousand Btu/SF. Interior equipment energy consumption = 18.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

445

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book [EERE]

2 2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 210,810 square feet and 2 floors. Benchmark interior lighting energy = 15.20 thousand Btu/SF. Interior equipment energy consumption = 11.83 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

446

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book [EERE]

5 5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 122,075 square feet and 6 floors. Benchmark interior lighting energy = 11.28 thousand Btu/SF. Interior equipment energy consumption = 24.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

447

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book [EERE]

6 6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 43,186 square feet and 4 floors. Benchmark interior lighting energy = 13.79 thousand Btu/SF. Interior equipment energy consumption = 21.98 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

448

Archive Reference Buildings by Building Type: Stand-alone retail  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

449

Archive Reference Buildings by Building Type: Strip mall  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

450

Archive Reference Buildings by Building Type: Secondary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

451

Archive Reference Buildings by Building Type: Small office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

452

Archive Reference Buildings by Building Type: Fast food  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

453

Archive Reference Buildings by Building Type: Primary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

454

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

455

Chapter 3: Building Siting  

Broader source: Energy.gov (indexed) [DOE]

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

456

NREL: Buildings Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

457

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

458

Better Buildings Alliance  

Broader source: Energy.gov (indexed) [DOE]

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

459

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

460

Autotune Building Energy Models  

Broader source: Energy.gov (indexed) [DOE]

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Green Building Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

462

Building Technologies Office: Better Buildings Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

463

Building America FY14 Projects by Building Type  

Broader source: Energy.gov [DOE]

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

464

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

465

Building Data Visualization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

466

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

467

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

468

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

469

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

470

Building Energy Software Tools Directory: CL4M Commercial Cooling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CL4M Commercial Cooling and Heating Loads CL4M Commercial Cooling and Heating Loads Uses ASHRAE methods and algorithms to calculate cooling loads, heating loads and air requirements for each space, and coil specifications, for commercial buildings. CLTD's, SHGF's, CLF's and almost all other factors in the ASHRAE load calculations for each surface and space are calculated and displayed for the engineer's inspection. Latitude and longitude of building location may be specified to the degree, altitude to the foot, and calculations are made for any range of days of the year, and range of hours desired. Building may be rotated or reflected and construction types easily changed for studies. &nsbsp; Handles variations in sky clarity, ground reflectivity, building shading, humidity and altitude. Almost unlimited flexibility in wall, roof and glass

471

Historic School Building Taking On New Energy-Efficient Role | Department  

Broader source: Energy.gov (indexed) [DOE]

Historic School Building Taking On New Energy-Efficient Role Historic School Building Taking On New Energy-Efficient Role Historic School Building Taking On New Energy-Efficient Role February 10, 2011 - 4:43pm Addthis Before and after shots | Courtesy of the Office of Weatherization and Intergovernmental Programs Before and after shots | Courtesy of the Office of Weatherization and Intergovernmental Programs Carrie Noonan Project Officer, Golden Field Office The imposing brick structure that generations of city residents knew as the Baton Rouge Junior High School is being given an "extreme makeover" and a new purpose for the 21st Century, thanks in part to funding from the American Recovery and Reinvestment Act. The 50,000 square foot building, which has been on the National Register of Historic Places since 1984, is now a city government facility that is being

472

Commercial Building Asset Rating Program  

Broader source: Energy.gov [DOE]

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

473

Saving Energy in Multifamily Buildings  

Broader source: Energy.gov [DOE]

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

474

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

475

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

476

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

477

Pedographic findings in 461 patients in a foot and ankle outpatient clinic – definition of standard pedographic patterns for typical pathologies  

Science Journals Connector (OSTI)

Patients who visited a foot and ankle outpatient clinic from October 1, ... p > 0.05), and if the power of this special analysis adequate (>0....

Martinus Richter; Stefan Zech; Axel Kalpen

2008-09-01T23:59:59.000Z

478

Integrated Building Design: Bringing the Pieces Together to Unleash the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Building Design: Bringing the Pieces Together to Unleash the Integrated Building Design: Bringing the Pieces Together to Unleash the Power of Teamwork Session 4 of a seven-part webcast series presented by the Department of Energy's Federal Energy Management Program to help federal agencies comply with the requirements of ASHRAE Standard 90.1-2004. The Integrated Building Design: Bringing the Pieces Together to Unleash the Power of Teamwork webcast is a re-broadcast of an April 2008 webcast sponsored by ASHRAE's Chapter Technology Transfer Committee. The broadcast covers what members of the building team must do to design high-performance buildings. *Reproduced with ASHRAE's permission. Estimated Length: 3 hours Presenters: Kent Peterson; Walter Grondzik; Charles E. Gulledge; Drury B. Crawley; and Paul Torcellini Original Webcast Date:

479

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

480

The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform  

E-Print Network [OSTI]

The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling VOLUNTEERISM MANY DEVELOPERS Grand Challenge: Building a Toolbox of Component Models with guidance and input Members and Governance · Tools for Collaboration 1) CSDMS Wiki 2) CSDMS Modeling Tool · Strategies

Wright, Dawn Jeannine

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

482

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Keep Up To Date Read the Better Buildings Network View newsletter. The Network View is an e-newsletter that provides information on the newly launched Better Buildings Residential Network. The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to build upon the many successes of the Better Buildings Neighborhood Program. Read the latest issue. Through the Better Buildings Neighborhood Program, communities across the country are improving neighborhoods, creating jobs, and increasing access to energy savings in homes and businesses. Following are some of the news-making innovations and results that Better Buildings Neighborhood Program partners are achieving. Latest DOE News and Blog Posts

483

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

484

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

485

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

486

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

487

Building Technologies Office: Building-Level Energy Management Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

488

Amicalola Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Amicalola Electric Member Corp Amicalola Electric Member Corp Jump to: navigation, search Name Amicalola Electric Member Corp Place Georgia Utility Id 562 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Lights Acorn 100 W Lighting Security Lights Acorn 150 W Lighting Security Lights Cobra 100 W Lighting Security Lights Cobra 150 W Lighting Security Lights Cobra 250 W Lighting Security Lights Cobra 400 W Lighting Security Lights Cobra MH 250 W Lighting Security Lights Cobra MH 400 W Lighting Security Lights Flood 250 W Lighting

489

Roanoke Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Roanoke Electric Member Corp Roanoke Electric Member Corp Jump to: navigation, search Name Roanoke Electric Member Corp Place North Carolina Utility Id 16101 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Single Phase (energy charge only) Commercial Commercial Service Single-Phase > 100 kW Commercial Commercial Service Single-Phase < 100 kW Commercial Commercial Service Three Phase (energy charge only) Commercial Commercial Service Three Phase Demand/Energy equal too or >100 kW

490

Brunswick Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Brunswick Electric Member Corp Brunswick Electric Member Corp Jump to: navigation, search Name Brunswick Electric Member Corp Place North Carolina Utility Id 24889 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Basic Sodium Vapor Light Lighting General Service - Single Phase Commercial General Service - Single Phase Curtailable Service Commercial General Service - Three Phase Commercial General Service - Three Phase Curtailable Service Commercial Net Metering Rider Commercial

491

Carroll Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Member Corp Member Corp Jump to: navigation, search Name Carroll Electric Member Corp Place Georgia Utility Id 3081 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Rate Industrial General Service Rate* Industrial Irrigation Off-Peak Seasonal Service Commercial Large Power Service Industrial Large Power Service* Load Management Service- Coincident W/ Multi-hr Peak Load Management Service- Coincident w/ ITS Peak Demand Load Management Service- Non Coincident Peak Demand

492

Oconee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Oconee Electric Member Corp Oconee Electric Member Corp Jump to: navigation, search Name Oconee Electric Member Corp Place Georgia Utility Id 13962 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Power Service Commercial Large Power Service* Industrial Outdoor Lighting MV 175 W Overhead Lighting Outdoor Lighting MV 175 W Underground Lighting Outdoor Lighting S 100 W Overhead Lighting Outdoor Lighting S 100 W Underground Lighting Residential and Farm Service Residential

493

Upson Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Elec Member Corp Elec Member Corp Place Georgia Utility Id 19581 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 1,6 - Residental Service Residential Rate 3,7 - General Service Commercial Rate 8,10 - General Service Commercial Average Rates Residential: $0.1020/kWh Commercial: $0.1150/kWh Industrial: $0.0834/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Upson_Elec_Member_Corp&oldid=411917

494

Tideland Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Tideland Electric Member Corp Tideland Electric Member Corp Jump to: navigation, search Name Tideland Electric Member Corp Place North Carolina Utility Id 19108 Utility Location Yes Ownership C NERC SERC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cotton Gin - On season Commercial Large Power (Time-of-use Service) Commercial Large Power Service Commercial NC GreenPower NC GreenPower Generator- Small Solar PV Systems - 5 to 10 kW NC GreenPower Generator- Small Solar PV Systems - Less than 5 kW NC GreenPower Generator-Small Wind Systems - 10 kW and under

495

Canoochee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Canoochee Electric Member Corp Canoochee Electric Member Corp Jump to: navigation, search Name Canoochee Electric Member Corp Place Georgia Utility Id 2903 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Service- DM-1 Commercial GS-1 Commercial GS-3 Commercial IR-1 Commercial IR-3 Large Power Service- LP-1 Industrial Load Management Service- LM-2 Commercial Load Mangament Service- LM-3 Commercial Power and Light Industrial Residential Service- RS-1 Residential Security Lighting Service- SL (1000W HPS Flood) Lighting

496

LEDSGP/about/members | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » LEDSGP/about/members < LEDSGP‎ | about Jump to: navigation, search LEDSGP Logo.png Advancing climate-resilient low emission development around the world Home About Tools Expert Assistance Events Publications Join Us About How We Work > Regional Platforms > Working Groups LEDS GP Members Steering Committee Guiding Structure Contacts Members of the LEDS Global Partnership More than 110 countries and international institutions have joined the partnership to support collaboration and peer learning on climate-resilient low emission development. AUSAidLogo.png AG-DOCC.JPG Sustentar.jpg Logotipo minambientevertical escala grises1.jpg Minaetlogo.png European Flag(1).gif GIZlogo.JPG Sponsor.jpg JICA-Logo.jpg Ine320.gif Logotipo minambientevertical escala grises1.jpg

497

Planters Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Planters Electric Member Corp Planters Electric Member Corp Jump to: navigation, search Name Planters Electric Member Corp Place Georgia Utility Id 14649 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule 1 - Home Energy Partner Service Residential Schedule 2 - Energy Partner Service Non Demand Option Schedule 20 - Large Commercial Partner Service Commercial Schedule 21 - Athletic or Recreational Complex Partner Service Commercial Schedule 3 - Energy Partner Service Demand Option Schedule 4 - Irrigation Service, Interruptible Commercial

498

Pataula Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Pataula Electric Member Corp Pataula Electric Member Corp Jump to: navigation, search Name Pataula Electric Member Corp Place Georgia Utility Id 14588 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule DGS - Distribution Generation Service, Multi Phase Commercial Schedule DGS - Distribution Generation Service, Single Phase Commercial Schedule FM - Farm and Home Service Residential Schedule GS - General Service, Multi Phase Commercial Schedule GS - Single Phase (First 200 kWh per kW of Billing Demand)

499

Randolph Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Member Corp Electric Member Corp Jump to: navigation, search Name Randolph Electric Member Corp Place North Carolina Utility Id 15671 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A23 - SINGLE-PHASE SERVICE Residential A23EE - SINGLE-PHASE ENERGY EFFICIENT HOME SERVICE Residential A23TOU - SINGLE-PHASE TIME-OF-USE SERVICE Residential GS23 - SINGLE PHASE COMMERCIAL Commercial GS23 - SINGLE-PHASE COMMERCIAL - Two Part Tariff Commercial

500

Gibson Electric Members Corp | Open Energy Information  

Open Energy Info (EERE)

Gibson Electric Members Corp Gibson Electric Members Corp Jump to: navigation, search Name Gibson Electric Members Corp Place Tennessee Utility Id 7174 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate-Poly Phase Commercial Commercial Rate-Single Phase Commercial Green Power Switch Industrial Rate-Poly Phase Industrial Industrial Rate-Single Phase Industrial Residential rates Residential Average Rates Residential: $0.0960/kWh Commercial: $0.1130/kWh