Powered by Deep Web Technologies
Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Empowering Advisory Board Members: Building Partnerships AAAbbbssstttrrraaacccttt  

E-Print Network (OSTI)

Empowering Advisory Board Members: Building Partnerships AAAbbbssstttrrraaacccttt BBuuiillddiinngg council members are often asked to assist in building partnerships and communicating with policymakers for communication at each political level. #12;Empowering Advisory Board Members: Building Partnerships 1

Hayes, Jane E.

2

Challenge members to achieve a goal | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge members to achieve a goal Challenge members to achieve a goal Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Partner with ENERGY STAR Encourage members to benchmark Challenge members to achieve a goal Tell members how to save Deliver training to members Give recognition Tie it all together in a campaign Challenge members to achieve a goal Benchmarking and goal-setting go hand-in-hand. No matter what type of

3

U.S. Patent 8,389,878, Weigh-in-Motion Scale with Foot Alignment Features  

SciTech Connect

A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other comer foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the comer foot member.

Abercrombie, Robert K [ORNL; Richardson, Gregory [ORNL; Scudiere, Matthew B [ORNL

2013-01-01T23:59:59.000Z

4

Energy-Smart Building Choices: How School Administrators and Board Members Are Improving Learning and Saving Money  

DOE Green Energy (OSTI)

Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school administrators and board members, describes how schools can become more energy efficient.

Energy Smart Schools Team

2001-08-06T23:59:59.000Z

5

Energy-Smart Building Choices: How School Administrators and Board Members Are Improving Learning and Saving Money (Revision)  

SciTech Connect

Most school administrators and board members today must perform a tough juggling act. You're challenged to fulfill increasingly complex educational missions, meet rising community expectations, and serve growing student populations all with constrained operating budgets. As districts consider renovating their facilities or building new schools, many have found that smart energy choices can have lasting benefits for their schools, their communities, and the environment.

Not Available

2002-02-01T23:59:59.000Z

6

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

7

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

8

Member Get a Member Program  

Science Conference Proceedings (OSTI)

AOCS Member Recruitment Program. Member Get a Member Program Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memorial nomination oils pos

9

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and Division Northeast 11.7 7.4 21.2 139 49 88.5 34 898 0.31 571 221 New England 1.7 1.0 3.0 155 49 86.8 33 1,044 0.33 586 223 Middle Atlantic 10.0 6.5 18.2 137 49 88.8 35 877 0.31 568 221

10

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region and Division Northeast 12.2 7.7 23.3 145 48 90.9 35 1,122 0.37 703 272 New England 2.2 1.2 4.2 154 45 85.7 34 1,298 0.38 722 290 Middle Atlantic 10.0 6.4 19.1 143 48 92.0 35 1,089 0.37 699 269

11

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division Northeast 18.3 13.0 35.0 31 12 22.3 8 938 0.35 665 245 New England 4.3 3.1 9.0 31 11 22.6 8 869 0.30 635 227 Middle Atlantic 14.0 9.9 26.0 32 12 22.2 8 959 0.36 674 251

12

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

13

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region and Division Northeast 11.9 7.7 23.6 134 44 86.8 33 952 0.31 615 232 New England 2.0 1.1 3.5 146 45 76.0 29 1,135 0.35 592 227 Middle Atlantic 9.9 6.6 20.1 133 44 89.1 34 923 0.30 620 234

14

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and Division Northeast 11.7 7.5 21.1 125 44 79.2 30 925 0.33 588 221 New England 2.0 1.3 4.2 122 39 80.3 29 955 0.30 626 224 Middle Atlantic 9.7 6.1 16.9 125 45 78.9 30 919 0.33 580 220

15

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division Northeast 1.2 1.1 2.7 29 11 26.2 9 318 0.13 288 94 New England 0.5 0.4 1.0 25 11 22.5 8 282 0.12 250 91 Middle Atlantic 0.7 0.7 1.7 31 12 28.6 9 341 0.13 312 96

16

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

17

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division Northeast 19.0 13.2 36.8 34 12 23.3 9 934 0.34 648 251 New England 4.3 3.0 8.4 33 12 22.9 9 864 0.30 600 234 Middle Atlantic 14.8 10.2 28.4 34 12 23.4 9 954 0.34 661 256

18

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division Northeast 20.3 14.1 43.7 37 12 26.0 11 1,268 0.41 883 362 New England 5.4 4.1 13.2 32 10 24.0 10 1,121 0.35 852 358 Middle Atlantic 14.8 10.0 30.5 40 13 27.0 11 1,328 0.44 894 364

19

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division Northeast 1.4 1.2 2.7 23 10 20.1 7 295 0.13 264 91 New England 0.5 0.4 1.0 31 14 27.6 9 370 0.17 330 114 Middle Atlantic 0.9 0.8 1.8 18 8 15.9 6 253 0.11 226 79

20

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division Northeast 17.7 12.2 34.8 33 12 23.0 8 742 0.26 514 181 New England 4.3 2.9 8.9 34 11 23.1 8 747 0.25 508 177 Middle Atlantic 13.4 9.3 26.0 33 12 22.9 8 740 0.27 516 183

22

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region and Division Northeast 12.5 7.8 25.4 126 39 78.3 33 1,434 0.44 889 372 New England 2.3 1.5 5.5 128 34 82.5 35 1,567 0.42 1,014 428 Middle Atlantic 10.3 6.3 19.9 126 40 77.4 32 1,403 0.45 861 360

23

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

24

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1980 Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 51.6 39.7 88.5 125 56 96.2 34 497 0.22 383 137 Census Region and Division Northeast 10.9 6.5 18.8 144 50 86.6 31 771 0.27 463 168 New England 1.9 0.9 3.1 162 47 78.9 28 971 0.28 472 169 Middle Atlantic 9.0 5.6 15.7 141 51 88.1 32 739 0.27 461 168

25

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and Division Northeast 1.7 1.7 4.5 31 11 29.8 11 538 0.20 519 186 New England 0.7 0.7 2.2 34 11 33.1 12 580 0.19 569 209 Middle Atlantic 1.0 0.9 2.4 29 11 27.4 10 506 0.20 482 169

26

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and Division Northeast 11.6 7.3 21.1 132 46 82.6 31 951 0.33 598 221 New England 2.0 1.3 4.5 126 35 77.9 28 1,062 0.30 658 235 Middle Atlantic 9.6 6.0 16.5 133 49 83.6 31 928 0.34 585 217

27

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

28

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

29

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

97 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and Division Northeast 19.7 15.1 34.6 32 14 25.0 10 1,130 0.49 863 345 New England 5.3 4.2 9.3 31 14 24.0 9 1,081 0.49 854 336 Middle Atlantic 14.4 10.9 25.3 33 14 25.0 10 1,149 0.49 867 349

30

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

31

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

32

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division Northeast 17.9 12.1 35.1 33 11 22.1 8 830 0.29 561 195 New England 4.3 2.9 8.3 31 11 21.3 8 776 0.27 531 189 Middle Atlantic 13.7 9.2 26.7 33 11 22.4 8 847 0.29 571 197

33

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1997 Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34 579 218 Census Region and Division Northeast 11.8 8.3 19.9 123 52 86.9 35 1,097 0.46 772 310 New England 1.9 1.4 3.3 123 50 87.0 32 1,158 0.48 819 301 Middle Atlantic 9.9 6.9 16.6 124 52 86.9 36 1,085 0.45 763 312

34

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region and Division Northeast 19.5 13.8 40.1 34 12 24.1 9 1,144 0.39 809 309 New England 5.1 3.7 10.6 33 11 24.1 9 1,089 0.38 797 311 Middle Atlantic 14.4 10.1 29.4 35 12 24.2 9 1,165 0.40 814 309

35

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

36

Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget  

SciTech Connect

Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

Not Available

1980-06-01T23:59:59.000Z

37

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

3 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

38

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

39

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

40

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

42

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

43

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

44

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

45

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

46

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

47

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

48

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

49

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

50

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

51

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

52

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

53

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

54

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

55

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

56

SAC Members  

NLE Websites -- All DOE Office Websites (Extended Search)

Former members Scientific Advisory Committee (SAC) Members Name and Address Contact Information Current Position Research Interests Term Kirz, Janos Lawrence Berkeley National...

57

AP Members  

NLE Websites -- All DOE Office Websites (Extended Search)

Group Members Group Members Principal Investigators Etsuko Fujita (Lead PI) Photochemical carbon dioxide reduction using transition-metal complexes; electrocatalysis of hydrogen and carbon dioxide reduction with non-noble metal based catalysts; water oxidation catalysis; kinetics and mechanism of photochemical and redox reactions Javier Concepcion (PI) David Grills (PI) Application of transient infrared spectroscopy to kinetics and catalysis; characterization of reaction intermediates, CO2 reduction in supercritical CO2 Jim Muckerman (PI) Application of theory and computation to photocatalysis and electrocatalysis; mechanistic studies of hydrogen production, carbon dioxide reduction and water oxidation in both homogeneous and heterogeneous systems Dmitry Polyansky (PI)

58

Energy Efficient Buildings Hub | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Hub (EEB Hub) team is taking a "living lab" approach, working in a 30,000-square-foot building in the Navy Yard, where they are testing how different technologies...

59

Deliver training to members | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Deliver training to members Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

60

Elastomeric member  

DOE Patents (OSTI)

An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

Hoppie, Lyle O. (Birmingham, MI)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

BigFoot  

NLE Websites -- All DOE Office Websites (Extended Search)

216 216 BigFoot Characterizing Land Cover, LAI, and NPP at the Landscape Scale for EOS/MODIS Validation Field Manual Version 2.1 ORNL/TM-1999/216 Environmental Sciences Division BIGFOOT FIELD MANUAL VERSION 2.1 John L. Campbell Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 jlcampb1@students.wisc.edu Sean Burrows Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 burrows@calshp.cals.wisc.edu Stith Tom Gower Department of Forest Ecology and Management University of Wisconsin, Madison, WI 53706 stgower@facstaff.wisc.edu Warren B. Cohen Forest Science Department, Oregon State University c/o USDA Forest Service, Corvallis, OR 97331 cohenw@ccmail.orst.edu Environmental Sciences Division

62

foote-98.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Weather Balloon Radiosonde Automated Weather Balloon Radiosonde Launcher Development J. P. Foote, J. T. Lineberry, and B. R. Thompson ERC, Incorporated Tullahoma, Tennessee Introduction Balloon-borne radiosondes are a primary means used by the Atmospheric Radiation Measurement (ARM) Program to collect atmospheric data. Currently, three radiosondes are launched daily from the Central Facility at the ARM Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site during non-intensive observation periods (IOPs). During IOPs, eight radiosondes are launched daily from the Central Facility and from each of four boundary facilities, for a total of forty daily launches. Launching balloons during IOPs is a major effort, in terms both of logistics and manpower. ERC, Incorporated is currently developing an automated

63

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493 583 Census Region and Division Northeast 20.3 14.1 43.7 153 49 106.6 44 2,501 0.81 1,741 715 New England 5.4 4.1 13.2 152 47 115.3 48 2,403 0.75 1,825 768 Middle Atlantic 14.8 10.0 30.5 154 50 103.4 42 2,541 0.83 1,710 696

64

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491 Census Region and Division Northeast 19.5 13.8 40.1 173 60 122.4 47 2,157 0.74 1,526 583 New England 5.1 3.7 10.6 168 59 123.1 48 2,094 0.73 1,532 598 Middle Atlantic 14.4 10.1 29.4 175 60 122.1 46 2,180 0.75 1,523 578

65

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356 Census Region and Division Northeast 17.9 12.1 35.1 194 67 131.6 46 2,016 0.70 1,365 475 New England 4.3 2.9 8.3 181 63 123.9 44 2,018 0.71 1,384 492 Middle Atlantic 13.7 9.2 26.7 199 68 134.0 46 2,016 0.69 1,359 470

66

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330 Census Region and Division Northeast 17.7 12.3 34.8 199 70 138.3 49 1,874 0.66 1,301 459 New England 4.3 2.9 8.9 197 65 134.4 47 1,964 0.65 1,341 466 Middle Atlantic 13.4 9.3 26.0 200 72 139.5 49 1,846 0.66 1,288 456

67

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,034 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,023 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,037 0.70 1,491 555

68

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377 Census Region and Division Northeast 18.0 12.5 34.4 175 64 121.7 44 1,942 0.71 1,353 490 New England 4.2 3.0 9.1 173 56 121.9 43 1,991 0.65 1,402 498 Middle Atlantic 13.7 9.5 25.2 175 66 121.7 44 1,926 0.73 1,338 487

69

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,038 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,028 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,041 0.70 1,491 555

70

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80 1,338 517 Census Region and Division Northeast 19.7 15.1 34.6 158 69 121.0 48 2,153 0.94 1,644 658 New England 5.3 4.2 9.3 156 70 123.0 48 2,085 0.94 1,647 648 Middle Atlantic 14.4 10.9 25.3 159 68 120.0 48 2,179 0.94 1,643 662

71

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417 Census Region and Division Northeast 18.3 13.0 35.0 176 65 125.2 46 2,033 0.75 1,443 533 New England 4.3 3.1 9.0 174 61 127.6 46 2,010 0.70 1,471 527 Middle Atlantic 14.0 9.9 26.0 177 67 124.5 46 2,040 0.77 1,435 535

72

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416 Census Region and Division Northeast 19.0 13.2 36.8 179 64 124.4 48 1,836 0.66 1,276 494 New England 4.3 3.0 8.4 174 61 121.0 47 1,753 0.62 1,222 475 Middle Atlantic 14.8 10.3 28.4 181 65 125.4 48 1,860 0.67 1,292 499

73

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

74

Building Energy Software Tools Directory: UtilityTrac  

NLE Websites -- All DOE Office Websites (Extended Search)

savings measurement and verification Provides weather analysis reports with normalized energy usage Benchmark and compare similar buildings' usage and costs by square foot and A...

75

U.S. Commercial Buildings Weather Adjusted Primary Energy ...  

U.S. Energy Information Administration (EIA)

Using . Weather-Adjusted. Primary Energy. 1. by Census Region and Principal Building Activity, 1992, 1995, and 2003 (Thousand Btu per Square Foot) ...

76

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

77

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

78

Doing Well by Doing Good? Green Office Buildings  

E-Print Network (OSTI)

estimated for a green building, or to Energy Star. 2008. estate, the evidence on energy savings in green buildings issquare foot) Green rating (1 = yes) Energy Star (1 = yes)

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2009-01-01T23:59:59.000Z

79

Conservation of Energy and Water Use in State Buildings (North...  

Open Energy Info (EERE)

of ASHRAE 90.1-2004 by 30% for new buildings, and 20% for major renovations. The energy consumption per gross square foot for all State buildings in total must be reduced...

80

Postdoctoral Society of Argonne - Members  

NLE Websites -- All DOE Office Websites (Extended Search)

The PSA is composed of a board of approximately 12 postdocs that organize activities and coordinate functions derived from our mission. Andrew Skipor and Kristene (Tina) Henne oversee the operations of the PSA board. The number of members varies as postdocs enter and exit the program, and we are always looking for new members. Meetings are open to all interested postdocs and are held the third Friday of the month in Building 223, Room L119. Send mail to Kristene (Tina) Henne to inquire. The PSA is composed of a board of approximately 12 postdocs that organize activities and coordinate functions derived from our mission. Andrew Skipor and Kristene (Tina) Henne oversee the operations of the PSA board. The number of members varies as postdocs enter and exit the program, and we are always looking for new members. Meetings are open to all interested postdocs and are held the third Friday of the month in Building 223, Room L119. Send mail to Kristene (Tina) Henne to inquire. PSA Officers: Martin Bettge, CSE (President) Prasanna Balaprakash, MCS (Vice President) Milind Malshe, CSE (Liaison Officer) Board Members: Chithra Kumaran Nair, NE Deepkishore Mukhopadhyay, CNM Kuldeep Mistry, ES Maxim Nikiforov, CNM Shaolin Liao, NE Si Chen, MSD General Members:

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tell members how to save | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

and Honest Buildings if you do. AH&LA educates its members about efficiency The American Hotel & Lodging Association (AH&LA) developed a robust educational campaign to bring...

82

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

83

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn Better Buildings Residential Network (BBRN) members must be supportive of residential...

84

Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.  

E-Print Network (OSTI)

Yes prices per square foot indicating that the cost effectper square foot and more variance in precipitation has a statistically significant positive effect on operating costsper square foot of office buildings that sold in arm-length-transactions between 2001 and 2010 on energy costs,

Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

2012-01-01T23:59:59.000Z

85

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book (EERE)

0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility (2010) Members Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally...

86

SmallFoot LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Boulder, Colorado Product Colorado-based developer of wireless demand control devices for the small commercial market. References SmallFoot LLC1 LinkedIn...

87

nSoft Member Agreements  

Science Conference Proceedings (OSTI)

Member Agreement. Members of the consortium will be required to sign a member cooperative research and development agreement (CRADA). ...

2013-02-20T23:59:59.000Z

88

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

89

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

90

EIA Energy Efficiency:Table 5b. U.S. Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Table 5b. U.S. Commercial Buildings Energy Intensity Using Site Energy 1 by Census Region and Principal Building Activity, 1992-2003 (Thousand Btu per Square Foot)

91

EIA Energy Efficiency:Table 7b. U.S. Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Table 7b. U.S. Commercial Buildings Energy Intensity Using Primary Energy 1 by Census Region and Principal Building Activity, 1992-2003 (Thousand Btu per Square Foot)

92

Comparison of Energy Needed to Heat Greenhouses and Insulated Frame Buildings Used in Aquaculture1  

E-Print Network (OSTI)

be as low as $4 to $6 per square foot. Construction costs for wood or metal frame buildings are greater than for the structure can be as low as $1 per square foot, but plastic covered greenhouse structures have structure is easy to construct on almost any site and has a low initial cost. Building material costs

Watson, Craig A.

93

Administrative Committee Members  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Administrative Committee. Members. Online Training Module.

94

Technical Committee Member - TMS  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Technical Committee Member. Online Training Module.

95

Award Committee Member  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Award Committee Member. Online Training Module. March 2013...

96

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

97

Building Energy Software Tools Directory: BuildingAdvice  

NLE Websites -- All DOE Office Websites (Extended Search)

BuildingAdvice BuildingAdvice BuildingAdvice™ is a user-friendly, Web-based platform designed to assess building energy performance and identify and quantify energy savings opportunities. Target buildings are in the 5k-200k sq. ft. range, with scalability up to 1mm sq. ft. The platform combines 1) portable wireless sensor packages for capture of real-time building data, 2) automated entry of weather data, 3) manual entry of basic building information, and 4) proprietary EnGen™ energy modeling software. Output is a suite of comprehensive reports that benchmark against CBECS; provide key performance parameters including Energy Star rating, energy usage index, energy cost per square foot, and carbon emissions; provide ASHRAE Level II audits that quantify energy usage in four areas of

98

NNSA joins other federal agencies to build Interagency Fire Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

to enhance northern New Mexico fire protection efforts by building a 6,400 square foot facility to serve as a joint coordination and response center for fire events. The new...

99

Better Buildings Challenge Reports First Year's Savings; Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

organizations in the Better Buildings Challenge include: Kohl's: With a 112 million square foot commitment and more than 1,000 stores in the United States, Kohl's has achieved a...

100

Federal Energy Management Program: Better Buildings Federal Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Federal Energy Management Program: Better Buildings Federal Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis....

102

Federal Energy Management Program: Better Buildings Federal Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The...

103

www.eia.gov  

U.S. Energy Information Administration (EIA)

ESTIMATE Consumption Expenditures Residential Buildings per Total per Total Total Floorspace Building Foot Household Member Household Households Number

104

GreenFoot Technologies | Open Energy Information  

Open Energy Info (EERE)

GreenFoot Technologies GreenFoot Technologies Jump to: navigation, search Logo: GreenFoot Technologies Name GreenFoot Technologies Address 700 108th AVE NE Suite 200 Place Bellevue, Washington Zip 98004 Website http://www.greenfootjobs.com/ Coordinates 47.616506°, -122.195725° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.616506,"lon":-122.195725,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

BigFoot Data Set Released  

NLE Websites -- All DOE Office Websites (Extended Search)

Meteorological Data Set Released The ORNL DAAC is pleased to announce the release of a data set associated with The BigFoot project: BIGFOOT Meteorological Data for North and South...

106

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Whole Building Life Cycle Assessment: Neville Scarfe Building  

E-Print Network (OSTI)

primary energy required for the construction of the building was 192.6 Mega Joules per square foot undergone a series of upgrades and renovations; however, the original cost of the building was $1,103,877. The gross area of the original version of the Scarfe building totaled 70,127 square feet, including

107

Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment  

SciTech Connect

Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits.

Morris, R.; Warga, J.; Thorne, D.

1997-07-01T23:59:59.000Z

108

YOUR MEMBER CONNECTION  

Science Conference Proceedings (OSTI)

Korea Institute of Geoscience and Mineral. Resources in Daejeon, Republic of Korea. Dr. Lee has been a TMS member since. 1993. Page 29. Marks, Jerry Y. is ...

109

YOUR MEMBER CONNECTION - TMS  

Science Conference Proceedings (OSTI)

the University of Kentucky. Mr. Abu-. Farha is an eight year member of TMS. Page 72. Apelian, Diran is Howmet Professor of Engineering at. Worcester Poly-.

110

Collapsable seal member  

DOE Patents (OSTI)

A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.

Sherrell, Dennis L. (Kennewick, WA)

1990-01-01T23:59:59.000Z

111

NEHRP - ACEHR Members  

Science Conference Proceedings (OSTI)

... reviewed ground motions for hundreds of buildings and lifeline facilities ranging from nuclear power plants, dams, and electric substations to ports ...

112

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

113

Brad Foote Gear Works | Open Energy Information  

Open Energy Info (EERE)

Brad Foote Gear Works Brad Foote Gear Works Jump to: navigation, search Name Brad Foote Gear Works Place Cicero, Illinois Zip 60804-1404 Sector Wind energy Product Gearing systems manufacturer making systems for wind energy, power generation, and oil field equipment in addition to other industries. Coordinates 43.177106°, -76.082399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.177106,"lon":-76.082399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

LittleFoot Energy | Open Energy Information  

Open Energy Info (EERE)

LittleFoot Energy LittleFoot Energy Jump to: navigation, search Name LittleFoot Energy Address 240A Elm St Place Somerville, Massachusetts Zip 02144 Sector Efficiency Product Implement thermal storage, geothermal, solar, monitoring and control in hybrid system designs that offset fossil fuel use Website http://littlefootinc.com/ Coordinates 42.395037°, -71.1216881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.395037,"lon":-71.1216881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

YOUR MEMBER CONNECTION  

Science Conference Proceedings (OSTI)

www.tms.org/jom.html. OTHER MEMBERS FEATURED IN THIS ISSUE. Allison, John, p. 5. Alvear, Gerardo R.F., p. 3. Apelian, Diran, p. 10. Bakker, Martin L., p. 3.

116

YOUR MEMBER CONNECTION  

Science Conference Proceedings (OSTI)

Zhang, Fan is President of CompuTherm,. LLC, Madison, Wisconsin. She became a. TMS member in 1994 when she was a Ph.D. student at the University of...

117

Hydraulic Institute Member Benefits  

Energy.gov (U.S. Department of Energy (DOE))

As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic nstitute (HI) provides its members with timely...

118

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

119

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

120

Deer Mice and White-Footed Mice  

NLE Websites -- All DOE Office Websites (Extended Search)

Deer Mice and White-Footed Mice Deer Mice and White-Footed Mice Nature Bulletin No. 545-A November 23. 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation DEER MICE AND WHITE-FOOTED MICE At night, sitting on a wooded shore, waiting for fish to bite or quietly gazing into the coals of a camp fire, you often become aware of mysterious small noises nearby in the darkness. Sometimes it is only a faint scratching on a tree trunk, or a rustling in the fallen leaves. But, again, you may hear a tiny drumming sound or a musical buzzing hum. Spooks? No. The best guess is that you have disturbed the night life of a wild mouse. He makes the drumming sound by rapidly tapping a dry leaf or hollow stem with his front feet. Unlike house mice, his voice is more of a song than a mere squeak. If you catch him in the beam of a flashlight you see an alert animal face with big ears, large black bulging eyes, and a beautiful coat -- rich brown above with snow-white underparts and feet. From these prominent characteristics came the common names of our two local species, the Deer Mouse and the White-footed Mouse.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Impedance of surface footings on layered ground  

Science Conference Proceedings (OSTI)

Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2Hz. Unfortunately, environmental ... Keywords: Boundary elements, Domain-transformation method, Dynamic stiffness, Footing, Foundation, Layered soil, Wind turbine

L. Andersen; J. Clausen

2008-01-01T23:59:59.000Z

122

U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...  

Annual Energy Outlook 2012 (EIA)

Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

123

Automated geometric features evaluation method for normal foot skeleton model  

Science Conference Proceedings (OSTI)

"Normal foot model" is a geometric model of a healthy human foot. As the comparison of the processed feet requires a reference ideal healthy foot parameterization it was necessary to create such a model by defining skeleton geometric features and generating ...

Bartosz Borucki; Krzysztof Nowi?Ski; Micha? Chlebiej; Andrzej Rutkowski; Pawe? Adamczyk; Jacek Laskowski

2011-01-01T23:59:59.000Z

124

building | OpenEI Community  

Open Energy Info (EERE)

building building Home Dc's picture Submitted by Dc(10) Member 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building comfort design improve incentive indoor message sms text Yes 50% (2 votes) No 0% (0 votes) Maybe if I had an incentive 25% (1 vote) Maybe if my reply is confidential and anonymous 0% (0 votes) Maybe if the data will be used to improve building design 25% (1 vote) Total votes: 4 Buildings account for roughly 40% of all U.S. energy use (70% of all electricity): residential buildings account for 22% of all U.S. energy use and commercial buildings account for 18% of all U.S. energy use[i]. There is an unanswered need for information about buildings in use and how building design affects building occupant comfort, productivity, and, by

125

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

126

Sustainable building technology knowledge representation: Using Semantic Web techniques  

Science Conference Proceedings (OSTI)

The global quest for sustainability in the exploitation of resources and the need for carbon foot-print reduction has resulted in the development of a large number of innovations and a huge amount of knowledge on sustainable building technologies. Unfortunately, ... Keywords: Knowledge representation, Ontology, Photovoltaic system, Semantic Web, Sustainable building technology

Joseph H. M. Tah; Henry F. Abanda

2011-08-01T23:59:59.000Z

127

AOCS Member Lapel Pin  

Science Conference Proceedings (OSTI)

AOCS logo pin. AOCS Member Lapel Pin Membership Merchandise Membership Merchandise Wear this logo and proudly proclaim your association with the AOCS. Fashioned from brass and enamel. F81E3365C84403AD09C61361EDCFB7EF M-PIN 2015

128

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

129

Cryogenic support member  

DOE Patents (OSTI)

A cryogenic support member is comprised of a nonmetallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

1986-05-15T23:59:59.000Z

130

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

131

Bottom-up characterisation of the Spanish building stock Archetype buildings and energy demand.  

E-Print Network (OSTI)

??In developed economies, such as the European Unions member states, the largest potential for energy efficiency improvements lies in retrofitting existing buildings. Yet, there is (more)

Medina Benejam, Georgina

2011-01-01T23:59:59.000Z

132

Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast  

Energy.gov (U.S. Department of Energy (DOE))

American Recovery and Reinvestment Act workers in Oak Ridge are working safely and quickly to complete the demolition of Building K-33, a 1.4 million-square-foot former gaseous diffusion plant in...

133

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

134

Federal Opportunities to Leverage the Commercial Building Energy Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

| Building Technologies Program | Building Technologies Program buildings.energy.gov Federal Opportunities to Leverage the Commercial Building Energy Alliance Brian Holuj Building Technologies Program March 15, 2012 IATF Technology Deployment Working Group - Commercial Building Energy Alliance Building owners and operators, efficiency organizations and DOE target common energy efficiency challenges and opportunities Retail and Food Commercial Real Estate Hospitals Service and Hospitality * 55 members * 2.2+ billion ft 2 * 95 members * 5.3+ billion ft 2 * 51 members * 0.5+ billion ft 2 Strength in numbers → Higher Ed sector added in 2011; new members join regularly www.commercialbuildings.energy.gov/alliances 1 | Building Technologies Program buildings.energy.gov Approx. market % from member reported ft

135

Rediness Review Team Member Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEMBER MEMBER TRAINING Idaho National Engineering Laboratory Michael Hillman DOE HQ - HSS Idaho National Engineering Laboratory Dan M. Stover, PE Technical And Professional Services, Inc. 47 James Habersham Blvd Beaufort, SC 29906 Official DOE Team Member Readiness Review Training November 8-9, 2010 Module 1 Module 1 READINESS REVIEW TEAM MEMBER TRAINING Introduction & Course Conduct Readiness Review Readiness Review Official DOE Team Member Readiness Review Training November 2010 TRAINING READINESS REVIEW TEAM MEMBER TRAINING Purpose of this Course Provide Prospective Readiness Review Team members h with: * An understanding of the background behind the Readiness Review Process; e e ocess; * Training in the mechanics of performance and reporting of

136

Wynkoop Building Performance Measurement: Water  

SciTech Connect

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (< 30 psi) is less than half the pressure on the 7th floor (>80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

137

Wynkoop Building Performance Measurement: Water  

Science Conference Proceedings (OSTI)

This report is a summary of the water analysis performance for the Denver, Colorado Wynkoop Building. The Wynkoop Building (Figure 1) was built in 2006 as the Environmental Protection Agency (EPA) Region 8 Headquarters intended to house over 900 occupants in the 301,292 gross square feet (248,849 rentable square feet). The building was built on a brownfield in the Lower Downtown Historic District as part of an urban redevelopment effort. The building was designed and constructed through a public-private partnership with the sustainable design elements developed jointly by General Services Administration (GSA) and EPA. That partnership is still active with all parties still engaged to optimize building operations and use the building as a Learning Laboratory. The building design achieved U.S. Green Building Council Leadership in Energy and Environmental Design for New Construction (LEED-NC) Gold Certification in 2008 (Figure 2) and a 2008 EPA Energy Star Rating of 96 with design highlights that include: (1) Water use was designed to use 40% less than a typical design baseline. The design included low flow fixtures, waterless urinals and dual flush toilets; (2) Native and adaptive vegetation were selected to minimize the need for irrigation water for landscaping; and (3) Energy use intensity was modeled at 66.1 kBtus/gross square foot, which is 39% better than ASHRAE 90.1 1999. The Wynkoop Building water use (10 gallons/square foot) was measured at lower than industry average (15 gallons/square foot) and GSA goals (13 gallons/square foot), however, it was higher than building management expected it would be. The type of occupants and number of occupants can have a significant impact on fixture water use. The occupancy per floor varied significantly over the study time period, which added uncertainty to the data analysis. Investigation of the fixture use on the 2nd, 5th, and 7th floors identified potential for water use reduction if the flush direction of the dual-flush toilet handles was reversed. The building management retrofitted the building's toilets with handles that operated on reduced flush when pushed down (0.8 gallons) and full flush when pulled up (1.1 gallons). The water pressure on the 5th floor (80 psi). The measured water savings post-retrofit was lower on the 5th floor than the 7th floor. The differences in water pressure may have had an impact on the quantity of water used per floor. The second floor water use was examined prior to and following the toilet fixture retrofit. This floor is where conference rooms for non-building occupants are available for use, thus occupancy is highly variable. The 3-day average volume per flush event was higher post-retrofit (0.79 gallons per event), in contrast to pre-retrofit (0.57 gallons per event). There were 40% more flush events post retrofit, which impacted the findings. Water use in the third floor fitness center was also measured for a limited number of days. Because of water line accessibility, only water use on the men's side of the fitness center was measured and from that the total fitness center water use was estimated. Using the limited data collected, the fitness center shower water use is approximately 2% of the whole building water use. Overall water use in the Wynkoop Building is below the industry baseline and GSA expectations. The dual flush fixture replacement appears to have resulted in additional water savings that are expected to show a savings in the total annual water use.

Fowler, Kimberly M.; Kora, Angela R.

2012-08-26T23:59:59.000Z

138

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

139

Forrestal Building, 1000 Independence Avenue, S.W.,  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, THURSDAY, APRIL 3, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT: F. JAY BREIDT Chair MARK BERNSTEIN Committee Member JOHNNY BLAIR Committee Member JAE EDMONDS Committee Member MOSHE FEDER Committee Member JAMES K. HAMMITT Committee Member NEHA KHANNA Committee Member WILLIAM G. MOSS Committee Member NAGARAJ K. NEERCHAL Committee Member POLLY A. PHIPPS Committee Member RANDY R. SITTER Committee Member ALSO PRESENT: GUY CARUSO Administrator, Energy Information Administration HOWARD GRUENSPECHT Deputy Administrator, EIA BILL WEINIG EIA CALVIN KENT Invited Guest CRYSTAL LINKLETTER Invited Guest

140

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Buildings Research - Commercial Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

142

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

143

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

144

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

145

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

146

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

147

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

148

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

149

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

150

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

151

U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

152

U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

153

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

154

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

155

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

156

Building-integrated photovoltaics  

SciTech Connect

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

1993-01-01T23:59:59.000Z

157

Better Buildings Federal Award 2012 Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition Better Buildings Federal Award 2012 Competition October 24, 2013 - 1:51pm Addthis The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis. The Federal building that achieves the greatest percentage energy intensity savings for that year wins. 2012 Competition Thank you to all the participants of the 2012 Better Buildings Federal Award competition and congratulations to this year's winner, the U.S. Department of Interior's Brackish Groundwater National Desalination Research Facility! The building achieved an impressive 53.6% reduction in building energy intensity over its September 2011 baseline.

158

Energy Innovation Hub Report Shows Philadelphia-area Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy...

159

DOE Solar Decathlon: News Blog Blog Archive Building Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

(far left), Rob Minnick, and members of their company's green team attended Building Industry Day. (Credit: Alexis PowersU.S. Department of Energy Solar Decathlon) Consumer...

160

Structural Steel Attenuation of External Magnetic Fields in Buildings  

Science Conference Proceedings (OSTI)

This report investigates the passive attenuation of external power-frequency magnetic fields caused by structural steel members used in commercial building construction. This effect has not been considered in previous assessments of the field levels inside buildings.

2007-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

162

APS Diversity Issues Committee Members  

NLE Websites -- All DOE Office Websites (Extended Search)

SUF Diversity Issues Committee Members 2006 - 2008 Daniela Capatina (AES) Frederick Carter (AES) Diego Casa (XSD) Kathy Harkay, Chair (ASD) Quentin Hasse (IPNS) Jyotsana Lal (IPNS)...

163

Building Energy Codes 101: An Introduction | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes 101: An Introduction Codes 101: An Introduction In order to provide a basic introduction to the varied and complex issues associated with building energy codes, the U.S. Department of Energy's Building Energy Codes Program, with valued assistance from the International Codes Council and ASHRAE, has prepared Building Energy Codes 101: An Introduction. This guide is designed to speak to a broad audience with an interest in building energy efficiency, including state energy officials, architects, engineers, designers, and members of the public. Publication Date: Wednesday, February 17, 2010 BECP_Building Energy Codes 101_February2010_v00.pdf Document Details Last Name: Britt Initials: M Affiliation: PNNL Document Number: PNNL-70586 Focus: Adoption Code Development Compliance Building Type:

164

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

165

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

166

Homepage | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Save the Date! May 7-9, 2014 For the first time, Better Buildings Challenge Partners, Better Buildings Alliance members, and Better Buildings Better Plants Partners will be coming together for the U.S. Department of Energy's annual Better Buildings Summit. Learn more about this distinguished conference. Real-time Energy Management: Improving Energy Efficiency Every 15 Minutes Organizations traditionally rely on monthly utility bills to track whole-building energy use and to benchmark against previous year's usage or other buildings. Tracking energy use at a more granular level can help isolate usage issues and correct them more quickly. Register here. Take the Food Service Energy and Water Survey Complete the survey to help develop an ENERGY STAR 1-100 score for

167

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

168

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

169

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

170

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

171

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

172

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn Better Buildings Residential Network (BBRN) members must be supportive of residential energy efficiency and the mission of the BBRN. Members are expected to be legally incorporated organizations or institutions, rather than individuals, actively engaged in the field of existing residential building energy efficiency with an ability to impact the market. Members should have the ability and capacity to carry out the requirements for membership (i.e., reporting the annual number of upgrades in their sphere of influence, and associated benefits), and actively engage as a member. Members must actively engage in significant work supporting, studying, researching, reporting, and/or

173

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

NLE Websites -- All DOE Office Websites (Extended Search)

Foote Mineral Co - PA 27 Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote PA.27-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Zirconium, Possibly Uranium PA.27-1 PA.27-2 PA.27-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Foote Mineral Co.

174

Ground resistance of the foot in substation yards  

SciTech Connect

The ground resistance of the foot is affected by the limited depth of the gravel layer usually spread over the surface of the soil in substation yards.Equations and graphs given in IEEE Standard 80 to determine this ground resistance are not accurate and give conservative results. This paper presents more accurate equations and graphs for determining the ground resistance of the foot in a substation having a thin surface layer of gravel. Analysis has been made with two models of the foot. In one model the foot is represented by an equivalent circular plate and in the other by an equivalent rectangular plate. Results obtained with these two models and with the IEEE Standard 80 method have been compared.

Thapar, B.; Gerez, V.; Emmanuel, P. (Montana State Univ., Bozeman (United States))

1993-01-01T23:59:59.000Z

175

BigFoot GPP and NPP Summaries, 2000-2004  

NLE Websites -- All DOE Office Websites (Extended Search)

GPP and NPP Summaries, 2000-2004 GPP and NPP Summaries, 2000-2004 Reflectance data from MODIS, the Moderate Resolution Imaging Spectrometer onboard NASA's Earth Observing System (EOS) satellite Terra ( http://landval.gsfc.nasa.gov/MODIS/index.html ), is used to produce several science products including land cover, leaf area index (LAI), gross primary production (GPP) and net primary production (NPP). The overall goal of the BigFoot Project was to provide validation of these products. Background information on the BigFoot Project is available at: http://www.fsl.orst.edu/larse/bigfoot/index.html. A set of NPP/GPP summary figures was developed for each of the 9 BigFoot sites. Each set contains images and figures associated with creating the BigFoot NPP and GPP products, comparing them to MODIS products, and

176

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

177

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

178

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

179

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

180

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

182

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

183

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

184

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

185

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

186

JOM: The Member Journal of TMS  

Science Conference Proceedings (OSTI)

New Study Examines Gender Barriers in STEM... UPCOMING TMS MEETINGS. Member News Archive. Member News is TMS's monthly membership newsletter,

187

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

188

Members 2006 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

6 6 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges/Reports Charter .pdf file (629KB) NP Committees of Visitors NP Home Members NSAC Members 2006 Print Text Size: A A A RSS Feeds FeedbackShare Page NSAC Members for 2012 | 2011 |2010 | 2009 | 2008 | 2007 | 2006 | 2004-5 | 2004 | 2003 | 2001-2 | 2000-1 DOE/NSF Nuclear Science Advisory Committee Membership List 2006 Ani Aprahamian Department of Physics University of Notre Dame 183 Nieuwland Science Hall Notre Dame , IN 46556 Phone: (574) 631-8120 Fax: (574) 631-5952 Email: aapraham@nd.edu Roy Lacey Department of Chemistry Stony Brook University 459 Chemistry Building Stony Brook , NY 11794-3400 Phone: (631) 632-7955 Fax: (631) 632-7960 Email: roy.lacey@stonybrook.edu Robert E. Tribble (Chair) Cyclotron Institute

189

TFCR Members | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Task Force on CMB Research (TFCR) Panel Member List Task Force on CMB Research (TFCR) Panel Member List High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Charges/Reports Task Force on CMB Research (TFCR) Panel Member List Print Text Size: A A A RSS Feeds FeedbackShare Page Chair- Rainer Weiss weiss@ligo.mit.edu Massachusetts Institute of Technology Department of Physics Building 6-113 77 Massachusetts Avenue Cambridge, MA 02139-4307 617.253.4800 Jamie Bock jjb@astro.caltech.edu Division of Physics, Math and Astronomy California Institute of Technology, Mail Code 59-33 1201 E. California Blvd Pasadena, CA 91125 818 354 0715 Sarah Church schurch@leland.stanford.edu Stanford University Room 212 Varian Physics Bldg 382 Via Pueblo Mall

190

Building Green in Greensburg: The Peoples Bank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Peoples Bank The Peoples Bank The Peoples Bank building opened its doors to the public on December 21, 2009. With its vault and an adjoining room designed to serve as a storm shelter, the 2,100-square-foot building is about 300 square feet larger than the pre-tornado facility. Its innovative design incorporates a variety of sustainable features that will save energy and money. The building is situated on the lot to take full advantage of the sun and features large, tinted-glass doors on its south side that provide passive solar heating in winter months; south-facing overhangs reduce the need for air-conditioning when the summer sun is at its hottest. ENERGY EFFICIENCY FEATURES * Building orientation takes advantage of southern exposure to reduce heating loads,

191

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

192

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

193

Better Buildings Federal Award 2013 Guidelines for Entering | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Guidelines for Entering 2013 Guidelines for Entering Better Buildings Federal Award 2013 Guidelines for Entering October 7, 2013 - 4:40pm Addthis Have Questions? A list of frequently asked questions contains answers to a variety of Better Buildings Federal Award queries. The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy intensity (Btu per square foot of facility space) on a year-over-year basis. The winner is the Federal building that reduces its energy intensity the most as compared to the previous year. Selecting Applicants Agencies should consider nominating a building based on how well it expects the building to perform in 2013 as compared to 2012, taking into account a wide range of innovative or comprehensive energy management practices being

194

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

195

Members  

NLE Websites -- All DOE Office Websites (Extended Search)

engineer with SLR International Corporation and works on projects unrelated to EM or DOE. He holds a Bachelor of Science in Civil and Environmental Engineering from the...

196

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

197

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

198

Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ROADMAP to Sustainable ROADMAP to Sustainable Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES ADDITIONAL RESOURCES ON THE HORIZON LEED TRAINING SUSTAINABILITY GOALS PRE-PROJECT PLANNING ROADMAP INTRODUCTION EXISTING BUILDINGS NEW CONSTRUCTION PROGRAM ADMINISTRATION GREEN BUILDING PROGRAM ACKNOWLEDGEMENT The Roadmap to Sustainable Government Buildings was created through the joint efforts of the U.S. Green Building Council (USGBC) and the National Association of State Facilities Administrators (NASFA). We extend our deepest gratitude to all of our Roadmap committee members who participated in the development of this publication, for their tireless volunteer efforts and constant support of USGBC's mission. Ongoing development of the Roadmap has been made possible through the efforts of many

199

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

200

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

202

Energy-Efficient Commercial Buildings Tax Deduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction Energy-Efficient Commercial Buildings Tax Deduction < Back Eligibility Commercial Construction Fed. Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate 1.80 per square foot Program Info Start Date 1/1/2006 Program Type Corporate Deduction Rebate Amount 0.30-1.80 per square foot, depending on technology and amount of energy reduction Provider U.S. Internal Revenue Service The federal Energy Policy Act of 2005 established a tax deduction for

203

Community United Methodist Church solar classroom building. Phase II  

DOE Green Energy (OSTI)

The new building reported is formed by three 20 foot by 70 foot modules, each with the long axis in the east-west direction and with a shed roof over each. Solar features include daylighting, fixed insulating shades over the clerestory windows to minimize heat loss during the winter, some operable clerestory windows for ventillation, thermal mass in the form of a concrete floor slab and dark concrete masonry walls on the north end of interior space, ceiling fans for air circulation and sensible cooling, and a large exhaust fan for night cooling. Backup heating is provided by a natural gas furnace, and an air-conditioning unit is included primarily for humidity control in the summer. The building is highly insulated and incorporates designs which minimize air infiltration. A cost analysis for construction of the building is included. (LEW)

Not Available

1981-01-01T23:59:59.000Z

204

Better Buildings Alliance Equipment Performance Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

205

Better Buildings Alliance Equipment Performance Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

BBA Equipment Performance BBA Equipment Performance Specifications William Goetzler Navigant Consulting william.goetzler@navigant.com (781) 270 8351 April 4, 2013 Better Buildings Alliance BTO Program Review 2 | Building Technologies Office eere.energy.gov Project Overview The BBA Performance Specifications project provides information and tools to help BBA members and other commercial building owners/operators specify and purchase high efficiency equipment. - Ensures targeted technologies are of interest to end users and manufacturers

206

ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally  

E-Print Network (OSTI)

ASHRAE Transactions: Research 107 ABSTRACT Commercial buildings and institutions are generally. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Simon J. Rees, Ph.D. Marvin D. Smith, P.E. Member ASHRAE Andrew D. Chiasson is a research assistant, Jeffrey D. Spitler is a professor

207

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

208

ancient building system | OpenEI Community  

Open Energy Info (EERE)

ancient building system ancient building system Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

209

US CMS Members Picture Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Members Picture Gallery Members Picture Gallery Developed by Ben Sadler, FSU Updated July 29, 2008. Please send comments and corrections to Sharon Hagopian. INSTITUTIONS: Boston University Brown University University of California, Davis University of California, Los Angeles University of California, Riverside University of California, San Diego University of California, Santa Barbara California Institute of Technology Carnegie Mellon University University of Colorado Cornell University Fairfield University Fermi National Accelerator Laboratory University of Florida Florida International University Florida State University Florida Institute of Technology University of Illinois, Chicago University of Iowa Johns Hopkins University University of Kansas Kansas State University Lawrence Livermore National Laboratory

210

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

211

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

212

Energy Department Announces Winner of the 2013 Better Buildings Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winner of the 2013 Better Buildings Winner of the 2013 Better Buildings Federal Award Competition Energy Department Announces Winner of the 2013 Better Buildings Federal Award Competition December 17, 2013 - 3:51pm Addthis The Energy Department today announced that the General Services Administration's (GSA) United States Court House in Wichita, Kansas is the winner of the 2013 Better Buildings Federal Award. The Better Buildings Federal Award challenges agencies to achieve the greatest reduction in annual energy intensity, or energy consumed per gross square foot. This year's winner cut its energy intensity by 20% and saved over $40,000 in utility costs in the 12 month competition period. Building on past energy efficiency improvements funded through the American Recovery and Reinvestment Act, GSA Region 6 implemented energy efficiency

213

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

214

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

215

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

216

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

217

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

218

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

219

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

220

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Family Member Definitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum 21 clarifies the definition and application of family member in our directives and services Family Members Responsible Contacts Bruce Murray HR Policy Advisor...

222

Building Green in Greensburg: Centera Bank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centera Bank Centera Bank After a category EF-5 tornado virtually leveled the entire town of Greensburg in 2007, the owners of Centera Bank were determined to rebuild green. Design plans were drawn up with optimal energy efficiency and sustainability in mind, in keeping with the goals of the City of Greensburg to rebuild green. Situated on a downtown corner lot across the street from the bank's former location, the new 4,000-square-foot building incorporates energy-efficient building principles required to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) certification. ENERGY EFFICIENCY FEATURES * A high-efficiency air-cooled heat pump split system harnesses the benefits of environmentally friendly R-410 refrigeration in both the heating and cooling mode to reduce

223

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

224

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

225

Building America Research Teams | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

226

Department Members | Environmental Sciences | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Department Members Department Members Administration and Support Staff Scientific and Technical Staff Mary Jane Bartholomew William J. Behrens Alexei Belochitski Alice T. Cialella Peter H. Daum Satoshi Endo Arokiasamy J. (AJ) Francis Michele Galletti Scott Giangrande Laurie Gregory John H. Heiser Dong Huang Michael P. Jensen Karen Lee Johnson Paul D. Kalb Lawrence I. Kleinman Chongai Kuang Stefanie Lasota Kathy Lazar Yin-Nan Lee Keith Lewin Ernie R. Lewis Min Liang Wuyin Lin Yangang Liu Edward Luke L. Lynn Ma Robert L. McGraw Andrew McMahon Laurence W. Milian Alistair Rogers Martin Schoonen - Chair Stephen E. Schwartz Arthur J. Sedlacek Gunnar I. Senum Scott Smith Hua Song Stephen R. Springston Terrence Sullivan Ryan Thalman Alison Tilp Tami Toto David Troyan Gabriel J. Vignato Andrew M. Vogelmann Richard Wagener

227

Application of Building Precooling to Reduce Peak Cooling Requirements  

E-Print Network (OSTI)

A building cooling control strategy was developed and tested for a 1.4 million square foot (130,000 square meter) office building located in Hoffman Estates, IL. The goal of the control strategy was to utilize building thermal mass to limit the peak cooling load for continued building operation in the event of the loss of one of the four central chiller units. The algorithm was first developed and evaluated through simulation and then evaluated through tests on two identical buildings. The east building utilized the existing building control strategy while the west building used the precooling strategy developed for this project. Consistent with simulation predictions, the precooling control strategy successfully limited the peak load to 75 % of the cooling capacity for the west building, while the east building operated at 100 % of capacity. Precooling of the building mass provided an economical alternative to the purchase of an additional chiller unit. The estimated cost of installing an additional chiller was approximately $500,000. Computer models developed for this project also showed that precooling based upon cooling cost minimization could result in savings of approximately $25,000 per month during the peak cooling season. The building model was validated with experimental results and could be used in the development of a cost minimization strategy.

Kevin R. Keeney; James E. Braun, Ph.D.

1997-01-01T23:59:59.000Z

228

U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

229

Readiness Review Training - Member | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Member Readiness Review Training - Member November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team member. Topics include: An understanding of the background behind the Readiness Review Process; Training in the mechanics of performance and reporting of a Readiness Review; Knowledge of current DOE Orders, Directives, and References for the Readiness Review process; Training in Performance-Based Assessment Processes and Official DOE Team Member Readiness Review Training Methods Readiness Review Training - Member More Documents & Publications Readiness Review Training - Team Leader Readiness Review Training - Development of Criteria And Review Approach Documents

230

26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-  

E-Print Network (OSTI)

26 ASHRAE Transactions: Research ABSTRACT Cooling-dominated commercial and institutional build Simulation Approach Mahadevan Ramamoorthy Hui Jin Student Member ASHRAE Student Member ASHRAE Andrew D. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Associate Member ASHRAE Member ASHRAE Mahadevan Ramamoorthy

231

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

232

-1- Georgia Guidelines for Reclaimed Water Systems for Buildings PREFACE  

E-Print Network (OSTI)

The Georgia Guidelines for Reclaimed Water Systems for Buildings are intended to assist all parties involved in the design, construction, inspection and maintenance of reclaimed water systems and to help successfully comply with Appendix J, Reclaimed Water Systems for Buildings ? of the 2011 Georgia Amendments to the International Plumbing Code (IPC), latest adopted version. The parties mentioned above include building owners, reclaimed water purveyors, designers, contractors, and building code officials. This consensus document is the product of the guidelines committee members below:

Frances Carpenter Chairperson; Danny Johnson; Curtis Boswell; Tom Carty; Laura Walker; Ernest U. Earn; Mike Millard; Philip T. Mccreanor, Ph.D.; Phillip George; Joe Messina; Jim Poff; Guy Pihera; Conrad Gelot; Marvin Richards; Chris Kumnick; Bob Bourne

2011-01-01T23:59:59.000Z

233

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

234

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

235

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

236

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

237

Building America Update - June 7, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2013 June 7, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Test Your Skills: "What's Wrong With These Roof Details?" View the latest entry of Building America's ongoing series, "What's Wrong With This Picture?," in the new issue of Green Building Advisor online newsletter. In this installment, readers are invited to spot as many errors as they can in the photo of the roof of a multifamily building in Minneapolis. Members of the NorthernSTAR Building America Partnership team developed this entry, and will provide answers based on their research on

238

Foote Creek Rim I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Foote Creek Rim I Wind Farm Foote Creek Rim I Wind Farm Facility Foote Creek Rim I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp/Eugene Water & Electric Board Developer SeaWest/Tomen Energy Purchaser PacifiCorp/Eugene Water & Electric Board Location Carbon County WY Coordinates 41.652605°, -106.189914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.652605,"lon":-106.189914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Airborne spread of foot-and-mouth disease - model intercomparison  

SciTech Connect

Foot-and-mouth disease is a highly infectious vesicular disease of cloven-hoofed animals caused by foot-and-mouth disease virus. It spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route - with the relative importance of each mechanism depending on the particular outbreak characteristics. Over the years a number of workers have developed or adapted atmospheric dispersion models to assess the risk of foot-and-mouth disease virus spread through the air. Six of these models were compared at a workshop hosted by the Institute for Animal Health/Met Office during 2008. A number of key issues emerged from the workshop and subsequent modelling work: (1) in general all of the models predicted similar directions for 'at risk' livestock with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events is highly important, especially if the meteorological conditions vary substantially during the virus emission period; and (3) differences in assumptions made about virus release, environmental fate, and subsequent infection can substantially modify the size and location of the downwind risk area. Close relationships have now been established between participants, which in the event of an outbreak of disease could be readily activated to supply advice or modelling support.

Gloster, J; Jones, A; Redington, A; Burgin, L; Sorensen, J H; Turner, R; Dillon, M; Hullinger, P; Simpson, M; Astrup, P; Garner, G; Stewart, P; D'Amours, R; Sellers, R; Paton, D

2008-09-04T23:59:59.000Z

240

2012 JSD Subscription for AOCS Members  

Science Conference Proceedings (OSTI)

A monthly peer-reviewed journal for surfactants and detergents professionals. Subscription rates are for AOCS Members only. 2012 JSD Subscription for AOCS Members Surfactants and Detergents Subscriptions Journals Journals Forms Springer J

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2012 JAOCS Subscription for AOCS Members  

Science Conference Proceedings (OSTI)

A monthly peer-reviewed journal. Subscription rates are for AOCS Members only. 2012 JAOCS Subscription for AOCS Members Subscriptions Journals Journals Forms Journal of the American Oil Chemists' Society, (JAOCS).JAOCS debuted in 1924 as

242

2012 Lipids Subscription for AOCS Members  

Science Conference Proceedings (OSTI)

One of the premier journals published in the lipid field today. Subscription rates are for AOCS Members only. 2012 Lipids Subscription for AOCS Members Subscriptions Journals Journals Forms Food Science Edible Applications Food Structure and Functio

243

LBNL-PG&E High Tech Building Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.femp.energy.gov/training Federal Energy Management Program Labs, Data Centers, and High Tech Facilities Dale Sartor, Lawrence Berkeley National Laboratory 2 | FUPWG April 2012 High Tech Buildings are Energy Hogs Comparative Energy Costs High-Tech Facilities vs. Standard Buildings Annual Energy Costs ($/square foot) 3 | FEMP First Thursday Seminars femp.energy.gov/training FEMP First Thursday Seminars Energy Efficiency in Data Centers 4 | FUPWG April 2012 High voltage distribution High efficiency UPS systems Efficient redundancy strategies Use of DC power Better air management Move to liquid cooling Optimized chilled-water plants Use of free cooling Heat recovery Server innovation Virtualization High efficiency power supplies

244

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

245

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

246

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

247

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

248

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

249

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

250

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

251

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

252

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

253

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

254

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

255

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

256

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

257

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

258

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

259

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

260

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

262

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

263

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

264

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

265

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

266

TEC Working Group Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Members Members TEC Working Group Members TEC members represent many different national, regional, tribal, state and local governmental, labor, industry and professional groups. To maximize the opportunity for broad-based input and information exchange, no single state, local or tribal governmental, or other entity is itself a member. Instead, membership is composed of organizations representing those perspectives. DOE programs participate in TEC by providing regular updates on key activities and provide resources and work on issues brought to the TEC by members or DOE. Members serve the group in three broad capacities: * Represent their constituent organizations; * Participate actively and consistently in TEC activities; and * Communicate the findings and recommendations of the group back to their

267

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

268

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book (EERE)

9 9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 498,407 square feet and 12 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 15.94 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

269

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book (EERE)

1 1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 53,608 square feet and 3 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 18.85 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

270

Building Green in Greensburg: Dwane Shank Motors GM Dealership  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dwane Shank Motors Dwane Shank Motors GM Dealership The Dwane Shank GM Dealership was completely destroyed by the tornado, but within just a few days the Shank family was up and running and selling cars to residents who had lost their vehicle in the tornado. The dealership also hurried to build their new 8,300-square-foot building and designed it to maximize energy efficiency and green strategies. This was vital to telling the story and demonstrating the commitment of Greensburg, Kansas, to rebuild green. The new building features a tubular daylighting device and high sidelighting panels to maximize natural light in the sales room and service shop. ENERGY EFFICIENCY FEATURES * South-facing building orientation and windows maximize the use of natural light to reduce electrical lighting loads

271

EERE's Building Technologies PowerPoint Presentation Template  

U.S. Energy Information Administration (EIA) Indexed Site

April 2008 April 2008 1 Application of Building Energy Consumption Data in Low-Energy Building Research Drury B. Crawley U. S. Department of Energy April 2008 2 Key Areas of Interest * Energy Use Intensity * What is energy use per floor area? * Floor-area weighting * What is average square foot vs. average building? * End use * What equipment is using the energy? * Climate zone distributions * How are buildings distributed in climate zones per ASHRAE Standard 169-2006? April 2008 3 * Mechanical equipment detail * What systems and component types are being used? * Schedules * How does occupancy and operation vary over time? * Utility pricing structures * What are demand, energy, and service charges really like? Key Areas of Interest (continued) April 2008 4 ASHRAE Standard 169 Climate Zones April 2008

272

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

273

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

274

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

275

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

276

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

277

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

278

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

279

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

280

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

282

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

283

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

284

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

285

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network (OSTI)

foot and in the cost per square foot. Table A.I3 Energyyear-square foot Cost per year-square foot Energy Cost andyear-square foot Cost per year-square foot When comparing

Akbari, H.

2008-01-01T23:59:59.000Z

286

Health Equity Building High Performance Health Systems  

E-Print Network (OSTI)

, Incubator shaker, Freeze dryer, Ice maker, 100 sq. foot cold room equipped with sink, Autoclave, Dishwasher

Oklahoma, University of

287

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

288

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

289

DOE/ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ex-oooos ex-oooos CATEGORICAL EXCLUSION HANFORD PATROL 200 EAST AREA BUILDING (PROJECT S-227) HANFORD SITE, RICHLAND, WASHINGTON PROPOSED ACTION The U.S. Department of Energy (DOE) proposes to construct an insulated concrete form office building in 200 East Area. The proposed facility provides operational support staff office space and parking for government and private vehicles. LOCATION OF ACTION The location of the proposed action is in the 200 East Area of the Hanford Site. The proposed new building will be directly east of the 2721-E Building. The parking lot will be located south of the proposed new building and south of the 2727-E Building. DESCRIPTION OF PROPOSED ACTION The proposed action will construct a 12,000 square foot insulated concrete form building to

290

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

291

Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Philadelphia-area Building Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings Hub is one of the U.S. Department of Energy’s research centers called Energy Innovation Hubs. | Photo courtesy of EEB Hub This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency

292

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

293

URTAC Committee Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

URTAC Committee Members URTAC Committee Members URTAC Committee Members 2012-2014 Unconventional Resources Technology Advisory Committee Members Dr. Nancy J. Brown* Senior Scientist and Department Head Lawrence Berkeley National Laboratory Mr. Wayne K. Camp Senior Geological Advisor Anadarko Petroleum Corporation Ms. Jessica J. Cavens Geologist EnCana Oil & Gas (USA) Mr. William S. Daugherty Managing Partner Blackridge Resources Mr. James P. Dwyer VP Region Engineering Baker Hughes Mr. J. Chris Hall President Drilling & Production Co. Dr. Bob A. Hardage* Senior Research Scientist Univ. of Texas at Austin Mr. John A. Harju* Associate Director for Research Energy & Environmental Research Center University of North Dakota Dr. Robert L. Kleinberg Technical Lead, Unconventional Resources

294

February 2011 Member News 6.indd  

Science Conference Proceedings (OSTI)

Member. News. Updates on friends and colleagues in the materials community. Robert Shull Appointed NIST Fellow. The National Institute of Standards.

295

Federal Energy Management Program technical assistance case study: The Forrestal Building relighting project saves $400K annually  

SciTech Connect

The US Department of Energy (DOE) believes energy efficiency begins at home -- in this case the James A. Forrestal Building in Washington, D.C. Since 1969, the 1.7 million-square-foot Forrestal Building has served as DOE Headquarters. In 1989, a team of in-house energy specialists began searching for opportunities to make the Forrestal Building more energy efficient. The team, on which personnel from the Federal Energy Management Program (FEMP) served, identified lighting as an area in which energy use could be reduced substantially. A monitoring program showed that the building`s more than 34,000 1-foot by 4-foot fluorescent lighting fixtures were responsible for 33% of the building`s total annual electric energy use, which represents more than 9 million kilowatt-hours (kWh) per year. In initiating the relighting program, DOE hoped to achieve these broad goals: Reduce energy use and utility bills, and improve lighting quality by distributing the light more uniformly. Funding was also an important consideration. DOE sought financing alternatives through which the lighting retrofit is paid for without using government-appropriated capital funds. DOE cut lighting costs more than 50% and paid for the project with the money saved on energy bills.

1997-01-01T23:59:59.000Z

296

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

297

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

298

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Federal Building Delivered Energy Consumption Intensities, by Year (1) Year Year FY 1985 123.0 FY 1997 111.9 FY 1986 131.3 FY 1998 107.7 FY 1987 136.9 FY 1999 106.7 FY 1988 136.3 FY 2000 104.8 FY 1989 132.6 FY 2001 105.9 FY 1990 128.6 FY 2002 104.6 FY 1991 122.9 FY 2003 105.2 FY 1992 125.5 FY 2004 104.9 FY 1993 122.3 FY 2005 98.2 FY 1994 120.2 FY 2006 (2) 113.9 FY 1995 117.3 FY 2007 (3) 112.9 FY 1996 115.0 FY 2015 (4) 89.5 Note(s): Source(s): Consumption per Gross Consumption per Gross Square Foot (10^3 Btu/SF) Square Foot (10^3 Btu/SF) 1) See Table 4.3.1 for floorspace. 2) Increase due to change in categorization of Federal buildings. 3) Adjusted for renewable energy purchases and source savings. 4) Executive Order 13423 goal. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Sept. 2006, Table

299

Members | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Members Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members ChargesReports Charter .pdf file (140KB) FES Committees of Visitors FES Home Members Print...

300

2013 Secretary of Energy Advisory Board Members | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Secretary of Energy Advisory Board Members 2013 Secretary of Energy Advisory Board Members 2013 Advisory Board Members John Deutch MIT Chemist, Former Under Secretary of Energy...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

302

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

303

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

304

Pittsburgh, PA 15217 Members, County Council  

E-Print Network (OSTI)

Members, My name is Roger Dannenberg. I've lived in Pittsburgh since 1979, and I have been a member never be detected by testing. It might be detected by a complete inspection of the software programs, has recommended that electronic voting systems enable voters to inspect a paper record to verify

Eckhardt, Dave

305

Single round blasting of 10-foot diameter X 65-foot depth emplacement collar holes at the Nevada Test Site  

SciTech Connect

Since 1961 REECo has drilled and mined emplacement holes for testing nuclear devices underground. An oversize drill pattern was the primary method used. The application of drilling the final size configuration hole to a 65-foot depth and mucking with the Auger Rig was then investigated. Numerous drilling patterns, loading and time schemes and methods were tried. Some were successful. Most were expensive. All concerned looked for a better and less costly method for this collar casing installation. Poor fragmentation in the collar holes prior to Atlas Powder becoming involved resulted in slow hole cleanout and excessive rig maintenance with associated excessive costs. One of the more successful shots was a 120-inch diameter {times} 60-foot deep hole that was drilled using 3 1/2-inch holes and then casing them to a 2-inch diameter using PVC pipe. A 30-inch burn hole was drilled to total depth. Twenty-seven 3 1/2-inch holes were drilled and then loaded with 1 1/2-inch powder boosted with Detaprimes and wired using all 0 delay caps. This shot smooth walled and the blast holes were visible all the way from top to bottom. Fragmentation was excellent and the Auger Rig mucked out quickly. The 28-inch bit used for the burn hole was a high cost item in this test and other methods continued to be investigated.

1991-01-01T23:59:59.000Z

306

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

307

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

308

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

309

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

310

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

311

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

312

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

313

Sustainability Assessment of the Robert E. Johnson State Office Building, Final Report, Revised April 2002  

E-Print Network (OSTI)

The Robert E. Johnson State (REJ) Office building is a 5-story, 303,389 square foot office building for state legislative support staff, including Legislative House Committees, Legislative Council, State Auditor, the Legislative Reference Library, the Senate Print Shop, and the Sunset Commission. Overall, the building is divided into three sections with divisions created by a ground-level breezeway and vehicular access area, which are covered by the upper floors above these areas. The buildings northern facade is approximately 14 degrees west of north, exposing it to direct sunlight during the late afternoon hours in the winter. It is also important to note that the building contains over 50% glazing in the faade consisting of two types of energy efficient, low-E glazing. Deciduous trees shade a large portion of the south faade up to the 3rd level.

Sylvester, K. E.; Song, S.; Haberl, J. S.; Turner, W. D.

2002-01-01T23:59:59.000Z

314

Foote Creek Rim II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.663881°, -106.186001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663881,"lon":-106.186001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Foote Creek Rim IV Wind Farm | Open Energy Information  

Open Energy Info (EERE)

IV Wind Farm IV Wind Farm Facility Foote Creek Rim IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.626456°, -106.202095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.626456,"lon":-106.202095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Foote Creek Rim III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Foote Creek Rim III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWestM&N Wind Power Energy Purchaser Xcel Energy Location Carbon County WY Coordinates 41.643488°, -106.198876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.643488,"lon":-106.198876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Building Green in Greensburg: Kiowa County Memorial Hospital  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorial Hospital The original Kiowa County Hospital was destroyed in the May 2007 tornado. The new hospital's design team took one of the most energy- intensive building types and designed a first-of-its kind energy-efficient hospital, while still meeting functional and safety requirements. Completed in March 2010, the hospital is built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 50,000-square-foot building includes 15 acute-care beds, rural health and specialty clinics, an emergency department with two trauma rooms, physical/occupational therapy and radiology departments, a laboratory, and other support areas. The new hospital is projected to be 32% more energy efficient

318

Building Removal Ongoing at DOE's Paducah Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site August 23, 2012 - 12:00pm Addthis Media Contact Buz Smith Robert.Smith@lex.doe.gov 270-441-6821 PADUCAH, KY - Work is ongoing at the Paducah Gaseous Diffusion Plant (PGDP) to raze a 65,000-square-foot facility known as the C-340 Metals Plant, which was used to make uranium metal during the Cold War. Department of Energy (DOE) cleanup contractor LATA Environmental Services of Kentucky began removing more than 1,500 panels of cement-asbestos siding from the Metals Plant complex Wednesday in anticipation of New Jersey-based LVI Services starting demolition Sept. 19. Demolition work is projected to last through the end of calendar 2012. "This is an important milestone because the C-340 Metals Plant is the

319

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

320

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

322

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

323

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

324

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

325

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

326

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

327

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

328

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

329

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

330

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

331

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

332

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

333

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

334

Fact Sheet: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Sheet Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of American homes that are energy efficient. Since 2010, the U.S. Department of Energy (DOE), local Better Buildings Neighborhood Program partners, and Home Performance with ENERGY STAR ® Sponsors have leveraged over $1 billion in federal funding and local resources to build more energy-efficient communities. DOE is now expanding this network of residential energy efficiency programs and partners to new members. Who Should Join? Network membership is open to all organizations that are committed to accelerating the pace of energy

335

building technology | OpenEI Community  

Open Energy Info (EERE)

93 93 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229493 Varnish cache server building technology Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid

336

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

337

Better Buildings Case Competition Helps Develop Future Clean Energy Leaders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Case Competition Helps Develop Future Clean Energy Better Buildings Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and Wesley Look. | Photo courtesy of Elena Alschuler. Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher

338

Materials Science & Technology Building  

E-Print Network (OSTI)

is transforming the national laboratory. In the summer of 2007, work began on the nearly 200,000-square- foot security scientific capabilities, equipment, and staff displaced from accelerated cleanup of the Hanford enables PNNL scientists and engineers to create multidisciplinary teams that crosscut scientific platforms

339

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

340

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

342

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

343

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

344

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

345

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

346

The Committee met in Room 8E089 in the Forrestal Building, 1800  

U.S. Energy Information Administration (EIA) Indexed Site

APRIL 4, 2003 APRIL 4, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1800 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT: F. JAY BREIDT, Chair MARK BERNSTEIN, Committee Member JOHNNY BLAIR, Committee Member JAE EDMONDS, Committee Member MOSHE FEDER, Committee Member JAMES K. HAMMITT, Committee Member NEHA KHANNA, Committee Member WILLIAM G. MOSS, Committee Member NAGARAJ K. NEERCHAL, Committee Member POLLY A. PHIPPS, Committee Member RANDY R. SITTER, Committee Member ALSO PRESENT: GUY CARUSO, Administrator, Energy Information Administration HOWARD GRUENSPECHT, Deputy Administrator, EIA NANCY J. KIRKENDALL, Designated Federal Official BILL WEINIG, EIA CALVIN KENT, Invited Guest CRYSTAL LINKLETTER, Invited Guest

347

Elastomeric member for energy storage device  

DOE Patents (OSTI)

An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

Hoppie, Lyle O. (Birmingham, MI); Chute, Richard (Birmingham, MI)

1985-01-01T23:59:59.000Z

348

STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.  

Science Conference Proceedings (OSTI)

This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

2001-03-22T23:59:59.000Z

349

Environmental Management Advisory Board Members | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

comprise the current Board: Current Members James A. Ajello EMAB Board Chair Read Bio Dennis P. Ferrigno EMAB Board Vice-Chair Read Bio Franklin E. Coffman EMAB Board...

350

Jurisdiction Members Contact Info Key Staffers  

E-Print Network (OSTI)

Relevant Jurisdiction Members Contact Info Key Staffers House Science, Space, and Technology, aeronautics, civil aviation, environment, and marine science · America COMPETES · Energy labs · National Science Foundation, including NCAR · National Aeronautics and Space Administration · National Weather

351

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

352

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

353

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

354

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

355

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

356

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

357

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

358

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

359

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

360

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

362

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

363

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

364

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

365

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

366

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

367

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

368

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

369

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

370

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

371

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

372

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

373

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

374

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

375

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network (OSTI)

The purpose of the research study was to determine if building loads could be reduced by using an intelligent controller rather than a thermostatic controller to operate heating and air conditioning equipment. In order to switch the equipment on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings from intelligent controllers ranged from 6 to 37 percent for residences and from 6 to 29 percent for the offices. An ancillary study showed that a ceiling fan provided comfort in a 112 square foot floor area to 85 F and in a 200 to 250 square foot area to 82 F.

Spain, S.

1985-01-01T23:59:59.000Z

376

Automatically Identifying Groups Based on Content and Collective Behavioral Patterns of Group Members  

Science Conference Proceedings (OSTI)

Online communities, or groups, have largely been defined based on links, page rank, and eigenvalues. In this paper we explore identifying abstract groups, groups where member's interests and online footprints are similar but they are not necessarily connected to one another explicitly. We use a combination of structural information and content information from posts and their comments to build a footprint for groups. We find that these variables do a good job at identifying groups, placing members within a group, and help determine the appropriate granularity for group boundaries.

Gregory, Michelle L.; Engel, David W.; Bell, Eric B.; Piatt, Andrew W.; Dowson, Scott T.; Cowell, Andrew J.

2011-07-17T23:59:59.000Z

377

Networks in Buildings: Which Path Forward?  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method...

378

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

379

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

380

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

382

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

383

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

384

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

385

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

386

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

387

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

388

Building America Expert Meeting: Combustion Safety  

SciTech Connect

This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

Brand, L.

2013-03-01T23:59:59.000Z

389

Energy-efficient rehabilitation of multifamily buildings in the Midwest  

Science Conference Proceedings (OSTI)

This report addresses the opportunities available to make multifamily housing more affordable by using energy efficiency practices in housing rehabilitation. Use of the energy conservation measures discussed in this report enables developers of multifamily housing to substantially reduce annual energy costs. The reduction in natural gas usage was found to be approximately 10 Btu per square foot per heating degree-day. The study focuses on a number of Chicago multifamily buildings. The buildings were examined to compare energy efficiency measures that are commonly found in multifamily building rehabilitation with the high-energy-efficiency (HE) techniques that are currently available to community developers but are often unused. The HE measures include R-43 insulation in attics, R-19 insulation in exterior walls, low-emissivity coatings on windows, air infiltration sealing, and HE heating systems. The report describes the HE features and their potential benefits for making housing more affordable. It also describes the factors influencing acceptance. This report makes recommendations for expanding cost-effective energy conservation in the multifamily building sector. Among the recommendations are: expand HE rehab and retrofit techniques to multifamily building rehabs in which demolition of the interior structures is not required (moderate rehabs) or buildings are not vacant (e.g., weatherization upgrades); and expand research into the special opportunities for incorporating energy conservation in low-income communities.

Katrakis, J.T.; Knight, P.A.; Cavallo, J.D. [Argonne National Lab., IL (United States). Policy and Economic Analysis Group

1994-09-01T23:59:59.000Z

390

Buildings Energy Data Book: 3.7 Retail Markets and Companies  

Buildings Energy Data Book (EERE)

6 6 Energy Benchmarks for Newly Constructed Retail Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Climate Zone Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 108.9 0.1 9.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 24,683 square feet and 1 floor. Benchmark interior lighting energy = 19.2 thousand Btu/SF. Interior equipment energy consumption = 7.63 thousand Btu/SF.

391

Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast American Recovery and Reinvestment Act workers in Oak Ridge are working safely and quickly to complete the demolition of Building K-33, a 1.4 million-square-foot former gaseous diffusion plant in the East Tennessee Technology Park (ETTP). Diligent work from LATA-Sharp Remediation Services employees is creating remarkable results – a 1.4 percent reduction in the superstructure's footprint per day. Recovery Act Funds are Helping Oak Ridge's Building K-33 Disappear Fast More Documents & Publications 2011 ARRA Newsletters Workers Complete Y-12's Largest Recovery Act Project Ahead of Schedule Audit Report: ER-B-99-01

392

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

393

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

394

Control of a Powered AnkleFoot Prosthesis Based on a Neuromuscular Model  

E-Print Network (OSTI)

Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their ...

Geyer, Hartmut

395

Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis  

E-Print Network (OSTI)

Commercially available ankle-foot prostheses are passive when in contact with the ground surface, and thus, their mechanical properties remain fixed across different terrains and walking speeds. The passive nature of these ...

Martinez Villalpando, Ernesto Carlos

2006-01-01T23:59:59.000Z

396

Processing of the foots from the low-temperature carbonization of Cheremkhovo coals  

SciTech Connect

A technological scheme is proposed for the complex processing of the foots from the low-temperature carbonization of Cheremkhovo coals which ensures the maximum extraction of liquid fractions from them and the creation of a waste-free technology.

Gorlov, E.G.; Zayurskaya, L.M.; Zotova, O.V.

1983-01-01T23:59:59.000Z

397

Design of an instrumented multifunctional foot for application to a heavy duty mobile robot manufacturing system  

E-Print Network (OSTI)

The design of a multifunctional foot for application to a mobile robotic system for heavy duty manufacturing is presented. The requirements for a target manufacturing task are presented and translated into requirements for ...

Menon, Manas Chandran

2008-01-01T23:59:59.000Z

398

Amicalola Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Amicalola Electric Member Corp Amicalola Electric Member Corp Jump to: navigation, search Name Amicalola Electric Member Corp Place Georgia Utility Id 562 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Lights Acorn 100 W Lighting Security Lights Acorn 150 W Lighting Security Lights Cobra 100 W Lighting Security Lights Cobra 150 W Lighting Security Lights Cobra 250 W Lighting Security Lights Cobra 400 W Lighting Security Lights Cobra MH 250 W Lighting Security Lights Cobra MH 400 W Lighting Security Lights Flood 250 W Lighting

399

Roanoke Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Roanoke Electric Member Corp Roanoke Electric Member Corp Jump to: navigation, search Name Roanoke Electric Member Corp Place North Carolina Utility Id 16101 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Single Phase (energy charge only) Commercial Commercial Service Single-Phase > 100 kW Commercial Commercial Service Single-Phase < 100 kW Commercial Commercial Service Three Phase (energy charge only) Commercial Commercial Service Three Phase Demand/Energy equal too or >100 kW

400

Brunswick Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Brunswick Electric Member Corp Brunswick Electric Member Corp Jump to: navigation, search Name Brunswick Electric Member Corp Place North Carolina Utility Id 24889 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Basic Sodium Vapor Light Lighting General Service - Single Phase Commercial General Service - Single Phase Curtailable Service Commercial General Service - Three Phase Commercial General Service - Three Phase Curtailable Service Commercial Net Metering Rider Commercial

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carroll Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Member Corp Member Corp Jump to: navigation, search Name Carroll Electric Member Corp Place Georgia Utility Id 3081 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Rate Industrial General Service Rate* Industrial Irrigation Off-Peak Seasonal Service Commercial Large Power Service Industrial Large Power Service* Load Management Service- Coincident W/ Multi-hr Peak Load Management Service- Coincident w/ ITS Peak Demand Load Management Service- Non Coincident Peak Demand

402

Oconee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Oconee Electric Member Corp Oconee Electric Member Corp Jump to: navigation, search Name Oconee Electric Member Corp Place Georgia Utility Id 13962 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Power Service Commercial Large Power Service* Industrial Outdoor Lighting MV 175 W Overhead Lighting Outdoor Lighting MV 175 W Underground Lighting Outdoor Lighting S 100 W Overhead Lighting Outdoor Lighting S 100 W Underground Lighting Residential and Farm Service Residential

403

Upson Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Elec Member Corp Elec Member Corp Place Georgia Utility Id 19581 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 1,6 - Residental Service Residential Rate 3,7 - General Service Commercial Rate 8,10 - General Service Commercial Average Rates Residential: $0.1020/kWh Commercial: $0.1150/kWh Industrial: $0.0834/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Upson_Elec_Member_Corp&oldid=411917

404

Tideland Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Tideland Electric Member Corp Tideland Electric Member Corp Jump to: navigation, search Name Tideland Electric Member Corp Place North Carolina Utility Id 19108 Utility Location Yes Ownership C NERC SERC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cotton Gin - On season Commercial Large Power (Time-of-use Service) Commercial Large Power Service Commercial NC GreenPower NC GreenPower Generator- Small Solar PV Systems - 5 to 10 kW NC GreenPower Generator- Small Solar PV Systems - Less than 5 kW NC GreenPower Generator-Small Wind Systems - 10 kW and under

405

Canoochee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Canoochee Electric Member Corp Canoochee Electric Member Corp Jump to: navigation, search Name Canoochee Electric Member Corp Place Georgia Utility Id 2903 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Service- DM-1 Commercial GS-1 Commercial GS-3 Commercial IR-1 Commercial IR-3 Large Power Service- LP-1 Industrial Load Management Service- LM-2 Commercial Load Mangament Service- LM-3 Commercial Power and Light Industrial Residential Service- RS-1 Residential Security Lighting Service- SL (1000W HPS Flood) Lighting

406

LEDSGP/about/members | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » LEDSGP/about/members < LEDSGP‎ | about Jump to: navigation, search LEDSGP Logo.png Advancing climate-resilient low emission development around the world Home About Tools Expert Assistance Events Publications Join Us About How We Work > Regional Platforms > Working Groups LEDS GP Members Steering Committee Guiding Structure Contacts Members of the LEDS Global Partnership More than 110 countries and international institutions have joined the partnership to support collaboration and peer learning on climate-resilient low emission development. AUSAidLogo.png AG-DOCC.JPG Sustentar.jpg Logotipo minambientevertical escala grises1.jpg Minaetlogo.png European Flag(1).gif GIZlogo.JPG Sponsor.jpg JICA-Logo.jpg Ine320.gif Logotipo minambientevertical escala grises1.jpg

407

Planters Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Planters Electric Member Corp Planters Electric Member Corp Jump to: navigation, search Name Planters Electric Member Corp Place Georgia Utility Id 14649 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule 1 - Home Energy Partner Service Residential Schedule 2 - Energy Partner Service Non Demand Option Schedule 20 - Large Commercial Partner Service Commercial Schedule 21 - Athletic or Recreational Complex Partner Service Commercial Schedule 3 - Energy Partner Service Demand Option Schedule 4 - Irrigation Service, Interruptible Commercial

408

Pataula Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Pataula Electric Member Corp Pataula Electric Member Corp Jump to: navigation, search Name Pataula Electric Member Corp Place Georgia Utility Id 14588 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule DGS - Distribution Generation Service, Multi Phase Commercial Schedule DGS - Distribution Generation Service, Single Phase Commercial Schedule FM - Farm and Home Service Residential Schedule GS - General Service, Multi Phase Commercial Schedule GS - Single Phase (First 200 kWh per kW of Billing Demand)

409

Randolph Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Member Corp Electric Member Corp Jump to: navigation, search Name Randolph Electric Member Corp Place North Carolina Utility Id 15671 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A23 - SINGLE-PHASE SERVICE Residential A23EE - SINGLE-PHASE ENERGY EFFICIENT HOME SERVICE Residential A23TOU - SINGLE-PHASE TIME-OF-USE SERVICE Residential GS23 - SINGLE PHASE COMMERCIAL Commercial GS23 - SINGLE-PHASE COMMERCIAL - Two Part Tariff Commercial

410

Gibson Electric Members Corp | Open Energy Information  

Open Energy Info (EERE)

Gibson Electric Members Corp Gibson Electric Members Corp Jump to: navigation, search Name Gibson Electric Members Corp Place Tennessee Utility Id 7174 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate-Poly Phase Commercial Commercial Rate-Single Phase Commercial Green Power Switch Industrial Rate-Poly Phase Industrial Industrial Rate-Single Phase Industrial Residential rates Residential Average Rates Residential: $0.0960/kWh Commercial: $0.1130/kWh

411

Altamaha Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Altamaha Electric Member Corp Altamaha Electric Member Corp Jump to: navigation, search Name Altamaha Electric Member Corp Place Georgia Utility Id 407 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Service Industrial Irrigation Service- IRGS-8 Commercial Large Power Service- LPS Commercial Net Metering Service- NMS-8 Commercial Outdoor Security Lighting Service- SL-9 (1000W HPS-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting Outdoor Security Lighting Service- SL-9 (1000W MH-Flood) Lighting

412

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Walton Electric Member Corp Walton Electric Member Corp (Redirected from Walton EMC) Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting

413

Cumberland Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

Elec Member Corp Elec Member Corp Jump to: navigation, search Name Cumberland Elec Member Corp Place Tennessee Utility Id 4624 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA 3 Commercial Commercial GSA 1 Commercial Commercial GSA 2 Commercial Facilities Rental (46-161 kV) Commercial Facilities Rental (less than 46 kV) Commercial Generation Partner 1 - Energy Credit Commercial Generation Partner 1 - Other Renewable Premium Commercial

414

Hart Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Hart Electric Member Corp Hart Electric Member Corp Jump to: navigation, search Name Hart Electric Member Corp Place Georgia Utility Id 8210 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A-10 Farm and Home Service Residential Schedule A-EM-10 Residential Energy Management Residential Schedule B-10 Small Commercial Service Commercial Schedule B-10 Small Commercial Service Multi-Phase Commercial Schedule C-10 Large Commercial and Industrial Service Schedule CS-1,2,3 Contract School Service

415

Excelsior Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Excelsior Electric Member Corp Excelsior Electric Member Corp Jump to: navigation, search Name Excelsior Electric Member Corp Place Georgia Utility Id 5905 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting Service Lighting General Service- Single Phase Commercial General Service- Three Phase Commercial Irrigation Service- Controlled Commercial Irrigation Service- Non-Controlled Commercial Large Industrial Service Industrial Large Power Service Commercial Large School Service Commercial

416

Haywood Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Member Corp Electric Member Corp Jump to: navigation, search Name Haywood Electric Member Corp Place North Carolina Utility Id 8333 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 10 Small General Service Single Phase 11 Small General Service Three Phase 12 Small General Time of Day Service Single Phase Commercial 13 Small General Time of Day Service Three Phase 14 Small General Demand Service Single Phase Commercial 17 Small General $mart Rate Service Single Phase- Controlled Kwh Commercial

417

Coastal Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Member Corp Member Corp Place Georgia Utility Id 3843 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Demand Multi Phase Industrial General Demand Single Phase Industrial General Non Demand Multi Phase Commercial General Non Demand Single Phase Commercial Residential Residential Average Rates Residential: $0.1110/kWh Commercial: $0.1010/kWh Industrial: $0.0606/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Coastal_Electric_Member_Corp&oldid=410484"

418

Mitchell Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Mitchell Electric Member Corp Mitchell Electric Member Corp Jump to: navigation, search Name Mitchell Electric Member Corp Place Georgia Utility Id 12706 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE A-14 RESIDENTIAL SERVICE Residential SCHEDULE A-14 RESIDENTIAL SERVICE Multi-Phase Residential SCHEDULE AG-14 AGRICULTURAL SERVICE Commercial SCHEDULE AG-14 AGRICULTURAL SERVICE MULTI-PHASE SCHEDULE C-14 SINGLE-PHASE COMMERCIAL SERVICE Commercial SCHEDULE GS-14 GENERAL SERVICE Commercial SCHEDULE HLF-14 HIGH LOAD FACTOR LARGE POWER SERVICE Commercial

419

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

420

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Smart Buildings: Business Case and Action Plan  

E-Print Network (OSTI)

due to the cost of labor per square foot, such that even aoperating cost at $3.70 per square foot per year includingGSAs 2008 energy costs of $1.93 per square foot, and GSAs

Ehrlich, Paul

2009-01-01T23:59:59.000Z

422

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

423

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

424

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

425

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

426

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

427

Elastomeric member and method of manufacture therefor  

DOE Patents (OSTI)

An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

Hoppie, Lyle O. (Birmingham, MI)

1985-01-01T23:59:59.000Z

428

Successful Strategies for Teams Team Member Handbook  

E-Print Network (OSTI)

Successful Strategies for Teams Team Member Handbook by Frances A. Kennedy, Ph.D. Associate. Kennedy, 2008 Teaming Handbook Page 2 #12;Table of Contents PART 1: Introduction..................................................................... 88 Teaming Handbook Page 3 Whenever you see this box, you can find a template to help you

Stuart, Steven J.

429

Vacant, * Deputy Chief Administrative Judge (Technical) Members  

E-Print Network (OSTI)

*Permanent panel members iii PREFACE This is the fifty-third volume of issuances (1 572) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. It covers the period from January 1, 2001, to

Richard A. Meserve; Greta J. Dicus; Nils J. Diaz; Edward Mcgaffigan; Jeffrey S. Merrifield; William D. Travers; Executive Director For Operations; Karen D. Cyr; General Counsel; Dr. George; C. Anderson; Dr. Frank; F. Hooper; Thomas D. Murphy; Charles Bechhoefer; Dr. Charles; N. Kelber; Dr. Harry Rein; Dr. Richard; F. Cole; Dr. Peter; S. Lam; Lester S. Rubenstein; Dr. Harry; Foreman Dr; Linda W. Little; Ivan W. Smith; Dr. David; L. Hetrick; Thomas S. Moore; Ann M. Young

2001-01-01T23:59:59.000Z

430

APPOINTMENT OF A JOINT MEMBER New Appointment  

E-Print Network (OSTI)

APPOINTMENT OF A JOINT MEMBER Renewal: New Appointment: "A joint appointment reflects the active with an academic appointment in one academic unit may be given a joint appointment in another academic unit. ..." [Article 13.10.1] In the case of a new hire, where the intention is a Joint Appointment, there needs

Saskatchewan, University of

431

Member News Nano News Press Releases  

E-Print Network (OSTI)

NanoNEWS Member News Nano News Press Releases Nano Global News Nano Reports Nano Conferences", Exploring Matter with Synchrotron Light" and "Exploring Matter with Neutrons" by ordering from here. Nano. Send your Press R Judith.LightFeather@TNTG.org 14 Oct 2006 Researchers develop bistable nano switch

Espinosa, Horacio D.

432

Sault Tribe Building Efficiency Energy Audits  

SciTech Connect

The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

Holt, Jeffrey W.

2013-09-26T23:59:59.000Z

433

Environmental Management Advisory Board Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication & Engagement » EMAB » Environmental Communication & Engagement » EMAB » Environmental Management Advisory Board Members Environmental Management Advisory Board Members EMAB membership reflects a diversity of views, demographics, expertise, and professional and academic experience. The following members comprise the current Board: Current Members James A. Ajello EMAB Board Chair Read Bio ‣ Dennis P. Ferrigno EMAB Board Vice-Chair Read Bio ‣ Franklin E. Coffman EMAB Board Member Read Bio ‣ Paul M. Dabbar EMAB Board Member Read Bio ‣ G. Brian Estes EMAB Board Member Read Bio ‣ Jane A. Hedges EMAB Board Member Read Bio ‣ Carolyn L. Huntoon EMAB Board Member Read Bio ‣ Kimberlee Kearfott EMAB Board Member Read Bio ‣ John A. Owsley EMAB Board Member Read Bio ‣ Willie Preacher EMAB Board Member

434

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

435

City of Scottsdale - Green Building Policy for Public Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Scottsdale - Green Building Policy for Public Buildings City of Scottsdale - Green Building Policy for...

436

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

437

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

438

Building Energy Software Tools Directory : SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox Back to Tool Screenshot for SIMBAD Building and HVAC Toolbox. Screenshot for SIMBAD Building and HVAC Toolbox...

439

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

440

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

442

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

443

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

444

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

445

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

446

Change in historic buildings  

E-Print Network (OSTI)

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

447

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

448

BUILDING PROCTOR December 2009  

E-Print Network (OSTI)

­ 1 Facilities Management Directory.......................................................................Maintenance ...............................................Maintenance ­ 15 Building Audit System to Facilities Management Dispatch Office (491-0077) who, in turn, addresses the maintenance needs. The building

449

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

450

Building, landscape and section  

E-Print Network (OSTI)

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

451

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

452

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

453

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

454

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

455

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... to the World Trade Center Disaster. ... World Trade Center; disasters; building collapse ... fires; flameproofing; steels; evacuation; response time; roofs ...

456

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... State Solar Energy Legislation of 1976: A Review of Statutes Relating to Buildings. Final Report. State Solar Energy Legislation ...

457

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE Standard 135-1995, BACnet. ...

458

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

459

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Investigation of the Impact ...

460

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of Entombment as a Decommission Option. ... Safety of Existing Federal Buildings: A Handbook. ... Madrzykowski, D. Manual of Evaluation Procedures ...

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Armed Forces Scientific Institute for Protection Technologies in the Field ... National Institute of Standards and Technology. ... Energy and Buildings, Vol. ...

462

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... in Operations, Maintenance, and Energy Costs for ... Strengthening, and Repair Technologies for Buildings ... Combustion Science and Technology, Vol. ...

463

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

464

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

465

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

466

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

467

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Unfortunately, the equipment used to determine the thermal resistance of traditional building, insulation materials is not well suited for measuring ...

468

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal conductance; thermal insulation; test methods Abstract: Calibration measurements of thin heat flux sensors for building applications are ...

469

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Thermal Expansion 17th Symposium. Proceedings. Chapter 2: Building Insulation Materials. June 24-27, 2007, Birmingham ...

470

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

471

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology is building an advanced ... thermal transmission properties for specimens of thermal insulation 500 mm ...

472

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... 1993. Journal of Thermal Insulation and Building Environments, Vol. 17, 330-350, April 1994. Keywords: polyisocyanurate ...

473

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

474

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... emergency plans. Stairwell Evacuation From Buildings: What We Know We Don't Know. NIST TN 1624; NIST Technical ...

475

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... F. NISTIR 7193; Appendix F; January 2005.Workshop to Define Information Needed by Emergency Responders During Building Emergencies. ...

476

Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

Burgert, S.

2002-10-21T23:59:59.000Z

477

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

478

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

C-Factor C-Factor Time rate of steady-state heat flow through the unit area of a material or construction surfaces. Units of C-Factor are Btu/h x ft2 x degrees Fahrenheit. Note that the C-factor does not include soil or air films. CABO The Council of American Building Officials. Cavity Insulation Insulation installed between structural members such as wood studs, metal framing, and Z-clips. CDD Cooling degree day. See "Cooling Degree Days." CDD50 Cooling degree days base 50°F. See "Degree Day Base 50F." CE Combustion efficiency. Ceiling The ceiling requirements apply to portions of the roof and/or ceiling through which heat flows. Ceiling components include the interior surface of flat ceilings below attics, the interior surface of cathedral or vaulted

479

Ultra-Deepwater Advisory Committee Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee Members Petroleum Reserves International Cooperation Natural Gas Regulation Advisory Committees 2011-2013 Ultra-Deepwater Advisory Committee Members Dr....

480

Building Songs 1  

E-Print Network (OSTI)

. Sman shad building song 1.WAV Length of track 00:01:36 Related tracks (include description/relationship if appropriate) Sman shad building song 2 Title of track Building Songs Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "member building foot" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Axioms of affine buildings  

E-Print Network (OSTI)

We prove equivalence of certain axiom sets for affine buildings. Along the lines a purely combinatorial proof of the existence of a spherical building at infinity is given. As a corollary we obtain that ``being an affine building'' is independent of the metric structure of the space.

Schwer, Petra N

2009-01-01T23:59:59.000Z

482

Building application stack (BAS)  

Science Conference Proceedings (OSTI)

Many commercial buildings have digital controls and extensive sensor networks that can be used to develop novel applications for saving energy, detecting faults, improving comfort, etc. However, buildings are custom designed, leading to differences in ... Keywords: building applications, controls, energy efficiency

Andrew Krioukov; Gabe Fierro; Nikita Kitaev; David Culler

2012-11-01T23:59:59.000Z

483

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

484

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

485

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

486

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

487

Building Technologies Program: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

488

Building Technologies Office: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

News Archives on Twitter Bookmark Building Technologies Office: News Archives on Google Bookmark Building Technologies Office: News Archives on Delicious Rank Building...

489

Building Technologies Office: Schedule Setting  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedule Setting on Twitter Bookmark Building Technologies Office: Schedule Setting on Google Bookmark Building Technologies Office: Schedule Setting on Delicious Rank Building...

490

Building Technologies Office: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

491

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

492

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

493

Building Technologies Office: Process Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Process Rule on Twitter Bookmark Building Technologies Office: Process Rule on Google Bookmark Building Technologies Office: Process Rule on Delicious Rank Building...

494

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

495

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

496

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

0 0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 73,932 square feet and 1 floor. Benchmark interior lighting energy = 15.80 thousand Btu/SF. Interior equipment energy consumption = 18.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

497

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book (EERE)

2 2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 210,810 square feet and 2 floors. Benchmark interior lighting energy = 15.20 thousand Btu/SF. Interior equipment energy consumption = 11.83 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

498

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book (EERE)

5 5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 122,075 square feet and 6 floors. Benchmark interior lighting energy = 11.28 thousand Btu/SF. Interior equipment energy consumption = 24.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

499

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book (EERE)

6 6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 43,186 square feet and 4 floors. Benchmark interior lighting energy = 13.79 thousand Btu/SF. Interior equipment energy consumption = 21.98 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

500

Apparatus for mounting photovoltaic power generating systems on buildings  

DOE Patents (OSTI)

Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

Russell, Miles C. (Lincoln, MA)

2009-08-18T23:59:59.000Z