National Library of Energy BETA

Sample records for mem guatemala date

  1. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer...

    Office of Scientific and Technical Information (OSTI)

    Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion) 15 GEOTHERMAL ENERGY; 60 APPLIED LIFE SCIENCES; DEHYDRATORS; DESIGN; OPERATION; PERFORMANCE;...

  2. Search for: microelectromechanical OR MEMS | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    microelectromechanical OR MEMS Find + Advanced Search × Advanced Search All Fields: microelectromechanical OR MEMS Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Type: All Accepted Manuscript Published Article Publisher's Accepted Manuscript Journal Name: Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Close

  3. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    DATE: February 1, 2012 TO: Procurement Directors FROM: Director, Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: Acquisition...

  4. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    38 DATE: May 03, 2012 TO: Procurement Directors FROM: Director, Contract and Financial Assistance Policy Division Office of Policy Office of Procurement and Assistance Management...

  5. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    61 DATE: June 19, 2013 TO: Procurement Directors FROM: Director Policy Division Office of Procurement and Assistance Policy Office of Acquisition and Project Management SUBJECT: ...

  6. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-12 DATE: December 7, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management ...

  7. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-35 DATE: July 09, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management ...

  8. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    36 DATE: April 23, 2012 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management...

  9. DATE:

    Office of Legacy Management (LM)

    -RL5- DATE: September 13, 1990 TO: Alexander Williams (w 39 fusrap6 I FROM: Ed Mitchellzm SUBJECT: Elimination Recommendation for American Machine and Foundry in New York City The...

  10. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Template Revised: 6/12/2014 Template Reviewed: 6/12/2014 Operated for the U.S. Department of Energy by Sandia Corporation P.O. Box 5800 MS-1461 Albuquerque, New Mexico 87185-1461 Date Contractor Name Address Attention: Based on our earlier discussions, the Contract Audit Department at Sandia Corporation, which operates Sandia National Laboratories (Sandia) will audit costs incurred through your fiscal year ending XXXXXX on the following contracts placed with your company: Contract(s) Type of

  11. Dated:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cause appearing, IT IS HEREBY ORDERED: 1. The Schedule Scheduling Order is stayed pending execution of a settlement agreement and stipulated final order. Dated: ~ /,/ .,2015 Christopher T. Saucedo Hearing Officer 3 Complainant, v. UNITED STATES DEPARTMENT OF ENERGY, and NUCLEAR WASTE PARTNERSHIP, LLC, Respondents. No. HWB 14-21 (CO) CERTIFICATE OF SERVICE I hereby certify that a copy of the STIPULATED JOINT MOTION TO STAY THE SCHEDULING ORDER has been sent electronically to the following on May

  12. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2013-45 DATE: April 16, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: DOE Acquisition Guide Chapter 15.1 Source Selection Guide SUMMARY: Attached is a revised Source Selection Guide. The Guide has been updated to reflect changes to DOE policies and practices and includes new topics such as Flow of the Source Selection Process, Source Selection Official

  13. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    53 DATE: May 15, 2013 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division F, Title I, Title II, and Title III and Division G, Consolidated and Further Continuing Appropriations Act, 2013, Pub. L. No.113-6 SUMMARY: Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division F, Title

  14. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    61 DATE: June 19, 2013 TO: Procurement Directors FROM: Director Policy Division Office of Procurement and Assistance Policy Office of Acquisition and Project Management SUBJECT: The Whistleblower Protection Enhancement Act of 2012 and How It Affects Federal Employee Non-Disclosure Policies, Forms, Certificates, Agreements and Acknowledgments SUMMARY: Acquisition Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently passed,

  15. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DATE: March 10, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division D, Titles III and V, and Division E, Title VII of the Consolidated Appropriations Act, 2014, Pub. L. No. 113-76. SUMMARY: Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 provides implementing instructions and guidance for Division D, Titles III and V, and

  16. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 DATE: April 10, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Revision to the Procurement Strategy Panel (PSP) Briefing Process SUMMARY: This flash and the attached Acquisition Guide 7.1 revises the PSP process, which is an alternate to a written acquisition plan for procurementsexpected to exceed $100M. This flash and its attachments will be available online at the

  17. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 DATE: May 7, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division D, Titles III and V, and Division E, Title VII of the Consolidated Appropriations Act, 2014, Pub. L. No. 113-76. SUMMARY: Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 have been revised to remove language from Section 502 that was not carried forward from

  18. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-35 DATE: July 09, 2014 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Rescission of American Recovery and Reinvestment Act Reporting Requirements. SUMMARY: Financial Assistance Letter (FAL) 2014-xx provides COs with: 1) notice of the recession of the reporting requirements for recipients of ARRA funds in accordance with the recently passed P.L. 113- 76, Consolidated Appropriations

  19. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-12 DATE: December 7, 2012 TO: Procurement Directors FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Section 301(b) Congressional Notification of Multi-year Contract Award Report Revision for Fiscal Year 2013 SUMMARY: With reference to Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-02 regarding Section 301(b) Congressional Notification of Multi-year Contract Award, the spreadsheet

  20. DATE:

    Office of Legacy Management (LM)

    DATE: AUG 12 1991 REPLY TO ATTN OF: EM-421 (J. Wagoner, 3-8147) SUBIECT: Elimination of the Duriron Company Site TO: The File I have reviewed the attached site summary and elimination recommendation for the Duriron Company Site in Dayton, Ohio. I have determined that there is little likelihood of radioactive contamination at this site. Based on the above, the Ouriron Company Site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W.

  1. DATE:

    Office of Legacy Management (LM)

    a? ,itbd States Government memorandum Department of Energy DATE: APR 15 893 REPLY TO EM-421 (W. Williams, 903-8149) ATTN OF: Authorization for Remedial Action at the Former Associate Aircraft Site in SUBJECT: Fairfield, Ohio TO: W. Seay, DOE Oak Ridge Field Office The former Associate Aircraft Tool and Manufacturing, Inc., site at 3660 Dixie Highway, Fairfield, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Force Control Industries is

  2. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JDA 1/31/13 Jan 31, 2013 DATE: 01/31/2013 x Aardal, Janis D Y-Public, See below. Approved for Public Release; Further Dissemination Unlimited By Janis D. Aardal at 1:25 pm, Jan 31, 2013 DOE/RL-2001-41 Revision 6 SITEWIDE INSTITUTIONAL CONTROLS PLAN FOR HANFORD CERCLA RESPONSE ACTIONS AND RCRA CORRECTIVE ACTIONS Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P.O. Box 550 Richland, Washington 99352 Approved for Public Release; Further Dissemination

  3. Date:

    Office of Legacy Management (LM)

    Tetra Tech 3801 Automation Way, Suite 100, Fort Collins, CO 80525 Tel 970.223.9600 Fax 970.223.7171 www. tetratech.com Technical Memorandum To: Rick DiSalvo, Stephen Pitton, Mel Madril From: Jackie Blumberg, PE Company: U.S. Department of Energy Date: December 19, 2013 CC: Tom Chapel, PE; Amber Kauffman, PE Project No.: 114-181750 Re: OLF Berm Height Evaluation Using Site-Specific Data INTRODUCTION Tetra Tech performed statistical analyses on rainfall data collected at the Rocky Flats site over

  4. DATE:

    Office of Legacy Management (LM)

    -RL5- DATE: September 13, 1990 TO: Alexander Williams (w 39 fusrap6 I FROM: Ed Mitchellzm SUBJECT: Elimination Recommendation for American Machine and Foundry in New York City The purpose of this note is to provide the following with respect to the former American Machine and Foundry Company (AMF) in New York City, New York--FUSRAP Considered Site Recommendation (g/13/90). 1 he recommendation is to eliminate the AMF New York City sites. If you agree, then please return an "approved"

  5. DATE:

    Office of Legacy Management (LM)

    OOE F 1325.3 m e m o randum DATE: SEP 23 1988 Department of Energy IL_. 9 REPLY TO AlTN OF, NE-23 SUElJECT. Owner Searches for Potential Sites in Chicago IL, (7 TO: W . Cottrell, ORNL 0. Kozlouski, OTS W h ile in Chicago, Illinois, on September 13, 14, and 15, 1988, I drove to the suspected addresses of several potential FUSRAP sites. No owners were contacted during this activity because most of the work was done after normal working hours or while on the way to the airport when tim e would not

  6. Sandia MEMS

    Energy Science and Technology Software Center (OSTI)

    2002-06-13

    SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers intornal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standardmore » Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Nole that the customer must purchase his/her own copy of Aut0CAD to use with these files.« less

  7. Ultra-lightweight telescope with MEMS adaptive optic for distortion...

    Office of Scientific and Technical Information (OSTI)

    This proposal is concerned with development of MEMS ... Fawn Renee ; Grossetete, Grant David Publication Date: ... Resource Type: Technical Report Research Org: Sandia ...

  8. Update on the Sandia MEMS Passive Shock Sensor. (Conference)...

    Office of Scientific and Technical Information (OSTI)

    on the Sandia MEMS Passive Shock Sensor. Abstract not provided. Authors: Mitchell, John Anthony ; Gustafson, Carl Publication Date: 2008-03-01 OSTI Identifier: 1145847 Report...

  9. Introduction to Microelectromechanical Systems (MEMS) failure analysis.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Introduction to Microelectromechanical Systems (MEMS) failure analysis. Citation Details In-Document Search Title: Introduction to Microelectromechanical Systems (MEMS) failure analysis. No abstract prepared. Authors: Walraven, Jeremy Allen Publication Date: 2010-08-01 OSTI Identifier: 1024452 Report Number(s): SAND2010-5841C TRN: US201119%%385 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation

  10. MEMS Actuator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMS Actuator Share Topic Programs Materials science Nanoscience

  11. Patent: Optically transduced MEMS magnetometer | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    Optically transduced MEMS magnetometer Citation Details Title: Optically transduced MEMS magnetometer

  12. memP

    Energy Science and Technology Software Center (OSTI)

    2010-02-05

    The lightweight heap profiling tool memP Version 1 provides a library that can be used with MPI applications that make use of heap memory allocations to provide profile data based on the per-task high-water-mark of heap allocation. The memP output is generated as a text report that can present summary information or specific detail of the allocation call site data for each task The memP library source code is based on teh mpiP MPI profilingmore » library (http://mpip.sourceforge.net), but is substantially different in functionality and organization.« less

  13. Optical system properties of a reconfigurable MEMS interconnect.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect system properties of a reconfigurable MEMS interconnect. Citation Details In-Document Search Title: Optical system properties of a reconfigurable MEMS interconnect. No abstract prepared. Authors: Spahn, Olga Blum ; Grossetete, Grant David ; Gass, Fawn Renee ; Kemme, Shanalyn A. ; Dagel, Daryl James Publication Date: 2002-12-01 OSTI Identifier: 913215 Report Number(s): SAND2003-0020C TRN: US200802%%382 DOE Contract Number: AC04-94AL85000 Resource Type:

  14. Evaluation of distributed ANSYS for high performance computing of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Evaluation of distributed ANSYS for high performance computing of MEMS. Citation Details In-Document Search Title: Evaluation of distributed ANSYS for high performance computing of MEMS. No abstract prepared. Authors: Baker, Michael Sean ; Yarberry, Victor R. ; Wittwer, Jonathan W. Publication Date: 2007-04-01 OSTI Identifier: 908706 Report Number(s): SAND2007-2708C TRN: US200722%%755 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource

  15. Addressing mechanical reliability issues in Sandia MEMS devices.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Addressing mechanical reliability issues in Sandia MEMS devices. Citation Details In-Document Search Title: Addressing mechanical reliability issues in Sandia MEMS devices. No abstract prepared. Authors: Tanner, Danelle Mary, 1952- [1] ; -) ; Buchheit, Thomas E. ; Boyce, Brad Lee ; Goods, Steven Howard + Show Author Affiliations (, Publication Date: 2005-02-01 OSTI Identifier: 897611 Report Number(s): SAND2005-0920C TRN: US200705%%131 DOE Contract Number:

  16. Carbon MEMS accelerometer. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Carbon MEMS accelerometer. Citation Details In-Document Search Title: Carbon MEMS accelerometer. Abstract not provided. Authors: Washburn, Cody M. ; Hance, Bradley G. ; Rohwer, Tedd A. ; McBrayer, John D. ; Wheeler, David Roger ; Williams, Randy J. ; Greth, Karl Douglas ; Strong, Jennifer ; Finnegan, Patrick Sean Publication Date: 2011-10-01 OSTI Identifier: 1109435 Report Number(s): SAND2011-7761C 473009 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  17. Characterization of monolayer surface treatments for MEMS exposed to

    Office of Scientific and Technical Information (OSTI)

    possible back-end-of-line conditions. (Conference) | SciTech Connect Characterization of monolayer surface treatments for MEMS exposed to possible back-end-of-line conditions. Citation Details In-Document Search Title: Characterization of monolayer surface treatments for MEMS exposed to possible back-end-of-line conditions. No abstract prepared. Authors: Dugger, Michael Thomas ; Wiehn, Joshua S. ; Tanner, Danelle Mary Publication Date: 2004-11-01 OSTI Identifier: 965110 Report Number(s):

  18. Stress gradients in electrodeposited Ni MEMS. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Stress gradients in electrodeposited Ni MEMS. Citation Details In-Document Search Title: Stress gradients in electrodeposited Ni MEMS. No abstract prepared. Authors: Hearne, Sean Joseph ; Floro, Jerrold Anthony ; Dyck, Christopher William Publication Date: 2004-06-01 OSTI Identifier: 957295 Report Number(s): SAND2004-3006C TRN: US201007%%569 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Electrochemical

  19. MEMS in microfluidic channels.

    SciTech Connect (OSTI)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  20. MEMS Relays | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Next Revolution in MEMS Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Next Revolution in MEMS Microelectromechanical systems (MEMS) engineers share what GE Global Research is doing to revolutionize MEMS technology. You Might Also Like 2-1-8-v-mems-applications Engineer Chris Keimel Introduces MEMS Technology

  1. Guatemala: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guatemala Population 15,806,675 GDP 49,880,000,000 Energy Consumption 0.21 Quadrillion Btu 2-letter ISO code GT 3-letter ISO code GTM Numeric ISO...

  2. Accelerated testing of sliding-contact MEMS devices. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Accelerated testing of sliding-contact MEMS devices. Citation Details In-Document Search Title: Accelerated testing of sliding-contact MEMS devices. No abstract prepared. Authors: Tanner, Danelle Mary Publication Date: 2006-02-01 OSTI Identifier: 901722 Report Number(s): SAND2006-0845C TRN: US200715%%41 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Mechanical Reliability of Silicon MEMS held February

  3. MEMS fluidic actuator

    DOE Patents [OSTI]

    Kholwadwala, Deepesh K. (Albuquerque, NM); Johnston, Gabriel A. (Trophy Club, TX); Rohrer, Brandon R. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM)

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  4. Patent: MEMS based pyroelectric thermal energy harvester | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    MEMS based pyroelectric thermal energy harvester Citation Details Title: MEMS based pyroelectric thermal energy harvester

  5. Optical MEMS at Sandia National Laboratories. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Optical MEMS at Sandia National Laboratories. Citation Details In-Document Search Title: Optical MEMS at Sandia National Laboratories. No abstract prepared. Authors: Spahn, Olga Blum Publication Date: 2005-11-01 OSTI Identifier: 1018465 Report Number(s): SAND2005-7205C TRN: US201114%%18 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the CfAO Fall Retreat held November 10-13, 2005 in Lake Arrowhead, CA.

  6. Evidence for pre-sliding tangential deflections in MEMS friction.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Evidence for pre-sliding tangential deflections in MEMS friction. Citation Details In-Document Search Title: Evidence for pre-sliding tangential deflections in MEMS friction. No abstract prepared. Authors: Baker, Michael Sean ; Luck, David L. ; Ashurst, William Robert ; de Boer, Maarten Pieter Publication Date: 2003-03-01 OSTI Identifier: 923858 Report Number(s): SAND2003-1702C TRN: US200805%%22 DOE Contract Number: AC04-94AL85000 Resource Type: Conference

  7. Acoustic aspects of MEMS devices. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Acoustic aspects of MEMS devices. Citation Details In-Document Search Title: Acoustic aspects of MEMS devices. No abstract prepared. Authors: Walsh, Timothy Francis ; Jenkins, Mark ; Dohner, Jeffrey Lynn Publication Date: 2004-11-01 OSTI Identifier: 965473 Report Number(s): SAND2004-5946C TRN: US200920%%306 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Acoustic Society of American Meeting held November 15-17, 2004 in

  8. Guatemala-IAEA Energy Planning | Open Energy Information

    Open Energy Info (EERE)

    IAEA Energy Planning Jump to: navigation, search Name Guatemala-IAEA Energy Planning AgencyCompany Organization International Atomic Energy Agency Sector Energy Topics Background...

  9. Guatemala-USAID Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Organization U.S. Agency for International Development Sector Land Focus Area Agriculture Topics Background analysis Website http:www.usaid.govourwork Country Guatemala...

  10. Guatemala-UNEP Risoe Technology Needs Assessment Program | Open...

    Open Energy Info (EERE)

    UNEP Risoe Technology Needs Assessment Program Jump to: navigation, search Name Guatemala-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization UNEP-Risoe...

  11. Ku-band 6-bit RF MEMS time delay network. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ku-band 6-bit RF MEMS time delay network. Citation Details In-Document Search Title: Ku-band 6-bit RF MEMS time delay network. No abstract prepared. Authors: Nordquist, Christopher Daniel ; Sullivan, Charles Thomas ; Kraus, Garth Merlin ; Austin, Franklin, IV [1] ; Finnegan, Patrick Sean [1] ; Ballance, Mark H. [1] ; Dyck, Christopher William + Show Author Affiliations (LMATA Government Services, LLC, Albuquerque, NM) Publication Date: 2008-10-01 OSTI Identifier: 966236 Report

  12. MEMS-based chemical analysis systems development at Sandia National Labs.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect MEMS-based chemical analysis systems development at Sandia National Labs. Citation Details In-Document Search Title: MEMS-based chemical analysis systems development at Sandia National Labs. No abstract prepared. Authors: Simonson, Robert Joseph ; Manginell, Ronald Paul ; Staton, Alan W. ; Porter, Daniel Allen ; Whiting, Joshua J. ; Moorman, Matthew Wallace ; Wheeler, David Roger Publication Date: 2010-08-01 OSTI Identifier: 1024439 Report Number(s):

  13. Tunable Young's Modulus in Carbon MEMS using Graphene-based Stiffeners.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Tunable Young's Modulus in Carbon MEMS using Graphene-based Stiffeners. Citation Details In-Document Search Title: Tunable Young's Modulus in Carbon MEMS using Graphene-based Stiffeners. Authors: Washburn, Cody M. ; Blecke, Jill ; Lambert, Timothy N. ; Hance, Bradley G. ; Finnegan, Patrick Sean ; Davis, Danae Jacquelyne ; Wheeler, David R. ; Strong, Jennifer M. Publication Date: 2012-08-01 OSTI Identifier: 1073476 Report Number(s): SAND2012-6972C DOE Contract

  14. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  15. MemAxes Visualization Software

    Energy Science and Technology Software Center (OSTI)

    2014-08-28

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  16. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  17. Electrostatic MEMS devices with high reliability

    DOE Patents [OSTI]

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  18. Metal MEMS Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMS: Inside the Global Research Cleanroom Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) MEMS: Inside the Global Research Cleanroom This follow-up to our introduction to MEMS takes you inside the GE Global Research cleanroom to see more about how MEMS are made. You Might Also Like 2-1-8-v-mems-applications Engineer

  19. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  20. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  1. W-Coating for MEMS

    SciTech Connect (OSTI)

    Fleming, J.G.; Mani, S.S.; Sniegowski, J.J.

    1999-07-08

    The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release or in use--a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, function and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD (Chemical Vapor Deposition) process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert, Tungsten CVD is used in the integrated-circuit industry, which makes this, approach manufacturable.

  2. Failure mechanisms in MEMS. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Failure mechanisms in MEMS. Citation Details In-Document Search Title: Failure mechanisms in MEMS. MEMS components by their very nature have different and unique failure mechanisms than their macroscopic counterparts. This paper discusses failure mechanisms observed in various MEMS components and technologies. MEMS devices fabricated using bulk and surface micromachining process technologies are emphasized. MEMS devices offer uniqueness in their application, fabrication, and functionality. Their

  3. Failure analysis issues in microelectromechanical systems (MEMS).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Failure analysis issues in microelectromechanical systems (MEMS). Citation Details In-Document Search Title: Failure analysis issues in microelectromechanical systems (MEMS). Failure analysis and device characterization of MEMS components are critical steps in understanding the root causes of failure and improving device performance. At the wafer and die level these tasks can be performed with little or no sample preparation. Larger challenges occur after

  4. MEMS packaging efforts at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Custer, Jonathan Sloane

    2003-02-01

    Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMIT V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

  5. Integrated superhard and metallic coatings for MEMS : LDRD 57300...

    Office of Scientific and Technical Information (OSTI)

    reflective and optical coatings for optical MEMS, microswitches and microrelays for radio frequency MEMS and catalytic surfaces for microchemical reactors. In contrast to...

  6. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a gross lack of understanding between the package materials, induced stress, and the device performance. The material properties of these packaging materials are not well defined or understood. Modeling of these materials and processes is far from maturity. Current post-package yields are too low for commercial feasibility, and consumer operating environment reliability and compatibility are often difficult to simulate. With further understanding of the materials properties and behavior of the packaging materials, MEMS applications can be fully realized and integrated into countless commercial and military applications.

  7. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    SciTech Connect (OSTI)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    1997-12-31

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  8. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for

    Office of Scientific and Technical Information (OSTI)

    Targeted Gas Detection (Technical Report) | SciTech Connect Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Citation Details In-Document Search Title: Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Authors: Loui, A ; McCall, S K ; Zumstein, J M Publication Date: 2012-11-21 OSTI Identifier: 1059450 Report Number(s): LLNL-TR-606593 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical

  9. MEMS3DMODELERV1.0

    Energy Science and Technology Software Center (OSTI)

    2001-10-30

    The MEMS 3 D Modeler is a software package that creates 3D CAD solid models from 2D layout masks and a MEMS process definition. The solid models may be generated in either the ACIS SAT or IGES format. The result is an accurate representation that may be used for visualization or FEA analysis

  10. Development of MEMS photoacoustic spectroscopy

    SciTech Connect (OSTI)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  11. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect (OSTI)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  12. MEMS reliability in shock environments

    SciTech Connect (OSTI)

    TANNER,DANELLE M.; WALRAVEN,JEREMY A.; HELGESEN,KAREN SUE; IRWIN,LLOYD W.; BROWN,FREDERICK A.; SMITH,NORMAN F.; MASTERS,NATHAN

    2000-02-09

    In order to determine the susceptibility of the MEMS (MicroElectroMechanical Systems) devices to shock, tests were performed using haversine shock pulses with widths of 1 to 0.2 ms in the range from 500g to 40,000g. The authors chose a surface-micromachined microengine because it has all the components needed for evaluation: springs that flex, gears that are anchored, and clamps and spring stops to maintain alignment. The microengines, which were unpowered for the tests, performed quite well at most shock levels with a majority functioning after the impact. Debris from the die edges moved at levels greater than 4,000g causing shorts in the actuators and posing reliability concerns. The coupling agent used to prevent stiction in the MEMS release weakened the die-attach bond, which produced failures at 10,000g and above. At 20,000g the authors began to observe structural damage in some of the thin flexures and 2.5-micron diameter pin joints. The authors observed electrical failures caused by the movement of debris. Additionally, they observed a new failure mode where stationary comb fingers contact the ground plane resulting in electrical shorts. These new failure were observed in the control group indicating that they were not shock related.

  13. Design of Surface Micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  14. Design of Surface micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  15. Failure analysis issues in microelectromechanical systems (MEMS...

    Office of Scientific and Technical Information (OSTI)

    analysis of packaged MEMS devices, as well as the methods employed to analyze them. ... Devices Failure Physics and Analysis (ESREF) held October 10-14, 2005 in Bordeaux, France. ...

  16. Si-based RF MEMS components.

    SciTech Connect (OSTI)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  17. What Is MEMS? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Chris Keimel Introduces MEMS Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  18. Preliminary characterization of active MEMS valves. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Tests are performed on a series of 24 valves from two different MEMS sets. Focus is on the physical deformation of the structures under variable pressure loadings, as well as ...

  19. 05670_MEMS | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging Last Reviewed 1212015 DE-FC26-09NT0005670 Goal The objective of this project is to build an accelerometer and...

  20. MEMORANDUM DATE

    Office of Legacy Management (LM)

    DATE :;++, -m--s B-w- -w---m-- SUBJECT: , ::;:: JLLiucd ALTERN&TE e---e---- --------------------------- CITY&da NCIME: ---------------------- - --------------------- J&f STATE: OWNER ( S 1 -----m-e Past 0 Current: ------------------------ Owner contacted 0 -------------------------- 0 yes no; if ye=, date contacted ------w---s-- TYPE OF OPERATION ----w------------ F Research & Development 0 Facility Type 0 Production scale testing F Pilot Scale 0 Manufacturing 0 Bench Scale

  1. MEMORANDUfl DATE

    Office of Legacy Management (LM)

    DATE cl e-w --we-- SUBJECT: __------------------------ _ OWNER (S) -----w-e Pamt a __---------------------- current: -------------------_______ Owner contacted 0 yes 0 no; if yes, date contacted --------w-w-- TYPE OF OPERATION ------------- erearch & Development a Facility Typr Praduction scale trstinq Pilot Scale Bench Seal e Process Theoretical Studies Sample & Analysis n Production 0 Disposal/Storage TYPE OF CONTRACT ---------------- 0 Prim* 7z Subcontract& Purchase Order . Mmuf l

  2. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O'NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  3. Review of pyroelectric thermal energy harvesting and new MEMs...

    Office of Scientific and Technical Information (OSTI)

    ... ENERGY SOURCES; FABRICATION; HARVESTING; HEAT SOURCES; RECYCLING; SECURITY; SIMULATION; STORAGE; TESTING Energy harvesting; pyroelectric; bimorph cantilever; MEMS; surface ...

  4. Sources of stress gradients in electrodeposited Ni MEMS. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Sources of stress gradients in electrodeposited Ni MEMS. Citation Details In-Document Search Title: Sources of stress gradients in electrodeposited Ni MEMS. The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex functions will depend on developing freestanding metal structures that offer improved conductivity and reflectivity over polysilicon structures. For example, metal-based RF MEMS technology could replace the bulky

  5. Tools and techniques for failure analysis and qualification of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Tools and techniques for failure analysis and qualification of MEMS. Citation Details In-Document Search Title: Tools and techniques for failure analysis and qualification of MEMS. Many of the tools and techniques used to evaluate and characterize ICs can be applied to MEMS technology. In this paper we discuss various tools and techniques used to provide structural, chemical, and electrical analysis and how these data aid in qualifying MEMS technologies.

  6. Combined photonics and MEMs function demonstration

    SciTech Connect (OSTI)

    Blum, O.; Warren, M.E.; Hou, H.Q.; Choquette, K.D.; Rogers, M.S.; Sniegowski, J.J. [Sandia National Labs., Albuquerque, NM (United States); Carson, R.F. [Microoptical Devices, Inc., Albuquerque, NM (United States)

    1998-01-01

    The authors have recently demonstrated two prototypes where photonics and microelectromechanical system (MEMs) technologies have been integrated to show proof-of-principle functionality for weapon surety functions. These activities are part of a program which is exploring the miniaturization of electromechanical components for making weapon systems safer. Such miniaturization can lead to a low-cost, small, high-performance ``systems-on-a-chip``, and have many applications ranging from advanced military systems to large-volume commercial markets like automobiles, rf or land-based communications networks and equipment, or commercial electronics. One of the key challenges in realization of the microsystem is integration of several technologies including digital electronics; analog and rf electronics, optoelectronics (light emitting and detecting devices and circuits), sensors and actuators, and advanced packaging technologies. In this work the authors describe efforts in integrating MEMs and photonic functions and the fabrication constraints on both system components. Here, they discuss two examples of integration of MEMs and a photonic device. In the first instance, a MEMs locking device pin is driven by a voltage generated by photovoltaic cells connected in series, which are driven by a laser. In the second case, a VCSEL emitting at 1.06 {micro}m is packaged together with a metallized MEMs shutter. By appropriate alignment to the opening in the shutter, the VCSEL is turned on and off by the movement of the Si chopper wheel.

  7. Failure analysis issues in microelectromechanical systems (MEMS).

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2005-07-01

    Failure analysis and device characterization of MEMS components are critical steps in understanding the root causes of failure and improving device performance. At the wafer and die level these tasks can be performed with little or no sample preparation. Larger challenges occur after fabrication when the device is packaged, capped, sealed, or otherwise obstructed from view. The challenges and issues of MEMS failure analysis lie in identifying the root cause of failure for these packaged, capped, and sealed devices without perturbing the device or its immediate environment. Novel methods of gaining access to the device or preparing the device for analysis are crucial to accurately determining the root cause of failure. This paper will discuss issues identified in performing root cause failure analysis of packaged MEMS devices, as well as the methods employed to analyze them.

  8. IC-Compatible Technologies for Optical MEMS

    SciTech Connect (OSTI)

    Krygowski, T.W.; Sniegowski, J.J.

    1999-04-30

    Optical Micro Electro Mechanical Systems (Optical MEMS) Technology holds the promise of one-day producing highly integrated optical systems on a common, monolithic substrate. The choice of fabrication technology used to manufacture Optical MEMS will play a pivotal role in the size, functionality and ultimately the cost of optical Microsystems. By leveraging the technology base developed for silicon integrated circuits, large batches of routers, emitters, detectors and amplifiers will soon be fabricated for literally pennies per part. In this article we review the current status of technologies used for Optical MEMS, as well as fabrication technologies of the future, emphasizing manufacturable surface micromachining approaches to producing reliable, low-cost devices for optical communications applications.

  9. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  10. MEMS reliability: The challenge and the promise

    SciTech Connect (OSTI)

    Miller, W.M.; Tanner, D.M.; Miller, S.L.; Peterson, K.A.

    1998-05-01

    MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description of the underlying physics of reliability for micromachines.

  11. Introduction to applications and industries for Microelectromechanical Systems (MEMS).

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2003-07-01

    Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment systems, inkjet print head systems, and optical routers. This paper will discuss current and future MEMS applications. What are MEMS? MEMS are typically defined as microscopic devices designed, processed, and used to interact or produce changes within a local environment. A mechanical, electrical, or chemical stimulus can be used to create a mechanical, electrical, or chemical response in a local environment. These smaller, more sophisticated devices that think, act, sense, and communicate are replacing their bulk counterparts in many traditional applications.

  12. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    SciTech Connect (OSTI)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  13. SPICE Level 3 and BSIM3v3.1 characterization of monolithic integrated CMOS-MEMS devices

    SciTech Connect (OSTI)

    Staple, B.D.; Watts, H.A.; Dyck, C.; Griego, A.P.; Hewlett, F.W.; Smith, J.H.

    1998-08-01

    The monolithic integration of MicroElectroMechanical Systems (MEMS) with the driving, controlling, and signal processing electronics promises to improve the performance of micromechanical devices as well as lower their manufacturing, packaging, and instrumentation costs. Key to this integration is the proper interleaving, combining, and customizing of the manufacturing processes to produce functional integrated micromechanical devices with electronics. The authors have developed a MEMS-first monolithic integrated process that first seals the micromechanical devices in a planarized trench and then builds the electronics in a conventional CMOS process. To date, most of the research published on this technology has focused on the performance characteristics of the mechanical portion of the devices, with little information on the attributes of the accompanying electronics. This work attempts to reduce this information void by presenting the results of SPICE Level 3 and BSIM3v3.1 model parameters extracted for the CMOS portion of the MEMS-first process. Transistor-level simulations of MOSFET current, capacitance, output resistance, and transconductance versus voltage using the extracted model parameters closely match the measured data. Moreover, in model validation efforts, circuit-level simulation values for the average gate propagation delay in a 101-stage ring oscillator are within 13--18% of the measured data. In general, the BSIM3v3.1 models provide improved accuracy over the SPICE Level 3 models. These results establish the following: (1) the MEMS-first approach produces functional CMOS devices integrated on a single chip with MEMS devices and (2) the devices manufactured in the approach have excellent transistor characteristics. Thus, the MEMS-first approach renders a solid technology foundation for customers designing in the technology.

  14. Monolithic integration of a MOSFET with a MEMS device

    DOE Patents [OSTI]

    Bennett, Reid (Albuquerque, NM); Draper, Bruce (Albuquerque, MN)

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  15. Future challenges for MEMS failure analysis. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Future challenges for MEMS failure analysis. Citation Details In-Document Search Title: Future challenges for MEMS failure analysis. MEMS processes and components are rapidly changing in device design, processing, and, most importantly, application. This paper will discuss the future challenges faced by the MEMS failure analysis as the field of MEMS (fabrication, component design, and applications) grows. Specific areas of concern for the failure analyst will also be discussed. MEMS components

  16. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Technical Report: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile

  17. Integrated superhard and metallic coatings for MEMS : LDRD 57300 final

    Office of Scientific and Technical Information (OSTI)

    report. (Technical Report) | SciTech Connect Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report. Citation Details In-Document Search Title: Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report. Two major research areas pertinent to microelectromechanical systems (MEMS) materials and material surfaces were explored and developed in this 5-year PECASE LDRD project carried out by Professor Roya Maboudian and her collaborators at the University

  18. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Technical Report: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile

  19. The Sandia MEMS Passive Shock Sensor : dormancy and aging. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect The Sandia MEMS Passive Shock Sensor : dormancy and aging. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : dormancy and aging. This report presents the results of an aging experiment that was established in FY09 and completed in FY10 for the Sandia MEMS Passive Shock Sensor. A total of 37 packages were aged at different temperatures and times, and were then tested after aging to determine functionality. Aging temperatures were

  20. Design and reliability of a MEMS thermal rotary actuator. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Design and reliability of a MEMS thermal rotary actuator. Citation Details In-Document Search Title: Design and reliability of a MEMS thermal rotary actuator. A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called

  1. MEMS Packaging - Current Issues and Approaches

    SciTech Connect (OSTI)

    DRESSENDORFER,PAUL V.; PETERSON,DAVID W.; REBER,CATHLEEN ANN

    2000-01-19

    The assembly and packaging of MEMS (Microelectromechanical Systems) devices raise a number of issues over and above those normally associated with the assembly of standard microelectronic circuits. MEMS components include a variety of sensors, microengines, optical components, and other devices. They often have exposed mechanical structures which during assembly require particulate control, space in the package, non-contact handling procedures, low-stress die attach, precision die placement, unique process schedules, hermetic sealing in controlled environments (including vacuum), and other special constraints. These constraints force changes in the techniques used to separate die on a wafer, in the types of packages which can be used in the assembly processes and materials, and in the sealing environment and process. This paper discusses a number of these issues and provides information on approaches being taken or proposed to address them.

  2. Strength of Polysilicon for MEMS Devices

    SciTech Connect (OSTI)

    Buchheit, Thomas E.; LaVan, David A.

    1999-07-20

    The safe, secure and reliable application of Microelectromechanical Systems (MEMS) devices requires knowledge about the distribution in material and mechanical properties of the small-scale structures. A new testing program at Sandia is quantifying the strength distribution using polysilicon samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated at Sandia's Microelectronic Development Laboratory was successfully measured using samples 2.5 microns thick, 1.7 microns wide with lengths between 15 and 25 microns. These tensile specimens have a freely moving hub on one end that anchors the sample to the silicon die and allows free rotation. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. The stress-strain curve is calculated using the specimen cross section and gage length dimensions verified by measuring against a standard in the SEM.

  3. MEMS-Based Pyroelectric Thermal Energy Scavenger

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-12-07

    A new type of microelectromechanical system (MEMS ) high efficiency heat energy converter, or scavenger, was invented by ORNL researchers. This device is based on temperature cycled cantilevered pyroelectric capacitors. The scavenger converts thermal waste heat to electricity that can be used to monitor sensor systems, or recycled to provide electrical power while simultaneously reducing thermal cooling requirements. Given the current state of global industry, which discharges over 100...

  4. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    analysis activities. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. You are accessing a document from the...

  5. The Sandia MEMS Passive Shock Sensor : FY08 failure analysis...

    Office of Scientific and Technical Information (OSTI)

    analysis activities. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 failure analysis activities. No abstract prepared. Authors: Walraven,...

  6. A 0.25 Picoliter Electrostatic MEMS Sideshooter Drop Dispenser...

    Office of Scientific and Technical Information (OSTI)

    Title: A 0.25 Picoliter Electrostatic MEMS Sideshooter Drop Dispenser. Abstract not provided. Authors: Galambos, Paul C. ; Pohl, Kenneth Roy ; Luck, David L. ; Czaplewski, David A. ...

  7. MEMS-based chemical analysis systems development at Sandia National...

    Office of Scientific and Technical Information (OSTI)

    MEMS-based chemical analysis systems development at Sandia National Labs. Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 77 ...

  8. Thin Silicon MEMS Contact-Stress Sensor Kotovksy, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    A; Horsley, D 42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  9. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    ACCURACY; ACTUATORS; CALIBRATION; DIAPHRAGM; SILICON; STABILITY; THICKNESS This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid...

  10. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    LIFETIME; PACKAGING; PERFORMANCE; SILICON; THICKNESS This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  11. Science-based MEMS reliability methodology. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Science-based MEMS reliability methodology. Citation Details In-Document Search Title: ... Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: ...

  12. Tunable Young's Modulus in Carbon MEMS using Graphene-based Stiffeners...

    Office of Scientific and Technical Information (OSTI)

    Tunable Young's Modulus in Carbon MEMS using Graphene-based Stiffeners. Citation Details In-Document Search Title: Tunable Young's Modulus in Carbon MEMS using Graphene-based...

  13. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  15. The challenge of reliability in MEMS commercialization

    SciTech Connect (OSTI)

    Miller, W.M.; Tanner, D.M.; Miller, S.L.

    1998-09-01

    MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost-effective solutions only if MEMS is demonstrated to be sufficiently reliable. This could prove to be a major challenge if it is not addressed concurrently with technology development. There are three requirements for a valid assessment of reliability: statistical significance, identification of fundamental failure mechanisms and development of techniques for accelerating them, and valid physical models to allow prediction of failures during actual use. While these already exist for the microelectronics portion of such integrated systems, the real challenge lies in the less well-understood micromachine portions and its synergistic effects with microelectronics. This requires the elicitation of a methodology focused on MEMS reliability, which the authors discuss. A new testing and analysis infrastructure must also be developed to meet the needs of this methodology. They describe their implementation of this infrastructure and its success in addressing the three requirements for a valid reliability assessment.

  16. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid interface loads over tens of thousands of load cycles. The contact-stress sensor is extremely thin (150 {mu}m) and has a linear output with an accuracy of {+-} 1.5% FSO. Authors: Kotovksy, J ; Tooker, A ; Horsley, D Publication Date: 2010-05-28 OSTI Identifier: 984646 Report Number(s): LLNL-PROC-433955 TRN: US201016%%1413 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation:

  17. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid interface loads over tens of thousands of load cycles. The contact-stress sensor is extremely thin (150 {mu}m) and has a linear output with an accuracy of {+-} 1.5% FSO. Authors: Kotovksy, J ; Tooker, A ; Horsley, D Publication Date: 2010-05-28 OSTI Identifier: 984646 Report Number(s): LLNL-PROC-433955 TRN: US201016%%1413 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation:

  18. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid interface loads over tens of thousands of load cycles. The contact-stress sensor is extremely thin (150 {mu}m) and has a linear output with an accuracy of {+-} 1.5% FSO. Authors: Kotovksy, J ; Tooker, A ; Horsley, D Publication Date: 2010-05-28 OSTI Identifier: 984646 Report Number(s): LLNL-PROC-433955 TRN: US201016%%1413 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation:

  19. Date | Open Energy Information

    Open Energy Info (EERE)

    Date Jump to: navigation, search Properties of type "Date" Showing 48 properties using this type. A Property:ASHRAE 169 End Date Property:ASHRAE 169 Start Date B Property:Building...

  20. MEMS Pro Design Kit - Parts A, B, and C

    Energy Science and Technology Software Center (OSTI)

    2006-06-15

    Part A: SUMMiT V design Kit components for use with MEMS Pro from SoftMEMS Part B: SUMMiT V remote DRC and gear generator source code for use with autocad visual basic Part C: SUMMiT V DRC rules source and test cases for Calibre DRC engine

  1. Pre-release plastic packaging of MEMS and IMEMS devices

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  2. RF-MEMS capacitive switches with high reliability

    DOE Patents [OSTI]

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  3. Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators Technology available for licensing: a method to create micro- and nanoscale mechanical oscillators with excellent frequency stability. Excellent frequency stability; provides a strategy for optimizing and engineering micro- and nanoscale devices Easy to fabricate at reduced cost PDF icon MEMS_NEMS_oscillators

  4. DATE: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DATE: DATE: PDF icon DATE: More Documents & Publications Policy Flash 2013-2 Policy Flash 2013-51 311 Notice Aquisition Letter 2013-05 Financial Assistance Letter 2013-03 Acquisition Letter No. AL 2013-03

  5. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  6. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect (OSTI)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

  7. MEMS inertial sensors with integral rotation means.

    SciTech Connect (OSTI)

    Kohler, Stewart M.

    2003-09-01

    The state-of-the-art of inertial micro-sensors (gyroscopes and accelerometers) has advanced to the point where they are displacing the more traditional sensors in many size, power, and/or cost-sensitive applications. A factor limiting the range of application of inertial micro-sensors has been their relatively poor bias stability. The incorporation of an integral sensitive axis rotation capability would enable bias mitigation through proven techniques such as indexing, and foster the use of inertial micro-sensors in more accuracy-sensitive applications. Fabricating the integral rotation mechanism in MEMS technology would minimize the penalties associated with incorporation of this capability, and preserve the inherent advantages of inertial micro-sensors.

  8. Mechanics and tribology of MEMS materials.

    SciTech Connect (OSTI)

    Prasad, Somuri V.; Dugger, Michael Thomas; Boyce, Brad Lee; Buchheit, Thomas Edward

    2004-04-01

    Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.

  9. The Sandia MEMS passive shock sensor : FY08 design summary. ...

    Office of Scientific and Technical Information (OSTI)

    passive shock sensor : FY08 design summary. Citation Details In-Document Search Title: The Sandia MEMS passive shock sensor : FY08 design summary. This report summarizes design and...

  10. Sandia Advanced MEMS Design Tools, Version 2.0

    Energy Science and Technology Software Center (OSTI)

    2002-06-13

    Sandia Advanced MEMS Design Tools is a 5-level surface micromachine fabrication technology, which customers internal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c)Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) d) Facilitate the processmore » of having MEMS fabricated at SNL e) Facilitate the process of having post-fabrication services performed While there exist some files on the CD that are used in conjunction with the software AutoCAD, these files are not intended for use independent of the CD. NOTE: THE CUSTOMER MUST PURCHASE HIS/HER OWN COPY OF AutoCAD TO USE WITH THESE FILES.« less

  11. Sandia Advanced MEMS Design Tools, V2.1

    Energy Science and Technology Software Center (OSTI)

    2002-02-04

    SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers intornal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standardmore » Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Nole that the customer must purchase his/her own copy of Aut0CAD to use with these files.« less

  12. Planarization techniques for MEMS: enabling new structures and enhancing manufacturability

    SciTech Connect (OSTI)

    Smith, J.H.

    1996-12-31

    Planarization techniques such as chemical-mechanical polishing (CMP) have emerged as enabling technologies for the manufacturing of multi- level metal interconnects used in high-density Integrated Circuits (IC). An overview of general planarization techniques for MicroElectroMechanical Systems (MEMS) and, in particular, the extension of CMP from sub-micron IC manufacturing to the fabrication of complex surface-micromachined MEMS will be presented. Planarization technique alleviates processing problems associated with fabrication of multi-level polysilicon structures, eliminates design constraints linked with non-planar topography, and provides an avenue for integrating different process technologies. The CMP process and present examples of the use of CMP in fabricating MEMS devices such as microengines, pressure sensors, and proof masses for accelerometers along with its use for monolithically integrating MEMS devices with microelectronics are presented.

  13. The MEMS Technology Revolution Is Beginning | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gyroscopes in the game controller are what senses your motion and is what makes these games possible. Yes, MEMS devices are all around us Be sure to check out the short clip...

  14. GE MEMS for LTE Advanced Mobile Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEMS Switch Technology Demonstrates Performance Which Could Meet Demands for Next-Generation "True 4G" Mobile Devices Click to email this to a friend (Opens in new window) Share on...

  15. Integrated superhard and metallic coatings for MEMS : LDRD 57300...

    Office of Scientific and Technical Information (OSTI)

    ... This approach was used to deposit copper, gold and rhodium onto polysilicon MEMS. A method to study the adhesion of these metals to polysilicon was developed. It was also shown ...

  16. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  17. Preliminary characterization of active MEMS valves. (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Preliminary characterization of active MEMS valves. Citation Details In-Document Search Title: Preliminary characterization of active MEMS valves. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  18. Development of MEMS based pyroelectric thermal energy harvesters

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Development of MEMS based pyroelectric thermal energy harvesters Citation Details In-Document Search Title: Development of MEMS based pyroelectric thermal energy harvesters The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high

  19. Development of MEMS based pyroelectric thermal energy harvesters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Development of MEMS based pyroelectric thermal energy harvesters Citation Details In-Document Search Title: Development of MEMS based pyroelectric thermal energy harvesters The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high

  20. Review of pyroelectric thermal energy harvesting and new MEMs based

    Office of Scientific and Technical Information (OSTI)

    resonant energy conversion techniques (Conference) | SciTech Connect Conference: Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques Citation Details In-Document Search Title: Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not

  1. MEMS-Based Pyroelectric Thermal Energy Scavenger - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search MEMS-Based Pyroelectric Thermal Energy Scavenger Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 2285 Final Fact Sheet.pdf (559 KB) Technology Marketing SummaryA new type of microelectromechanical system (MEMS ) high efficiency heat energy

  2. Ultra-lightweight telescope with MEMS adaptive optic for distortion

    Office of Scientific and Technical Information (OSTI)

    correction. (Technical Report) | SciTech Connect Technical Report: Ultra-lightweight telescope with MEMS adaptive optic for distortion correction. Citation Details In-Document Search Title: Ultra-lightweight telescope with MEMS adaptive optic for distortion correction. Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe

  3. Ultra-lightweight telescope with MEMS adaptive optic for distortion

    Office of Scientific and Technical Information (OSTI)

    correction. (Technical Report) | SciTech Connect Ultra-lightweight telescope with MEMS adaptive optic for distortion correction. Citation Details In-Document Search Title: Ultra-lightweight telescope with MEMS adaptive optic for distortion correction. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  4. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  5. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Patents [OSTI]

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  6. On-chip monitoring of MEMS gear motion. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: On-chip monitoring of MEMS gear motion. Citation Details In-Document Search Title: On-chip monitoring of MEMS gear motion. We have designed and fabricated a polysilicon ...

  7. High-G testing of MEMS mechanical non-volatile memory and silicon...

    Office of Scientific and Technical Information (OSTI)

    High-G testing of MEMS mechanical non-volatile memory and silicon re-entry switch. Citation Details In-Document Search Title: High-G testing of MEMS mechanical non-volatile memory...

  8. Differentially-driven MEMS spatial light modulator

    DOE Patents [OSTI]

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.

  9. In the OSTI Collections: MEMS | OSTI, US Dept of Energy, Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific and Technical Information MEMS View Past "In the OSTI Collections" Articles. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information MEMS as Sensors MEMS as Actuators The Characterization of MEMS References Research Organizations Reports available through SciTech Connect Patents available through DOepatents Report Cited in SciTech Connect Additional References The information-processing components in today's computers

  10. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect The use of a high-order MEMS deformable mirror in the Gemini Planet Imager Citation Details In-Document Search Title: The use of a high-order MEMS deformable mirror in the Gemini Planet Imager We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence

  11. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    SciTech Connect (OSTI)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.

  12. MEMS: A new approach to micro-optics

    SciTech Connect (OSTI)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  13. SAMPLE (Sandia Agile MEMS Prototyping, Layout tools, and Education)

    SciTech Connect (OSTI)

    Davies, B.R.; Barron, C.C.; Sniegowski, J.J.; Rodgers, M.S.

    1997-08-01

    The SAMPLE (Sandia Agile MEMS Protyping, Layout tools, and Education) service makes Sandia`s state-of-the-art surface-micromachining fabrication process, known as SUMMiT, available to US industry for the first time. The service provides a short cause and customized computer-aided design (CAD) tools to assist customers in designing micromachine prototypes to be fabricated in SUMMiT. Frequent small-scale manufacturing runs then provide SAMPLE designers with hundreds of sophisticated MEMS (MicroElectroMechanical Systems) chips. SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology) offers unique surface-micromachining capabilities, including four levels of polycrystalline silicon (including the ground layer), flanged hubs, substrate contacts, one-micron design rules, and chemical-mechanical polishing (CMP) planarization. This paper describes the SUMMiT process, design tools, and other information relevant to the SAMPLE service and SUMMiT process.

  14. Hidden Challenges to MEMS Commercialization: Design Realization and Reliability Assurance

    SciTech Connect (OSTI)

    McWhorter, P.J.; Miller, S.L.; Miller, W.M.; Rodger, M.S.; Yarberry, V.R.

    1999-01-20

    The successful commercialization of MicroElectroMechanical Systems (MEMS) is an essential prerequisite for their implementation in many critical government applications. Several unique challenges must be overcome to achieve this widespread commercialization. Challenges associated with design realization and reliability assurance are discussed, along with approaches taken by Sandia to successfully overcome these challenges.

  15. Sandia Advanced MEMS Design Tools, Version 2.2.5

    Energy Science and Technology Software Center (OSTI)

    2010-01-19

    The Sandia National Laboratories Advanced MEMS Design Tools, Version 2.2.5, is a collection of menus, prototype drawings, and executables that provide significant productivity enhancements when using AutoCAD to design MEMS components. This release is designed for AutoCAD 2000i, 2002, or 2004 and is supported under Windows NT 4.0, Windows 2000, or XP. SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers internal and external tomore » Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standard Parts Library) New features in this version: AutoCAD 2004 support has been added. SafeExplode ? a new feature that explodes blocks without affecting polylines (avoids exploding polylines into objects that are ignored by the DRC and Visualization tools). Layer control menu ? a pull-down menu for selecting layers to isolate, freeze, or thaw. Updated tools: A check has been added to catch invalid block names. DRC features: Added username/password validation, added a method to update the user?s password. SNL_DRC_WIDTH ? a value to control the width of the DRC error lines. SNL_BIAS_VALUE ? a value use to offset selected geometry SNL_PROCESS_NAME ? a value to specify the process name Documentation changes: The documentation has been updated to include the new features. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  16. DATE SUBMITTED: GRADE LEVEL:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two total hours per visit. For more students than that, please plan a visit on another date. To make a request, please complete the form below and submit it to...

  17. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  18. TO: FILE DATE

    Office of Legacy Management (LM)

    tlEi?ORANDUH TO: FILE DATE FFtOil: c ----'- Y '%d 6- ----_----_ SUBJECT: SITE NAME: ----------STATE: Owner contacted 0 yes qno; if yes, date contacted ---------__-- TYPE OF OPERATION ----~_--_--~----_ &Research & Development @ Praduction scale testing. 0 Pilat Scale 0 Bench Scale Process a Theoretical Studies 0 Sample & Analysis tin Facility Type R Manufacturing IJ University 0 Research Organization IJ Gavernment Sponsored Facility 0 Other ----------------' --~- 0 Production E

  19. TO: FILE DATE------

    Office of Legacy Management (LM)

    DATE------ la Fp7 ---------__ OWNER(.=) m-----z- Past: -----_------------------ Current: ------------i----------- Owner c:nntacted q ye' s y "0; !' L-----J if yea, date contacted TYPE OF OPERATION -------_------___ 0 Research & Development cl Facility Type 0 Production scale testins 0 Pilot Scale 0 Bench Scale Process E Theoretical Studies Sample SI Analysis [7 Manufacturing i University $ Resear.& Organization Government Sponsored Facility 0 Other -~------------------- 0 Production

  20. MEMORANDUM TO: FILE DATE-

    Office of Legacy Management (LM)

    MEMORANDUM TO: FILE DATE- SUBJECT:' g 1, .,;,A 5 ti ~I' ow, Y. ; + SITE NAME: CITY: ---@h---f&- -________ STATE: -' -;L- 9kE%;f' 4N; -' . PlrrrGj current: ------------------------ ------------- Owner contacted 0' yes if yes, date contacted TYPE OF OPERATION ---_----------_-- q Research & Development .o Production scale testing a Pilot scale 0 Bench Scale Process 0 Thearetical Studies 0 Sample 84 Analysis IJ Production Cl Disposal/Storage Q Prime 0 Subcontract& 0 Purchase Order 0

  1. The Sandia MEMS passive shock sensor : FY08 design summary. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: The Sandia MEMS passive shock sensor : FY08 design summary. Citation Details In-Document Search Title: The Sandia MEMS passive shock sensor : FY08 design summary. This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the purposes and major differences between design revisions but with a focus on Revisions 4 through 7 and the work performed in fiscal

  2. Calibration of an interfacial force microscope for MEMS metrology : FY08-09

    Office of Scientific and Technical Information (OSTI)

    activities. (Technical Report) | SciTech Connect Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities. Citation Details In-Document Search Title: Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities. Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008).

  3. HEMORANDUH TO: FILE DATE

    Office of Legacy Management (LM)

    HEMORANDUH TO: FILE DATE 1123 lLjl ---WV-------------- FROM: P. s&w+ -------v-----s-- SUBJECT: lJ+ - e;& SITE NAME: LJo"zL - /L,' de Cd -J--h=- ALTERNATE l --e-e-- ------w------- ---,,,' ,m--, NAME: ---------------------- CITY: LL-pL~ ------------ ------------- STATE3 e--w-- OWNER tS) -----w-- Past I --k-!!.l~ -pa L . -v-----w------- Current: Owner contac?-ed 0 yes 0 no; if yes, I+Lff A zid;&m - -------------------------- date contacted ------B--m--- TYPE OF OPERATION

  4. MEMORANDUfl J: FILE DATE

    Office of Legacy Management (LM)

    J: FILE DATE // //r /so -----------w------m FROM: 9. 34oyc -w--------v----- SUBJECT: D3 Bo;s CL&;C J mL-;+J; - Rcc cap 049 /'A :j$: &336;s L-.fh~ w-f L-1 ALE"nirTE __ ------------- --- ---_------------------ CITY: &u+M- - &. -w---v------ ---B-------w STATE: 0 h' -a---- OWNER(S) --pi::;- l>cl, b af.5 CA.-*>J CD Current: Gr;W i- ~U~&;P~ -------------,,' ,-,,,,-, Owner contacted 0 yes jg no; -------------------------- if yes, date contacted ------m------ TYPE OF

  5. Piston-Driven Fluid Ejectors In Silicon Mems

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Jokiel, Jr., Bernhard (Albuquerque, NM); Jakubczak II, Jerome F. (Rio Rancho, NM)

    2005-05-03

    A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.

  6. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  7. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  8. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality...

    Office of Scientific and Technical Information (OSTI)

    readiness. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness....

  9. Research and Development of Non-Spectroscopic MEMS-Based Sensor...

    Office of Scientific and Technical Information (OSTI)

    Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Citation Details In-Document Search Title: Research and Development of ...

  10. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    SciTech Connect (OSTI)

    Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

  11. A MEMS platform for in situ, real-time monitoring of electrochemically...

    Office of Scientific and Technical Information (OSTI)

    Title: A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Authors: Pomerantseva, Ekaterina ; Jung, ...

  12. Next-gen RF MEMS Switch for a Smarter, Faster Internet of Things...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RF MEMS Switch for a Smarter, Faster Internet of Things Karen Lightman 2014.03.28 Big Data. Internet of Things. Quantified Self. Connected Home. Connected City. These...

  13. MEMS Switches Are XS in Size, XXL in Power | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    handling capability by nearly 2 orders of magnitude. This enables our MEMS microswitch devices to serve a wide range of applications from handheld electronics such as cell phones,...

  14. Performance and characterization of a MEMS-based device for alignment...

    Office of Scientific and Technical Information (OSTI)

    of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics Xu, Weihe Brookhaven National Laboratory, Upton, NY, 11973 USA; Lauer, Kenneth...

  15. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  16. Selective W for coating and releasing MEMS devices

    SciTech Connect (OSTI)

    Mani, S.S.; Fleming, J.G.; Sniegowski, J.J.; Boer, M.P. de; Irwin, L.W.; Walraven, J.A.; Tanner, D.M.; Lavan, D.A.

    2000-01-04

    Two major problems associated with Si-based MEMS (MicroElectroMechanical Systems) devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a CVD (Chemical Vapor Deposition) process that selectively coats MEMS devices with tungsten and significantly enhances device durability. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable. This selective deposition process results in a very conformal coating and can potentially address both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through the silicon reduction of WF{sub 6}. The self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. The tungsten is deposited after the removal of the sacrificial oxides to minimize stress and process integration problems. Tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. The wear resistance of selectively coated W parts has been shown to be significantly improved on microengine test structures.

  17. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect (OSTI)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D.; Ashurst, William Robert; Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  18. DATE: TO: FROM:

    Broader source: Energy.gov (indexed) [DOE]

    POLICY FLASH 2015-30 DATE: TO: FROM: June 18, 2015 Procurement Directors/Contracting Officers ~~-- Chief Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Clarification on the Drug Testing Custody and Control Form for Department of Energy Contractors SUMMARY: Effective immediately, please ensure that all DOE contractors use the Forensic Drug Testing Custody and Control Form for their drug testing programs to comply with the

  19. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    -.. 37qg: MEMORANDUM TO: FILE DATE =b-- FROM: ---L- _------__ u . SUBJECT: SITE ACl= ALTERNATE NAME: -_______-~-----------------NA~E:__( CITY:--~---------_-STATE:-~~ (2 OWNE!sI_SL f Past- L&cl= w ------------------- ----- Current- w buL.r - ------------ ownq cm-ltacted 0 yes @ "no; if yes, data cnntacte TYPE OF OPERATION -------------_~-~ q Research & Development 0 Production %.cale testing 0 Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample 84 Analysis 0 Production

  20. MEtlORANDUM DATE

    Office of Legacy Management (LM)

    iM: iy&j> -------------- MEtlORANDUM DATE .----w-w-- SUBJECTS ALTERNCITE . NAMEr CITY8 -~~i_c;cF_g-~ ___- -----STfiTE~ --------------------- -EL OWNER(S) -------- Past x ------------------------ Currrnt: -------------------------- Owner contacted 0 yes 0 no; if yes, datr contacted ----------B-B TYPE OF OPERATION we s- ------------- Research & Development E Facility Type 0 Production scale testing 0 Pilot Scale ti Bench Seal e Process 0 Theoretical Studies 0 Sample & CInalyris

  1. United States Government DATE:

    Office of Legacy Management (LM)

    5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The

  2. Issuance Date:: February

    Office of Legacy Management (LM)

    Issuance Date:: February 11, 1966 POST-SHOT HYDROLOGI C SAFETY 68296 VUF-1014 FINAL REPORT FALLON, NEVADA OCTOBER 26, 1963 Hazleton-Nuclear Science Corporation October 30, 1965 SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE DEPARTMENT OF DEFENSE AND THE U. S.ATOMIC ENERGY COMMISSION VELA UNIFORM PROJECT LEG A L NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A.

  3. DATE: REPLY TO

    Office of Legacy Management (LM)

    DOE F 1325.8 (NW ed States Governhent ilmemorandum DATE: REPLY TO ' bPfl29 1993 Al-fN OF: EM-421 (W. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at the Former Associate Aircraft Site, Fairfield, Ohio TO: Manager, DOE Oak Ridge Field Office This is to notify you that the Former Associated Aircraft Site in Fairfield, Ohio, is designated,for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). This notification does not constitute a FUSRAP baseline

  4. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    FROt+: --L---L---- 3 Lev' vl/\e SUBJECT:' cl; vul;v\q+; 011\ ' ;peco~yyadh--i~o~ :j$E:, CkGme C "TEz!?% ------------- ~' ~~~~f"-___--_-~~-_------- ----------------- CITY: Ch' 1 c-440 ST&TE- I: L - ------ Curr=ntr__--___-__--______________ Owner contacted 0 yes 9 no; if yes, date contacted TYPE OF OPERATION -------------_--- ~Research & Development .m val\/e Qppl p 4' q Facility Type 0 Hlemll s=tii es 0 Production eta e testing L-h Ic~o*/vl 0 Pilot Scale' q Manufacturing 0 Bench

  5. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    FROH: ~+dL :fi:k ALTERNATE F~-5~iM-~~IcRe-C~f~-~----NAME: -------.e-- ____ OWNER(S) ------__ past: ~~-~Y~~~~-~~~~~Current: --x+-!!xh)- ___________ l- Owner c:nntacted q yes xno; if yea, date contacted TYPE OF OPERATION -------------____ BR~+earch & Development -a Facility Type @?..Pdtt. r'o UC Ion scale testing 0 Pilot Scale @ Manufacturing 0 Bench Scale Process q University a Theoretical Studies 0 Research Organization 0 Sample & Analysis 0 Government Sponsored Facility 0 Other

  6. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    /I // /s 3 ------------------- FROM: D. I&+ ---------------- SUBJECT: 5;le r 3-&-F.. SITE /+yNJs l3 ALTERNATE NAME: -w---- -SF ------------------------------ NAME: CITY: c ;A< ;,+,ZJ+ ------------,-L-----,,,,,, STATE: OH --w-w- OWNER(S) -w---s-- past: /" ' A--F5 ---w-m- -e----v-------- Current: 0~. A-+A.~~ -------------------------- Owner contacted 0 yes 0 no; if yes, date contacted ------------- TYPE OF OPERATION -------e--------w 0 Research & Development 0 Facility Type 0

  7. MEMORANDUM TO: FILE DATE

    Office of Legacy Management (LM)

    5/22/w ------..------------- FROM: D- f&u+ ---------------- SUBJECT: E/;-+&o.. ReC*-C.AB&;O* +L /z&J; &DC,, /Ptrr; CLonr z-r. SITE NAME: _ ALTERNATE ----------WV-- --------------------- NAME: EAT ---- ------------------ CAY: r-led 4' or k -------------------------- STATE: ti Y VW---- OWNER tS) -------- Past: ---Cl&zt.t.r-----~-~- ---- =urr=nt: ti& LPdA Owner cnntacted 0 yes mo; i+ ye8, -------------------------- date contacted ------------- TYPE OF OPERATION

  8. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  9. Tunable cavity resonator including a plurality of MEMS beams

    DOE Patents [OSTI]

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  10. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOE Patents [OSTI]

    Kholwadwala, Deepesh K. (Albuquerque, NM); Rohrer, Brandon R. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Wheeler, Jason W. (Albuquerque, NM); Hobart, Clinton G. (Albuquerque, NM); Givler, Richard C. (Albuquerque, NM)

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  11. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings - Spring 2014 Date Times Group Speakers Tues, 1-13 2:30-3:30pm Faculty Meeting Fri, 1-24 12:30-1:30pm Group Research Meeting Emmanuel Giannelis Fri, 1-31 12:30-1:30pm Student & Postdoc Mtg Apostolos Enotiadis; Nikki Ritzert & Megan Holtz Fri, 2-7 12:30-1:30pm Group Research Meeting CHESS Mon, 2-10 2:30-3:30pm Faculty Meeting Will Dichtel Fri, 2-14 12:30-1:30pm Student & Postdoc Mtg Frank DiSalvo Fri, 2-21 12:30-1:30pm Group Research Meeting Lynden Archer Fri, 2-28

  12. High-G testing of MEMS mechanical non-volatile memory and silicon re-entry

    Office of Scientific and Technical Information (OSTI)

    switch. (Technical Report) | SciTech Connect Technical Report: High-G testing of MEMS mechanical non-volatile memory and silicon re-entry switch. Citation Details In-Document Search Title: High-G testing of MEMS mechanical non-volatile memory and silicon re-entry switch. Two different Sandia MEMS devices have been tested in a high-g environment to determine their performance and survivability. The first test was performed using a drop-table to produce a peak acceleration load of 1792 g's

  13. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect (OSTI)

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  14. Shock margin testing of a one-axis MEMS accelerometer. (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Shock margin testing of a one-axis MEMS accelerometer. Citation Details In-Document Search Title: Shock margin testing of a one-axis MEMS accelerometer. Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline

  15. Posting Date: July 16, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 16, 2015 Posting Close Date: TBD North American Industry Classification System (NAICS) code for the request: 812332 Estimated Subcontract/PO Value TBD Estimated Period of Performance 8-03-15 Estimated RFP/RFQ Release Date: TBD Estimated Award Date: FY 2018 Competition Type: Open Buyer Contact Email: pbeauparlant@lanl.gov Title: Radioactive Laundry and Respirator Services Description of Product or Service Required Radioactive Laundry and Respirator Services * Current forecasted bid

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    The Sandia MEMS passive shock sensor : FY08 design summary.","Walraven, Jeremy Allen; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp,...

  17. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Predicting fracture in micron-scale polycrystalline silicon MEMS structures.","Hazra, Siddharth S. (Carnegie Mellon University, Pittsburgh, PA); de Boer, Maarten Pieter (Carnegie...

  18. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    CA","USDOE","42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON",,"This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    PACKAGING; PERFORMANCE; SILICON; THICKNESS",,"This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  20. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    environment and reactor core pulse tests, we initiated radiation testing of several MEMS piezoresistive accelerometers and pressure transducers to ascertain their radiation...

  1. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    US201114%%341","Conference",,,"Conference: Presented at: MEMS Adaptive Optics V, San Frnacisco, CA, United States, Jan 27 - Jan 27, 2011","Lawrence Livermore...

  2. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics","Xu, Weihe Brookhaven National Laboratory, Upton, NY, 11973 USA; Lauer, Kenneth...

  3. Posting Date: July 16, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 16, 2015 Posting Close Date: TBD North American Industry Classification System (NAICS) code for the request: 812332 Estimated SubcontractPO Value TBD Estimated Period of...

  4. Inertial sensing microelectromechanical (MEM) safe-arm device

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM); Wooden, Susan M. (Sandia Park, NM)

    2009-05-12

    Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.

  5. High-G testing of MEMS mechanical non-volatile memory and silicon...

    Office of Scientific and Technical Information (OSTI)

    The first test was performed using a drop-table to produce a peak acceleration load of 1792 g's over a period of 1.5 ms. For the second test the MEMS devices were assembled in a ...

  6. The use of a high-order MEMS deformable mirror in the Gemini...

    Office of Scientific and Technical Information (OSTI)

    Title: The use of a high-order MEMS deformable mirror in the Gemini Planet Imager We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines ...

  7. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect (OSTI)

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  8. Radiocarbon Dating, Memories, and Hopes

    DOE R&D Accomplishments [OSTI]

    Libby, W. F.

    1972-10-01

    The history of radiocarbon dating from 1939 to the present is reviewed. The basic principles of radiocarbon dating are that cosmic rays make living things radioactive with {sup 14}C to a certain level fixed by the environment and that at death the intake of food stops so no replenishment of the {sup 14}C steadily lost by the immutable decay occurs. Therefore measurement of the degree of decay gives the time lapse since death, i.e., the radiocarbon age. The equipment developed and experiments performed to measure the specific activity of specimens to be dated are described. The results obtained by world-wide experimenters are discussed. These showed that on simultaneity radiocarbon dating is apparently reliable but that absolute dates may be incorrect by as much as 600 to 700 y. The value of radiocarbon dating to archaeologists, geologists, climatologists, and historians is stressed. (LCL)

  9. Method and system for automated on-chip material and structural certification of MEMS devices

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  10. Integration of optoelectronics and MEMS by free-space micro-optics

    SciTech Connect (OSTI)

    WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    2000-06-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

  11. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for

    Office of Scientific and Technical Information (OSTI)

    Targeted Gas Detection (Technical Report) | SciTech Connect Technical Report: Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Citation Details In-Document Search Title: Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant

  12. Performance and characterization of a MEMS-based device for alignment and

    Office of Scientific and Technical Information (OSTI)

    manipulation of x-ray nanofocusing optics (Journal Article) | DOE PAGES DOE PAGES Search Results Published Article: Performance and characterization of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics Title: Performance and characterization of a MEMS-based device for alignment and manipulation of x-ray nanofocusing optics Authors: Xu, Weihe [1] Search DOE PAGES for author "Xu, Weihe" Search DOE PAGES for ORCID "0000000278479336" Search

  13. A MEMS platform for in situ, real-time monitoring of electrochemically

    Office of Scientific and Technical Information (OSTI)

    induced mechanical changes in lithium-ion battery electrodes (Journal Article) | SciTech Connect A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Citation Details In-Document Search Title: A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes Authors: Pomerantseva, Ekaterina ; Jung, H. ; Gnerlich, Markus ; Gerasopoulos, K ; Ghodssi,

  14. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    DOE Patents [OSTI]

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  15. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for

    Office of Scientific and Technical Information (OSTI)

    Targeted Gas Detection (Technical Report) | SciTech Connect Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Citation Details In-Document Search Title: Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and

  16. Estimated Cost Description Determination Date:

    Office of Environmental Management (EM)

    Revised and posted 2/10/2011 *Title, Location Estimated Cost Description Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain $50,000 FONSI: uncertain Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $70,000 Attachment: Memo, Moody to Marcinowski, III, SUBJECT: NEPA 2011 APS for DOE-SRS, Dated: Annual NEPA Planning Summary Environmental Assessments (EAs) Expected to be Initiated in the Next

  17. Dates Fact Sheet.cdr

    Office of Environmental Management (EM)

    DATES is a detection and security information/event management (SIEM) solution enabling asset owners to protect their energy control systems at the network, host, and device level from cyber attacks. DATES complements traditional, signature-based detection with multiple detection algorithms, including model- based and flow anomaly detection and cross-site attack correlation. The DATES detection and SIEM solution gives operators succinct and intuitive attack visualization, with attacks

  18. Dates Fact Sheet.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DATES is a detection and security informationevent management (SIEM) solution enabling asset owners to protect their energy control systems at the network, host, and device level ...

  19. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; Zubia, David

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  20. Calibration of an interfacial force microscope for MEMS metrology...

    Office of Scientific and Technical Information (OSTI)

    Authors: Houston, Jack E. ; Baker, Michael Sean ; Crowson, Douglas A. ; Mitchell, John Anthony ; Moore, Nathan W. Publication Date: 2009-10-01 OSTI Identifier: 1001011 Report ...

  1. Calibration of an interfacial force microscope for MEMS metrology...

    Office of Scientific and Technical Information (OSTI)

    uncertainty in each method. Authors: Houston, Jack E. ; Baker, Michael Sean ; Crowson, Douglas A. ; Mitchell, John Anthony ; Moore, Nathan W. Publication Date: 2009-10-01 OSTI...

  2. Property:Deployment Date | Open Energy Information

    Open Energy Info (EERE)

    Deployment Date Jump to: navigation, search Property Name Deployment Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DeploymentDate&oldid...

  3. Property:Achievement Date | Open Energy Information

    Open Energy Info (EERE)

    Achievement Date Jump to: navigation, search Property Name Achievement Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:AchievementDate&ol...

  4. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300M Estimated Period of Performance: 5 Years Estimated RFP/RFQ Release Date: 2 nd QTR 2018 Estimated Award Date: TBD Competition Type: TBD Buyer Contact Email: pia@lanl.gov Title: Staff Augmentation Services Description of Product or Service Required Staff Augmentation Services (Current subcontract expires 2019) * Current forecasted bid opportunities are subject to change or cancellation due to scope, mission, or funding requirements. * Some procurements are reserved for small businesses. Note

  5. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700K Estimated Period of Performance: TBD Estimated RFP/RFQ Release Date: FY 2018 Estimated Award Date: TBD Competition Type: TBD Buyer Contact Email: m_armijo@lanl.gov Title: Poly Com Phones Description of Product or Service Required Poly Com Phones (Current subcontracts expires 2019) * Current forecasted bid opportunities are subject to change or cancellation due to scope, mission, or funding requirements. * Some procurements are reserved for small businesses. Note the competition type on the

  6. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    238210 Estimated Subcontract/PO Value: TBD Estimated Period of Performance: TBD Estimated RFP/RFQ Release Date: FY 2016 Estimated Award Date: TBD Competition Type: TBD Buyer Contact Email: brianhornung@lanl.gov Title: Fire Alarm Project Support Description of Product or Service Required Fire Alarm Project Support * Current forecasted bid opportunities are subject to change or cancellation due to scope, mission, or funding requirements. * Some procurements are reserved for small businesses. Note

  7. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  8. MEMORANDUM I TO: FILE DATE

    Office of Legacy Management (LM)

    MEMORANDUM I TO: FILE DATE -----_-_- FaOM: ~~,~hkcid!,~- ' ALTERNATE CITY: I\ptw)a.yk --~---_--___-~--~---______ STATE: I current: ------------_------_-~~~~~ if yes, date contacted ____ TYPE OF OPERATION -_---_---------__ 0 Research & Development 6 Facility Type 0 Production scale testing 0 Pilat Scale 0 Bench Scale Process 0 Theoretical Studies Sample $ rraductian & Analysis a Manufacturing I 0 University I (1 Research Organization 0 Government Sponao&ed Facility 0 Cither I

  9. OTS NOTE DATE: TO: FROM:

    Office of Legacy Management (LM)

    TO: FROM: March 25, 1991 A. Williams D. stout P SUBJECT: Elimination Recommendation for the Star Cutter Corporation The .attached memorandum and supporting documents are the basis for our recommendation to eliminate the former Star Cutter Corporation site from further consideration under FUSRAP. The site is located in Farmington Hills, Michigan. Documents discovered to date which indicate use or handling of radioactive material by Star Cutter consist of two Analytical Data Sheets, dated June

  10. Dated:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERTIFICATE OF SERVICE I hereby certify that a copy of the STIPULATED JOINT MOTION TO STAY THE SCHEDULING ORDER has been sent electronically to the following on May 12, 2015:...

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAES-061 292012 Rev. 04 CAES Microscopy & Characterization Suite (MaCS) Service Request Form Page 1 of 2 Contact Information: Requestor Name: *Researcher Name: Requestor Email:...

  12. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28 am, Mar 26, 2012 119 X X RPP-40149-VOL1, Rev. 2 Integrated Waste Feed Delivery Plan Volume 1 - Process Strategy E. B. West Washington River Protection Solutions, LLC P. J. Certa, T. M. Hohl, J. S. Ritari, B. R. Thompson Washington River Protection Solutions, LLC C. C. Haass Columbia Nuclear International, LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/ECN: UC: Cost Center: Charge Code: B&R Code: Total Pages: Key Words: Abstract: The Integrated Waste Feed

  13. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7:53 am, Mar 26, 2012 X X 131 RPP-40149-VOL2, Rev. 2 Integrated Waste Feed Delivery Plan Volume 2 - Campaign Plan J. S. Ritari Washington River Protection Solutions, LLC P. J. Certa, T. M. Hohl, B. R. Thompson, E. B. West Washington River Protection Solutions, LLC C. C. Haass Columbia Nuclear International, LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/ECN: UC: Cost Center: Charge Code: B&R Code: Total Pages: Key Words: Abstract: The Integrated Waste Feed

  14. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8:05 am, Mar 26, 2012 X X 189 RPP-40149-VOL3, Rev. 2 Integrated Waste Feed Delivery Plan Volume 3 - Project Plan J. S. Rodriguez Washington River Protection Solutions, LLC J. W. Kelly, D. C. Larsen Washington River Protection Solutions, LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/ECN: UC: Cost Center: Charge Code: B&R Code: Total Pages: Key Words: Abstract: The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CX Posting No.: DOE-ID-INL-10-008 SECTION A. Project Title: Maintenance and Modification of Well TRA-08 SECTION B. Project Description: TRA-08, a groundwater monitoring well...

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcontractor equipment such as generators, welders, etc. will be required to meet the opacity requirements established in the IDAPA regulations and INL Title V air permit....

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Nuclear Fabrication Consortium SECTION B. Project Description The mission of the NFC will be accomplished through both public and private funding. The list below outlines the programs that have identified for initiation under the initial DOE funding. Additional programs are envisioned and will be proposed, subject to any applicable budget constraints, to DOE-NE as they become known to EWI, the NFC, and DOE. 1. Automation of Advanced Non-Destructive Evaluation (NDE)

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 SECTION A. Project Title: Innovative Manufacturing Process for Improving the Erosion/Corrosion Resistance of Power Plant Components via Powder Metallurgy & Hot Isostatic Processing Methods - Electric Power Research Institute SECTION B. Project Description The objective of this project is to conduct the necessary design, processing, manufacturing, and validation studies to assess powder metallurgy/hot isostatic processing (PM/HIP) as a method to produce very large near-net shaped (NNS)

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-006 SECTION A. Project Title: Design of SC Walls and Slabs for Impulsive Loading - Purdue University SECTION B. Project Description Purdue University proposes to analytically investigation the behavior and strength of modular steel-plate composite (SC) slabs and floor systems, analytically investigate the behavior and performance of SC structures subjected to impulsive loading including blast effects, experimentally verify the findings of analytical investigations, and develop design

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Full-field Temperature and Strain Measurements at Extreme Temperatures - Utah State University SECTION B. Project Description Utah State University proposes to purchase and install a multi-camera system for recording simultaneous full-field temperature and strain measurements for thermos-mechanically loaded nuclear materials under extreme environments. SECTION C. Environmental Aspects / Potential Sources of Impact The action consists of purchasing equipment to be used

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 SECTION A. Project Title: High Temperature Melt Solution Calorimeter: The Thermodynamic Characterization of Oxides n Nuclear Energy - Clemson University SECTION B. Project Description Clemson University proposes to purchase a High Temperature Melt Calorimeter that will support ongoing work to advance the fundamental understanding of high-temperature ceramic materials used in nuclear energy applications through the use of melt solution calorimetry resulting in uniquely determined experimental

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 SECTION A. Project Title: Enhance Nuclear Education and Training at Aiken Technical College SECTION B. Project Description Aiken Technical College proposes to purchase and install a flow loop trainer to educate and train students for careers in the nuclear industry. SECTION C. Environmental Aspects / Potential Sources of Impact Chemical Use/Storage / Chemical Waste Disposal - No waste is generated during the manufacturing process, however each machine is equipped with a closed loop system

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Nuclear Engineering and Science Equipment for Strategic Fuels Analysis Research in the Nuclear and Radiological Engineering Program at the Georgia Institute of Technology SECTION B. Project Description Georgia Tech proposes to purchase and install an imaging system to go with the existing x-ray source in a fully equipped irradiation laboratory, addition of spectroscopic instruments to perform energy resolution measurements in supplement of imaging, and tissue

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 SECTION A. Project Title: Development of a Research and Education Facility for Evaluation of Environmental Degradation of Advanced Nuclear Materials in Simulated LWR Conditions - University of Idaho SECTION B. Project Description The University of Idaho proposes to a) upgrade the existing static autoclave system in order to simulate the light water reactor conditions without contaminating the high temperature waster with corrosion products; b) install a rotating a cylinder system in the

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: In situ Raman Spectroscopy to Enhance Nuclear Materials Research and Education - University of Nevada Reno SECTION B. Project Description The University of Nevada Reno proposes to purchase and install a Raman Spectrometer on the existing water loop for in situ analysis of materials to be used to characterize the surface chemistry of various alloys, understand the effect of mechanical stress on corrosion behavior of alloys, and improve nuclear education at UNR. SECTION

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Nuclear Materials Science and Instrumentation Research Infrastructure Upgrade at Pennsylvania State University SECTION B. Project Description Pennsylvania State University proposes to purchase and install an inductively coupled plasma - atomic emission spectrometer (ICP- AES), glass melting furnace and crucible, and data acquisition system for use in research and education. SECTION C. Environmental Aspects / Potential Sources of Impact Chemical Use/Storage / Chemical

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Equipment for Education, Training, and Research in Advanced Instrumentation for Fluoride Salt Cooled High-Temperature Reactors (FHRs) at The Ohio State University SECTION B. Project Description Ohio State University proposes to purchase and install the equipment necessary to develop and benchmark a non-invasive velocity measurement technique for salt based on short-lived activation products decay, a Fourier Transform Infrared spectrometer to measure the optical

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Impact Test Machine for Nuclear Containment Research - University of Houston SECTION B. Project Description The University of Houston proposes to upgrade the university's Universal Element Tester with an Impact Test Machine to advance the study on impact and shear behavior of the nuclear containment structure. SECTION C. Environmental Aspects / Potential Sources of Impact The action consists of purchasing equipment to be used in research and teaching. The action would

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Integrated Approach to Fluoride High Temperature Reactor (FHR) Technology and Licensing Challenges - Georgia Tech SECTION B. Project Description Georgia Tech, in collaboration with Ohio State University, Texas A&M, Texas A&M - Kingsville, Oak Ridge National Laboratory and several industry and international partners, proposes to follow an integrated approach to address several key technology gaps associated with fluoride high temperature reactors, thereby

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Design/Prototype Fabricate Rail Car for High Rad Mat Transport - Kasgro Rail Corp. SECTION B. Project Description The purpose of this proposal is to obtain a certification from the American Association of Railroads (AAR) on a fully constructed and tested railcar system for transporting spent nuclear fuel (SNF). The transport system will allow transporting SNF by rail to occur at normal rail speeds thus eliminating delays on rail lines and all more rapid transport of

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-085 SECTION A. Project Title: Deep Borehole Field Test (DBFT) Characterization Borehole Drilling and Testing, Pierce County, N.D. - Battelle Memorial Institute SECTION B. Project Description The primary goal of the DBFT program is to drill a 5,000-meter-deep characterization borehole with a 3,000-meter open-hole section across crystalline bedrock, and to conduct scientific testing to characterize the hydrogeologic, geochemical, and geomechanical properties of the near-borehole host rock. The

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 SECTION A. Project Title: Environmental Surveillance, Education, and Research Program - Wastren Advantage, Inc. SECTION B. Project Description Wastren Advantage, Inc. (WAI) proposes to continue the Environmental Surveillance, Education, and Research (ESER) program. Specific activities to be carried out may include, but are not limited to actions in the nature of sampling, collection, and characterization of air, water, soil, flora and fauna as well as measurement of ambient radiation

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-002 SECTION A. Project Title: Experimental Verification of Post-Accident iPWR Aerosol Behavior - Electric Power Research Institute, Inc. SECTION B. Project Description EPRI proposes to perform a series of experiments to quantify the most influential decontamination factors and their effect on a class of integrated Pressurized Water Reactor (iPWR) containment designs. The experimental design and method includes development of a thermal hydraulic test loop with an integral reactor and

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    02 SECTION A. Project Title: INL - Off-Road ATV Use In Support of Engineering Surveys SECTION B. Project Description The proposed action will allow for off-road ATV use near T-24 and T-25 at the Idaho National Laboratory Site. The ATV(s) will be used to survey in support of engineering design for a proposed upgraded haul road within the INL Site. Currently, an Environmental Assessment is being prepared to address upgrading either T-24 or T-25 to establish a site transportation route for the

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 CX Posting No.: DOE-ID-ICP-12-002 SECTION A. Project Title: ICP Routine Maintenance SECTION B. Project Description The purpose of this document is to address actions that meet the intent of the categorical exclusion (CX) B1.3 as described in 10 CFR 1021, Appendix B to Subpart D. Both typical and non-typical types of actions, such as routine maintenance, minor modifications, and custodial services required to support safe and efficient plant operations even if performed on an infrequent basis

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-003 SECTION A. Project Title: CPP-684 - Remote Analytical Laboratory Facility Modifications SECTION B. Project Description The proposed activities are intended to render CPP-684 Remote Analytical Laboratory (RAL) as a limited access area by removing existing operational functions that are currently performed in the facility. In general, the activities will involve (1) removing the need for building heat and overall reduction of power consumption; (2) converting the existing fire protection

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-005 SECTION A. Project Title: INTEC - U-233 Waste Stream Disposition SECTION B. Project Description The proposed action will transfer 171 drums of U-233 waste from the Advanced Mixed Waste Treatment Project (AMWTP) to INTEC for verification, treatment, and repackaging for final disposition at the Nevada National Security Site (NNSS). The U233 drums are a portion of waste historically managed as transuranic as part of the 1995 Idaho Settlement Agreement.The waste management actions will be

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-001 SECTION A. Project Title: INL - Idaho Completion Project Environmental and Regulatory Services Activities SECTION B. Project Description The proposed action addresses the site-wide sampling and monitoring and waste characterization sampling programs that support the Idaho Completion Project (ICP) operations. Actions include:  groundwater monitoring,  day-to-day monitoring activities (i.e., measurement of liquid or gaseous effluents for purposes of characterizing and quantifying

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Spent Resin Removal and Addition of New Resin to Ion Exchange (IX) Columns Located at CPP- 666 SECTION B. Project Description The proposed action will transfer spent resins from hold tanks located inside CPP-666 to on-site vendor-owned and operated resin dewatering equipment (EnergySolutions), with off-site disposal of the dewatered resins at the Nevada National Security Site. This process is required to maintain water cleanliness and remove radionuclides and

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 SECTION A. Project Title: Spent Resin Removal and Addition of New Resin to Ion Exchange (IX) Columns Located at CPP- 666 SECTION B. Project Description The proposed action will transfer spent resins from hold tanks located inside CPP-666 to on-site vendor-owned and operated resin dewatering equipment (EnergySolutions), with off-site disposal of the dewatered resins at the Nevada National Security Site. This process is required to maintain water cleanliness and remove radionuclides and

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: TAN - Monitoring Well Drilling Actions SECTION B. Project Description Two new monitoring wells will be drilled in the spring of 2015 within the Test Area North facility. Both wells will be drilled to a total depth of approximately 280 ft. and will be completed with two vapor ports, two pumps, and an inflatable isolation packer. Depending on location, the annular space will be filled with bentonite, silica sand, and bentonite associated with the vapor port filter pack

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: INTEC - CPP-603 Large Cask Adaptability SECTION B. Project Description DOE is responsible for the safe storage of Spent Nuclear Fuel (SNF) in its possession as well as obtaining data to verify the condition of SNF currently being stored in large storage casks at the INL Site. To meet this responsibility, DOE needs to open and examine the low-burnup SNF currently in long-term dry storage to verify the condition of the fuel and look for any degradation. DOE examined

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 SECTION A. Project Title: INTEC - Macroencapsulation/Overpack Operations in CPP-659 and CPP-1617 SECTION B. Project Description The proposed action will treat mixed low-level waste (MLLW) at the Idaho Nuclear Technology and Engineering Center (INTEC). The treatment process, macroencapsulation, will result in the waste stream meeting the treatment standards for debris and radioactive lead solids (RLS) for disposition at the Nevada National Security Site (NNSS). The macroencapsulation

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EC Document No.: DOE-ID-INL-09-002 SECTION A. Project Title: Smoking Shelters SECTION B. Project Description. Install up to three prefabricated outdoor shelters for smokers. Design and install a shelter base so that shelters can be movable. The base shall be designed to prevent shelters from moving or tipping over due to high winds. Specific location for shelters is to be determined, but the shelter bases will be placed atop existing concrete or asphalt such that no subsurface soil disturbance

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09-003 SECTION A. Project Title: Removal of Central Facilities Area (CFA)-661 Interior Walls and Mezzanine. SECTION B. Project Description The initial action to be covered under this Environmental Checklist will be removal of the mezzanines from CFA-661 to provide for material storage and work space for the National and Homeland Security (N&HS) Wireless Test Bed project. More specifically, this involves storage of electronic equipment, antennas and antenna masts, personnel supplies, and a

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: CFA-696 Power and Plumbing Upgrades SECTION B. Project Description: There is insufficient electrical power in the East Bay and the West Bay of the Central Facility Area (CFA) Transportation Complex to allow the craftsmen to fully utilize the available floor space without the use of extension cords. Additionally, a new hydraulic hose clamper is to be installed in the Parts Room and it needs a dedicated 30A power supply. The craftsmen also need another wash sink in the

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Replace 200,000 Gallon Water Storage Tank at MFC SECTION B. Project Description: The project is to replace the current 200,000 gallon potable water tank at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) with a new 300,000 gallon water tank. The existing tank and foundation will be removed and the waste materials managed and disposed under the direction of Waste Generator Services (WGS). The installation area for the new tank will be excavated

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: TRA-653 HVAC Modifications SECTION B. Project Description: The proposed project plans to replace the existing blowers, swamp coolers and electric heaters in the Idaho National Laboratory (INL) Test Reactor Area-653 (TRA-653) office area with three roof mounted heating, ventilating and air conditioning (HVAC) units; and install six roof mounted HVAC units at the TRA-653 machine shop area. These modifications are needed to enhance workplace habitability, maintain a more

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: TRA-609 Compressed Air System Drain Line Modification and Valve Replacement SECTION B. Project Description: Due to periods of insufficient water flow to the sewer ponds, the clay liners in the ponds can dry out and crack. This proposed action is to add an additional drain line, which will allow clean well water that has been used to cool compressors to then be drained into the sewer system ponds during low flow periods in order to maintain a higher, more consistent

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-009 SECTION A. Project Title Idaho Falls (IF)-608 Uninterrupted Power Supply Upgrade Project SECTION B. Project Description: This project increases the Uninterrupted Power Supply (UPS) capacity in the IF-608 Information Operations and Research Center (IORC) by removing two existing UPS systems (50 KVA and 36 KVA) and installing a 225 KVA system. A ~15 ton cooling unit will be installed on the roof for heat removal. Associated work will include additional electrical panel(s) and electrical

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 SECTION A. Project Title: Test Reactor Cask Implementation. SECTION B. Project Description: This proposed action is a process and facility modification. Background / Purpose & Need The Advanced Test Reactor (ATR) uses the Naval Reactors (NR) Casks to transport test trains between the Naval Reactors Facility (NRF) Expended Core Facility and the ATR. The Naval Reactor (NR) Casks, however, are approaching the end of their design life. In 1997, Bettis initiated a contract for construction of

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EC Document No.: DOE-ID-INL-10-011 DIRECTIONS: Responsible Managers, Project Environmental Lead, and Environmental Support personnel complete this form by following the instructions found at the beginning of each section and submit to Environmental Support & Services (environmental.checklist@inl.gov). SECTION A. Project Title: CFA and ATR-Complex Analytical and R&D Laboratory Operation (Overarching) SECTION B. Project Description: This EC replaces overarching EC INL-05-017 due to changes

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 __________________________ 1 DOE's strategic plans included the Nuclear Energy Research and Development Roadmap" (2010 Predecisional draft) and reports such as "Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook". SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Sewage Lagoons Upgrades SECTION B. Project Description: MFC Infrastructure Upgrades - MFC Sewage Lagoon Upgrades This EC focuses on upgrades to the existing 2.4

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Relocation of National and Homeland Security New Generation Wireless Test Bed Equipment and Personnel SECTION B. Project Description: This activity is to relocate and consolidate Battelle Energy Alliance, LLC (BEA) National and Homeland Security (NHS) New Generation Wireless Test Bed (NGWTB) program personnel and equipment from Critical Infrastructure Test Range Complex (CITRC) to Central Facilitis Area (CFA). This activity also includes relocating the antenna field

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: Materials and Fuels Complex (MFC) Infrastructure Upgrades - Technical Support Building SECTION B. Project Description: Materials and Fuels Complex (MFC) Infrastructure Upgrades - General The number of researchers and operators at the Materials and Fuels Complex has significantly increased, and is projected to increase further in the future to support the expanding research activities at the facility. These activities will require infrastructure upgrades (office space,

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Modular Office Units SECTION B. Project Description: MFC Infrastructure Upgrades - General The number of researchers and operators at MFC has significantly increased, and is projected to increase further in the future to support the expanding research activities at the facility. These activities will require Infrastructure upgrades (office space, potable water, wastewater treatment, communications, etc.) to

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 SECTION A. Project Title: GaRDS Vehicle X-Ray System Procurement, Installation and Operations SECTION B. Project Description: . This effort will be to procure, install, and operate a Gamma Radiation Detection System (GaRDS) capable of providing X-Ray images of incoming vehicles and delivery trucks. The scanner will be equipped with a 1 Ci Cobalt-60 gamma source and will be installed in building MFC-736. This security building is located on Taylor Blvd approximately one mile south of the

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-017 SECTION A. Project Title: Test Reactor Area (TRA)-653 Conference Room Modifications SECTION B. Project Description: The Advanced Test Reactor (ATR) Maintenance Shop, building Test Reactor Area (TRA)-653, located at the ATR Complex, has an upstairs conference room capable of being used as one large conference room or can be split into two conference rooms by a sliding curtain divider. The current configuration causes meeting interruptions due to the one available door limiting personnel

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 of 2 CX Posting No.: DOE-ID-INL-14-018 SECTION A. Project Title: Materials and Fuel Complex (MFC)-782 Fire Sprinkler Installation SECTION B. Project Description: MFC-782 (Machine Shop) does not currently have a fire sprinkler system. In order to be in compliance with National Fire Protection Association (NFPA) requirements, an automated sprinkler system needs to be installed. The proposed project would consist of removing existing fire water line, drain line, potable water line, fire alarm

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Page 1 of 2 CX Posting No.: DOE-ID-INL-14-019 SECTION A. Project Title: Advanced Test Reactor (ATR) Electronic Message Board Installation SECTION B. Project Description: The scope of work for this project involves the installation of a new electronic information sign at the south end of the sidewalk by the guardhouse (Test Reactor Area [TRA]-658). The sign would be mounted on metal posts just south of the first sidewalk light pole. The new sign would be powered from the

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Checklist Page 1 of 1 CX Posting No.: DOE-ID-INL-14-021 SECTION A. Project Description: Remote Closure Switch for Test Reactor Area (TRA)-786 Output Breaker SECTION B. Project Description: . The TRA-786 diesel generator output breaker has a high arc flash calculation that requires the operator to use heavy, cumbersome personal protective equipment (PPE) when closing the breaker. This breaker is located in the doorway of a trailer that is approximately 5 feet off the ground. There

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-ID-ICP-16-001 R1 SECTION A. Project Title: INTEC - Macroencapsulation/Overpack Operations in CPP-659 and CPP-1617, Rev. 1 SECTION B. Project Description The proposed action will treat mixed low-level waste (MLLW) at the Idaho Nuclear Technology and Engineering Center (INTEC). The treatment process, macroencapsulation, will result in the waste stream meeting the treatment standards for debris and radioactive lead solids (RLS) for disposition at the Nevada National Security Site (NNSS). The

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to give the facility the ability to perform tritium analysis. Additionally, under NRC License R-83, Texas A&M will up rate the reactor power from 1MW to 1.5 MW and purchase...

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Sources of Impact Chemical UseStorage - Work will be conducted in a chemistry laboratory using chemical reagents, acids, alkalis, and solvents. Chemical Waste...

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrically-Assisted Tubing Processes for Enhancing Manufacturability of Oxide Dispersion Strengthened Structural Materials for Nuclear Reactor Applications - Northwestern...

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... rods from light water reactors would be processed as ... gasoline pumps, non road power take offs, laboratory ... into standby (inactive) status 4.25 Reactivating buildings ...

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be used. However, typical abandonments would use a backhoe or jack hammer to breakup existing concrete pads and have minimal excavation around the casing. The scope of...

  8. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division F, Title I, Title II, and Title III ...

  9. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Implementation of Division D, Titles III and V, and Division E, ...

  10. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicated by the moderate (0.454) R 2 value. Observation of the plot shows considerable matching of 'peaks and valleys' indicating there is probably some retained gas in the...

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    replacement of conductors of the same nominal voltage, poles, circuit breakers, transformers, capacitors, crossarms, insulators, and downed transmission lines N. Routine...

  12. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that Sandia contracts are settled for a reasonable amount and that no instances of fraud related to these contracts is apparent. We will not report on the adequacy of your...

  13. DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has been revised. The subject form has been posted on the DOE Financial Assistance web page on the Recipients Page under the Financial Assistance Forms and Information for...

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reinvestment Act (ARRA) Reactive Tracers project will be conducted at both the Raft River hydrothermal site in South Central Idaho and at the INL Research Center in Idaho...

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be uncontrolled or unpermitted releases; 4) adversely affect...

  16. Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit

    SciTech Connect (OSTI)

    Pooser, Raphael C; Lawrie, Benjamin J

    2015-01-01

    The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics below this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.

  17. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  18. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for

    Office of Scientific and Technical Information (OSTI)

    Targeted Gas Detection (Technical Report) | SciTech Connect Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection Citation Details In-Document Search Title: Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  19. The Sandia MEMS passive shock sensor : FY08 design summary. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: The Sandia MEMS passive shock sensor : FY08 design summary. Citation Details In-Document Search Title: The Sandia MEMS passive shock sensor : FY08 design summary. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  20. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Busmann, Hans-Gerd (Bremen, DE); Meyer, Eva-Maria (Bremen, DE); Auciello, Orlando (Bolingbrook, IL); Krauss, Alan R. (late of Naperville, IL); Krauss, Julie R. (Naperville, IL)

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  1. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Estimated Award Date: TBD Competition Type: TBD Buyer Contact Email: Itmartinez@lanl.gov Title: QA Support Description of Product or Service Required QA Support (Current subcontracts expires 2018) * Current forecasted bid opportunities are subject to change or cancellation due to scope, mission, or funding requirements. * Some procurements are reserved for small businesses. Note the competition type on the forecast matrix to determine if a procurement has been set aside or is open to fair and

  2. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Estimated Award Date: TBD Competition Type: TBD Buyer Contact Email: m_armijo@lanl.gov Title: Crowdsourcing Description of Product or Service Required Crowdsourcing * Current forecasted bid opportunities are subject to change or cancellation due to scope, mission, or funding requirements. * Some procurements are reserved for small businesses. Note the competition type on the forecast matrix to determine if a procurement has been set aside or is open to fair and reasonable competition. * LANL

  3. Property:StartDate | Open Energy Information

    Open Energy Info (EERE)

    StartDate Jump to: navigation, search This is a property of type Date. Pages using the property "StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County...

  4. Property:EndDate | Open Energy Information

    Open Energy Info (EERE)

    EndDate Jump to: navigation, search This is a property of type Date. Pages using the property "EndDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County...

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor","Jung, H. University of Maryland; Gerasopoulos, K. University of...

  6. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection","Loui, A; McCall, S K","2011-10-24T04:00:00Z",1035279,"10.2172...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Thin Silicon MEMS Contact-Stress Sensor","Kotovsky, J; Tooker, A; Horsley, D","2010-03-22T04:00:00Z",1009206,,"LLNL-PROC-427227","W-7405-ENG-48","TRN: US201106%%470","Conference",,...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    The Sandia MEMS Passive Shock Sensor : dormancy and aging.","Baker, Michael Sean; Tanner, Danelle Mary","2010-12-01T05:00:00Z",1008111,"10.21721008111","SAND2010-6943","AC04-94AL8...

  9. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Preliminary characterization of active MEMS valves.","Barnard, Casey Anderson","2010-08-01T04:00:00Z",1008114,"10.21721008114","SAND2010-6880","AC04-94AL85000","TRN:...

  10. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  11. A dynamic system matching technique for improving the accuracy of MEMS gyroscopes

    SciTech Connect (OSTI)

    Stubberud, Peter A.; Stubberud, Stephen C.; Stubberud, Allen R.

    2014-12-10

    A classical MEMS gyro transforms angular rates into electrical values through Euler's equations of angular rotation. Production models of a MEMS gyroscope will have manufacturing errors in the coefficients of the differential equations. The output signal of a production gyroscope will be corrupted by noise, with a major component of the noise due to the manufacturing errors. As is the case of the components in an analog electronic circuit, one way of controlling the variability of a subsystem is to impose extremely tight control on the manufacturing process so that the coefficient values are within some specified bounds. This can be expensive and may even be impossible as is the case in certain applications of micro-electromechanical (MEMS) sensors. In a recent paper [2], the authors introduced a method for combining the measurements from several nominally equal MEMS gyroscopes using a technique based on a concept from electronic circuit design called dynamic element matching [1]. Because the method in this paper deals with systems rather than elements, it is called a dynamic system matching technique (DSMT). The DSMT generates a single output by randomly switching the outputs of several, nominally identical, MEMS gyros in and out of the switch output. This has the effect of 'spreading the spectrum' of the noise caused by the coefficient errors generated in the manufacture of the individual gyros. A filter can then be used to eliminate that part of the spread spectrum that is outside the pass band of the gyro. A heuristic analysis in that paper argues that the DSMT can be used to control the effects of the random coefficient variations. In a follow-on paper [4], a simulation of a DSMT indicated that the heuristics were consistent. In this paper, analytic expressions of the DSMT noise are developed which confirm that the earlier conclusions are valid. These expressions include the various DSMT design parameters and, therefore, can be used as design tools for DSMT systems.

  12. Save the Date - NTSF 2013

    Office of Environmental Management (EM)

    Save the Date U.S. Department of Energy National Transportation Stakeholders Forum May 14-16 th , 2013 Buffalo, New York Please mark your calendar to attend the next meeting of the U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) scheduled for May 14-16, 2013. This annual event will be held at the Hyatt Regency Hotel, located near the downtown business and entertainment districts in Buffalo, New York. The 2013 meeting is co-sponsored by DOE's Offices of

  13. Estimated Cost Description Determination Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title, Location Estimated Cost Description Determination Date: 2010 LCLS Undulator 2 is envisioned to be a 0.2 - 2keV FEL x-ray source, capable of delivering x-rays to End Station A (ESA), located in the existing Research Yard at SLAC. It will also be configurable as a non- FEL hard x-ray source capable of delivering a chirped x-ray pulse for single-shot broad-spectrum measurements. The project would entail reconstruction of the electron beam transport to End Station A, construction and

  14. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect (OSTI)

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  15. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  16. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  17. MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search MEMS Fuel Cells--Low Temp--High Power Density Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryRechargeable batteries presently provide limited energy density and cyclical lifetime for portable power applications, with only incremental improvements forecasted in the foreseeable future. Furthermore, recharging requires access to electrical outlets via a tethered charger. The

  18. 2014 NEJC Save the Date (English)

    Broader source: Energy.gov [DOE]

    2014 National Environmental Justice Conference and Training Program  Save the Date, March 26 to 28, 2014

  19. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect (OSTI)

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  20. Property:NEPA ApplicationDate | Open Energy Information

    Open Energy Info (EERE)

    ApplicationDate Jump to: navigation, search Property Name NEPA ApplicationDate Property Type Date This is a property of type Date. Pages using the property "NEPA ApplicationDate"...

  1. Property:GEAReportDate | Open Energy Information

    Open Energy Info (EERE)

    the project. Pages using the property "GEAReportDate" Showing 1 page using this property. L Los Humeros III Geothermal Power Plant + 19 December 2013 + Retrieved from "http:...

  2. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX(s) Applied: DOEEA-1914 National Renewable Energy Laboratory (NREL) Date: 072815 Location(s): CO Office(s): Golden Field Office July 21, 2015 CX-100313...

  3. Nuclear Speed-Dating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speed-Dating Nuclear Speed-Dating March 10, 2015 - 10:48am Addthis Photo courtesy of Idaho National Laboratory. Photo courtesy of Idaho National Laboratory. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Nuclear Speed-Dating The future of nuclear energy needs smart, creative thinkers. That's why more than 120 experts met up last week to "speed-date" each other's ideas. Storified by Energy Department * Tue, Mar 10 2015 15:28:50 Nuclear Wetlands * James Marvin

  4. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection","Loui, A; McCall, S K; Zumstein, J M","2012-11-21T05:00:00Z",1059450,"10.2172...

  5. Integrated optical MEMS using through-wafer vias and bump-bonding.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert; Frederick, Scott K.

    2008-01-01

    This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

  6. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced

  7. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a

  8. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced

  9. Frequency Stabilization in Non-linear MEMS and NEMS Oscillators (IN-11-087)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Find More Like This Return to Search Frequency Stabilization in Non-linear MEMS and NEMS Oscillators (IN-11-087) A New Strategy for Engineering Low-Frequency Noise Oscillators Argonne National Laboratory Contact ANL About This Technology <p> SEM image of one resonator used in our studies (center) and Finite Element Simulations of the dynamic deformation characteristics of the coupled vibrational modes (left and right side).</p> SEM image of one

  10. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOE Patents [OSTI]

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  11. Thin Silicon MEMS Contact-Stress Sensor (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a

  12. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    SciTech Connect (OSTI)

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  13. Property:OpenEI/PublicationDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name OpenEIPublicationDate Property Type Date Description The date the resource was first published. Retrieved from "http:...

  14. Property:Geothermal/ProjectEndDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name GeothermalProjectEndDate Property Type Date Description Project End Date Retrieved from "http:en.openei.orgw...

  15. Property:Geothermal/ProjectStartDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name GeothermalProjectStartDate Property Type Date Description Project Start Date Retrieved from "http:en.openei.orgw...

  16. Property:Estimated End Date | Open Energy Information

    Open Energy Info (EERE)

    Estimated End Date Jump to: navigation, search Property Name Estimated End Date Property Type String Pages using the property "Estimated End Date" Showing 4 pages using this...

  17. Pretreated Slurries; Issue Date: August 2010; Revision Date: July 2011 (Version 07-08-2011)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summative Mass Closure Laboratory Analytical Procedure (LAP) Review and Integration: Pretreated Slurries Issue Date: August 2010 Revision Date: July 2011 (Version 07-08-2011) J. Sluiter and A. Sluiter Technical Report NREL/TP-510-48825 Revised July 2011 Technical Report Summative Mass Closure NREL/TP-510-48825 Revised July 2011 Laboratory Analytical Procedure (LAP) Review and Integration: Pretreated Slurries Issue Date: August 2010 Revision Date: July 2011 (Version 07-08-2011) J. Sluiter and A.

  18. Method of forming a package for MEMS-based fuel cell

    DOE Patents [OSTI]

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  19. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  20. Property:File/CreationDate | Open Energy Information

    Open Energy Info (EERE)

    CreationDate Jump to: navigation, search Property Name FileCreationDate Property Type Date Description Original creation date for the file. Note that this is usually not the same...

  1. Property:NEPA RevisedApplicationDate | Open Energy Information

    Open Energy Info (EERE)

    RevisedApplicationDate Jump to: navigation, search Property Name NEPA RevisedApplicationDate Property Type Date This is a property of type Date. Pages using the property "NEPA...

  2. Property:NEPA ScopingInitiatedDate | Open Energy Information

    Open Energy Info (EERE)

    ScopingInitiatedDate Jump to: navigation, search Property Name NEPA ScopingInitiatedDate Property Type Date This is a property of type Date. Pages using the property "NEPA...

  3. Property:NEPA DecisionDocumentDate | Open Energy Information

    Open Energy Info (EERE)

    DecisionDocumentDate Jump to: navigation, search Property Name NEPA DecisionDocumentDate Property Type Date This is a property of type Date. Subproperties This property has the...

  4. Date centerdTimes New Roman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2010 DOE F 1325.8 (493) United States Government Department of Energy Memorandum DATE: April 6, 2010 Audit Report Number: OAS-RA-L-10-01 REPLY TO ATTN TO: IG-32 (A10RA006)...

  5. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Conditioners RIN: 1904-AC82 CX(s) Applied: B5.1 EERE- Buildings Technology Program Date: 06172015 Location(s): Nationwide Office(s): Golden Field Office June 16, 2015...

  6. Date centerdTimes New Roman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2010 DOE F 1325.8 (493) United States Government Department of Energy memorandum DATE: April 27, 2010 Audit Report Number: OAS-RA-L-10-04 REPLY TO ATTN TO: IG-32 (A10RA025)...

  7. Date centerdTimes New Roman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: April 23, 2010 Audit Report Number: OAS-RA-L-10-03 REPLY TO ATTN OF: IG-34 (A09ID019)...

  8. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number: DE-EE0007137 CX(s) Applied: A9, B3.6, B3.11 Solar Energy Technologies Office Date: 09102015 Location(s): AL Office(s): Golden Field Office September 8, 2015 CX-100362...

  9. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products Award Number: DE-EE0006875 CX(s) Applied: B3.6 Bioenergy Technologies Office Date: 05152015 Location(s): CA Office(s): Golden Field Office May 15, 2015 CX-100243...

  10. Willard Libby, Radiocarbon, and Carbon Dating

    Office of Scientific and Technical Information (OSTI)

    Willard Libby, Radiocarbon, and Carbon Dating Resources with Additional Information * Radiocarbon Dating Willard Libby Courtesy UCLA Photography 'Scientific discoveries of various magnitudes are constantly occurring in myriad fields of study. It is a rarity, however, to make a breakthrough that not only has an impact on an individual field but also revolutionizes scientific thought across multiple disciplines. Willard Frank Libby accomplished this feat. Libby first proposed his idea of carbon

  11. MEMORANDUM TO: FILE I' DATE---- SITE

    Office of Legacy Management (LM)

    I' DATE---- SITE -7Jwl-h-G' ALTERNATE NAME: ~------~~~~~~~~----~___________________N~~~: --------------------- CITY: ti -------------------------- STATE: YM/% ------ OWNER (S.) -----___ p==t: -zLL%ddk ----------- Curr="t: _-ti--A-i- ________ Owner contacted 0 yes &no; if yee, date contacted ----------_-- TYPE OF OPERATION ~~~------~~~~---- q Research & Development 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Thearetical Studies 0 Sample 84 Analysis 0 Facility

  12. MEMORANDUM TO: FILE, OH. 0 DATE

    Office of Legacy Management (LM)

    FILE, OH. 0 DATE d4, ------------------- FROM: b. x&,.& ---------S-----W SUBJECT: 1-3/;4*~ i&-h /LCL)&l&OAiOH h fi Q-cc& )2~see~ SITE NAME: ----fl eAd4 RQJ-cL ALTERNATE __-_-_---------------------------- NAME: ---------------------- CITY: -------------------------- STATE: B---m- OWNER(S) -------- Past: JAwd* ------------------------ Current: _------------------------- Owwr contacted 0 yes rno; if yes, date contacted B-m -----w-v TYPE OF OPERATION ----------------- pg

  13. Posting Date: 12/18/15 Posting Close Date: 1/4/16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    815 Posting Close Date: 1416 North American Industry Classification System (NAICS) code for the request: 336211 Estimated SubcontractPO Value: TBD Estimated Period of...

  14. TT Coordinator Ltr dated May 13 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TT Coordinator Ltr dated May 13 2010 » TT Coordinator Ltr dated May 13 2010 TT Coordinator Ltr dated May 13 2010 TT Coordinator Ltr dated May 13 2010 PDF icon TT_Coordinator_Ltr_dated_May_13_2010.pdf More Documents & Publications Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities ADR Revised Policy

  15. Property:ASHRAE 169 Start Date | Open Energy Information

    Open Energy Info (EERE)

    Start Date Jump to: navigation, search This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next...

  16. Property:ASHRAE 169 End Date | Open Energy Information

    Open Energy Info (EERE)

    End Date Jump to: navigation, search This is a property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:ASHRAE169EndDate&oldid21585...

  17. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date March 16, 2016 12:01PM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE...

  18. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  19. Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2010-10-01

    We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

  20. Two- and three-dimensional ultrananocrystalline diamond (UNCD) structures for a high resolution diamond-based MEMS technology.

    SciTech Connect (OSTI)

    Auciello, O.; Krauss, A. R.; Gruen, D. M.; Busmann, H. G.; Meyer, E. M.; Tucek, J.; Sumant, A.; Jayatissa, A.; Moldovan, N.; Mancini, D. C.; Gardos, M. N.

    2000-01-17

    Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO{sub 2} layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. The authors demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C{sub 60}-Ar or CH{sub 4}-Ar gas mixtures, which result in films that have 3--5 nm grain size, are 10--20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.

  1. Property:FERC License Issuance Date | Open Energy Information

    Open Energy Info (EERE)

    Issuance Date Jump to: navigation, search Property Name FERC License Issuance Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:FERCLicense...

  2. Franklin retirement date is set: 04/30/2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements Franklin retirement date is set: 04302012 Franklin retirement date is set: 04302012 March 6, 2012 by Helen He The Franklin (and its external login node...

  3. Property:FERC License Application Date | Open Energy Information

    Open Energy Info (EERE)

    FERC License Application Date Jump to: navigation, search Property Name FERC License Application Date Property Type String Retrieved from "http:en.openei.orgw...

  4. FAQ's for: ENERGY STAR Verification Testing Pilot Program dated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010 FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010 This document is the...

  5. NEMA Lighting, CCE Overview and Update presentation, dated 05...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting, CCE Overview and Update presentation, dated 05252011. NEMA Lighting, CCE Overview and Update presentation, dated 05252011. This document is the U.S. Department of ...

  6. POLICY GUIDANCE MEMORANDUM #04 Setting Effective Date for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    04 Setting Effective Date for New Hires POLICY GUIDANCE MEMORANDUM 04 Setting Effective Date for New Hires The purpose of this memorandum is to establish the Department of...

  7. Jupiter Laser Facility Target Fab Request Requester: Date Requested:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Sketches: « Jupiter Laser Facility Target Fab Request Requester: Date Requested: Phone or E-Mail: Date Required: Target Name: Reference #: Laser System: Project: Task:

  8. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked...

  9. Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic...

    Office of Environmental Management (EM)

    Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives PDF icon Dep Sec...

  10. Posting Date: 1/27/2016 Posting Close Date: 2/3/2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /27/2016 Posting Close Date: 2/3/2016 North American Industry Classification System (NAICS) code for the request: 236220 Estimated Subcontract/PO Value: TBD Estimated Period of Performance 2 Months Estimated RFP/RFQ Release Date: 2/4/2016 Estimated Award Date: 3/4/2016 Competition Type: SB Set-Aside Buyer Contact Email: amyp@lanl.gov Title: SII Locker Room Expansion Description of Product or Service Required Perform all required demolition and dispose of all removed materials. Furnish and

  11. Posting Date: 12/17/15 Posting Close Date: 12/24/15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/17/15 Posting Close Date: 12/24/15 North American Industry Classification System (NAICS) code for the request: 236220 Estimated Subcontract/PO Value: TBD Estimated Period of Performance N/A Estimated RFP/RFQ Release Date: 12/15/16 Estimated Award Date: 5/15/16 Competition Type: Not Set-Aside Buyer Contact Email: ajsaunders@lanl.gov Title: Off-Site Built Laboratory Description of Product or Service Required This project will provide a new permanent laboratory building to support the on-going

  12. Supplier Information Form Date: New Revision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplier Information Form Date: New Revision Interested suppliers may complete and submit a Supplier Information Form to be included into LANS' vendor database. Suppliers are advised that there is no guarantee any solicitations or awards will be sent to Supplier by submitting a Supplier Information Form; however, in the event a solicitation is sent to the Supplier from an LANS Procurement Official, then a more formal quotation/offer may be required. Legal Business Name: D/B/A: (if applicable)

  13. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE:

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: WEATHERIZATION OF RENTAL UNITS - Applicable to single family and multifamily dwellings PURPOSE: To provide Grantees with updated guidance on weatherizing rental units in the Weatherization Assistance Program (WAP). DOE has answered specific questions from Grantees related to the weatherization of rental units, whether single family building or multifamily dwellings, over a number of years. However, the responses to these questions have

  14. Date centerdTimes New Roman

    Office of Environmental Management (EM)

    Summary of Audit Report National Nuclear Security Administration's Use of Innovative Technologies to Meet Security Requirements This document provides a summary of an Audit Report that is not publicly releasable. Public release is controlled pursuant to the Freedom of Information Act OAS-L-09-02 October 2008 The following is a summary o f a Special Access Unclassified Controlled Nuclear Information Audit Report, OAS-L-09-02, dated October 31, 2008, entitled "National Nuclear Security

  15. Low energy cyclotron for radiocarbon dating

    SciTech Connect (OSTI)

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  16. 2014 NEJC Save the Date (Spanish) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spanish) 2014 NEJC Save the Date (Spanish) 2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014 PDF icon Save the Date (Spanish) More Documents & Publications 2013 National Environmental Justice Conference and Training Program 2014 NEJC Save the Date (English) 2015 National Environmental Justice Conference and Training Program Call for PowerPoint/Video Presentations

  17. TT Coordinator Ltr dated May 13 2010 | Department of Energy

    Energy Savers [EERE]

    TT Coordinator Ltr dated May 13 2010 TT Coordinator Ltr dated May 13 2010 TT Coordinator Ltr dated May 13 2010 PDF icon TT_Coordinator_Ltr_dated_May_13_2010.pdf More Documents & Publications Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Microsoft Word - ADR Revised Policy82508Reformatted.doc

  18. Method of forming a package for mems-based fuel cell

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan F.

    2004-11-23

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  19. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect (OSTI)

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 ?Pa at 100 Hz and 120 ?Pa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  20. Date Time Event Description/Participants Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: 06/11/2015 Date Time Event Description/Participants Location Point of Contact 11 thru 12 All Day Meeting Todd Allen, deputy director of Science and Technology at INL, has been invited to speak at the Idaho Society of Professional Engineers (ISPE) annual meeting. Coeur d'Alene, ID Sara Prentice, 526-9591 18 9:00 AM Education Outreach Approximately 50 iSTEM students and instructors will tour various INL Idaho Falls facilities Idaho Falls, ID INL Tours Office, 526-0050 23 All Day Meeting

  1. Date centerdTimes New Roman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's Management of Cloud Computing Services OAS-RA-L-11-06 April 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: April 1, 2011 Audit Report Number: OAS-RA-L-11-06 REPLY TO ATTN OF: IG-34 (A11TG021) SUBJECT: Report on "Department's Management of Cloud Computing Services" TO: Administrator, National Nuclear Security Administration Acting Under Secretary of Energy Under Secretary for Science Chief Information Officer INTRODUCTION AND

  2. : H. Jack Elackwell, Area Manager, LAAO DATE:

    Office of Legacy Management (LM)

    O.&E b.&AORANDti~ l > : H. Jack Elackwell, Area Manager, LAAO DATE: June 5, 1973 70~ : ~$?$Z~H-Division Leader ,WE~,T : ENVIRONMENTAL RADIOACTIVITY SURVEY OF LOS ALAMOS COMIMUNITY LAND AREAS ' MBOL : H8M-73-102 At your request an environmental radioactivity survey of four' .tracts of AEC-owned land in Los Alamos County was conducted. The monitoring and analysis of samples paralleled that described in Los Alamos Scientific Laboratory Report LA5097-MS, "Los Alamos Land Areas

  3. United States Government Department of Energy DATE:

    Office of Legacy Management (LM)

    kE FJ325.8 d& * 9 -1 . (8-89) ZFG fO7440 1 United States Government Department of Energy DATE: DEC 2 3 :gg3 REPLY TO ATTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program TO: The File I have reviewed the attached site summaries and elimination recommendations for the following sites: e l Mitts & Merrel Co., Saginaw, Michigan l North Carolina State University, Raleigh, North Carolina l National Smelt &

  4. Date centerdTimes New Roman

    Office of Environmental Management (EM)

    Office of Science's Energy Frontier Research Centers OAS-RA-L-10-09 August 2010 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: August 27, 2010 Audit Report Number: OAS-RA-L-10-09 REPLY TO ATTN OF: IG-32 (A10RA003) SUBJECT: Audit Report on "Office of Science's Energy Frontier Research Centers" TO: Associate Director, Office of Basic Energy Sciences, SC-22 INTRODUCTION AND OBJECTIVE In 2008, the Department of Energy's (Department) Office of Science

  5. Date centerdTimes New Roman

    Office of Environmental Management (EM)

    Management of the Tank Farm Recovery Act Infrastructure Upgrades Project OAS-RA-L-11-03 February 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: February 9, 2011 Audit Report Number: OAS-RA-L-11-03 REPLY TO ATTN OF: IG-34 (A10RA043) SUBJECT: Report on "Management of the Tank Farm Recovery Act Infrastructure Upgrades Project" TO: Manager, Office of River Protection INTRODUCTION AND OBJECTIVE As part of the American Recovery and Reinvestment Act

  6. Date centerdTimes New Roman

    Office of Environmental Management (EM)

    Department's Infrastructure Modernization Projects under the Recovery and Reinvestment Act of 2009 OAS-RA-L-11-04 March 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: March 2, 2011 Audit Report Number: OAS-RA-L-11-04 REPLY TO ATTN OF: IG-34 (A10RA032) SUBJECT: Report on "The Department's Infrastructure Modernization Projects under the American Recovery and Reinvestment Act of 2009" TO: Manager, Oak Ridge Office Manager, Berkeley Site Office

  7. COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct Costs Subcontractors Total Direct Costs G&A Expense Total All Costs DOE Share* Awardee Share* Overhead Rate G&A Rate 1. The cost elements indicated are provided as an example only. Your firm should indicate the costs elements you have used on your invoices. 2. You should indicate the cost incurred for each of your

  8. Document: NA Actionee: Dorothy Riehie Document Date: 03/09/2011 Due Date: NO ACTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SN~T op Document: NA Actionee: Dorothy Riehie Document Date: 03/09/2011 Due Date: NO ACTION I Author: ALDRIDGE M Addressee: RIEHLE DC 7PES 01 Title: Re: Prime Contract # DE-AC06-08RL14788 Drilling Project Contract #41293-l:ARRA 300-FF-5 RJ/FS Installation of 11I Extract/Inj. Wells DIR DIV NAME DIR DIV NAME MGR AMRC ______ __ DEP AMSE _______ ___ AMA ___EMD____ FMD QOD HRM SED PRO 0CC ______________ AMCP _________OE Riehie, Dorothy (Actionee) AMMS ORP ______________ 15 _____________ PNSO PIC RLCI

  9. File:Central America 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Date 20041022 Extent International Countries Belize, Guatemala, Honduras, El Salvador, Nicaragua UN Region Central America Coordinates 13.846614265322,...

  10. File:Cammetst 58.pdf | Open Energy Information

    Open Energy Info (EERE)

    Date 20031210 Extent Central America Countries Belize, Guatemala, Honduras, El Salvador, Nicaragua UN Region Central America Regions Central America Coordinates...

  11. Save Energy, Save Date Night | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Save Date Night Save Energy, Save Date Night February 11, 2013 - 1:42pm Addthis Saving energy allows you to spend that money elsewhere. Saving energy allows you to spend ...

  12. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    I Due Date Adv. Nuclear Solicitation Part I Due Date July 20, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I

  13. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Energy Savers [EERE]

    II Due Date Adv. Nuclear Solicitation Part II Due Date November 23, 2016 12:01AM to 11:59PM EST ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II

  14. Appliance Standards Program Schedule - CCE Overview and Update, dated

    Office of Environmental Management (EM)

    October 26, 2011 | Department of Energy dated October 26, 2011 Appliance Standards Program Schedule - CCE Overview and Update, dated October 26, 2011 This document is Appliance Standards Program Schedule & CCE Overview and Update presentation, dated 10/26/2011, presented to Energy-Efficiency Advocacy Groups PDF icon doe_eeag_present2011.pdf More Documents & Publications Appliance Standards Program Schedule - CCE Overview and Update, presented at AHRI 2011 Annual Meeting, dated

  15. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Fossil Energy Projects Solicitation

  16. POLICY GUIDANCE MEMORANDUM #04 Setting Effective Date for New Hires |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Setting Effective Date for New Hires POLICY GUIDANCE MEMORANDUM #04 Setting Effective Date for New Hires The purpose of this memorandum is to establish the Department of Energy's (DOE) policy for setting effective dates for newly hired employees and to ensure uniform application among DOE Headquarters, Elements and Field Human Resources Offices. PDF icon POLICY GUIDANCE MEMORANDUM #4 Setting Effective Date for New Hires Responsible Contacts Tiffany Wheeler Human

  17. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page The SCGSR Program Key Dates are noted below. At the submission deadline (shown in red), the online application system will close after which no additional materials will be accepted. The

  18. 2016 EJ Save the Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EJ Save the Date 2016 EJ Save the Date Save the Date! March 9 to 12, 2016. 2016 National Environmental Justice Conference and Training Program and The Ninth Annual National Conference on Health Disparities PDF icon 2016 EJ Save the Date More Documents & Publications Call For Abstracts (Student Research Forum) 2016 Call for Abstracts 2015 National Environmental Justice Conference and Training Program Concludes in Washington, DC

  19. DOE Guidance-Setting Effective Date for New Hires

    Office of Environmental Management (EM)

    HUMAN RESOURCES DIRECTORS FROM: SARA I. BONIL HUMAN CAPITAL OFFICER GUIDANCE MEMORANDUM#4: SETTING EFFECTIVE DATE FOR NEW HIRES The purpose of this memorandum is to establish the Department of Energy's (DOE) policy for setting effective dates for newly hired employees and to ensure uniform appli-cation among DOE Headquarters, ~lements and ~ i e l d Human Resources Offices. As of the date of this memorandum, the effective date of employment for all new employees or reinstated employees (first

  20. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date May 18, 2016 12:01AM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Fossil

  1. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date May 18, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Nuclear

  2. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Energy Savers [EERE]

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date April 13, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  3. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date July 13, 2016 12:01AM to 11:59PM EDT ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Fossil

  4. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Energy Savers [EERE]

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date October 19, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  5. REEE Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    REEE Solicitation Part I Due Date REEE Solicitation Part I Due Date May 18, 2016 12:01AM to 11:59PM EDT RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Renewable Energy and Efficent Energy Projects Solicitation

  6. Adv. Fossil Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Solicitation Part I Due Date Adv. Fossil Solicitation Part I Due Date January 13, 2016 12:01AM to 11:59PM EST ADVANCED FOSSIL ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Fossil

  7. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date March 16, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Advanced Nuclear

  8. Hazard Communication Training - Upcoming Implementation Date for New Hazard

    Office of Environmental Management (EM)

    Communication Standard | Department of Energy Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - 10 CFR 851, Worker Safety and Health Program, requires all DOE Federal and contractor employees with hazardous chemicals in their workplaces to complete new Hazard Communication Training. Upcoming Implementation Date for

  9. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect (OSTI)

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W. (Center for Nanoscale Materials); ( PSC-USR); (Univ. of Wisconsin at Madison); (Univ. of Pennsylvania); (SNL)

    2009-12-01

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  10. NTSF Spring 2012 Save The Date! | Department of Energy

    Energy Savers [EERE]

    NTSF Spring 2012 Save The Date! NTSF Spring 2012 Save The Date! Please mark your calendar for May 15 thru 17 to attend the 2012 U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF). This year's Forum will be held at the Hilton Knoxville, which is located in the heart of the downtown business district in Knoxville, Tennessee. PDF icon NTSF Spring 2012 Save The Date! More Documents & Publications NTSF Spring 2015 Save the Date NTSF Spring 2016 Save the Date NTSF

  11. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L.; Talmage, Mellisa J.; McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  12. Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 December 19, 2014 - 12:31pm Addthis Save the Date! Pennsylvania Strategic Energy Management Showcase 2015 Attend the Pennsylvania Strategic Energy Management Showcase on April 7, 2015, at the Penn Stater Conference Center Hotel in State College, Pennsylvania, and learn about the Better Plants Program and Superior Energy Performance®

  13. Upcoming Implementation Date for New Hazard Communication Standard |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upcoming Implementation Date for New Hazard Communication Standard Upcoming Implementation Date for New Hazard Communication Standard May 1, 2015 - 10:30am Addthis The upcoming implementation date for the new Hazard Communication Standard requires all Federal and Contractor employees with hazardous chemicals in their workplace must be in compliance with all modified revisions of this final rule, except: The distributors shall not ship containers labeled by the chemical

  14. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Community College Internships (CCI) CCI Home Eligibility Benefits Participant Obligations How to Apply Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page At the submission deadline (shown in red) the application system will close, and no materials will be accepted after the submission deadline has passed. The Application System closes at 5:00 PM Eastern Time. CCI Internship Term: Spring 2016 Summer 2016 On-line Application Opens

  15. FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 | Department of Energy FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010 FAQ's for: ENERGY STAR Verification Testing Pilot Program dated December 2010 This document is the FAQ's for the ENERGY STAR Verification Testing Pilot Program dated December 2010 PDF icon faq_final_december-2010.pdf More Documents & Publications Comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program DOE Verification

  16. NEMA Distribution Transformers, CCE Overview and Update presentation, dated

    Office of Environmental Management (EM)

    05/24/2011 | Department of Energy Distribution Transformers, CCE Overview and Update presentation, dated 05/24/2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05/24/2011 This document is the U.S. Department of Energys presentation titled NEMA Distribution Transformers, CCE Overview and UpdateŽ, date - May 24, 2011 PDF icon nema_distributiontransformers_presentation.pdf More Documents & Publications Energy Conservation Program for Consumer Products

  17. REEE Solicitation Part I Due Date | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RENEWABLE ENERGY AND EFFICENT ENERGY PROJECTS SOLICITATION PART I DUE DATE Learn more about the Renewable Energy and Efficent Energy Projects Solicitation

  18. Property:Incentive/StartDateString | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "IncentiveStartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) +...

  19. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Date: 31-DEC-64","Maryland. Univ., College Park, MD (United States)","US Atomic Energy Commission (AEC)","PHYSICS; ANGULAR DISTRIBUTION; DEUTERON BEAMS; ELASTIC SCATTERING;...

  20. Memorandum from Paul Bosco dated May, 20, 2012, Utlization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paul Bosco dated May, 20, 2012, Utlization of the General Services Administration's Federal Strategic Sourcing Initiative Blanket Purchase Agreements Memorandum from Paul Bosco...

  1. Microsoft Word - EIA-914 Instructions_Expiration Date 09202012...

    U.S. Energy Information Administration (EIA) Indexed Site

    ENERGY INFORMATION ADMINISTRATION OMB No. 1905-0205 Washington, DC 20585 Expiration Date: 09202012 INSTRUCTIONS for FORM EIA-914 MONTHLY NATURAL GAS PRODUCTION REPORT PURPOSE...

  2. "Title","Speaker","Publication Date","OSTI Identifier","Report...

    Office of Scientific and Technical Information (OSTI)

    Speaker","Publication Date","OSTI Identifier","Report Number(s)","DOE Contract Number","Other Number(s)","Resource Type","Specific Type","Coverage

  3. PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies - "Big Data at the Pittsburgh Supercomputing Center" Professor Ralph Roskies Pittsburgh...

  4. Dating of major normal fault systems using thermochronology-...

    Open Energy Info (EERE)

    Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search OpenEI...

  5. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  6. Franklin retirement date is set: 04/30/2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements » Franklin retirement date is set: 04/30/2012 Franklin retirement date is set: 04/30/2012 March 6, 2012 by Helen He The Franklin (and its external login node Freedom) retirement date has been set to April 30, 2012. Below are the related schedules: Effective immediately: Software frozen except for critical updates Mon Apr 2: No new accounts will be created Thurs Apr 26, 23:59: Batch system is drained, batch queues are stopped (no jobs will be running at this point) Mon Apr 30: Last

  7. Categorical Exclusion (CX) Determinations By Date | Department of Energy

    Energy Savers [EERE]

    Date Categorical Exclusion (CX) Determinations By Date March 11, 2016 CX-100569 Categorical Exclusion Determination Enabling Sustainable Landscape Design for Continual Improvement of Operating Bioenergy Supply Systems Award Number: DE-EE0007088 CX(s) Applied: A9, B3.1, B3.16, B5.15 Bioenergy Technologies Office Date: 03/08/2016 Location(s): MD Office(s): Golden Field Office March 11, 2016 CX-100568 Categorical Exclusion Determination Survivability Enhancement of a Multi-Mode Point Absorber Award

  8. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect (OSTI)

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

  9. Property:Project Start Date | Open Energy Information

    Open Energy Info (EERE)

    Date" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects40MW Lewis project + 112012 + MHK ProjectsADM 3 + 112010 + MHK ProjectsADM 4 + 112010 +...

  10. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22-S February 2, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: LIQUID matrix Period of beryllium operations (dates): (1) ...

  11. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WA February 7, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s ...

  12. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07-SX Jan 29, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s ...

  13. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-AW Feb 10,2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s ...

  14. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S Feb 10, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s End: ...

  15. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    101-HV Feb 8 201 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s ...

  16. Building Number/Name: Date prepared: Responsible Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-E Jan 28, 2012 WRPS C M Smith; E A Hill PAST OPERATIONS Beryllium brought in facility: YES Form of beryllium: SOLID Period of beryllium operations (dates): Start: Early 1980s ...

  17. United States Government Department of Energy Memorandum DATE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memorandum DATE: AliNOF: SUBJECT: DEC 2 o 2010 NE-32 Delegation of Acquisition Executive (AE) Authority for the Material Security and Consolidation Project (08-D-702) ro: Richard...

  18. NTSF Spring 2013 Save The Date | Department of Energy

    Office of Environmental Management (EM)

    Services » Waste Management » Packaging and Transportation » National Transportation Stakeholders Forum » National Transportation Stakeholders Forum (NTSF) Charter » NTSF Spring 2013 Save The Date NTSF Spring 2013 Save The Date Please mark your calendar to attend the next meeting of the U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) scheduled for May 14-16, 2013. This annual event will be held at the Hyatt Regency Hotel, located near the downtown business

  19. Oak Ridge Finishes Site's Largest Demolition Project to Date | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Finishes Site's Largest Demolition Project to Date Oak Ridge Finishes Site's Largest Demolition Project to Date July 1, 2012 - 12:00pm Addthis BEFORE: An aerial photo shows Building K-33 before demolition. BEFORE: An aerial photo shows Building K-33 before demolition. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. AFTER: This photo shows the site of Building K-33 following completion of the demolition project. BEFORE: An aerial

  20. TPA Change Package Dates in order with explanation.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    015-00 Milestone Series: Investigation Work on the Central Plateau Milestone TPA Milestone Language Explanation TPA Old Date TPA New Date Delay M-015-92A Submit a RCRA Facility Investigation/Corrective Measures Study and Remedial Investigation/Feasibility Study work plan for the 200-EA-1 operable unit (200 East Inner Area) to Ecology. 6/30/2015 9/30/2017 2 Years M-015-21A Submit a 200-BP-5 and 200-PO-1 OU Feasibility Study Report and Proposed Plan(s) to Ecology. 6/30/2015 6/30/2018 2 Years

  1. ES&H Manual Welding and Brazing Supplement ISSUING AUTHORITY SUPPLEMENT AUTHOR APPROVAL DATE REVIEW DATE REV.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ES&H Manual Welding and Brazing Supplement ISSUING AUTHORITY SUPPLEMENT AUTHOR APPROVAL DATE REVIEW DATE REV. Page 1 of 33 QA/CI Dept. Welding Technical Committee 01/21/15 01/21/20 2.1 This document is controlled as an on line file. It may be printed but the print copy is not a controlled document. It is the user's responsibility to ensure that the document is the same revision as the current on line file. This copy was printed on 1/26/2016. 1 Purpose and Scope This supplement provides the

  2. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOE Patents [OSTI]

    Hankins, Matthew G. (Albuquerque, NM)

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  3. Property:OpenEI/UtilityRate/EndDate | Open Energy Information

    Open Energy Info (EERE)

    EndDate Jump to: navigation, search This is a property of type Date. Name: End Date Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  4. Property:OpenEI/UtilityRate/StartDate | Open Energy Information

    Open Energy Info (EERE)

    StartDate Jump to: navigation, search This is a property of type Date. Name: Start Date Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  5. Property:NEPA TMP/EISFederalRegisterDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NEPATMPEISFederalRegisterDate&oldid637471...

  6. Property:NEPA TMP/PreApplicationMeetingDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NEPATMPPreApplicationMeetingDate&oldid637468...

  7. Age Dating of Mixed SNM--Preliminary Investigations

    SciTech Connect (OSTI)

    Yuan, D., Guss, P. P., Yfantis, E., Klingensmith, A., Emer, D.

    2011-12-01

    Recently we investigated the nuclear forensics problem of age determination for mixed special nuclear material (SNM). Through limited computational mixing experiments and interactive age analysis, it was observed that age dating results are generally affected by the mixing of samples with different assays or even by small radioactive material contamination. The mixing and contamination can be detected through interactive age analysis, a function provided by the Decay Interaction, Visualization and Analysis (DIVA) software developed by NSTec. It is observed that for mixed SNM with two components, the age estimators typically fall into two distinct clusters on the time axis. This suggests that averaging or other simple statistical methods may not always be suitable for age dating SNM mixtures. Instead, an interactive age analysis would be more suitable for age determination of material components of such SNM mixtures. This work was supported by the National Center for Nuclear Security (NCNS).

  8. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION

    Energy Savers [EERE]

    6-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION PURPOSE: To provide Grantees with consolidated guidance on previously issued Weatherization Program Notices (WPNs) on weatherizing multifamily buildings in the Weatherization Assistance Program (WAP). This supersedes WPN 10-7 and WPN 11-9 SCOPE: The provisions of this guidance apply to Grantees applying for financial assistance under the Department of Energy (DOE) WAP. LEGAL AUTHORITY: Title IV, Energy Conservation and Production Act, as

  9. Home Energy Score: Analysis & Improvements to Date

    Energy Savers [EERE]

    Home Energy Score: � Analysis & Improvements to Date � Joan Glickman Senior Advisor/Program Manager U.S. Department of Energy July 24, 2012 1 eere.energy.gov Presentation Overview 1) Background 2) Program Improvements 3) Analysis: Efficacy of Tool & Program - Asset Perturbations - Behavior Perturbations - Estimated Energy Use vs. Actual Energy Use (from utility bills) - Time Required for Assessment and Scoring - Blower Door Test Analysis 4) Next Steps & Ongoing Analysis 2

  10. From: David Newacheck To: Congestion Study Comments Date:

    Office of Environmental Management (EM)

    Newacheck To: Congestion Study Comments Date: Sunday, October 19, 2014 9:15:20 PM Dear Sir or Ma'am; I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons: First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for transmission

  11. From: MCKEOWN D To: Congestion Study Comments Date:

    Office of Environmental Management (EM)

    MCKEOWN D To: Congestion Study Comments Date: Friday, September 19, 2014 2:18:11 AM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for transmission lines in one state

  12. From: Wayne Beach To: Congestion Study Comments Date:

    Office of Environmental Management (EM)

    Wayne Beach To: Congestion Study Comments Date: Thursday, October 09, 2014 12:32:40 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, I believe that condemning private property for transmission lines in one

  13. MEMORANDUM TO: FILE DATE FROM: SUBJECT: I ALTERNATE NAME:

    Office of Legacy Management (LM)

    FROM: SUBJECT: I ALTERNATE NAME: -__--__------------~-~ ------------_--__---__ CI+f: h&d --------- STATE:-&~ Owner cork&&d 0 yes .j -. ___ Current: ~-~~-_----_-_-~~--~--~~-~~ if yes, date contacted TYPE OF OPERATIkN --_--~~--~_-----_ 0 Research & Development' 0 Facility Type 0 Production scale tastinq Cl PiL'at Scale a Bench Scale Process a Theoretical Studies 0 Sample 7s Analysis q Production I3 Disposal /Storage 0 Manufacturing 0 University 0 Research Orqariizaticn 0

  14. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J.

    2006-11-01

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  15. COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability of the New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York/New Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy 2012 | Princeton Plasma Physics Lab February 28, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability of the New York/New Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy 2012 Professor Nicholas K. Coch Queens College CUNY In the last two years. the

  16. United States Government Department of Energy Memorandum DATE:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    *- - ~Lull-- " --- .lUI -4 ru a rlyA IgjUU Z JEf 1325.8 (6-89) EFG (07.90) United States Government Department of Energy Memorandum DATE: SEP 2 2 2003 REPLY TO: IG-34 (A03TG049) Audit Report No.: OAS-L-03-21 sueJEcT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2003" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results of our evaluation of the Federal Energy Regulatory Commission's

  17. TO : R. f. Snlth, Jr. Assistmt Director, DATE:

    Office of Legacy Management (LM)

    : R. f. Snlth, Jr. Assistmt Director, DATE: Production Diriaior, mo April 27, 1253 FROM : J. A. Yaffuccl, Chid. Tonswanda Sub-Office SUDJECT: my =Rl' APRIL 20-25 SUBOL: TA: m II oPzfATIons: . . An additional rlftt tons of cast iron acrap were sold to Schra&k*a Scrap Senlce' T;;ci~?or $32.00 par ton, the same price rdceired for the original tlfty-fire tons awarded to them as a result of the public sale held April 7th. v carloads of contaminated scrap were monitored. loadad and mhipped to

  18. Report No. U.S. Department of Eney Release Date:

    Energy Savers [EERE]

    No. U.S. Department of Eney Release Date: WR-B-95-06 Office of Inspector General May 5, 1995 Report on Audit of Construction of Protective Force Training Faciliti at the Pantex Plant This report can be obtained from the U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, Tennessee 37831 S tPrined wth soy ink n recycled pper U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL AUDIT OF CONSTRUCTION OF PROTECTIVE FORCE TRAINING FACILITIES AT THE PANTEX

  19. Organization Name Date Submitted File Name ACEEE Steve Nadel

    Energy Savers [EERE]

    Organization Name Date Submitted File Name ACEEE Steve Nadel 4/15/2011 ACEEE 4.15.2011 Alameda-Contra Coasta Transit District Chris Peeples 4/15/2011 Alameda-Contra Coasta Transit District 4.15.2011 American Academy of Arts and Sciences Robert W. Fri and Leslie C. Berlowitz 4/15/2011 American Academy of Arts and Science 4.15.2011 American Electric Power Michael L. Weinstein 4/15/2011 AEP 4.15.2011 American Gas Association, American Gas Foundation, American Public Gas Association, American Public

  20. From: Madra Fischer To: Congestion Study Comments Date:

    Office of Environmental Management (EM)

    Madra Fischer To: Congestion Study Comments Date: Friday, October 03, 2014 2:38:30 PM I am writing to state my objection to the Rock Island Clean Line project. They want to cross my farm field at a diagonal angle to the mainline railroad and across TWO (2) gas pipelines which causes even more hazard and danger to me and my operators. This line has no funding in place, no wind farm to supply it and no customers on the East coast who want it. The cost to me as a landowner in Illinois is the

  1. DATE: REPLY TO Al-l' N OF: SUBJECT: TO:

    Office of Legacy Management (LM)

    oy&$= IL4 2%?5- EFG (07.90) ' Uni,ted bates Government memorandum Department of Energy /Em 7:3/ (5 2L-e DATE: REPLY TO Al-l' N OF: SUBJECT: TO: - MAR 1 1 1991 EM-421 Authority Determination-- Granite City Steel Site, Granite City, Illinois The File The attached review documents the basis for determining whether DOE has authority for taking remedial action at the Granite City Steel Site in Granite City, Illinois, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Betatron

  2. DATE: REPLY TO Al-rN OF: SVBJECT: TO

    Office of Legacy Management (LM)

    i # - ? 0111 CF 1 Department of Energy .I 1 mbmbfiandum Ny. & / -.q DATE: REPLY TO Al-rN OF: SVBJECT: TO AUG 0 1 19% EM-421 Authorization for Remedial Action at the Former Baker and Williams Warehouses on West 20th Street in New York, New York, under FUSRAP L. Price, OR * The site of the former Baker and Williams Warehouses, currently owned by Ralph Ferrara, Inc., located on West 20th Street in New York City (Manhattan), is designated for inclusion in the Formerly Utilized Sites Remedial

  3. File:NREL-camdirjune.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  4. File:NREL-camdirsept.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  5. File:NREL-camdirapr.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  6. File:NREL-camdiraug.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  7. File:NREL-camdirmay.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  8. File:NREL-camdirjan.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  9. File:NREL-camdiroct.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  10. File:NREL-camdirmar.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  11. File:NREL-camdirdec.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  12. File:NREL-camgloann.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  13. File:NREL-camdirfeb.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  14. File:NREL-camdirann.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  15. File:NREL-camdirnov.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  16. File:NREL-camdirjuly.pdf | Open Energy Information

    Open Energy Info (EERE)

    Creation Date 2003-12-10 Extent International Countries Belize, Guatemala, El Salvador, Honduras, Nicaragua UN Region Central America File history Click on a datetime to...

  17. ANALYSIS OF OUT OF DATE MCU MODIFIER LOCATED IN SRNL

    SciTech Connect (OSTI)

    Crawford, C.

    2014-10-22

    SRNL recently completed density measurements and chemical analyses on modifier samples stored in drums within SRNL. The modifier samples date back to 2008 and are in various quantities up to 40 gallons. Vendor information on the original samples indicates a shelf life of 5 years. There is interest in determining if samples that have been stored for more than the 5 year shelf life are still acceptable for use. The Modular Caustic Side Solvent Extraction Unit (MCU) Solvent component Cs-7SB [(2,2,3,3- tetraflouropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, CAS #308362-88-1] is used as a diluent modifier to increase extractant solubility and provide physical characteristics necessary for diluent trimming.

  18. Summative Mass Closure: Laboratory Analytical Procedure (LAP) Review and Integration: Feedstocks; Issue Date: April 2010; Revision Date: July 2011 (Version 07-08-2011)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summative Mass Closure Laboratory Analytical Procedure (LAP) Review and Integration Issue Date: April 2010 Revision Date: July 2011 (Version 07-08-2011) J. Sluiter and A. Sluiter Technical Report NREL/TP-510-48087 Revised July 2011 Technical Report Summative Mass Closure NREL/TP-510-48087 Revised July 2011 Laboratory Analytical Procedure (LAP) Review and Integration Issue Date: April 2010 Revision Date: July 2011 (Version 07-08-2011) J. Sluiter and A. Sluiter Prepared under Task No. BB072230

  19. Property:Geothermal/DoeFundingLevelToDate | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:GeothermalDoeFundingLevelToDate Jump to: navigation, search Property Name GeothermalDoeFundingLevelToDate Property Type Number...

  20. K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles...

    Open Energy Info (EERE)

    (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on...

  1. Public Law 109-364, dated OCT 17, 2006 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Public Law 109-364, dated OCT 17, 2006, Subtitle D-United States Defense Industrial Base Provisions Public Law 109-364, dated OCT 17, 2006 More Documents & Publications Special...

  2. DOE Publishes Notice of Proposed Rulemaking Regarding the Compliance Date for the Dehumidifier Test Procedure

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding the compliance date for the dehumidifier test procedure.

  3. Home Energy Score: Analysis & Improvements to Date | Department of Energy

    Energy Savers [EERE]

    Score: Analysis & Improvements to Date Home Energy Score: Analysis & Improvements to Date Home Energy Score: Analysis & Improvements to Date, a presentation from the U.S. Department of Energy, by Joan Glickman Senior Advisor/Program Manager, Home Energy Score, July 24, 2012. PDF icon pilot_analysis_webinar7-24-12.pdf More Documents & Publications Home Energy Score: Analysis & Improvements to Date Home Energy Score Program HES Program Update and Scoring Tool v2014 Release

  4. U.S. Department of Energy TP/TI Date PROPERTY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    01-95) U.S. Department of Energy TP/TI Date PROPERTY TRANSFER or TURN-IN From LOCATION Property Tag No. Stock No. Description of Articles Serial No. Qty. Unit Price Age and Condition ORIGINAL; COPY 1 - TRANSFEREE; COPY 2 - PROPERTY ACCOUNTABLE OFFICER; COPY 3 - TRANSFEROR Date recorded: Signature (Transferor) ACCOUNTABLE PROPERTY REPRESENTATIVE (PROPERTY SECTION) Date shipped Date received Signature (Transferee) ACCOUNTABLE PROPERTY REPRESENTATIVE TRANSFER APPROVED: PROPERTY ACCOUNTABLE OFFICER

  5. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect (OSTI)

    Alfonso Valdes

    2010-03-31

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  6. Home Energy Score: Analysis & Improvements to Date | Department of Energy

    Energy Savers [EERE]

    Score: Analysis & Improvements to Date Home Energy Score: Analysis & Improvements to Date PDF icon pilot_analysis_webinar7-24-12.pdf More Documents & Publications Home Energy Score: Analysis & Improvements to Date Home Energy Score Program HES Program Update and Scoring Tool v2014 Release

  7. AHAM - CCE Overview and Update, dated 06/07/2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHAM - CCE Overview and Update, dated 06/07/2011 AHAM - CCE Overview and Update, dated 06/07/2011 This document is U.S. Department of Energy's presentation titled "AHAM - CCE Overview and Update", dated June 7, 2011. PDF icon cce_aham_presentation.pdf More Documents & Publications 2014-10-06 DOE Certification, Compliance, and Enforcement Overview for Refrigerators, Refrigerator-Freezers, Freezers, Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and

  8. Save the Date! Earth Day's 45th anniversary is on April 22, 2015 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Save the Date! Earth Day's 45th anniversary is on April 22, 2015 Save the Date! Earth Day's 45th anniversary is on April 22, 2015 April 20, 2015 - 8:26am Addthis Save the Date! Earth Day’s 45th anniversary is on April 22, 2015 Save the Date! Earth Day's 45th anniversary is on April 22, 2015. The celebration will showcase interactive, eco-friendly exhibits and activities to raise awareness of environmental issues and encourage sustainability. As in years past, the

  9. CEA … External Power Supplies, CCE Overview and Update presentation, dated

    Office of Environmental Management (EM)

    June 28, 2011. | Department of Energy CEA … External Power Supplies, CCE Overview and Update presentation, dated June 28, 2011. CEA … External Power Supplies, CCE Overview and Update presentation, dated June 28, 2011. This document is the U.S. Department of Energys presentation titled CEA … External Power Supplies, CCE Overview and UpdateŽ, presentation date 6/28/2011. PDF icon cea_eps_presentation.pdf More Documents & Publications AHAM - CCE Overview and Update, dated 06/07/2011

  10. NEMA Lighting, CCE Overview and Update presentation, dated 05/25/2011. |

    Office of Environmental Management (EM)

    Department of Energy Lighting, CCE Overview and Update presentation, dated 05/25/2011. NEMA Lighting, CCE Overview and Update presentation, dated 05/25/2011. This document is the U.S. Department of Energys presentation titled NEMA Lighting, CCE Overview and UpdateŽ, date - May 25, 2011. PDF icon nema_lighting_presentaion.pdf More Documents & Publications Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and

  11. Docket_N._EO-05-01signedby_Secretary_Bodman-_dated_92806.PDF | Department

    Office of Environmental Management (EM)

    of Energy Docket_N._EO-05-01signedby_Secretary_Bodman-_dated_92806.PDF Docket_N._EO-05-01signedby_Secretary_Bodman-_dated_92806.PDF PDF icon Docket_N._EO-05-01signedby_Secretary_Bodman-_dated_92806.PDF More Documents & Publications Department of Energy Order No. 202-07-1 Senator Dingell Letter to Secretary Bodman Support for City of Alexandria's Comments on the District of Columbia Public Service Commission, Docket No. EO-05-01

  12. Geothermal Resources of New Mexico - A Survey of Work to Date...

    Open Energy Info (EERE)

    library Report: Geothermal Resources of New Mexico - A Survey of Work to Date Authors W.J. Stone and N.H. Mizell Published New Mexico Bureau of Mines & Mineral Resources, 1977...

  13. Alaska - 3 AAC 48.280 Notice and Effective Date | Open Energy...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska - 3 AAC 48.280 Notice and Effective DateLegal Abstract This section outlines the notice...

  14. Review Dates (updated February 2016) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of Energy SC-28Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4840 F: (301) 903-8520 E: Email Us SC Projects Review Dates (updated...

  15. Survey Date Agent CAS Limit Type TWA/STEL/Excur % OEL OEL Air...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Personal Sampling Data 05-2005 through 12-2007 05272015 Survey Date Agent CAS Limit Type TWASTELExcur % OEL OEL Air Conc Farm Specific Location Work Activity Required Analysis...

  16. Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives | Department of Energy Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives PDF icon Dep Sec Memo 082710.pdf More Documents & Publications Policy Flash 2015-10 - Acquisition Letter Notice 2015-10 Improving Capital Assets Project Documentation Policy Flash 2013-73 Utlization of GSA Federal Strategic Sourcing Initiative Blanket Purchase Agreements for Office Supplies

  17. Memorandum from Paul Bosco dated May, 20, 2012, Utlization of the General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Administration's Federal Strategic Sourcing Initiative Blanket Purchase Agreements | Department of Energy Paul Bosco dated May, 20, 2012, Utlization of the General Services Administration's Federal Strategic Sourcing Initiative Blanket Purchase Agreements Memorandum from Paul Bosco dated May, 20, 2012, Utlization of the General Services Administration's Federal Strategic Sourcing Initiative Blanket Purchase Agreements PDF icon Bosco Memo May 29 2012.pdf More Documents &

  18. U.S. Department of Energy Announces 2014 Dates for Public Tours of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Gaseous Diffusion Plant | Department of Energy U.S. Department of Energy Announces 2014 Dates for Public Tours of Portsmouth Gaseous Diffusion Plant U.S. Department of Energy Announces 2014 Dates for Public Tours of Portsmouth Gaseous Diffusion Plant February 21, 2014 - 3:59pm Addthis PIKETON, OH - Interested in seeing what's behind the security gates at the Department of Energy's former uranium enrichment facilities in Piketon, Ohio? Then you will have a special opportunity to

  19. Radiokrypton Dating Identifies Ancient Antarctic Ice | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Radiokrypton Dating Identifies Ancient Antarctic Ice Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 11.01.14 Radiokrypton Dating Identifies Ancient

  20. Interim Transmittal Letter dated July 27 2005 | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Interim Transmittal Letter dated July 27 2005 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings 2015 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Charges/Reports Interim Transmittal Letter dated July 27 2005 Print Text Size: A A A FeedbackShare Page July 27, 2005 Harold T. Shapiro, Chair Sally Dawson, Vice Chair Elementary Particle Physics 2010 Committee The National Academies 500 Fifth Street, NW