Sample records for mem guatemala date

  1. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  2. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revised: 6122014 Template Reviewed: 6122014 Operated for the U.S. Department of Energy by Sandia Corporation P.O. Box 5800 MS-1461 Albuquerque, New Mexico 87185-1461 Date...

  3. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122 DATE:

  4. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122 DATE:2-

  5. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219 DATE:

  6. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09 DATE:

  7. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011 TO:

  8. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011 TO:4

  9. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011

  10. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122

  11. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219

  12. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 201122194

  13. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 2011221948

  14. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9, 20112219489

  15. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,

  16. MEMS in microfluidic channels.

    SciTech Connect (OSTI)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01T23:59:59.000Z

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  17. MEMS fluidic actuator

    DOE Patents [OSTI]

    Kholwadwala, Deepesh K. (Albuquerque, NM); Johnston, Gabriel A. (Trophy Club, TX); Rohrer, Brandon R. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM)

    2007-07-24T23:59:59.000Z

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  18. Guatemala: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettop Science Technology CoGuatemala:

  19. MEMS technology for timing and frequency control

    E-Print Network [OSTI]

    Nguyen, CTC

    2007-01-01T23:59:59.000Z

    Y. Kim, “Noise in microelectromechanical system resonators,”regard, microelectromechanical systems (MEMS) technology,focus upon microelectromechanical systems (MEMS) and include

  20. RURAL-FRONTIER MIGRATION AND DEFORESTATION IN THE SIERRA DE LACANDON NATIONAL PARK, GUATEMALA

    E-Print Network [OSTI]

    Lopez-Carr, David

    RURAL-FRONTIER MIGRATION AND DEFORESTATION IN THE SIERRA DE LACANDON NATIONAL PARK, GUATEMALA-frontier Migration and Deforestation in the Sierra de Lacandón National Park, Guatemala (Under the direction of deforestation in the Sierra de Lacandón Park (SLNP), Petén, Guatemala. To explore the first cause

  1. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11T23:59:59.000Z

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  2. Piezoelectric MEMS for energy harvesting

    E-Print Network [OSTI]

    Kim, Sang-Gook

    Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for ...

  3. Scientific Notes 649 LEPIDOPTERA ASSOCIATED WITH AVOCADO FRUIT IN GUATEMALA

    E-Print Network [OSTI]

    Hoddle, Mark S.

    Scientific Notes 649 LEPIDOPTERA ASSOCIATED WITH AVOCADO FRUIT IN GUATEMALA MARK S. HODDLE1 History, Smithsonian Institution, Washington, DC 20013, U.S.A Avocados (Persea americana Miller) (Lau of Central America (Knight 2002). Humans moved avocados into northern South America by 4000 BC where plants

  4. Chapter 22. Nanofluidic BioMEMS Research Nano/Microfluidic BioMEMS Research

    E-Print Network [OSTI]

    Chapter 22. Nanofluidic BioMEMS Research 22-1 Nano/Microfluidic BioMEMS Research RLE Group Micro / Nanofluidic BioMEMS Group Academic and Research Staff Professor Jongyoon Han Research Affiliates Dr. Yong 10, Sophomore) Overview of group Nanofluidic BioMEMS group in RLE (Han group) is exploring various

  5. Towards and industrial ecosystem for power MEMS

    E-Print Network [OSTI]

    Havel, Timothy Franklin

    2007-01-01T23:59:59.000Z

    This thesis is concerned with the commercial applications of MEMS (Micro-Electro-Mechanical Systems) manufacturing processes to advanced energy technologies. This field of engineering has come to be known as Power MEMS. ...

  6. RF MEMS switches : survey and analysis

    E-Print Network [OSTI]

    Machal-Cajigas, Antoinne Y

    2009-01-01T23:59:59.000Z

    Microelectromechanical systems known as MEMS, are an enabling technology that describe a field capable of creating very small electromechanical devices with feature sizes on the order of microns, or 10-6 meters. MEMS ...

  7. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M.; Allen, James J.

    2006-06-27T23:59:59.000Z

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  8. Inertial measurement unit using rotatable MEMS sensors

    DOE Patents [OSTI]

    Kohler, Stewart M. (Albuquerque, NM); Allen, James J. (Albuquerque, NM)

    2007-05-01T23:59:59.000Z

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  9. Amorphous Diamond MEMS and Sensors

    SciTech Connect (OSTI)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01T23:59:59.000Z

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.

  10. Using MEMS-Based Storage in Computer Systems --MEMS Storage Architectures

    E-Print Network [OSTI]

    Miller, Ethan L.

    Using MEMS-Based Storage in Computer Systems -- MEMS Storage Architectures Bo Hong Feng Wang. E. Schwarz, S. J. Santa Clara University As an emerging non-volatile secondary storage technology, MEMS-based storage exhibits sev- eral desirable properties including high performance, high storage

  11. MEMS packaging efforts at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Custer, Jonathan Sloane

    2003-02-01T23:59:59.000Z

    Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMIT V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

  12. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26T23:59:59.000Z

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a gross lack of understanding between the package materials, induced stress, and the device performance. The material properties of these packaging materials are not well defined or understood. Modeling of these materials and processes is far from maturity. Current post-package yields are too low for commercial feasibility, and consumer operating environment reliability and compatibility are often difficult to simulate. With further understanding of the materials properties and behavior of the packaging materials, MEMS applications can be fully realized and integrated into countless commercial and military applications.

  13. Efficiency optimization of an electrodynamic MEMS microspeaker

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Efficiency optimization of an electrodynamic MEMS microspeaker I. Shahosseinia , E. Lefeuvrea , J to maximize the electroacoustic conversion efficiency. The optimization method takes into account that the efficiency of optimized MEMS microspeaker could be up to ten times greater than that of conventional

  14. PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS

    E-Print Network [OSTI]

    Lin, Liwei

    PLANAR MEMS SUPERCAPACITOR USING CARBON NANOTUBE FORESTS Y.Q. Jiang, Q. Zhou, and L. Lin Mechanical ABSTRACT Planar micro supercapacitors utilizing vertically aligned carbon nanotube (CNT) forests and very robust cycling stability. As such, we believe these planar MEMS supercapacitors could

  15. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect (OSTI)

    Lee, A. P., LLNL

    1996-11-18T23:59:59.000Z

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical engineers made impact. Through a basic understanding of the history of MEMS, the background physics and scaling in micromechanical systems, and an introduction to baseline MEMS processes, a mechanical engineer should be well on his way to Alice's wonderland in the ever-exciting playground of MEMS.

  16. A Study of Sustainable Compost Micro-Enterprise In Chimaltenango, Guatemala: Profitability and Employee Characteristics 

    E-Print Network [OSTI]

    Silberg, Timothy

    2012-02-14T23:59:59.000Z

    Over 13 million people live in Guatemala, and among this population more than 50% live below the poverty line. One proposed solution to mitigate the large percentage of poverty in the country is micro-entrepreneurship. ...

  17. Needs Assessment of Agricultural, Environmental, and Social Systems of Small Farmers in Chimaltenango, Guatemala 

    E-Print Network [OSTI]

    Oleas, Carolina

    2011-02-22T23:59:59.000Z

    Providing support for the agricultural development of small farmers is the main goal of the project Agriculture in Guatemala: Technology, Education and Commercialization (AGTEC). To accomplish this, it is necessary, to ...

  18. Design of Surface Micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-12-31T23:59:59.000Z

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  19. Design of Surface micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-08-01T23:59:59.000Z

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  20. Solder self-assembly for MEMS fabrication

    E-Print Network [OSTI]

    Au, Hin Meng, 1977-

    2004-01-01T23:59:59.000Z

    This thesis examines and demonstrates self-assembly of MEMS components on the 25 micron scale onto substrates using the capillary force of solder. This is an order of magnitude smaller than current solder self-assembly in ...

  1. Si-based RF MEMS components.

    SciTech Connect (OSTI)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01T23:59:59.000Z

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  2. Piezoelectric MEMS resonator characterization and filter design

    E-Print Network [OSTI]

    Kang, Joung-Mo, 1978-

    2004-01-01T23:59:59.000Z

    This thesis presents modeling and first measurements of a new piezoelectric MEMS resonator developed at Draper Laboratory. In addition, some simple filter designs incorporating the resonator with predicted performance ...

  3. MEMS BASED DOPPLER VELOCITY MEASUREMENT SYSTEM

    E-Print Network [OSTI]

    White, Robert D.

    .2 Doppler Effect...................................................................................10 2MEMS BASED DOPPLER VELOCITY MEASUREMENT SYSTEM A dissertation submitted by Minchul Shin IN PARTIAL micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar

  4. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O'NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24T23:59:59.000Z

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  5. Radiocarbon Dating

    SciTech Connect (OSTI)

    Buchholz, B A

    2007-12-20T23:59:59.000Z

    Radiocarbon dating can be used to determine the age of objects that contain components that were once alive. In the case of human remains, a radiocarbon date can distinguish between a crime scene and an archeological site. Documents, museum artifacts and art objects can be dated to determine if their age is correct for the historical context. A radiocarbon date does not confirm authenticity, but it can help identify a forgery.

  6. New approach for modelling distributed MEMS transmission lines

    E-Print Network [OSTI]

    Akin, Tayfun

    New approach for modelling distributed MEMS transmission lines K. Topalli, M. Unlu, S. Demir, O for the distributed MEMS transmission line (DMTL) structures. In this new model, the MEMS bridges that are used as the loading elements of the DMTL structures are represented as low-impedance transmission lines, rather than

  7. Failure analysis issues in microelectromechanical systems (MEMS).

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2005-07-01T23:59:59.000Z

    Failure analysis and device characterization of MEMS components are critical steps in understanding the root causes of failure and improving device performance. At the wafer and die level these tasks can be performed with little or no sample preparation. Larger challenges occur after fabrication when the device is packaged, capped, sealed, or otherwise obstructed from view. The challenges and issues of MEMS failure analysis lie in identifying the root cause of failure for these packaged, capped, and sealed devices without perturbing the device or its immediate environment. Novel methods of gaining access to the device or preparing the device for analysis are crucial to accurately determining the root cause of failure. This paper will discuss issues identified in performing root cause failure analysis of packaged MEMS devices, as well as the methods employed to analyze them.

  8. Release Resistant Electrical Interconnections For Mems Devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Reber, Cathleen A. (Corrales, NM)

    2005-02-22T23:59:59.000Z

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  9. Introduction to applications and industries for Microelectromechanical Systems (MEMS).

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen

    2003-07-01T23:59:59.000Z

    Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment systems, inkjet print head systems, and optical routers. This paper will discuss current and future MEMS applications. What are MEMS? MEMS are typically defined as microscopic devices designed, processed, and used to interact or produce changes within a local environment. A mechanical, electrical, or chemical stimulus can be used to create a mechanical, electrical, or chemical response in a local environment. These smaller, more sophisticated devices that think, act, sense, and communicate are replacing their bulk counterparts in many traditional applications.

  10. High-speed, sub-pull-in voltage MEMS switching.

    SciTech Connect (OSTI)

    Spahn, Olga Blum; Brewer, Steven; Olsson, Roy H.; Bogart, Gregory R.; Luck, David L.; Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Resnick, Paul James; Tigges, Christopher P.; Grossetete, Grant David

    2008-01-01T23:59:59.000Z

    We have proposed and demonstrated MEMS switching devices that take advantage of the dynamic behavior of the MEMS devices to provide lower voltage actuation and higher switching speeds. We have explored the theory behind these switching techniques and have demonstrated these techniques in a range of devices including MEMS micromirror devices and in-plane parallel plate MEMS switches. In both devices we have demonstrated switching speeds under one microsecond which has essentially been a firm limit in MEMS switching. We also developed low-loss silicon waveguide technology and the ability to incorporate high-permittivity dielectric materials with MEMS. The successful development of these technologies have generated a number of new projects and have increased both the MEMS switching and optics capabilities of Sandia National Laboratories.

  11. MEMS micropump for a Micro Gas Analyzer

    E-Print Network [OSTI]

    Sharma, Vikas, 1979-

    2009-01-01T23:59:59.000Z

    This thesis presents a MEMS micro-vacuum pump designed for use in a portable gas analysis system. It is designed to be pneumatically-driven and as such does not have self-contained actuation (the focus of future work). ...

  12. A survey of geothermal process heat applications in Guatemala: An engineering survey

    SciTech Connect (OSTI)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01T23:59:59.000Z

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  13. SPICE Level 3 and BSIM3v3.1 characterization of monolithic integrated CMOS-MEMS devices

    SciTech Connect (OSTI)

    Staple, B.D.; Watts, H.A.; Dyck, C.; Griego, A.P.; Hewlett, F.W.; Smith, J.H.

    1998-08-01T23:59:59.000Z

    The monolithic integration of MicroElectroMechanical Systems (MEMS) with the driving, controlling, and signal processing electronics promises to improve the performance of micromechanical devices as well as lower their manufacturing, packaging, and instrumentation costs. Key to this integration is the proper interleaving, combining, and customizing of the manufacturing processes to produce functional integrated micromechanical devices with electronics. The authors have developed a MEMS-first monolithic integrated process that first seals the micromechanical devices in a planarized trench and then builds the electronics in a conventional CMOS process. To date, most of the research published on this technology has focused on the performance characteristics of the mechanical portion of the devices, with little information on the attributes of the accompanying electronics. This work attempts to reduce this information void by presenting the results of SPICE Level 3 and BSIM3v3.1 model parameters extracted for the CMOS portion of the MEMS-first process. Transistor-level simulations of MOSFET current, capacitance, output resistance, and transconductance versus voltage using the extracted model parameters closely match the measured data. Moreover, in model validation efforts, circuit-level simulation values for the average gate propagation delay in a 101-stage ring oscillator are within 13--18% of the measured data. In general, the BSIM3v3.1 models provide improved accuracy over the SPICE Level 3 models. These results establish the following: (1) the MEMS-first approach produces functional CMOS devices integrated on a single chip with MEMS devices and (2) the devices manufactured in the approach have excellent transistor characteristics. Thus, the MEMS-first approach renders a solid technology foundation for customers designing in the technology.

  14. Method and instrumentation for the measurement and characterization of MEMS fabricated electrical contacts

    E-Print Network [OSTI]

    Read, Melissa B. (Melissa Beth), 1982-

    2010-01-01T23:59:59.000Z

    MEMS fabricated electrical contacts consist of two MEMS fabricated surfaces which are physically separated and brought together for the purpose of carrying current. MEMS fabricated electrical contacts are used in a wide ...

  15. Monolithic integration of a MOSFET with a MEMS device

    DOE Patents [OSTI]

    Bennett, Reid (Albuquerque, NM); Draper, Bruce (Albuquerque, MN)

    2003-01-01T23:59:59.000Z

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  16. RF-MEMS Switched Varactors for Medium Power Applications

    E-Print Network [OSTI]

    Maury, F; Crunteanu, A; Conseil, F; Blondy, P

    2008-01-01T23:59:59.000Z

    In RF (Radio Frequency) domain, one of the limitations of using MEMS (Micro Electromechanical Systems) switching devices for medium power applications is RF power. Failure phenomena appear even for 500 mW. A design of MEMS switched capacitors with an enhanced topology is presented in this paper to prevent it. This kind of device and its promising performances will serve to fabricate a MEMS based phase shifter able to work under several watts.

  17. 1184 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 18, NO. 6, DECEMBER 2009 A Parylene MEMS Electrothermal Valve

    E-Print Network [OSTI]

    Meng, Ellis

    application in the reliable fabrication of nanotube-based electronic and microelectromechanical systems (MEMS for incorporation into next-generation electronic and microelectromechanical systems (MEMS) devices. Indeed, many

  18. DATE: TO:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 - DATE:

  19. DATE: TO:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 - DATE:41

  20. Thin Film Encapsulation Methods for Large Area MEMS Packaging

    E-Print Network [OSTI]

    Mahajerin, Armon

    2012-01-01T23:59:59.000Z

    Journal of Microelectromechanical Systems, vol. 2, no. 1,Journal of Microelectromechanical Systems, vol. 13, no. 5,Judy, “Microelectromechanical systems (MEMS): fabrication,

  1. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    E-Print Network [OSTI]

    Warren, Clinton Gregory

    2010-01-01T23:59:59.000Z

    Recent Developments in Polymer MEMS. Advanced Materials,using thin silicon/polymer bimorph membranes. Sensors andof cantilever arrays reveal polymer film expansion and

  2. Silicon on Nothing Mems Electromechanical Resonator

    E-Print Network [OSTI]

    Durand, C; Ancey, P; Judong, F; Talbot, A; Quenouillere, R; Renaud, D; Borel, S; Florin, B; Buchaillot, L

    2008-01-01T23:59:59.000Z

    The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfigurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Young's modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical...

  3. MEMS-Based Pyroelectric Thermal Energy Scavenger

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-12-07T23:59:59.000Z

    A new type of microelectromechanical system (MEMS ) high efficiency heat energy converter, or scavenger, was invented by ORNL researchers. This device is based on temperature cycled cantilevered pyroelectric capacitors. The scavenger converts thermal waste heat to electricity that can be used to monitor sensor systems, or recycled to provide electrical power while simultaneously reducing thermal cooling requirements. Given the current state of global industry, which discharges over 100...

  4. Radioisotope Power Sources for MEMS Devices,

    SciTech Connect (OSTI)

    Blanchard, J.P.

    2001-06-17T23:59:59.000Z

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquid source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.

  5. Solid oxide MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  6. Solid polymer MEMS-based fuel cells

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

    2008-04-22T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  7. Creating the political spectacle during the Cold War: Guatemala and the United States

    E-Print Network [OSTI]

    Burton, Michael Cassidy

    2013-02-22T23:59:59.000Z

    Arbenz and Maj. Francisco Arana, sponsored popular democratic elections in which Juan Jose Arevalo, a "professor from the University of Tucuman*', was elected to the presidency. Arevalo's regime 8 ' This brief summary of Guatemala's history leading up... formed and smaller political parties came into being. Arana was presumed to bc the next president elect and in a prideful move demanded Arevalo relinquish power before his term was up. Arevalo requested some time to consider Arana's proposal, and while...

  8. MEMS for Bio Applications Ian Papautsky, Ph.D.

    E-Print Network [OSTI]

    Baudoin, Geneviève

    to as BioMEMS or BioMicrosystems. In addition to many microfluidic devices, such as pumps, mixers, valves have been developed. Microfluidic devices and LOCs have generated interest in many application fields the SPIE Microfluidics, BioMEMS, and Medical Microsystems Conference and served on the organizing committee

  9. Pre-release plastic packaging of MEMS and IMEMS devices

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Conley, William R. (Tijeras, NM)

    2002-01-01T23:59:59.000Z

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  10. RF-MEMS capacitive switches with high reliability

    DOE Patents [OSTI]

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03T23:59:59.000Z

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  11. Research Projects inResearch Projects in Microelectromechanical Systems (MEMS) andMicroelectromechanical Systems (MEMS) and

    E-Print Network [OSTI]

    Frechette, Luc G.

    : Microelectromechanical Systems ­ Micro Fuel Cells ­ Microturbines ­ Micro generators (vibration energy harvesting.Frechette@USherbrooke.ca http://www.eureka.gme.usherb.ca/MEMSLab/ #12;Theme: MicroturbinesTheme: Microturbines Project are developing MEMS-based microturbines that will allows the miniaturization of power-plants on a chip

  12. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    E-Print Network [OSTI]

    Afshari, Ehsan

    useful for advanced inertial MEMS products such as automotive airbag accelerometers where reduced cost

  13. Reliability Testing of Polysilicon For MEMs Devices

    SciTech Connect (OSTI)

    LaVan, D.A.; Buchheit, T.E.

    1999-04-05T23:59:59.000Z

    Mission critical applications of MEMS devices require knowledge of the distribution in their material properties and long-term reliability of the small-scale structures. This project reports on a new testing program at Sandia to quantify the strength distribution using samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated with Sandia's SUMMiT 4-layer process was successfully measured using samples with gage sections 2.5 {micro}m thick by 1.7 {micro}m wide and lengths of 15 and 25 {micro}m. These tensile specimens have a freely moving pivot on one end that anchors the sample to the silicon die and prevents off axis loading during testing. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. The stress-strain curve is calculated using the specimen cross section and gage length dimensions verified by measuring against a standard in the SEM. The first 48 samples had a means strength of 2.24 {+-} 0.35 GPa. Fracture strength measurements grouped into three strength levels, which matched three failure modes observed in post mortem examinations. The seven samples in the highest strength group failed in the gage section (strength of 2.77 {+-} 0.04 GPa), the moderate strength group failed at the gage section fillet and the lowest strength group failed at a dimple in the hub. With this technique, multiple tests can be programmed at one time and performed without operator assistance at a rate of 20-30 per day allowing the collection of significant populations of data. Since the new test geometry has been proven, the project is moving to test the distributions seen from real geometric features typical to MEMS such as the effect of gage length, fracture toughness, bonding between layers, etch holes, dimples and shear of gear teeth.

  14. DATE: PAGE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09

  15. High fidelity frictional models for MEMS.

    SciTech Connect (OSTI)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Reedy, Earl David, Jr.; Bitsie, Fernando; de Boer, Maarten Pieter; Corwin, Alex David; Ashurst, William Robert (Auburn University, Auburn, AL); Jones, Reese E.; Subhash, Ghatu S. (Michigan Technological Institute, Houghton, MI); Street, Mark D. (University of Wisconsin, Madison, WI); Sumali, Anton Hartono; Antoun, Bonnie R.; Starr, Michael James; Redmond, James Michael; Flater, Erin E. (University of Wisconsin, Madison, WI)

    2004-10-01T23:59:59.000Z

    The primary goals of the present study are to: (1) determine how and why MEMS-scale friction differs from friction on the macro-scale, and (2) to begin to develop a capability to perform finite element simulations of MEMS materials and components that accurately predicts response in the presence of adhesion and friction. Regarding the first goal, a newly developed nanotractor actuator was used to measure friction between molecular monolayer-coated, polysilicon surfaces. Amontons law does indeed apply over a wide range of forces. However, at low loads, which are of relevance to MEMS, there is an important adhesive contribution to the normal load that cannot be neglected. More importantly, we found that at short sliding distances, the concept of a coefficient of friction is not relevant; rather, one must invoke the notion of 'pre-sliding tangential deflections' (PSTD). Results of a simple 2-D model suggests that PSTD is a cascade of small-scale slips with a roughly constant number of contacts equilibrating the applied normal load. Regarding the second goal, an Adhesion Model and a Junction Model have been implemented in PRESTO, Sandia's transient dynamics, finite element code to enable asperity-level simulations. The Junction Model includes a tangential shear traction that opposes the relative tangential motion of contacting surfaces. An atomic force microscope (AFM)-based method was used to measure nano-scale, single asperity friction forces as a function of normal force. This data is used to determine Junction Model parameters. An illustrative simulation demonstrates the use of the Junction Model in conjunction with a mesh generated directly from an atomic force microscope (AFM) image to directly predict frictional response of a sliding asperity. Also with regards to the second goal, grid-level, homogenized models were studied. One would like to perform a finite element analysis of a MEMS component assuming nominally flat surfaces and to include the effect of roughness in such an analysis by using a homogenized contact and friction models. AFM measurements were made to determine statistical information on polysilicon surfaces with different roughnesses, and this data was used as input to a homogenized, multi-asperity contact model (the classical Greenwood and Williamson model). Extensions of the Greenwood and Williamson model are also discussed: one incorporates the effect of adhesion while the other modifies the theory so that it applies to the case of relatively few contacting asperities.

  16. 05670_MEMS | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) - Energy Innovation Portal Advanced Materialsj3Fabry-Perot MEMS

  17. Metal MEMS Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview and HistoryMEMS: Inside the Global Research

  18. Photonic MEMS for NIR in-situ

    SciTech Connect (OSTI)

    Bond, T C; Cole, G D; Goddard, L L; Behymer, E

    2007-07-03T23:59:59.000Z

    We report on a novel sensing technique combining photonics and microelectromechanical systems (MEMS) for the detection and monitoring of gas emissions for critical environmental, medical, and industrial applications. We discuss how MEMS-tunable vertical-cavity surface-emitting lasers (VCSELs) can be exploited for in-situ detection and NIR spectroscopy of several gases, such as O{sub 2}, N{sub 2}O, CO{sub x}, CH{sub 4}, HF, HCl, etc., with estimated sensitivities between 0.1 and 20 ppm on footprints {approx}10{sup -3} mm{sup 3}. The VCSELs can be electrostatically tuned with a continuous wavelength shift up to 20 nm, allowing for unambiguous NIR signature determination. Selective concentration analysis in heterogeneous gas compositions is enabled, thus paving the way to an integrated optical platform for multiplexed gas identification by bandgap and device engineering. We will discuss here, in particular, our efforts on the development of a 760 nm AlGaAs based tunable VCSEL for O{sub 2} detection.

  19. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01T23:59:59.000Z

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  20. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect (OSTI)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01T23:59:59.000Z

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

  1. Detection of contaminants using a MEMS FAIMS sensor

    E-Print Network [OSTI]

    Carr, Kristin (Kristin Malia)

    2005-01-01T23:59:59.000Z

    Detecting the presence of contaminants in water is a critical mission, but thorough testing often requires extensive time at a remote facility. A MEMS implementation of a FAIMS (High-Field Asymmetric-Waveform Ion Mobility ...

  2. An electrothermally-actuated bistable MEMS relay for power applications

    E-Print Network [OSTI]

    Qiu, Jin, 1974-

    2003-01-01T23:59:59.000Z

    This thesis first develops a bistable mechanism that does not rely on internal stress or hinges for its bistability, which is then combined with transient electrothermal actuation and contact structure to develop a MEMS ...

  3. Characterization and modeling of polysilicon MEMS chemical-mechanical polishing

    E-Print Network [OSTI]

    Tang, Brian D. (Brian David), 1980-

    2004-01-01T23:59:59.000Z

    Heavily used in the manufacture of integrated circuits, chemical-mechanical polishing (CMP) is becoming an enabling technology for microelectromechanical systems (MEMS). To reliably use CMP in the manufacturing process, ...

  4. Reduced-order modeling of MEMS using modal basis functions

    E-Print Network [OSTI]

    Varghese, Mathew, 1973-

    2002-01-01T23:59:59.000Z

    The field of MEMS has matured significantly over the last two decades increasing in both complexity and level of integration. To keep up with the demands placed by these changes requires the development of computer-aided ...

  5. Magnetic machines and power electronics for power MEMS applications

    E-Print Network [OSTI]

    Das, Sauparna, 1979-

    2005-01-01T23:59:59.000Z

    This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

  6. Modeling and design of a MEMS piezoelectric vibration energy harvester

    E-Print Network [OSTI]

    Du Toit, Noël Eduard

    2005-01-01T23:59:59.000Z

    The modeling and design of MEMS-scale piezoelectric-based vibration energy harvesters (MPVEH) are presented. The work is motivated by the need for pervasive and limitless power for wireless sensor nodes that have application ...

  7. Novel rf mems tunable filters with adjustable spurious suppression 

    E-Print Network [OSTI]

    Sekar, Vikram

    2009-05-15T23:59:59.000Z

    This thesis presents the theory and design of fixed and Radio Frequency (RF) Microelectromechanical Systems (MEMS) -based tunable microwave filters for RF and microwave applications. The methodology for the design of coupled resonator filters...

  8. Novel rf mems tunable filters with adjustable spurious suppression

    E-Print Network [OSTI]

    Sekar, Vikram

    2009-05-15T23:59:59.000Z

    This thesis presents the theory and design of fixed and Radio Frequency (RF) Microelectromechanical Systems (MEMS) -based tunable microwave filters for RF and microwave applications. The methodology for the design of coupled resonator filters...

  9. MemTable : contextual memory in group workspaces

    E-Print Network [OSTI]

    Hunter, Seth E

    2009-01-01T23:59:59.000Z

    This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...

  10. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 5, OCTOBER 2007 1219 Design and Operation of a MEMS-Based Material

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    integrated with RF microelectromechanical systems (MEMS) capacitors for tuning the resonant frequency at low dc voltages. Index Terms--Microelectromechanical system (MEMS), microstrip an- tennas, microwave, reconfigurable architectures. I. INTRODUCTION Microelectromechanical systems (MEMS) and the application

  11. Mechanics and tribology of MEMS materials.

    SciTech Connect (OSTI)

    Prasad, Somuri V.; Dugger, Michael Thomas; Boyce, Brad Lee; Buchheit, Thomas Edward

    2004-04-01T23:59:59.000Z

    Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.

  12. Theory on Measuring Orientation with MEMS Accelerometers in a Centrifuge

    E-Print Network [OSTI]

    Beemer, Ryan D.; Murali, Madhuri; Biscontin, Giovanna; Aubeny, Charles

    2015-03-21T23:59:59.000Z

    search of the American Society of Civil Engineers Library for “MEMS” yields 641 results (at the time of writing). One common type of MEMS sensor is the accelerometer. Their initial growth was directly due to the automotive industry. They replaced... , 51(4), 100–109. Silicon Design Inc. (2013). “Model 2012.” Kirkland, WA. Spangler, L. “Chip”, and Kemp, C. J. (1996). “ISAAC: integrated silicon automotive accelerometer.” Sensors and Actuators A: Physical, 54(1-3), 523–529. Stringer, M., Heron, C...

  13. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    SciTech Connect (OSTI)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01T23:59:59.000Z

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  14. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Patents [OSTI]

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03T23:59:59.000Z

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  15. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 7, NO. 4, DECEMBER 1998 395 Development of a MEMS Microvalve

    E-Print Network [OSTI]

    and microelectromechanical systems MEMS to form electrical and/or mechanical components. In this paper, a nanoindentation.1063/1.1898449 I. INTRODUCTION Microelectromechanical systems MEMS refer to de- vices that have a characteristic

  16. A MEMS Thin Film AlN Supercritical Carbon Dioxide Valve

    E-Print Network [OSTI]

    Chen, Ya-Mei

    2011-01-01T23:59:59.000Z

    and T. K. Tang, “MEMS micro-valve for space applications”,of the fabricated thermal MEMS valve by Kim et al. [An electrostatically actuated gas valve with an s-shape film

  17. Design, fabrication and testing of a lateral self-cleaning MEMS switch

    E-Print Network [OSTI]

    Shi, Yong, 1965-

    2004-01-01T23:59:59.000Z

    A lateral contact MEMS switch has been developed to address the need for a long life cycle, low contact resistance RF switch. At the present time, there is no commercial MEMS switch that meets all the requirements. The ...

  18. A Comparative Analysis of Mestizo and Indigenous Mayan Young Women in Guatemala: Attitudes and Knowledge of Sexual Reproduction and Health among Members of Children International's Youth Health Corps

    E-Print Network [OSTI]

    Trapp, Sarah Casement

    2011-04-21T23:59:59.000Z

    Children International’s Youth Health Corps Program uses Peer Education techniques to teach impoverished adolescents about Sexual Health and Reproduction. In the Youth Health Corps in Guatemala, both rural indigenous Maya ...

  19. Through the Lens of Pater-Americanism: A Comparative Analysis of the Eisenhower Administration's Perception of Guatemala and Bolivia, 1953 and 1954

    E-Print Network [OSTI]

    Moulton, Aaron Coy

    2009-06-06T23:59:59.000Z

    This thesis examines the diverging responses of the Eisenhower Administration in the US to the Arbenz government in Guatemala and the Paz government in Bolivia in 1953 and 1954. This divergence occurred in spite of strong similarities between...

  20. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 18, NO. 1, FEBRUARY 2009 103 Indium Phosphide MEMS Cantilever Resonator

    E-Print Network [OSTI]

    Rubloff, Gary W.

    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 18, NO. 1, FEBRUARY 2009 103 Indium Phosphide MEMS, Subramaniam Kanakaraju, Neil Goldsman, and Reza Ghodssi Abstract--We report a microelectromechanical system, microelectromechanical system (MEMS) cantilevers, pentacene, III­V MEMS. I. INTRODUCTION THE NEED to monitor

  1. Designing Computer Systems With MEMS-based Storage Steven W. Schlosser, John Linwood Grin,

    E-Print Network [OSTI]

    architects. An exciting new storage technology based on microelectromechanical systems (MEMS) is poised; Keywords: microelectromechanical systems (MEMS), storage systems, memory hier- archy #12; $1/GB $10/GB $100 [CBF + 00, Bro98]. Based on microelectromechanical systems (MEMS), this non- volatile storage tech

  2. Workload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems

    E-Print Network [OSTI]

    Miller, Ethan L.

    Data layout, MEMS, Probe-Based Storage 1. INTRODUCTION Users of battery-powered mobile systems requireWorkload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems Mohammed G. Khatib.h.hartel@utwente.nl ABSTRACT Because of its small form factor, high capacity, and expected low cost, MEMS-based storage

  3. Identification of Residual Stress State in an RF-MEMS Device

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    of wafer level tests. The membrane is part of an RF MEMS Switch man- ufactured by Raytheon Systems Co) and 3D numerical simulations. THE RAYTHEON'S RF MEMS SWITCH The RF MEMS switch technology developed by Raytheon Systems Co. provides advantageous characteristics for communication circuits by virtue of its

  4. A Novel MEMS LTCC Switch Matrix Bahram Yassini, Savio Choi, Andre Zybura, Ming Yu,

    E-Print Network [OSTI]

    Yu, Ming

    A Novel MEMS LTCC Switch Matrix Bahram Yassini, Savio Choi, Andre Zybura, Ming Yu, Robert. E planar 4x4 switch matrix using microelectromechanical system (MEMS) switches and Low Temperature Cofired Ceramic (LTCC) substrate is presented for the first time. Together a 9-layer LTCC substrate and 32 MEMS

  5. Zone-Based Shortest Positioning Time First Scheduling for MEMS-Based Storage Devices

    E-Print Network [OSTI]

    Miller, Ethan L.

    , and power consumption an order of magnitude lower. Previous re- search has examined data layout and request drives, storage densities 10 times greater, and power consumption an order of magnitude lower. MEMS other using MEMS actuators, each read/write head can access a region of the surface. MEMS- based storage

  6. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D A

    2009-12-07T23:59:59.000Z

    This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

  7. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    SciTech Connect (OSTI)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01T23:59:59.000Z

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  8. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    SciTech Connect (OSTI)

    Hazra, Siddharth S. (Carnegie Mellon University, Pittsburgh, PA); de Boer, Maarten Pieter (Carnegie Mellon University, Pittsburgh, PA); Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01T23:59:59.000Z

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  9. Hidden Challenges to MEMS Commercialization: Design Realization and Reliability Assurance

    SciTech Connect (OSTI)

    McWhorter, P.J.; Miller, S.L.; Miller, W.M.; Rodger, M.S.; Yarberry, V.R.

    1999-01-20T23:59:59.000Z

    The successful commercialization of MicroElectroMechanical Systems (MEMS) is an essential prerequisite for their implementation in many critical government applications. Several unique challenges must be overcome to achieve this widespread commercialization. Challenges associated with design realization and reliability assurance are discussed, along with approaches taken by Sandia to successfully overcome these challenges.

  10. Columbia University http://www.columbia.edu/~mem4/

    E-Print Network [OSTI]

    Mauel, Michael E.

    Mike Mauel Columbia University http://www.columbia.edu/~mem4/ National Undergraduate Fusion plant · Columbia University's plasma physics experiments 6Friday, June 5, 2009 #12;Forces of Nature, 2009 100-300 s after the "Big-Bang": The Age of Fusion · At 100 sec, the universe cools to 1

  11. Columbia University http://www.columbia.edu/~mem4/

    E-Print Network [OSTI]

    Mauel, Michael E.

    Mike Mauel Columbia University http://www.columbia.edu/~mem4/ United States Coast Guard Academy 1 of a power plant · Columbia University's plasma physics experiments 2Tuesday, March 1, 2011 #12;Energy from, the universe cools to 1,000,000,000° · Protons and neutrons fuse to Deuterium (heavy hydrogen).The whole

  12. Columbia University http://www.columbia.edu/~mem4/

    E-Print Network [OSTI]

    Mauel, Michael E.

    Mike Mauel Columbia University http://www.columbia.edu/~mem4/ National Undergraduate Fusion at the scale of a power plant · Columbia University's plasma physics experiments 2Monday, June 6, 2011 #12 Fellowship Program 6 June 2011 The slides for this talk are online at: http://www.apam.columbia

  13. MEMSNANO-2005 International conference on MEMS and Semiconductor Nanotechnology

    E-Print Network [OSTI]

    Mishra, Prabhat

    in place of polycrystalline metal oxide lead to large increase of free surface energy which in turn leads-22,2005,IIT Kharagpur,India MEMS BASED NANOCRYSTALLINE METAL OXIDE GAS SENSORS FOR COALMINE ENVIRONMENT P Metal Oxide gas sensors commonly used for sensing inflammable hydrocarbon gases and other toxic gases

  14. Diamond and Polycrystalline Diamond for MEMS Applications: Simulations and Experiments

    E-Print Network [OSTI]

    Çagin, Tahir

    Diamond and Polycrystalline Diamond for MEMS Applications: Simulations and Experiments Tahir C¸ a on Silicon and polycrystalline diamond show that this rapid wear is caused by a variety of factors, related processes on diamond surfaces. We studied the atomic friction of diamond (100)­surface employing an extended

  15. CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS

    E-Print Network [OSTI]

    Steckl, Andrew J.

    CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS A. Fraiwan1 , S. Sundermier1 Microbial Fuel Cells, Micro-sized, Power Density, Limiting Factors INTRODUCTION Microbial fuel cells (MFCs fuel cells (MFCs) have been a major focus for renewable energy production. With the successful

  16. A MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS

    E-Print Network [OSTI]

    induction turbine-generator, and demonstrated a maximum output power of 192µW under driven excitation [1]. Holmes et al. have integrated a 7.5mm diameter permanent-magnet generator, an axial-flow polymer turbineA MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS Florian Herrault, Chang-Hyeon Ji, Seong

  17. Noel C. MacDonald Fred Kavli Chair for MEMS

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Micro-mirror Array Ti/Au -Bonding Titanium Waveguide/relay & Wafer ­scale package Introduction · Ti Packaging #12;UCSB 3D Ti MEMS · Through- etch titanium wafer · Deposit gold on mating surfaces · Bond Wafers be processed using power metallurgy. ·Ti can be joined by fusion welding, brazing, adhesives, diffusion bonding

  18. A CAPACITIVELY BASED MEMS AFFINITY GLUCOSE SENSOR Xian Huang1*

    E-Print Network [OSTI]

    Lin, Qiao

    sensors, based on MEMS technology, allow low-cost non-invasive or minimally-invasive glucose monitoring on a magnetically actuated cantilever whose vibration was detected optically, represented our initial effort towards the feasibility for stable and potentially implantable CGM. DEVICE DESIGN AND FABRICATION The device consists

  19. Recent Developments in Mems-Based Micro Fuel Cells

    E-Print Network [OSTI]

    Pichonat, T

    2007-01-01T23:59:59.000Z

    Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

  20. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01T23:59:59.000Z

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  1. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01T23:59:59.000Z

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  2. Piston-Driven Fluid Ejectors In Silicon Mems

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Benavides, Gilbert L. (Los Ranchos, NM); Jokiel, Jr., Bernhard (Albuquerque, NM); Jakubczak II, Jerome F. (Rio Rancho, NM)

    2005-05-03T23:59:59.000Z

    A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.

  3. Columbia University http://www.columbia.edu/~mem4/

    E-Print Network [OSTI]

    Mauel, Michael E.

    Mike Mauel Columbia University http://www.columbia.edu/~mem4/ and Jefferson Science Fellow EEB slow! #12;100-300 s after the "Big-Bang": The Age of Fusion · At 100 sec, the universe cools to 1,000,000,000° · Protons and neutrons fuse to Deuterium (heavy hydrogen).The whole universe is a "burning plasma"! · D + D

  4. La prise en compte des populations locales dans la mise en place d'aires protges : tudes de cas au Guatemala et au Maroc

    E-Print Network [OSTI]

    Vellend, Mark

    au Guatemala et au Maroc Par Vincens Côté essai présenté au Département de biologie pour l la gestion de deux aires protégées, l'une au Guatemala et l'autre au Maroc, et tente d'en dégager des scientifiques ont été utilisés pour déterminer la nature de la protection. Au Maroc, les premières lois sur les

  5. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect (OSTI)

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D. (University of Wisconsin, Madison, WI); Ashurst, William Robert (Auburn University, Auburn, AL); Corwin, Alex David

    2006-01-01T23:59:59.000Z

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  6. MEMS-based thin-film fuel cells

    DOE Patents [OSTI]

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28T23:59:59.000Z

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  7. MEMS `SMART DUST MOTES' FOR DESIGNING, MONITORING AND ENABLING EFFICIENT LIGHTING

    E-Print Network [OSTI]

    Agogino, Alice M.

    -based lighting system has the potential to achieve many environmental benefits in comparison to existing sensorMEMS `SMART DUST MOTES' FOR DESIGNING, MONITORING AND ENABLING EFFICIENT LIGHTING Alice M. Agogino focused on office lighting monitoring and control based on the new MEMS `smart dust mote' sensor

  8. APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

  9. MEM Project Guidelines revised 6/25/09 Master of Environmental Management

    E-Print Network [OSTI]

    (including an estimate of hours of work and materials for each task) Project Because the MEM projectMEM Project Guidelines revised 6/25/09 Master of Environmental Management Project Guidelines Project Overview: The culminating experience of students seeking a Master of Environmental Management

  10. A Novel Pump for MEMS Applications Mihir Sen, Daniel Wajerski, and Mohamed Gad-el-Hak

    E-Print Network [OSTI]

    Gad-el-Hak, Mohamed

    1 A Novel Pump for MEMS Applications Mihir Sen, Daniel Wajerski, and Mohamed Gad-el-Hak Department of Fluids Engineering, vol. 118, pp. 624-627, 1996. #12;2 A Novel Pump for MEMS Applications Mihir Sen1 of Notre Dame Notre Dame, IN 46556 We present a novel approach for pumping fluids in micromechanical

  11. System Design and Experimental Evaluation of a MEMS-based Semicircular Canal Prosthesis

    E-Print Network [OSTI]

    Tang, William C

    System Design and Experimental Evaluation of a MEMS-based Semicircular Canal Prosthesis Jiayin Liu evaluation of a unilateral vestibular prosthesis. The sensing element of the prosthesis is a one-axis MEMS the corresponding vestibular nerve branch. Our preliminary experimental evaluations of the prosthesis on a rate

  12. Body Fitted Grid Generation Method with Moving Boundaries and Its Application for analysis of MEMS

    E-Print Network [OSTI]

    Tentzeris, Manos

    Body Fitted Grid Generation Method with Moving Boundaries and Its Application for analysis of MEMS these MEMS devices using body fitted grid generation method with moving boundaries is proposed. This technique is based on the finite-difference time-domain (FD-TD) method and a kind of grid generation

  13. Examining the Proximate and Underlying Causes of Tropical Deforestation: Migration and Land Use in the Sierra de Lacandn National Park, Guatemala1

    E-Print Network [OSTI]

    Lopez-Carr, David

    1 Examining the Proximate and Underlying Causes of Tropical Deforestation: Migration and Land Use In explaining variability in tropical deforestation, scholars have focused almost exclusively on in situ (or "on causes of deforestation in the humid tropics with a case study from Guatemala. To investigate the first

  14. Proximate and Underlying Causes of Tropical Deforestation: The Event Ecology of Migration and Forest Conversion in the Sierra de Lacandn National Park, Guatemala1

    E-Print Network [OSTI]

    Lopez-Carr, David

    1 Proximate and Underlying Causes of Tropical Deforestation: The Event Ecology of Migration deforestation, scholars of land use/cover change (LUCC) have focused almost exclusively on in situ (or "on causes of deforestation in the humid tropics with a case study from Guatemala. To investigate the first

  15. REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student Number: _________________________

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    REPLACEMENT/STALE DATED CHEQUE REQUEST FORM Date: ____________________________ Student: _________________________ Cheque Date: _____________________ CHEQUE AMOUNT: ________________________ REASON FOR REPLACEMENT Building at the address below. Please indicate how you would like to receive your replacement cheque

  16. Dating the Vinland Map

    ScienceCinema (OSTI)

    None

    2013-07-17T23:59:59.000Z

    Scientists from Brookhaven National Laboratory, the University of Arizona, and the Smithsonian Institution used carbon-dating technology to determine the age of a controversial parchment that might be the first-ever map of North America.

  17. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01T23:59:59.000Z

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  18. Sources of stress gradients in electrodeposited Ni MEMS.

    SciTech Connect (OSTI)

    Hearne, Sean Joseph; Floro, Jerrold Anthony; Dyck, Christopher William

    2004-06-01T23:59:59.000Z

    The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex functions will depend on developing freestanding metal structures that offer improved conductivity and reflectivity over polysilicon structures. For example, metal-based RF MEMS technology could replace the bulky RF system presently used in communications, navigation, and avionics systems. However, stress gradients that induce warpage of active components have prevented the implementation of this technology. Figure 1, is an interference micrograph image of a series of cantilever beams fabricated from electrodeposited Ni. The curvature in the beams was the result of stress gradients intrinsic to the electrodeposition process. To study the sources of the stress in electrodeposition of Ni we have incorporated a wafer curvature based stress sensor, the multibeam optical stress sensor, into an electrodeposition cell. We have determined that there are two regions of stress induced by electrodepositing Ni from a sulfamate-based bath (Fig 2). The stress evolution during the first region, 0-1000{angstrom}, was determined to be dependent only on the substrate material (Au vs. Cu), whereas the stress evolution during the second region, >1000{angstrom}, was highly dependent on the deposition conditions. In this region, the stress varied from +0.5 GPa to -0.5GPa, depending solely on the deposition rate. We examined four likely sources for the compressive intrinsic stress, i.e. reduction in tensile stress, and determined that only the adatom diffusion into grain boundaries model of Sheldon, et al. could account for the observed compressive stress. In the presentation, we shall discuss the compressive stress generation mechanisms considered and the ramifications of these results on fabrication of electrodeposited Ni for MEMS applications.

  19. A novel method of fabricating integrated FETs for MEMS applications.

    SciTech Connect (OSTI)

    Okandan, Murat; Bennett, Reid Stuart; Draper, Bruce Leroy; Mani, Seethambal S.

    2003-07-01T23:59:59.000Z

    This paper demonstrates a simple technique for building n-channel MOSFETs and complex micromechanical systems simultaneously instead of serially, allowing a more straightforward integration of complete systems. The fabrication sequence uses few additional process steps and only one additional masking layer compared to a MEMS-only technology. The process flow forms the MOSFET gate electrode using the first level of mechanical polycrystalline silicon, while the MOSFET source and drain regions are formed by dopant diffusions into the substrate from subsequent levels of heavily doped poly that is used for mechanical elements. The process yields devices with good, repeatable electrical characteristics suitable for a wide range of digital and analog applications.

  20. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    DOE Patents [OSTI]

    Kholwadwala, Deepesh K. (Albuquerque, NM); Rohrer, Brandon R. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Wheeler, Jason W. (Albuquerque, NM); Hobart, Clinton G. (Albuquerque, NM); Givler, Richard C. (Albuquerque, NM)

    2008-09-23T23:59:59.000Z

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  1. GE MEMS for LTE Advanced Mobile Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G F ! ( ! ( ! ( ! (MEMS

  2. Progress toward a MEMS fabricated 100 GHz oscillator.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Lemp, Thomas; Weyn, Mark L.; Coleman, Phillip Dale; Rowley, James E. (SAIC, Albuquerque, NM)

    2006-02-01T23:59:59.000Z

    This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.

  3. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    SciTech Connect (OSTI)

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01T23:59:59.000Z

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  4. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect (OSTI)

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01T23:59:59.000Z

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  5. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect (OSTI)

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17T23:59:59.000Z

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  6. Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices.

    SciTech Connect (OSTI)

    Krauss, A. R.; Gruen, D. M.; Jayatissa, A.; Sumant, A.; Tucek, J.; Auciello, O.; Mancini, D.; Moldovan, N.; Erdemir, A.; Ersoy, D.; Gardos, M. N.; Busmann, H. G.; Meyer, E. M.; Ding, M. Q.; Univ. of Illinois at Chicago; Raytheon Electronic Systems Comp.; Fraunhofer Inst. for Applied Materials Science; Univ. of Bremen; Beijing Inst. of Electronics

    2001-11-01T23:59:59.000Z

    MEMS devices are currently fabricated primarily in silicon because of the available surface machining technology. A major problem with the Si-based MEMS technology is that Si has poor mechanical and tribological properties [J.J. Sniegowski, in: B. Bushan (Ed.), Tribology Issues and Opportunities in MEMS, Kluwer Academic Publisher, The Netherlands, 1998, p. 325; A.P. Lee, A.P. Pisano, M.G. Lim, Mater. Res. Soc. Symp. Proc. 276 (1992) 67.], and practical MEMS devices are currently limited primarily to applications involving only bending and flexural motion, such as cantilever accelerometers and vibration sensors. However, because of the poor flexural strength and fracture toughness of Si, and the tendency of Si to adhere to hydrophilic surfaces, even these simple devices have limited dynamic range. Future MEMS applications that involve significant rolling or sliding contact will require the use of new materials with significantly improved mechanical and tribological properties, and the ability to perform well in harsh environments, Diamond is a superhard material of high mechanical strength, exceptional chemical inertness, and outstanding thermal stability. The brittle fracture strength is 23 times that of Si, and the projected wear life of diamond MEMS moving mechanical assemblies (MEMS MMAs) is 10 000 times greater than that of Si MMAs. However, as the hardest known material, diamond is notoriously difficult to fabricate. Conventional CVD thin film deposition methods offer an approach to the fabrication of ultra-small diamond structures, but the films have large grain size, high internal stress, poor intergranular adhesion, and very rough surfaces, and are consequently ill-suited for MEMS MMA applications. Diamond-like films are also being investigated for application to MEMS devices. However, they involve mainly physical vapor deposition methods that are not suitable for good conformal deposition on high aspect ratio features, and generally they do not exhibit the outstanding mechanical properties of diamond. We demonstrate here the application of a novel microwave plasma technique using a unique C{sub 60}/Ar or CH{sub 4}/Ar chemistry that produces phase-pure ultrananocrystalline diamond (UNCD) coatings with morphological and mechanical properties that are ideally suited for MEMS applications in general, and MMA use in particular. We have developed lithographic techniques for the fabrication of UNCD-MEMS components, including cantilevers and multi-level devices, acting as precursors to microbearings and gears, making UNCD a promising material for the development of high performance MEMS devices.

  7. DATE: | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1DATE:

  8. Procedure No: Approval Date

    E-Print Network [OSTI]

    : Redding City Council Resolution: 10/15/2013 Date: 10/15/2013 #12;RPS-001 RPS ENFORCEMENT PROGRAM 1 2 TABLE: ................................................................ 5 D. Portfolio Balance Requirement Reduction: ................................................. 6 3 in California to acquire 33 percent of their annual unmet energy needs from renewable resources by 2020

  9. A MEMS-based, high-resolution Electric-Field meter

    E-Print Network [OSTI]

    Shafran, John Sawa

    2005-01-01T23:59:59.000Z

    In MEMS-based inertial sensors, such as accelerometers and gyroscopes, known electrical waveforms are applied to a modulating capacitive element to determine an unknown deflection. However, the inverse of this scheme can ...

  10. Design optimization for bioMEMS studies of enzyme-controlled metabolic pathways

    E-Print Network [OSTI]

    Rubloff, Gary W.

    . Rubloff # Springer Science + Business Media, LLC 2008 Abstract Biological microelectromechanical systems maintaining its catalytic activity. While promising as a methodology to replicate metabolic pathways in bioMEMS Microfluidic devices and polydimethylsiloxane (PDMS) soft lithography fabrication have reduced

  11. Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)

    E-Print Network [OSTI]

    Xia, YuXin, M.B.A. Sloan School of Management.

    2006-01-01T23:59:59.000Z

    A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

  12. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 5, OCTOBER 2007 1185 RF MEMS Sequentially Reconfigurable Sierpinski

    E-Print Network [OSTI]

    Tentzeris, Manos

    , Istanbul 80910, Turkey Design Methodology for Microelectromechanical Systems. Case Study: Torsional Scanner Mirror Future optical microsystems, such as microelectromechanical system (MEMS) scanners rapidly. There are a variety of specialized computer aided design tools in the microelectromechanical

  13. Piezoelectric Micro Power Generator (PMPG) : a MEMS-based energy scavenger

    E-Print Network [OSTI]

    Sood, Rajendra K. (Rajendra Kumar), 1979-

    2003-01-01T23:59:59.000Z

    As MEMS and smart material technologies begin to mature, their applications, such as medical implants and wireless communications are becoming more attractive. Traditionally, remote devices have used chemical batteries to ...

  14. Emergency delivery of Vasopressin from an implantable MEMS rapid drug delivery device

    E-Print Network [OSTI]

    Ho Duc, Hong Linh, 1978-

    2009-01-01T23:59:59.000Z

    An implantable rapid drug delivery device based on micro-electro-mechanical systems (MEMS) technology was designed, fabricated and validated for the in vivo rapid delivery of vasopressin in a rabbit model. In vitro ...

  15. A circular electrostatic zipping actuator for the application of a MEMS tunable capacitor

    E-Print Network [OSTI]

    Yang, Xue'en, 1975-

    2005-01-01T23:59:59.000Z

    Micromechanical circuits such as MEMS switches, tunable capacitors (varactors) or resonators in general have lower loss and consume less power than their CMOS counterparts and have seen an increase of applications in ...

  16. Mechanical characterization and in vivo operation of an implantable drug delivery MEMS device

    E-Print Network [OSTI]

    Li, Yawen, 1972-

    2005-01-01T23:59:59.000Z

    The goal of this thesis was to advance an implantable drug delivery MEMS (MicroElectroMechanical Systems) device developed in our laboratory. This device was designed to locally deliver multiple substances in complex release ...

  17. Assembling 3D MEMS structures by folding, aligning and latching 2D patterned films

    E-Print Network [OSTI]

    Shaar, Nader S. (Nader Salah)

    2014-01-01T23:59:59.000Z

    The techniques used in the fabrication of micro-electro-mechanical systems (MEMS) were adopted from the integrated circuits (IC) industry and are mostly limited to patterning thin films on a flat substrate. As a consequence, ...

  18. EXPERIMENTAL INVESTIGATION OF ORGANIC MEMS BASED CONDUCTIVE POLYMER-METAL COMPOSITE

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    EXPERIMENTAL INVESTIGATION OF ORGANIC MEMS BASED CONDUCTIVE POLYMER-METAL COMPOSITE Diego State University, 2012 This research investigates SU-8/Ag conductive polymer composite of conductive polymer composite. Microscopic analysis using 3D microscope carried out for agglomeration

  19. Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit

    E-Print Network [OSTI]

    R. C. Pooser; B. J. Lawrie

    2015-04-04T23:59:59.000Z

    The displacement of micro-electro-mechanical-systems (MEMS) cantilevers is used to measure a broad variety of phenomena in devices ranging from force microscopes to biochemical sensors to thermal imaging systems. We demonstrate the first direct measurement of a MEMS cantilever displacement with a noise floor at 40% of the shot noise limit (SNL). By combining multi-spatial-mode quantum light sources with a simple ?differential measurement, we show that sub-SNL MEMS displacement sensitivity is highly accessible compared to previous efforts that measured the displacement of macroscopic mirrors with very distinct spatial structures crafted with multiple optical parametric amplifiers and locking loops. These results support a new class of quantum MEMS sensor with an ultimate signal to noise ratio determined by quantum correlations, enabling ultra-trace sensing, imaging, and microscopy applications in which signals were previously obscured by shot noise.

  20. Syllabus for Preliminary Examination in Micro Electro Mechanical Systems (MEMS) October 2009*

    E-Print Network [OSTI]

    California at Irvine, University of

    , diffusion, and bonding. You should especially have a good understanding of MEMS-centric etching and what micromachining, including selective wet etch methods, deep reactive ion etching, and bonding methods. 6

  1. Mem. S.A.It. Vol. 73, 23 SAIt 2002 Memorie della

    E-Print Network [OSTI]

    Mem. S.A.It. Vol. 73, 23 c SAIt 2002 Memorie della High Performance Computing at INAF/OAPA Fabio and in high performance computing (HPC). During 2000, INAF/OAPA has acquired a HPC facility, entirely devoted

  2. Imaging the foveal cone mosaic with a MEMS-based adaptive optics scanning laser ophthalmoscope

    E-Print Network [OSTI]

    Li, Yiang

    2010-01-01T23:59:59.000Z

    function of axial length at the PRL Results from running theIPT LQ LQR MEMS OCT OPD PID PRL PSD PSF PSI RMF RMS RPE SLDpreferred retinal locus (PRL), and the scan angle was 1°. An

  3. Tunable Substrate Integrated Waveguide Filters Implemented with PIN Diodes and RF MEMS Switches 

    E-Print Network [OSTI]

    Armendariz, Marcelino

    2012-02-14T23:59:59.000Z

    This thesis presents the first fully tunable substrate integrated waveguide (SIW) filter implemented with PIN diodes and RF MEMS switches. The methodology for tuning SIW filters is explained in detail and is used to create three separate designs...

  4. Tunable Substrate Integrated Waveguide Filters Implemented with PIN Diodes and RF MEMS Switches

    E-Print Network [OSTI]

    Armendariz, Marcelino

    2012-02-14T23:59:59.000Z

    This thesis presents the first fully tunable substrate integrated waveguide (SIW) filter implemented with PIN diodes and RF MEMS switches. The methodology for tuning SIW filters is explained in detail and is used to create three separate designs...

  5. Polyelectrolyte multilayers (PEM) in micro / nanofluidics for novel BioMEMS platforms

    E-Print Network [OSTI]

    Jang, Hongchul

    2010-01-01T23:59:59.000Z

    The overall goal of this thesis was to exploit the versatility of the polyelectrolyte multilayer (PEM) to fabricate a novel micro/nanofluidic device for patterning bacteria in BioMEMS. Nanofluidic channels offer new ...

  6. The Sandia MEMS passive shock sensor : FY08 design summary.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-11-01T23:59:59.000Z

    This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the purposes and major differences between design revisions but with a focus on Revisions 4 through 7 and the work performed in fiscal year 2008 (FY08). This report is a reference for comparing different designs; it summarizes design parameters and analysis results, and identifies test structures. It also highlights some of the changes and or additions to models previously documented [Mitchell et al. 2006, Mitchell et al. 2008] such as the way uncertainty thresholds are analyzed and reported. It also includes dynamic simulation results used to investigate how positioning of hard stops may reduce vibration sensitivity.

  7. Integration of optoelectronics and MEMS by free-space micro-optics

    SciTech Connect (OSTI)

    WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    2000-06-01T23:59:59.000Z

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

  8. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    DOE Patents [OSTI]

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15T23:59:59.000Z

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  9. Method and system for automated on-chip material and structural certification of MEMS devices

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20T23:59:59.000Z

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  10. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 -

  11. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 ->

  12. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928 ->09-32

  13. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,0928

  14. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282 May

  15. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282 May0-7,

  16. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282

  17. DATE: TO: FROM:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7' August

  18. DATE: TO: FROM: SUBJECT:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-

  19. DATE: TO: FROM: SUBJECT:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-~

  20. DATE: TO: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1

  1. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06T23:59:59.000Z

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  2. Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily Parker, Vanni Lughi, Noel C. MacDonald

    E-Print Network [OSTI]

    MacDonald, Noel C.

    Aluminum Nitride Thin Films on Titanium for Piezoelectric MEMS Applications Seth Boeshore, Emily nitride thin films have been deposited onto titanium substrates for the purpose of fabricating piezoelectric MEMS. Titanium is a new and attractive platform for MEMS because of its corrosion resistance

  3. Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey; Plass, Richard Anton

    2004-12-01T23:59:59.000Z

    Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.

  4. Robust hermetic packaging techniques for MEMS integrated microsystems.

    SciTech Connect (OSTI)

    Chae, Junseok (University of Michigan); Stark, Brian H. (University of Michigan); Kuo, Andrew (University of Michigan); Oliver, Andrew David; Najafi, Khalil (University of Michigan)

    2005-03-01T23:59:59.000Z

    This work is the result of a Sandia National Laboratories LDRD funded fellowship at the University of Michigan. Although, guidance and suggestions were offered by Sandia, the work contained here is primarily the work of Brian H. Stark, and his advisor, Professor Khalil Najafi. Junseok Chae, Andrew Kuo, and their coworkers at the University of Michigan helped to record some of the data. The following is an abstract of their work. We have developed a vacuum packaging technology using a thick nickel film to seal MEMS structures at the wafer level. The package is fabricated in a three-mask process by electroplating a 40 micro-meter thick nickel film over an 8 micro-meter sacrificial photoresist that is removed prior to package sealing. Implementation of electrical feedthroughs in this process requires no planarization. The large release channel enables an 800x800 micro-meter package to be released in less than three hours. Several mechanisms, based upon localized melting and lead/tin solder bumping, for sealing the release channel have been investigated. We have also developed Pirani gauges, integrated with this package, which can be used to establish the hermeticity of the different sealing technologies. They have measured a sealing pressure of approximately 1.5 Torr. Our work differs from previous Pirani gauges in that we utilize a novel doubly anchored structure that stiffens the structural membrane while not substantially degrading performance in order to measure fine leak rates.

  5. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 5, OCTOBER 2007 1263 Direct Contact-Area Computation for MEMS

    E-Print Network [OSTI]

    Sawyer, Wallace

    200 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 2, APRIL 2004 Mechanical in microelectromechanical systems (MEMS). The former is a pure tension test, while the latter is a single of thin polysilicon films in microelectromechanical systems (MEMS) (see, e.g., [1], [2]) requires

  6. 3-D Computational Modeling of RF MEMS Switches H. D. Espinosa, M. Fischer, Y. Zhu and S. Lee

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    in this work by means of wafer level experimental techniques. RF MEMS Switches manufactured by Raytheon Systems, Raytheon Systems Co. developed MEMS switches to operate in tunable filters and oscillators used by Raytheon Systems Co. (b) Top view of the "bow-tie" membrane mounted on posts. It is made of an aluminum

  7. Abstract--Titanium nitride (TiN) has been investigated as a material for MEMS hotplate heaters operating at high

    E-Print Network [OSTI]

    Technische Universiteit Delft

    Abstract--Titanium nitride (TiN) has been investigated as a material for MEMS hotplate heaters widely available. A material similar to Ta5Si3 is titanium nitride (TiN). It combines a very high melting TiN Bond pad TiN Figure 1. Schematic cross section of the hotplate. Titanium Nitride for MEMS

  8. Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report.

    SciTech Connect (OSTI)

    de Boer, Maarten Pieter; Maboudian, Roya (University of California at Berkeley, Berkeley, CA.)

    2004-12-01T23:59:59.000Z

    Two major research areas pertinent to microelectromechanical systems (MEMS) materials and material surfaces were explored and developed in this 5-year PECASE LDRD project carried out by Professor Roya Maboudian and her collaborators at the University of California at Berkeley. In the first research area, polycrystalline silicon carbide (poly-SiC) was developed as a structural material for MEMS. This material is potentially interesting for MEMS because compared to polycrystalline silicon (polysilicon), the structural material in Sandia National Laboratories' SUMMiTV process, it may exhibit high wear resistance, high temperature operation and a high Young's modulus to density ratio. Each of these characteristics may extend the usefulness of MEMS in Sandia National Laboratories' applications. For example, using polycrystalline silicon, wear is an important issue in microengines, temperature degradation is of concern in thermal actuators and the characteristics of resonators can be extended with the same lithography technology. Two methods of depositing poly-SiC from a 1,3-disilabutane source at 650 C to 800 C by low-pressure chemical vapor deposition (LPCVD) were demonstrated. These include a blanket method in which the material is made entirely out of poly-SiC and a method to coat previously released and fabricated polysilicon MEMS. This deposition method is much simpler to use than previous methods such as high temperature LPCVD and atmospheric CVD. Other major processing issues that were surmounted in this LDRD with the poly-SiC film include etching, doping, and residual strain control. SiC is inert and as such is notoriously difficult to etch. Here, an HBr-based chemistry was demonstrated for the first time to make highly selective etching of SiC at high etch rates. Nitrogen was incorporated from an NH3 gas source, resulting in high conductivity films. Residual strain and strain gradient were shown to depend on deposition parameters, and can be made negative or positive. The tribology of poly-SiC was also investigated. Much improved release stiction and in-use stiction performance relative to polysilicon MEMS was found. Furthermore, wear of poly-SiC-coated MEMS was much reduced relative to uncoated polysilicon MEMS. A prototype baseline process flow now exists to produce poly-SiC in the Berkeley Sensor and Actuator (BSAC) facility. In the second project, galvanic deposition of metals onto polysilicon surfaces has been developed. The possible applications include reflective and optical coatings for optical MEMS, microswitches and microrelays for radio frequency MEMS and catalytic surfaces for microchemical reactors. In contrast to electroless deposition, galvanic displacement deposition requires no prior activation of the surface and is truly selective to silicon surfaces. This approach was used to deposit copper, gold and rhodium onto polysilicon MEMS. A method to study the adhesion of these metals to polysilicon was developed. It was also shown that the surfaces could be rendered hydrophobic by applying thiol-based self-assembled monolayers. This procedure also lowered their surface energy to {approx}3 {micro}J/m{sup 2}, consistent with monolayer-coated polysilicon MEMS.

  9. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    SciTech Connect (OSTI)

    Wang, Teng [Auburn University, Auburn, Alabama; Oral, H Sarp [ORNL; Wang, Yandong [Auburn University, Auburn, Alabama; Settlemyer, Bradley W [ORNL; Atchley, Scott [ORNL; Yu, Weikuan [Auburn University, Auburn, Alabama

    2014-01-01T23:59:59.000Z

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  10. Dates Fact Sheet.cdr

    Office of Environmental Management (EM)

    DATES is a detection and security informationevent management (SIEM) solution enabling asset owners to protect their energy control systems at the network, host, and device level...

  11. Earth Day Save the Date

    Broader source: Energy.gov (indexed) [DOE]

    Save the Date April 22, 2014 Forrestal & Germantown Working together to reduce our environmental footprint... * USPS, USDA, EPA, and GSA will join DOE this year * DOE Program...

  12. Date Created: March 2008 Date Amended: March 2009

    E-Print Network [OSTI]

    Subramanian, Sriram

    Date Created: March 2008 Date Amended: March 2009 DYSLEXIA POLICY.doc- 1 - DYSLEXIA POLICY 1 (both written and spoken) reading, memory and organisation associated with the terms dyslexia, dyspraxia this document the term `dyslexia' will be used in a comprehensive way to refer to all of the above. The College

  13. Type Policy Title Here Effective Date: [Insert Date

    E-Print Network [OSTI]

    Salzman, Daniel

    Type Policy Title Here Effective Date: [Insert Date] Policy Statement [Type Statement Text Here] Reason(s) for the Policy [Type Reason Text Here] Primary Guidance to Which This Policy Responds [Type Primary Policy Here ­ If there is NOT a Primary Policy indicate that] Responsible University Office

  14. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Busmann, Hans-Gerd (Bremen, DE); Meyer, Eva-Maria (Bremen, DE); Auciello, Orlando (Bolingbrook, IL); Krauss, Alan R. (late of Naperville, IL); Krauss, Julie R. (Naperville, IL)

    2004-11-02T23:59:59.000Z

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  15. Bio-inspired MEMS Pressure and Flow Sensors for Underwater Navigation and Object Imaging "

    E-Print Network [OSTI]

    for artificial lateral line applications," Master's thesis, Massachusetts Institute of Technology, September 2011 the biological neuromasts on the body of many fish. For instance, the blind cave fish, Astyanax mexicanus Kayak Testing: Commercial vs. MEMS Pitching Test Power Spectrum of Pitching Test A photograph of blind

  16. Multi-physical characterization of micro-contact materials for MEMS switches

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on an innovative methodology early developed at NOVA MEMS is hereby presented. The technique exploits a commercial pairs of soft material (Au/Au contact), harder materials (Ru/Ru and Rh/Rh contacts) and mixed-reliability level required for further integration of these technologies in complex systems is currently a major

  17. Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS

    E-Print Network [OSTI]

    Boyer, Edmond

    Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS Tristan Pichonat ABSTRACT Micro fuel cells (µ-FC) represent promising power sources for portable applications. Today, one describes the latest developments of a new porous silicon- based miniature fuel cell. Using a silane grafted

  18. IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 4, APRIL 2003 227 RF MEMS Switches Fabricated on

    E-Print Network [OSTI]

    Cetiner, Bedri A.

    with superior performance over con- ventional semiconductor devices [4]­[7]. Typically, RF MEMS switches-resistivity silicon wafers, gallium arsenide (GaAs) wafers, and quartz substrates using semiconductor Manuscript and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses

  19. Learn more: mems.duke.edu Our department works in areas

    E-Print Network [OSTI]

    Zhou, Pei

    .com/DukeEngineering youtube.com/DukeEngineering instagram.com/DukeEngineering pratt.duke.edu Area of employment for 2014 MELearn more: mems.duke.edu Our department works in areas that just might surprise you. Duke's Mechanical Engineering and Materials Science Department specializes in research areas including aerodynamics

  20. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask$

    E-Print Network [OSTI]

    Lin, Liwei

    The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask wiring is not pre- ferred. A comprehensive review on laser welding was given in [6]. The laser welding of laser welding is to create the liquid pool by absorption of incident radiation, allow it to grow

  1. 3C-SiC Films on Si for MEMS Applications: Mechanical Properties , G. Kravchenko2

    E-Print Network [OSTI]

    Volinsky, Alex A.

    diamond tip. These results indicate that polycrystalline SiC thin films are attractive for MEMS. In addition, poly-crystalline 3C- SiC was also grown on (100)Si so that a comparison with monocrystaline 3C-SiC, also grown on (100)Si, could be made. The mechanical properties of single crystal and polycrystalline 3

  2. Grafting odorant binding proteins on diamond bio-MEMS R. Manai a,

    E-Print Network [OSTI]

    Boyer, Edmond

    . Beside, cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs onto polycrystalline diamond1 Grafting odorant binding proteins on diamond bio-MEMS R. Manai a, *, E. Scorsone a , L. Rousseau

  3. AN IMPLANTABLE ALL-PARYLENE LIQUID-IMPEDANCE BASED MEMS FORCE SENSOR

    E-Print Network [OSTI]

    Meng, Ellis

    . Specifically, in situ and in vivo measurement of interfacial forces exerted on tissue by chronically implantedAN IMPLANTABLE ALL-PARYLENE LIQUID-IMPEDANCE BASED MEMS FORCE SENSOR Christian A. Gutierrez1 ABSTRACT We present a new transducer paradigm based on the electrochemical impedance transduction

  4. Real-Time damage localization by means of MEMS sensors and use of wireless data transmission

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Real-Time damage localization by means of MEMS sensors and use of wireless data transmission such as water delivery networks are damaged, it is critical to pinpoint the location of the damage, to assess the extent of the damage, and to mitigate the damage in real-time. We propose a wireless sensor network

  5. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09T23:59:59.000Z

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  6. Electrostatic Operation and Curvature Modeling for a MEMS Flexible Film Actuator

    E-Print Network [OSTI]

    ," is a unique MEMS (MicroElectronic Mechanical System) actuator fabricated from polyimide and thin metal filmsHz). The device is comprised of a poly- imide/Au/polyimide structure in the flexible film portion of the actuator film portion. Due to stresses in the films caused by thermal expansion mismatch during the polyimide

  7. Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Baker, Michael Sean; Crowson, Douglas A.; Mitchell, John Anthony; Moore, Nathan W.

    2009-10-01T23:59:59.000Z

    Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.

  8. Building a DBMS on top of the JuxMem Grid Data-Sharing Service

    E-Print Network [OSTI]

    Building a DBMS on top of the JuxMem Grid Data-Sharing Service Abdullah Almousa Almaksour , Gabriel.antoniu@irisa.fr Abstract-- We claim that building a distributed DBMS on top of a general-purpose grid data-sharing service propose consists in providing the DBMS with a transparent, persistent and fault-tolerant access

  9. TiN for MEMS hotplate heaters J.F. Creemer1

    E-Print Network [OSTI]

    Technische Universiteit Delft

    TiN for MEMS hotplate heaters J.F. Creemer1 , P.M. Sarro2 , M. Laros2 , H. Schellevis2 , L, DIMES, ECTM, Mekelweg 4, 2628 CD Delft, Netherlands. Summary: Low-stress TiN has been investigated is required to protect the TiN against oxidation. Keywords: TiN thin films, micro heater, hot plate 1

  10. A 27 MHZ TEMPERATURE COMPENSATED MEMS OSCILLATOR WITH SUB-PPM INSTABILITY

    E-Print Network [OSTI]

    Ayazi, Farrokh

    A 27 MHZ TEMPERATURE COMPENSATED MEMS OSCILLATOR WITH SUB-PPM INSTABILITY Roozbeh Tabrizian with sub-ppm temperature instability based on a high-Q composite bulk acoustic wave (BAW) resonator transduced silicon resonator to compensate its negative temperature coefficient of frequency (TCF). Using

  11. An Analytical Solution to a MEMS Seek Time Model hongbo@cse.ucsc.edu

    E-Print Network [OSTI]

    Miller, Ethan L.

    times 10­20 times faster than hard drives, storage densities 10 times greater, and power consumption the surfaces relative to each other using MEMS actuators, each read/write head can access a region tips called tip arrays that are used to access data on a movable media sled. In a modern disk drive

  12. Integrated MEM Antenna System for Wireless Communications Bedri A. Cetiner, Luis Jofre*

    E-Print Network [OSTI]

    De Flaviis, Franco

    , Electrical and Computer Engineering Department, 2237 Engineering Gateway, Irvine, CA, 92697, USA * Technical antennas (having 50% bandwidth) sequentially addressed using low-loss RF-MEMS switches. The antennas advantages including broader bandwidth, better impedance matching, lower radiation losses and mutual coupling

  13. Effective Date: MEMORANDUM OF UNDERSTANDING

    E-Print Network [OSTI]

    Effective Date: MEMORANDUM OF UNDERSTANDING Between DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION IN AVIATION AND SPACE TRANSPORTATION I. PURPOSE The Department of TransportatiodFederal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA), hereinafter "the Parties

  14. 1352 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 6, DECEMBER 2010 Parylene-Based Electrochemical-MEMS Transducers

    E-Print Network [OSTI]

    Meng, Ellis

    on a microelectromechanical systems scanning mirror Wibool Piyawattanametha,1,2 Eric D. Cocker,1 Laurie D. Burns,1 Robert P. J on a microelectromechanical systems (MEMS) laser-scanning mirror. The microscope has a focusing motor and a micro

  15. On the application of the BGK kinetic model to the analysis of gas-structure interactions in MEMS

    E-Print Network [OSTI]

    Frangi, Attilio

    of simplifying hypotheses suited for moderate working frequencies per- mits the full scale 3D simulation of MEMS data in terms of forces exerted on the suspended shuttle is presented. Ó 2007 Elsevier Ltd. All rights

  16. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  17. The pitting behavior of structural electrodeposits used in MEMS applications.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Serna, Lysle M.; Martinez, Michael A.

    2004-10-01T23:59:59.000Z

    LIGA is an acronym for the German terms Lithographie, Galvanoformung, Abformung, which describe a microfabrication process for high aspect ratio, structural parts based on electrodeposition of a metal into a poly-methyl-methacrylate (PMMA) mold. LIGA produced parts have very high dimensional tolerances (on the order of a micron) and can vary in size from microns to centimeters. These properties make LIGA parts ideal for incorporation into MEMS devices or for other applications where strict tolerances must be met; however, functionality of the parts can only be maintained if they remain dimensionally stable throughout their lifetime. It follows that any form of corrosion attack (e.g., uniform dissolution, localized pitting, environmental cracking, etc.) cannot be tolerated. This presentation focuses on the pitting behavior of Ni electrodeposits, specifically addressing the influence of the following: grain structure, alloy composition, impurities, plating conditions, post plating processing (including chemical and thermal treatment), galvanic interactions and environment (aqueous vs. atmospheric). A small subset of these results is summarized. A typical LIGA part is shown in Figure 1. Due to the small size scale, electrochemical testing was performed using a capillary based test system. Although very small test areas can be probed with this system (e.g., Figure 2), typically capillaries on the order of 80 to 90 ?m's were used in the testing. All LIGA parts tested in the as-received condition had better pitting resistance than the high purity wrought Ni material used as a control. In the case of LIGA-Ni and LIGA-Ni-Mn, no detrimental effects were observed due to aging at 700C. Ni-S (approximately 500 ppm S), showed good as-received pitting behavior but decreased pitting resistance with thermal aging. Aged Ni-S showed dramatic increases in grain size (from single {micro}m's to 100's of {micro}m's), and significant segregation of S to the boundaries. The capillary test cell was used to measure pitting potentials at the boundaries and within grains (Figure 3) with the results clearly showing the lowered pit resistance being due to the S-rich boundaries. It is believed that the process used to release the LIGA parts from the Cu substrate acts as a pickling agent for the LIGA parts, resulting in removal of surface impurities and detrimental alloying additions. EIS data from freshly polished samples exposed to the release bath support this hypothesis; RP values for all LIGA materials and for wrought Ni, continuously increase during exposure. Mechanical polishing of LIGA parts prior to electrochemical testing consistently resulted in lowering the pitting potentials to a range bounded by Ni 201 and high purity Ni. The as-received vs. polished behavior also effects the galvanic interactions with noble metals. When as-produced material is coupled to Au, initially the LIGA material acts as the cathode, though eventually the behavior switches such that the LIGA becomes the anode. Overall, the LIGA produced Ni and Ni alloys examined in this work demonstrated pitting behavior similar to wrought Ni, only showing reduced resistance when specific metallurgical and environmental conditions were met.

  18. 2014 NEJC Save the Date (English)

    Broader source: Energy.gov [DOE]

    2014 National Environmental Justice Conference and Training Program  Save the Date, March 26 to 28, 2014

  19. 2014 NEJC Save the Date (Spanish)

    Broader source: Energy.gov [DOE]

    2014 National Environmental Justice Conference and Training Program Save the Date, March 26 to 28, 2014

  20. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01T23:59:59.000Z

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  1. Experimental study of the residual stress-induced self-assembly of MEMS structures during deposition

    E-Print Network [OSTI]

    Kim, Sang-Hyun

    2005-11-01T23:59:59.000Z

    three layers (b doped Si, Ge, B doped Si) to deform (or ?roll up?) into cylinders with radii of curvature from 0.3 to 2 micrometers. 9 It would be useful if intrinsic stresses could be used to enable a structure to assemble itself during processing... of [29]. 10 II. ANALYTICAL MODELING The possibility of usefully using residual (or intrinsic) stresses as a means of self- assembling MEMS during material deposition is analytically investigated. A. Self-Assembly and Residual Stress Suppose...

  2. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    SciTech Connect (OSTI)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01T23:59:59.000Z

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  3. MEMS Hotplates with TiN as a Heater Material J.F. Creemer1

    E-Print Network [OSTI]

    Technische Universiteit Delft

    MEMS Hotplates with TiN as a Heater Material J.F. Creemer1 , W. van der Vlist2 , C.R. de Boer2 , H investigated as a heater material for hotplates and microreactors. TiN is CMOS compatible, and has a higher melting point (2950 şC) than conventional heaters of Pt and poly-Si. For the first time, TiN is tested

  4. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect (OSTI)

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01T23:59:59.000Z

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  5. Ultra-lightweight telescope with MEMS adaptive optic for distortion correction.

    SciTech Connect (OSTI)

    Spahn, Olga Blum; Cowan, William D.; Shaw, Michael J.; Adams, David Price; Sweatt, William C.; Dagel, Daryl James; Grine, Alejandro J.; Mani, Seethambal S.; Resnick, Paul James; Gass, Fawn Renee; Grossetete, Grant David

    2004-12-01T23:59:59.000Z

    Recent world events have underscored the need for a satellite based persistent global surveillance capability. To be useful, the satellite must be able to continuously monitor objects the size of a person anywhere on the globe and do so at a low cost. One way to satisfy these requirements involves a constellation of satellites in low earth orbit capable of resolving a spot on the order of 20 cm. To reduce cost of deployment, such a system must be dramatically lighter than a traditional satellite surveillance system with a high spatial resolution. The key to meeting this requirement is a lightweight optics system with a deformable primary and secondary mirrors and an adaptive optic subsystem correction of wavefront distortion. This proposal is concerned with development of MEMS micromirrors for correction of aberrations in the primary mirror and improvement of image quality, thus reducing the optical requirements on the deployable mirrors. To meet this challenge, MEMS micromirrors must meet stringent criteria on their performance in terms of flatness, roughness and resolution of position. Using Sandia's SUMMIT foundry which provides the world's most sophisticated surface MEMS technology as well as novel designs optimized by finite element analysis will meet severe requirements on mirror travel range and accuracy.

  6. DATE:

    Office of Environmental Management (EM)

    has been revised. The subject form has been posted on the DOE Financial Assistance web page on the Recipients Page under the Financial Assistance Forms and Information for...

  7. DATE

    Broader source: Energy.gov (indexed) [DOE]

    4 SECTION A. Project Title: Materials and Fuels Complex (MFC) Infrastructure Upgrades - Technical Support Building SECTION B. Project Description: Materials and Fuels Complex (MFC)...

  8. DATE

    Broader source: Energy.gov (indexed) [DOE]

    5 SECTION A. Project Title: Materials and Fuel Complex (MFC) Infrastructure Upgrades: Modular Office Units SECTION B. Project Description: MFC Infrastructure Upgrades - General The...

  9. DATE

    Broader source: Energy.gov (indexed) [DOE]

    Title: MFC Dial Room Replacement Project SECTION B. Project Description: The proposed project is to construct and operate a new dial room at the Materials and Fuels Complex...

  10. DATE:

    Office of Legacy Management (LM)

    intent to eliminate the site. Please call me at 353-1281 if you have +ny questions. cc: J. Wagoner D. Tonkay file FUSRAP NY.59 ------...

  11. DATE

    Office of Environmental Management (EM)

    emissions to the atmosphere and generate hazardous, mixed, radioactive, and industrial waste. Project activities may involve samples for analysis or R&D activity from outside the...

  12. DATE

    Broader source: Energy.gov (indexed) [DOE]

    2 SECTION A. Project Title: INL - Off-Road ATV Use In Support of Engineering Surveys SECTION B. Project Description The proposed action will allow for off-road ATV use near T-24...

  13. DATE

    Broader source: Energy.gov (indexed) [DOE]

    SECTION B. Project Description The proposed activities are intended to render CPP-684 Remote Analytical Laboratory (RAL) as a limited access area by removing existing...

  14. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Agreements and Acknowledgments SUMMARY: Acquisition Letter (AL) 2013-08 and Financial Assistance Letter (FAL) 2013-05 provide Contracting Officers with notice of the recently...

  15. DATE:

    Office of Environmental Management (EM)

    of American Recovery and Reinvestment Act Reporting Requirements. SUMMARY: Financial Assistance Letter (FAL) 2014-xx provides COs with: 1) notice of the recession of the...

  16. DATE:

    Office of Environmental Management (EM)

    Year 2013 SUMMARY: With reference to Acquisition Letter (AL) 2012-08 and Financial Assistance Letter (FAL) 2012-02 regarding Section 301(b) Congressional Notification of...

  17. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Act, 2014, Pub. L. No. 113-76. SUMMARY: Acquisition Letter (AL) 2014-04 and Financial Assistance Letter (FAL) 2014-01 have been revised to remove language from Section 502 that...

  18. DATE:

    Office of Environmental Management (EM)

    Act, 2013, Pub. L. No.113-6 SUMMARY: Acquisition Letter (AL) 2013-06 and Financial Assistance Letter (FAL) 2013-04 provides implementing instructions and guidance for Division...

  19. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    Act, 2015, Pub.L. No 113-235. SUMMARY: Acquisition Letter (AL) 2015-04 and Financial Assistance Letter (FAL) 2015-03 provide implementing instructions and guidance for Division...

  20. DATE

    Broader source: Energy.gov (indexed) [DOE]

    replacement of conductors of the same nominal voltage, poles, circuit breakers, transformers, capacitors, crossarms, insulators, and downed transmission lines N. Routine...

  1. DATE

    Office of Environmental Management (EM)

    welded, must have the paint removed in accordance with the National Association of Corrosion Engineers standard. All work on surfaces or equipment that are suspected of being...

  2. DATE

    Broader source: Energy.gov (indexed) [DOE]

    Resources: The proposed size of the lagoons is based upon IDAPA regulations and engineering standards for the population planned for MFC. The design also accounts for the...

  3. DATE

    Broader source: Energy.gov (indexed) [DOE]

    by March 15 for the preceding year. 4. Chemical Use and Storage - Chemicals, such as petroleum products, grout, and other concrete products will be used in support of the proposed...

  4. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA

  5. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53

  6. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 61

  7. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 611

  8. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53 6115

  9. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA53

  10. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications Infrastructure2D=DATA534-35

  11. DATE:

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications

  12. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic andRECORDD O E F 1325.8 .

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S1

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S112

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I S11242

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8 SECTION

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80 SECTION

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8023

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80234

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802345

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I8023456

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I80234567

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D I802345678

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION3

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 SECTION35

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 CX

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02 CXEC

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02

  16. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021 SECTION

  17. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021 SECTION2

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021

  19. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D0214 SECTION

  20. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D0214

  1. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D02146

  2. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021467

  3. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11 D021467CX

  4. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis11

  5. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION A.

  6. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION A.EC

  7. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION3

  9. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION34

  10. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION345

  11. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 SECTION34516

  12. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110

  13. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of 2 CX

  14. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of 2

  15. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCoursePublicCurrentCurtis110 1 of

  16. Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTN DataTemplate Revised:

  17. DATE:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAsAmandaRev. 1)Projects1Form gathers data5-01

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFuture

  19. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE

  20. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE28 am,

  1. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE28

  2. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE288:05

  3. DATE:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4Customer-Comments Sign InFutureSUBMITTED: GRADE288:050

  4. Dated:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andand AnalyticsDatabases

  5. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. ( -RL5-

  6. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. (

  7. DATE:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L* d!Qwner*. (OOE F

  8. Date:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0419 1 JA JN

  9. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date: TBD

  10. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date:

  11. Posting Date: 28 May, 2015 Posting Close Date: TBD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award Date:5

  12. High-G testing of MEMS mechanical non-volatile memory and silicon re-entry switch.

    SciTech Connect (OSTI)

    Baker, Michael Sean; Pohl, Kenneth Roy

    2005-10-01T23:59:59.000Z

    Two different Sandia MEMS devices have been tested in a high-g environment to determine their performance and survivability. The first test was performed using a drop-table to produce a peak acceleration load of 1792 g's over a period of 1.5 ms. For the second test the MEMS devices were assembled in a gun-fired penetrator and shot into a cement target at the Army Waterways Experiment Station in Vicksburg Mississippi. This test resulted in a peak acceleration of 7191 g's for a duration of 5.5 ms. The MEMS devices were instrumented using the MEMS Diagnostic Extraction System (MDES), which is capable of driving the devices and recording the device output data during the high-g event, providing in-flight data to assess the device performance. A total of six devices were monitored during the experiments, four mechanical non-volatile memory devices (MNVM) and two Silicon Reentry Switches (SiRES). All six devices functioned properly before, during, and after each high-g test without a single failure. This is the first known test under flight conditions of an active, powered MEMS device at Sandia.

  13. Shape Memory Alloy and Elastomer Composite MEMS Actuators P.D. Fallon, A.P. Gerratt, B.P. Kierstead, R.D. White

    E-Print Network [OSTI]

    White, Robert D.

    Shape Memory Alloy and Elastomer Composite MEMS Actuators P.D. Fallon, A.P. Gerratt, B.P. Kierstead A process for fabrication of shape memory alloy MEMS actuators on a elastomeric polymer substrate is described. These actuators are designed for use on innovative soft body robots. Patterned shape memory alloy

  14. Release of MEMS devices with hard-baked polyimide sacrificial Javaneh Boroumand Azad, Imen Rezadad, Janardan Nath, Evan Smith, Robert E. Peale

    E-Print Network [OSTI]

    Peale, Robert E.

    Release of MEMS devices with hard-baked polyimide sacrificial layer Javaneh Boroumand Azad, Imen, Orlando, FL, USA 32816 ABSTRACT Removal of polyimides used as sacrificial layer in fabricating MEMS-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science

  15. Hybrid connection of RF MEMS and SMT components in an impedance tuner Mehmet Unlu , Kagan Topalli, Halil Ibrahim Atasoy, Simsek Demir, Ozlem Aydin Civi, Tayfun Akin

    E-Print Network [OSTI]

    Akin, Tayfun

    Hybrid connection of RF MEMS and SMT components in an impedance tuner Mehmet Unlu Ă, Kagan Topalli Switch SMT Hybrid a b s t r a c t This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance

  16. Corresponding author: Shi-Chune Yao, Email: scyao@cmu.edu, Paper number: HT-12-1144. 1 Design and Evaluation of a MEMS-Based Stirling Microcooler

    E-Print Network [OSTI]

    McGaughey, Alan

    and Evaluation of a MEMS-Based Stirling Microcooler Dongzhi Guo1 , Jinsheng Gao2 , Alan J. H. McGaughey1 , Gary K-6431 ABSTRACT A new Stirling micro-refrigeration system composed of arrays of silicon MEMS cooling elements has are explored. The optimal porosity for the best system COP is identified. Keywords: Stirling microcooler

  17. Employment Counseling Action Plan Today's Date

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Employment Counseling Action Plan Today's Date: Action Item: Due Date: Resources: Progress: Prepare or revise resume Prepare sample cover letters Register with several staffing agencies Seek out employment opportunities Practice interviewing techniques Review internal and external job opportunities Contact employers

  18. Integrated optical MEMS using through-wafer vias and bump-bonding.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert; Frederick, Scott K.

    2008-01-01T23:59:59.000Z

    This LDRD began as a three year program to integrate through-wafer vias, micro-mirrors and control electronics with high-voltage capability to yield a 64 by 64 array of individually controllable micro-mirrors on 125 or 250 micron pitch with piston, tip and tilt movement. The effort was a mix of R&D and application. Care was taken to create SUMMiT{trademark} (Sandia's ultraplanar, multilevel MEMS technology) compatible via and mirror processes, and the ultimate goal was to mate this MEMS fabrication product to a complementary metal-oxide semiconductor (CMOS) electronics substrate. Significant progress was made on the via and mirror fabrication and design, the attach process development as well as the electronics high voltage (30 volt) and control designs. After approximately 22 months, the program was ready to proceed with fabrication and integration of the electronics, final mirror array, and through wafer vias to create a high resolution OMEMS array with individual mirror electronic control. At this point, however, mission alignment and budget constraints reduced the last year program funding and redirected the program to help support the through-silicon via work in the Hyper-Temporal Sensors (HTS) Grand Challenge (GC) LDRD. Several months of investigation and discussion with the HTS team resulted in a revised plan for the remaining 10 months of the program. We planned to build a capability in finer-pitched via fabrication on thinned substrates along with metallization schemes and bonding techniques for very large arrays of high density interconnects (up to 2000 x 2000 vias). Through this program, Sandia was able to build capability in several different conductive through wafer via processes using internal and external resources, MEMS mirror design and fabrication, various bonding techniques for arrayed substrates, and arrayed electronics control design with high voltage capability.

  19. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOE Patents [OSTI]

    Peterson, Kenneth A.

    2005-10-18T23:59:59.000Z

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  20. MEMS Switches Are XS in Size, XXL in Power | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, In this3,Office of ScienceMEMS

  1. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7'

  2. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May 9,09282-7'4

  3. DATE: TO: FROM: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: May

  4. MEMORANDUM I TO: FILE DATE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-IGY DATE---

  5. Vehicle arrived for disposal Date Disposal of Asset form approved (copy required) Date

    E-Print Network [OSTI]

    Botea, Adi

    Colour Engine (ltrs) Fuel (ulp/diesel) Transmission (auto/manual) Compliance date Kilometres Additions

  6. 2/3/2014 How much power from MEMS windmills? -Electronics Eetimes http://www.electronics-eetimes.com/en/how-much-power-from-mems-windmills-63.html?cmp_id=7&news_id=222919711 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Product Search EDN Europe Print | Send | RSS Feed 679 Subscribers Twitter 920 Followers Facebook 3381 Fans Software-Defined Radio Handbook High Efficiency, 150V 100mA Synchronous Step-Down Regulator Solutions development of a MEMS windmill that the developers have said could, when produced in array, provide energy

  7. 3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS'03), Makuhari, Japan, 4-5 Dec. 2003. PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP

    E-Print Network [OSTI]

    Frechette, Luc G.

    ), Makuhari, Japan, 4-5 Dec. 2003. 1 PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP Luc G. The microfabricated device consists of a steam turbine that drives an integrated micropump and generator. Two, mechanical, then electrical energy. The concept developed herein consists of a microfabricated steam turbine

  8. Method of forming a package for MEMS-based fuel cell

    DOE Patents [OSTI]

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21T23:59:59.000Z

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  9. Dynamic pull-in of parallel plate and torsional electrostatic MEMS actuators.

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Barbastathis, George (Massachusetts Institute of Technology, Cambridge, MA)

    2005-02-01T23:59:59.000Z

    An analysis of the dynamic characteristics of pull-in for parallel-plate and torsional electrostatic actuators is presented. Traditionally, the analysis for pull-in has been done using quasi-static assumptions. However, it was recently shown experimentally that a step input can cause a decrease in the voltage required for pull-in to occur. We propose an energy-based solution for the step voltage required for pull-in that predicts the experimentally observed decrease in the pull-in voltage. We then use similar energy techniques to explore pull-in due to an actuation signal that is modulated depending on the sign of the velocity of the plate (i.e., modulated at the instantaneous mechanical resonant frequency). For this type of actuation signal, significant reductions in the pull-in voltage can theoretically be achieved without changing the stiffness of the structure. This analysis is significant to both parallel-plate and torsional electrostatic microelectromechanical systems (MEMS) switching structures where a reduced operating voltage without sacrificing stiffness is desired, as well as electrostatic MEMS oscillators where pull-in due to dynamic effects needs to be avoided.

  10. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31T23:59:59.000Z

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  11. Power MEMS 2007, Nov. 28-29, 2007, Freiburg, Germany Fig. 1: Micro quartz combustor. (a) Schematic,

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Power MEMS 2007, Nov. 28-29, 2007, Freiburg, Germany 265 Fig. 1: Micro quartz combustor. (a, 1.0 mm, and 1.5 mm. FLAME PROPAGATION AND QUENCHING IN ULTRA-THIN QUARTZ COMBUSTORS Yong Fan, Yuji and analysis of premixed CH4/Air flame propagation and quenching in three quartz combustors with chamber depth

  12. Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration and Parsimonious use of Gyroscopes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive Kalman Filter for MEMS-IMU based Attitude Estimation under External Acceleration a viable quaternion-based Adaptive Kalman Filter (q-AKF) that is designed for rigid body attitude estimation. This approach is an alternative to overcome the limitations of the classical Kalman filter. The q

  13. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 21, NO. 6, DECEMBER 2012 1519 Ultrahigh-Dynamic-Range Resonant MEMS Load

    E-Print Network [OSTI]

    Akin, Tayfun

    on a microelectromechanical system process on glass, and is suitable for applications such as reconfigurable leaky/left- handed (CRLH), metamaterial, microelectromechanical system (MEMS), reconfigurable. I. INTRODUCTION Awide micromachined (e.g. [3], [4]) and reconfigurable (e.g. [5]­[9]) CRLH structures. Microelectromechanical system

  14. International Micro Electro Mechanical Systems Conference, MEMS 2001, Interlaken, Switzerland, January 2001 1 AN ELECTROSTATIC INDUCTION MICROMOTOR

    E-Print Network [OSTI]

    Frechette, Luc G.

    thin-film stator. Testing has demonstrated a torque of 0.3 µNm at a rotation rate of 15,000 revolutions such as polysilicon surface micromachining and high-aspect ratio LIGA processing, MEMS electrostatic and magnetic

  15. Flat Is Not Dead: Current and Future Performance of Si-MEMS Quad Mass Gyro (QMG) System

    E-Print Network [OSTI]

    Tang, William C

    . The main example of MEMS Class I CVG is the dual mass Tuning Fork Gyro (TFG), such as the Draper/Honeywell (Honeywell) and medium performance (Northrop Grumman LITEF) tactical grade systems. The classic dual TFG, disk, shells in R&D Angular gain, drive amplitude Modal mass, time constant, Q Examples Draper/Honeywell

  16. A MEMS-enabled 3D zincair microbattery with improved discharge characteristics based on a multilayer metallic substructure

    E-Print Network [OSTI]

    , zinc­air batteries are good candidates for the previously mentioned miniaturized applications. Commercially available zinc­air batteries utilize Zn powder for the anode electrode, achieving high surfaceA MEMS-enabled 3D zinc­air microbattery with improved discharge characteristics based

  17. EMC EUROPE WORKSHOP 2005, ROME, ITALY Technical Areas (11. Antennas) RF-MEMS Capacitive Series Switches of CPW & MSL

    E-Print Network [OSTI]

    De Flaviis, Franco

    EMC EUROPE WORKSHOP 2005, ROME, ITALY Technical Areas (11. Antennas) RF-MEMS Capacitive Series.P. Li and Franco De Flaviis Department of Electrical Engineering and Computer Science, University substrate (r = 7.4 and tan = 0.001) as shown in figure 1 (a) and (b). The isolation and insertion losses

  18. COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DATE - THURSDAY: Unique Vulnerability of the New YorkNew Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy...

  19. High Precision Radiometric Dating of Sedimentary Materials

    SciTech Connect (OSTI)

    Hanson, G. N.

    2006-09-19T23:59:59.000Z

    To develop field, petrographic and geochemical criteria to allow high precision U-Pb dating of sedimentary minerals within rapidly deposited sequences of carbonate and clastic rocks.

  20. Version Date: July 2012 COPYRIGHT & TRADEMARKS

    E-Print Network [OSTI]

    WEB Clock Version Date: July 2012 #12;COPYRIGHT & TRADEMARKS Copyright © 1998, 2011, Oracle and Guide WEB Clock Page iii Table of Contents WEB Clock ........................................................................................................................ 1 WEB Clock Procedure

  1. INTEGRATED APPLICATION Page 1 ----------------------------SIGNATURE APPLICANT & DATE

    E-Print Network [OSTI]

    de Villiers, Marienne

    -Scientific / Veterinarian Sell / Trade / Buy / Receive / Donate Research #12;INTEGRATED APPLICATION Page 2 WEAPON (vii) HUNTING METHOD I. SIGNATURE OF APPLICANT / PROPERTY / LAND OWNER: Signature Date #12;

  2. Winter -Semester 2007 Speaker Department Date Title

    E-Print Network [OSTI]

    Winter - Semester 2007 Speaker Department Date Title Dr. Armin Peter Eawag, Fishecology & Evolution & Eawag, Fishecology & Evolution 19.12.07 Comparing nuclear and mitochondrial genetic signatures

  3. Design, fabrication, and characterization of a MEMS steam-generating device based on the decomposition of high-test hydrogen peroxide

    E-Print Network [OSTI]

    Eid, Feras

    2010-01-01T23:59:59.000Z

    Microscale ejector pumps offer the potential for high flow rate pumping of gases, a functionality that is greatly needed in MEMS technology. These pumps have many additional characteristics, such as their simplicity of ...

  4. 2004 URSI Meeting, 5-8 January 2004, at the University of Colorado, Boulder, Colorado, USA. Polyimide Planarization for RF-MEMS Switch on PCB

    E-Print Network [OSTI]

    De Flaviis, Franco

    Polyimide Planarization for RF-MEMS Switch on PCB Bahram Ghodsian, C. Jung, B. Cetiner and F. De Flaviis it maintains the high RF-performance of switches. The fabrication process uses polyimide to planerize

  5. Range Creek Calibrated Dates Beta-202190

    E-Print Network [OSTI]

    Provancher, William

    Range Creek Calibrated Dates 0 200 400 600 800 1000 1200 1400 Beta-202190 Beta-175753 Beta-175755 Beta-235067 Beta-202189 Beta-214831 Beta-202188 Beta-202191 Beta-203630 Beta-214832 Beta-175754 Beta a Carbon-14 calibrated date (95% CI) between 1000 and 1200 C.E. (Figure 5: Beta-235067). The calibrated

  6. date 04/2009 Waste Management

    E-Print Network [OSTI]

    fibres #12;date 04/2009 Waste Incineration Plant at Munich North ­ Using Combined Heat and Power production of electrical power · 792,351 MWh production of heat for district heating · 238,000 t reductiondate 04/2009 Waste Management In The City Of Munich #12;date 04/2009 Waste Management Corporation

  7. Summer Academy Scholarship Application Name: Date

    E-Print Network [OSTI]

    Schaefer, Marcus

    Summer Academy Scholarship Application Name: Date: Address: City: State: Zip Code: Please for this scholarship? In the spirit of St. Vincent DePaul, Summer Academy scholarships are distributed based on both Date Apply online to the Summer Academy before submitting your scholarship application. You must first

  8. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  9. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    SciTech Connect (OSTI)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04T23:59:59.000Z

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  10. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect (OSTI)

    Martin, David (University of Florida, Gainesville, FL)

    2005-11-01T23:59:59.000Z

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  11. Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2010-10-01T23:59:59.000Z

    We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

  12. Oklahoma 4-H Enrollment Form Today's Date: ___________________

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    - wind, electric, hydro, solar, gas, oil, coal, etc. EOklahoma 4-H Enrollment Form Today's Date: ___________________ Personal Information First Name student/child to receive direct electric/USP communications from 4-H / OCES staff for educational

  13. INTERNATIONAL TRAVEL REIMBURSEMENT REQUEST Date: Dept: Preparer

    E-Print Network [OSTI]

    El Karoui, Noureddine

    INTERNATIONAL TRAVEL REIMBURSEMENT REQUEST Date: Dept: Preparer: UC Employee Student Vendor Other: Name: Emp/Stu/Ven ID: Address: City/ST/Zip: E-Mail: Phone: US Citizen/Permanent Resident? Yes No Fax

  14. RESIDENTIAL BURGLARY DATE: November 25, 2014

    E-Print Network [OSTI]

    Rose, Michael R.

    RESIDENTIAL BURGLARY DATE: November 25, 2014 INCIDENT / LOCATION: Residential Burglary in Vista Del 22, 2014, at approximately 11:07 pm, the UCI Police Department received a report of a residential

  15. NO. REV. NO. Systems Division DATE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    -~ NO. REV. NO. EATM-15 PAGE OF ~ Systems Division DATE EASEP /PSEP Solar Panel Development Design+"'--.:L'_;;;J....;::::::..··-=·~::!!:!!!e::...._ K. Hsi #12;NO. REV. NO. EATM-15 EASEP/PSEP Solar Panel Development ~ Systems Division Design of the EASE-PSEP Solar Panel Array~PA::G:,:E:..::=l=~o:F~=2=7= DATE 20 Nov. 1968 1. 0 SUMMARY Electrical power

  16. Chronological information and uncertainty Radiocarbon dating & calibration -Paula Reimer

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    naked body'. Robert Boyle 1663 Includes ­ Thermoluminescence (TL), Optically stimulated luminescenceSUPRA-net: Chronological information and uncertainty Radiocarbon dating & calibration - Paula Tephrochronology ­ David Lowe U series dating ­ David Richards* Combining multiple dating techniques ­ Andrew

  17. Reliability of materials in MEMS : residual stress and adhesion in a micro power generation system.

    SciTech Connect (OSTI)

    Moody, Neville Reid; Kennedy, Marian S. (Washington State University, Pullman, WA); Bahr, David F. (Washington State University, Pullman, WA)

    2007-09-01T23:59:59.000Z

    The reliability of thin film systems is important to the continued development of microelectronic and micro-electro-mechanical systems (MEMS). The reliability of these systems is often tied to the ability of the films to remain adhered to its substrate. By measuring the amount of energy to separate the film from the substrate, researchers can predicts film lifetimes. Recent work has resulted in several different testing techniques to measure this energy including spontaneous buckling, indentation induced delamination and four point bending. This report focuses on developing quantifiable adhesion measurements for multiple thin film systems used in MEMS and other thin film systems of interest to Sandia programs. First, methods of accurately assessing interfacial toughness using stressed overlayer methods are demonstrated using both the W/Si and Au/Si systems. For systems where fracture only occurs along the interface, such as Au/Si, the calculated fracture energies between different tests are identical if the energy put into the system is kept near the needed strain energy to cause delamination. When the energy in the system is greater than needed to cause delamination, calculated adhesion energies can increase by a factor of three due to plastic deformation. Dependence of calculated adhesion energies on applied energy in the system was also shown when comparisons of four point bending and stressed overlayer test methods were completed on Pt/Si systems. The fracture energies of Pt/Ti/SiO{sub 2} were studied using four-point bending and compressive overlayers. Varying the thickness of the Ti film from 2 to 17 nm in a Pt/Ti/SiO{sub 2} system, both test methods showed an increase of adhesion energy until the nominal Ti thickness was 12nm. Then the adhesion energy began to decrease. While the trends in toughness are similar, the magnitude of the toughness values measured between the test methods is not the same, demonstrating the difficulty in extracting mode I toughness as mixed mode loading approaches mode II conditions.

  18. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    SciTech Connect (OSTI)

    Loui, A; McCall, S K

    2011-10-24T23:59:59.000Z

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).

  19. Jupiter Laser Facility Target Fab Request Requester: Date...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sketches: Jupiter Laser Facility Target Fab Request Requester: Date Requested: Phone or E-Mail: Date Required: Target Name: Reference : Laser System: Project: Task:...

  20. Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic...

    Energy Savers [EERE]

    Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Memorandum from Daniel B. Poneman dated August 27, 2010, Strategic Business Initiatives Dep...

  1. NEMA Lighting, CCE Overview and Update presentation, dated 05...

    Broader source: Energy.gov (indexed) [DOE]

    Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 NEMA Distribution Transformers, CCE Overview and Update presentation, dated 05242011...

  2. Modeling, simulation, and testing of the mechanical dynamics of and RF MEMS switch.

    SciTech Connect (OSTI)

    Sumali, Hartono; Epp, David S.; Massad, Jordan Elias; Dyck, Christopher William; Starr, Michael James

    2005-07-01T23:59:59.000Z

    Mechanical dynamics can be a determining factor for the switching speed of radio-frequency microelectromechanical systems (RF MEMS) switches. This paper presents the simulation of the mechanical motion of a microswitch under actuation. The switch has a plate suspended by springs. When an electrostatic actuation is applied, the plate moves toward the substrate and closes the switch. Simulations are calculated via a high-fidelity finite element model that couples solid dynamics with electrostatic actuation. It incorporates non-linear coupled dynamics and accommodates fabrication variations. Experimental modal analysis gives results in the frequency domain that verifies the natural frequencies and mode shapes predicted by the model. An effective 1D model is created and used to calculate an actuation voltage waveform that minimizes switch velocity at closure. In the experiment, the switch is actuated with this actuation voltage, and the displacements of the switch at various points are measured using a laser Doppler velocimeter through a microscope. The experiments are repeated on several switches from different batches. The experimental results verify the model.

  3. Method of forming a package for mems-based fuel cell

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan F.

    2004-11-23T23:59:59.000Z

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  4. 2011 TRAINING DATES January 10-12

    E-Print Network [OSTI]

    2011 TRAINING DATES January 10-12 March 1-3 April 11-13 June 7-9 July 26-28 September 6-8 November: Tools and Functionality Professional Development Training Course OVERVIEW ArcGIS Desktop II: Tools come- first serve basis. · The workshop registration cost is $650. Payment is due prior to the training

  5. DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA

    E-Print Network [OSTI]

    Herwig, Falk

    DATE: AUGUST 10, 2011 UNIVERSITY OF VICTORIA FACULTY CURRICULUM VITAE NAME BRUNT JOHN HOWARD TO APPOINTMENT AT UNIVERSITY OF VICTORIA 2004-2007 Vice-President (Academic and Provost), University of Northern British Columbia 1999-2004 Associate Vice-President Research, University of Victoria 1997-2004 Professor

  6. 2014 Summer Housing Summer Housing dates

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    2014 Summer Housing FACT SHEET Summer Housing dates: May 19, 2014 ­ August 9, 2014 "Rochester Shines in the Summer Time" Please read all of the information thoroughly. Once signed, your housing contract is binding. *We will begin accepting Summer Housing contracts Monday, April 7, 2014 GENERAL

  7. AMS Internship Program Student Application Date: ______________________

    E-Print Network [OSTI]

    Pulfrey, David L.

    AMS Internship Program ­ Student Application Date: ______________________ Full Name: Student Number the following questions in as much detail as possible. Applications [form +resume] for summer internships are due March 4th 1) Why are you interested in the Internship Program? What do you expect to gain from

  8. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING

    E-Print Network [OSTI]

    Short Title ADMIXTURES _____ 02/A35 ASTM C233 Testing Air-Entraining Admixtures for Concrete _____ 02/A MATERIALS TESTING APPLICATION (REV. 2014-08-25) PAGE 2 OF 10 #12;DATE : NVLAP LAB CODE: CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING TEST METHOD SELECTION LIST Instructions

  9. Date: April 1, 2013 Citizenship: Israel, USA

    E-Print Network [OSTI]

    Levit, Anna

    , Haifa, Israel Marital status: Married, four daughters, four grandchildren Web site: http://iew3.technion.Sc. Industrial Engineering and Management Faculty of Industrial Engineering and Management Technion, IIT, Haifa Laboratory, Technion, IIT, Haifa, Israel. 2009 - date Visiting Professor, Engineering Systems Division

  10. Constitution Organization: ASME Date: 5 September, 2014

    E-Print Network [OSTI]

    Firestone, Jeremy

    Constitution Organization: ASME Date: 5 September, 2014 Preamble We, the students at the University of Delaware, do hereby form the organization known as the American Society of Mechanical Engineers for the purpose of the advancement and dissemination of knowledge of the theory and practice of mechanical

  11. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  12. DRUG STUDY QUESTIONNAIRE PROGRAM DIRECTOR:______________________________________ DATE:_____________________________

    E-Print Network [OSTI]

    Acton, Scott

    DRUG STUDY QUESTIONNAIRE PROGRAM DIRECTOR:______________________________________ DATE and/or efficacy of a drug? A. If yes, is the testing, study, evaluation or research primarily for use in pharmaceutical pre-market clearance applications to the Food and Drug Administration? 2. Is drug administered

  13. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect (OSTI)

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W. (Center for Nanoscale Materials); ( PSC-USR); (Univ. of Wisconsin at Madison); (Univ. of Pennsylvania); (SNL)

    2009-12-01T23:59:59.000Z

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  14. Defective beams in MEMS: a model of non-ideal rods using a Cosserat approach for component level modelling

    E-Print Network [OSTI]

    Tim Gould; Charles Wang

    2004-07-28T23:59:59.000Z

    We present and derive a technique for the introduction of defects into a beam model based on the Cosserat theory of rods. The technique is designed for the derivation of component models of non-ideal rods for use in MEMS devices. We also present a worked through example of blob/nick defects (where the rod has an area with an excess/lack of material) and a guide for a model with random pits and blobs along the length of the beam. Finally we present a component level model of a beam with a defect and compare it to results from a Finite Element Analysis simulation. We test the Cosserat model for two cases without any defect and four with a defect. Results are in good agreement with a maximum 0.5% difference for the ideal case and under 1% differences for all but one of the defective cases, the exception being a 2% error in an extreme case for which the model is expected to break down. Overall, the Cosserat model with and without defects provides an accurate way of modelling long slender beams. In addition, simulation times are greatly reduced through this approach and further development for both component level models as well as as FEA components is important for practical yet accurate modelling of MEMS both for prediction and comparison.

  15. Low energy cyclotron for radiocarbon dating

    SciTech Connect (OSTI)

    Welch, J.J.

    1984-12-01T23:59:59.000Z

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  16. Metal MEMS Tools for Beating-heart Tissue Removal Andrew H. Gosline, Member, IEEE, Nikolay V. Vasilyev, Arun Veeramani, MingTing Wu, Greg Schmitz,

    E-Print Network [OSTI]

    Dupont, Pierre

    Metal MEMS Tools for Beating-heart Tissue Removal Andrew H. Gosline, Member, IEEE, Nikolay V the surgical removal of tissue from inside the beating heart. The tool is manufactured using a unique metal that can enter the heart through the vasculature. Incorporating both irrigation and aspiration, the tissue

  17. PAMM Proc. Appl. Math. Mech. 8, 10007 10010 (2008) / DOI 10.1002/pamm.200810007 Analysis of fluid-structure interaction in low pressure MEMS by Integral

    E-Print Network [OSTI]

    Frangi, Attilio

    2008-01-01T23:59:59.000Z

    been developed in the transition regime, their application to realistic 3D low-speed MEMS is still between molecules can be neglected and the momentum transfer to the moving shuttle can be easily computed of fixed parts and vibrating shuttles separated by gaps which are few microns wide. Resonating frequencies

  18. Critical considerations of pupil alignment to achieve open-loop control of MEMS deformable mirror in non-linear laser scanning fluorescence

    E-Print Network [OSTI]

    mechanism of the MEMS DM, a high resolution CMOS camera and a compact Shack-Hartmann wavefront sensor-Hartmann wavefront sensor 1. INTRODUCTION Nonlinear fluorescence microscopic imaging, with its unique advantages of intrinsic three dimensional optical sectioning ability, deep tissue penetration, and reduced photo

  19. Proc. IEEE Workshop on Micro Electro Mechanical Structures (MEMS), San Diego, CA, February 1996. SINGLECRYSTAL SILICON ACTUATOR ARRAYS FOR MICRO MANIPULATION TASKS

    E-Print Network [OSTI]

    Donald, Bruce Randall

    Proc. IEEE Workshop on Micro Electro Mechanical Structures (MEMS), San Diego, CA, February 1996. SINGLE­CRYSTAL SILICON ACTUATOR ARRAYS FOR MICRO MANIPULATION TASKS Karl­Friedrich B¨ohringer Bruce and Department of Computer Science Cornell Nanofabrication Facility Cornell University, Ithaca, NY 14853 URL http://www.cs.cornell.edu/Info/People/karl/Micro

  20. 2. A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C.L. Gold-smith, X-band RF MEMS phase shifters for phased array applications,

    E-Print Network [OSTI]

    Myung, Noh-Hoon

    -tamijani, L. Dussopt, and G.M. Rebeiz, Miniature and tunable filters using MEMS capacitors, IEEE Trans], a great deal of research has been reported in the literature, taking advantage of the super-compact size to a super- compact stopband filter in planar coplanar waveguide (CPW) technology [3]. J. Garci´a-Garci´a et

  1. Power Conservation Strategies for MEMS-based Storage Devices Ying Lin Scott A. Brandt Darrell D. E. Long Ethan L. Miller

    E-Print Network [OSTI]

    Miller, Ethan L.

    to reduce power consumption: ag- gressive spin-down, sequential request merging, and sub- sector accesses energy and reduce response time by about 20%. Transferring less data for small requests such as those strategies simultaneously the total power consumption of MEMS-based storage devices can be reduced by about

  2. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L. (University of Colorado, Boulder, CO); Talmage, Mellisa J. (University of Colorado, Boulder, CO); McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K (Georgia Institute of Technology, Atlanta, GA)

    2006-10-01T23:59:59.000Z

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  3. Form Date 4/4/01 Refrigerant Service Order Form

    E-Print Network [OSTI]

    Russell, Lynn

    Form Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type Minor Maintenance Recovery Vacuum: __________Inches Dispose of Unit Refrigerant Conversion Major

  4. Dietetic Internship Program Deadlines for the January 2015 Start Date

    E-Print Network [OSTI]

    Hemmers, Oliver

    Dietetic Internship Program Deadlines for the January 2015 Start Date Application Deadline to change). Check back for specific due date. Internship Dates January 12, 2015 to August 17, 2015 (subject (Dietetic Internship Centralized Application Services). Go to https://portal.dicas.org for more information

  5. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Certification of Compliance - Leases 6C7-7.216 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal because the subject matter of the regulation is not needed and is out of date. AUTHORITY: BOG Resolution dated January

  6. PR.NO.: 13568A DATE: 5/09/03

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    Grass Calamagrostis acutiflora cv. `Overdam' REASON: Height Control SOIL TYPE OR TYPE OF POTTING MIX: UC Mix % SAND 30 % SILT % CLAY % OM 70 pH 6.5 SEEDING DATE EMERGENCE DATE TRANSPLANTING DATE: 3 matter and 30% sand (UC Mix). The plants were grown on in the same glasshouse as one-gallon plants for 6

  7. UPS 300.019 Effective Date: 3-25-08

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.019 Effective Date: 3-25-08 UPS 300.019 ACADEMIC RESPONSIBILITY FOR MISSED INSTRUCTION DUE of the absence. Given prior notice, instructors are encouraged to allow students to make up class work, complete-25-08 EFFECTIVE DATE: March 25, 2008 Supersedes: UPS 300.019 dated 6-19-02 and ASD 07-177 University Policy

  8. UPS 420.105 Effective Date: 4-14-14

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 4-14-14 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain EFFECTIVE DATE: April 14, 2014 Supersedes: UPS 420.105 dated 10-3-75 and ASD 14-35 University Policy

  9. UPS 420.105 Effective Date: 10-3-75

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 420.105 Effective Date: 10-3-75 UPS 420.105 RIGHT OF NON-COMPLIANCE, RISK ACTIVITIES Certain, or both. EFFECTIVE DATE: October 3, 1975 Supersedes: UPS 420.105 dated 12-15-74 and FCD 74-175 University

  10. DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING

    E-Print Network [OSTI]

    DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST for reasons outside the scope of this document. #12;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY

  11. CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Estimated Project End Date

    E-Print Network [OSTI]

    Pennycook, Steve

    CONTRACTOR HAZARDOUS MATERIALS INVENTORY REPORT Project Name: ORNL Y-12 Project Begin Date: Phone Numbers: Project Manager: Field Representative: SHEST Representative: List of Hazardous Materials: Estimated Project End Date: Contractor/Service Subcontractor Name: Contractor/Service Subcontractor Address

  12. DATE: TO: FROM: SUBJECT: SUMMARY: POLICY FLASH

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department ofCommunications3 DATE: MaySUBJECT: 1 .-~TO:

  13. Property:Modification date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDate JumpAuth3LinkTechMin JumpProperty Edit

  14. Property:PublicationDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDatePropertyWavemaking Jump to:This is

  15. Nuclear Speed-Dating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclear Speed-Dating Nuclear

  16. 912 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 13, NO. 6, DECEMBER 2004 Development of a Rapid-Response Flow-Control

    E-Print Network [OSTI]

    January 1999 Abstract. To date most of the microelectromechanical system (MEMS) devices have been based software. 1. Introduction Microelectromechanical systems (MEMS) is an emerging enabling technology

  17. Layoff Plan Mining Engineering Posting Date: June 16, 2014 Contemplated Layoff Effective Date: August 11, 2014

    E-Print Network [OSTI]

    Layoff Plan ­ Mining Engineering FY 2014-15 Posting Date: June 16, 2014 Contemplated Layoff-15, the Mining Engineering department's formerly allotted support staff positions have been reduced from two of Colorado School of Mines service, time in current classification, and length of continuous State service

  18. DATE OF INITIAL ADOPTION AND EFFECTIVE DATE 5/21/2008 APPLICABILITY/ACCOUNTABILITY

    E-Print Network [OSTI]

    Glebov, Leon

    of access control and security protection, whether in storage or in transit. Further defined in UCF policy 4, and process information that is essential to the academic, research, and administrative functions, mainframes, data storage systems, and similar SUBJECT: Effective Date: Policy Number: 5/13/2014 4-002.1 Use

  19. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor

    SciTech Connect (OSTI)

    Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

    2014-06-01T23:59:59.000Z

    This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

  20. Assessing the potential for luminescence dating in the Mojave Desert, California

    E-Print Network [OSTI]

    Roder, Belinda J.

    2012-01-01T23:59:59.000Z

    dating is that stimulated by heat, called thermoluminescence (TL).thermoluminescence (TL). Below, I provide an introduction to this dating

  1. Luminescence Dating `I also brought it [a diamond] to some

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Includes ­ Thermoluminescence (TL), Optically stimulated luminescence (OSL), infrared stimulatedLuminescence Dating `I also brought it [a diamond] to some kind of glimmering light by taking

  2. FEI Program Session: Date: CHRIS Code: Session Number:

    Broader source: Energy.gov (indexed) [DOE]

    OPM Federal Executive Institute - DOE CHRIS Codes: (Program Tuition Cost - 19,875.00) *Program Calendar for Fiscal Year 2015 FEI Program Session: Date: CHRIS Code: Session Number:...

  3. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  4. "Title","Speaker","Publication Date","OSTI Identifier","Report...

    Office of Scientific and Technical Information (OSTI)

    Speaker","Publication Date","OSTI Identifier","Report Number(s)","DOE Contract Number","Other Number(s)","Resource Type","Specific Type","Coverage...

  5. Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

    SciTech Connect (OSTI)

    Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

    2006-06-01T23:59:59.000Z

    Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

  6. Explorative study of African Americans and internet dating

    E-Print Network [OSTI]

    Spates, Kamesha Sondranek

    2005-02-17T23:59:59.000Z

    EXPLORATIVE STUDY OF AFRICAN AMERICANS AND INTERNET DATING A Thesis by KAMESHA SONDRANEK SPATES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Sociology EXPLORATIVE STUDY OF AFRICAN AMERICANS AND INTERNET DATING A Thesis by KAMESHA SONDRANEK SPATES...

  7. ROBOTIC MASTERS PLAN OF STUDY FORM NAME: DATE

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    ROBOTIC MASTERS PLAN OF STUDY FORM NAME: DATE PENN ID #: ADVISOR: Expected Graduation Date/FUNDAMENTALS OF AI MEAM 520/ROBOTICS & AUTOMATION MEAM 620/MOTION PLANNING ESE 500/LINEAR SYSTEMS ESE 505 NUMBER & TITLE SEMESTER R RO OB BO OT TI IC CS S E EL LE EC CT TI IV VE ES S (2) COURSE NUMBER & TITLE

  8. Computer Engineering Graduate Handbook Dated: February 06, 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    Computer Engineering Graduate Handbook Dated: February 06, 2014 MASTER OF SCIENCE IN COMPUTER ENGINEERING Computer Engineering Program College of Engineering & Computer Science California State University-278-5987 Fax: 657-278-5804 http://www.fullerton.edu/ecs/cpe #12;Computer Engineering Graduate Handbook Dated

  9. Assessment of the suitability of zircons for thermoluminescence dating

    E-Print Network [OSTI]

    Donoghue, Joseph

    Assessment of the suitability of zircons for thermoluminescence dating H.J. van Esa, *, H.W. den for experiments by thermoluminescence (TL) and by Laser Ablation ICP-MS to study the role of rare earth elements can- didate for detrital sediment dating by thermolumines- cence (TL). Other important advantages

  10. NOTICE OF REGULATION REPEAL Date: February 26, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: February 26, 2009 REGULATION TITLE: REGULATION NO.: Space Allocation 6C7-7.218 SUMMARY OF REGULATION REPEAL: This regulation is being repealed. The subject matter of regulation 6C7-7.218 is addressed by the Board of Governors. AUTHORITY: BOG Resolution dated January 7, 2003

  11. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Rental Rates 6C7-7.219 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal because the subject matter of the regulation is not needed and is out of date. Florida Board of Governors Regulation 17.001 requires

  12. NOTICE OF REGULATION REPEAL Date: July 31, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: July 31, 2009 REGULATION TITLE: REGULATION NO.: Proposals to Lease 6C7-7.211 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.209. AUTHORITY: BOG Resolution dated

  13. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Space Measurement 6C7-7.217 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.203. AUTHORITY: BOG Resolution dated

  14. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Definitions 6C7-7.204 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.203. AUTHORITY: BOG Resolution dated January 7, 2003

  15. An early date for cattle from Namaqualand, South Africa

    E-Print Network [OSTI]

    An early date for cattle from Namaqualand, South Africa: implications for the origins of herding did cattle come to South Africa? Radiocarbon dates on a newly found cow horn indicates a time, the authors favour immigrants moving along a western route through Namibia. Keywords: South Africa

  16. UPS 210.100 Effective Date: 3-28-84

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.100 Effective Date: 3-28-84 University Policy Statement California State University, Fullerton UPS 210.100 AFFIRMATIVE ACTION POLICY I. PREAMBLE California State University, Fullerton. #12;UPS 210.100 Page 2 of 2 UPS 210.100 Effective Date: 3-28-84 III. DEPARTMENTAL RESPONSIBILITY All

  17. UPS 450.400 Effective Date: 6-14-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 450.400 Effective Date: 6-14-04 UPS 450.400 OPEN UNIVERSITY ENROLLMENT POLICY I. OBJECTIVES A University. University Policy Statement California State University, Fullerton #12;UPS 450.400 Page 2 of 3 UPS 450.400 Effective Date: 6-14-04 B. Each semester, all students enrolling through Open University

  18. Revised Date September 18, 2013 Capital Project Planning

    E-Print Network [OSTI]

    . Identify Funding Funding Source(s) 2. Cost Estimate Information (from preliminary estimate form): 3_- Project Name Cost Estimate Low Range High Range #12;Revised Date ­ January 25, 2013 Priority RankingRevised Date ­ September 18, 2013 Capital Project Planning Project Approval Form All capital

  19. Revision Date 01.11.13 PROCUREMENT SERVICES -LOGISTICS

    E-Print Network [OSTI]

    Crews, Stephen

    Revision Date 01.11.13 PROCUREMENT SERVICES - LOGISTICS Reading and Reconciling an ePro and MMD with your FACSID. Prerequisites: None Find Help: Email logistics_team@unc.edu #12;Procurement Services - Logistics Reading and Reconciling an ePro and MMD Statement Revision Date 01.11.13 Page 2 of 6 Departmental

  20. COS NUV TA1 Mirror Specification Date: December 8, 1999

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Letter ECO No. Description Check Approved Date - Initial Release EW 8-13-99 A COS-024 Changes specified in ECO Original Release THE UNIVERSITY OF COLORADO Name Date At Boulder Drawn: E. Wilkinson 8...................................................................................................... 4 3.5 Shipping & Handling...................................

  1. Material Stock Requests 9.1 Version Date: April 2013

    E-Print Network [OSTI]

    Material Stock Requests 9.1 HCSD Version Date: April 2013 Revision Date: April 2013 #12;Training be responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use Guide HCSD Page iii Table of Contents Material Stock Requests HCSD

  2. Program 2015 Date Regular Fee Registration Dates EMC in Residence May 3-8 $780 Feb. 3 Apr. 10, 2015

    E-Print Network [OSTI]

    Ellis, Randy

    Program 2015 Date Regular Fee Registration Dates EMC in Residence May 3-8 $780 Feb. 3­ Apr. 10, 2015 2015 EMC Residence Program The Enrichment Mini-Course (EMC) Residential Program is an opportunity, and participate in extra- curricular activities. Why EMC at Queen's? Take top quality academic courses taught

  3. Program 2014 Date Regular Fee Registration Dates EMC in Residence May 4-9 $650 Feb 3-28, 2014

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Program 2014 Date Regular Fee Registration Dates EMC in Residence May 4-9 $650 Feb 3-28, 2014 2014 EMC Residence Program The Enrichment Mini-Course (EMC) Residential Program is an opportunity and dinner each day in the cafeteria, and participate in extra-curricular activities. Why EMC at Queen

  4. INTRODUCTION What is research, but a blind date with knowledge.

    E-Print Network [OSTI]

    Minnesota, University of

    CHAPTER 1 INTRODUCTION What is research, but a blind date with knowledge. -Will Henry The purpose for this thesis. Rationale for Study Through many generations of experimentation and theory-building, physics has

  5. Romantic regressions : an analysis of behavior in online dating systems

    E-Print Network [OSTI]

    Fiore, Andrew Rocco Tresolini, 1979-

    2004-01-01T23:59:59.000Z

    Online personal advertisements have shed their stigma as matchmakers for the awkward to claim a prominent role in the social lives of millions of people. Web sites for online dating allow users to post lengthy personal ...

  6. UPS 300.003 Effective Date: 1-28-13

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.003 Effective Date: 1-28-13 UPS 300.003 University-wide Student Learning Outcomes Preamble New UPS Source: Executive Committee ASD 12-146 With Campus-wide collaboration Academic Senate approved

  7. NOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005

    E-Print Network [OSTI]

    Wu, Shin-Tson

    , Deputy Director of Florida Solar Energy Center COMMENTS CONCERNING THE PROPOSED REGULATION AMENDMENTNOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005 REGULATION TITLE: REGULATION NO OF REGULATION AMENDMENT: This regulation is revised significantly to reflect updated naming conventions

  8. NOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    REGULATION AMENDMENT: Philip Fairey, Deputy Director, Florida Solar Energy Center COMMENTS CONCERNINGNOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009 REGULATION TITLE: REGULATION NO.: Solar Thermal Collector and PV Module Certification UCF-8.003 SUMMARY OF REGULATION AMENDMENT

  9. NOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    , Florida Solar Energy Center COMMENTS CONCERNING THE PROPOSED REGULATION AMENDMENT SHOULD BE SUBMITTEDNOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009 REGULATION TITLE: REGULATION NO.: Solar Thermal and Photovoltaic System Standards UCF-8.005 and Certification SUMMARY OF REGULATION

  10. NOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    REGULATION AMENDMENT: Philip Fairey, Deputy Director, Florida Solar Energy Center COMMENTS CONCERNINGNOTICE OF PROPOSED REGULATION AMENDMENT Date: April 15, 2009 REGULATION TITLE: REGULATION NO.: Solar Thermal Collector and PV Module Testing Standards UCF-8.002 SUMMARY OF REGULATION AMENDMENT

  11. DATE A DAtabase of TIM Barrel 2.1 Introduction......................................................................................

    E-Print Network [OSTI]

    Babu, M. Madan

    24 DATE ­ A DAtabase of TIM Barrel Enzymes 2.1 Introduction...................................................................................... 2.2 Objective and salient features of the database .................................... 2.2.1 Choice on the database............................................... 2.4 Features

  12. Accelerator mass spectrometry: from nuclear physics to dating

    SciTech Connect (OSTI)

    Kutschera, W.

    1982-01-01T23:59:59.000Z

    The discussion reviews the use of accelerators originally intended for nuclear physics to do high resolution mass spectrometry for the purpose of isotope dating and age estimation of materials. (GHT)

  13. LBNL Conflict of Interest Advisory Committee (COIAC) Meeting Dates*

    E-Print Network [OSTI]

    LBNL Conflict of Interest Advisory Committee (COIAC) Meeting Dates* June 11, 2014 July 9, 2014 Aug Integrity Office Charter The LBNL Conflict of Interest Advisory Committee (COIAC or committee) acts

  14. COS Coating Reflectivity Specification Date: August 2, 1999

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Letter ECO No. Description Check Approved Date Initial Release EW 5-25-99 A COS-012 Revision A Original...................................................................................................... 4 5. Shipping & Handling .............................................................................................. 5 5.1 Shipping

  15. UPS 102.001 Effective Date: 5-11-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 102.001 Effective Date: 5-11-12 UPS 102.001 THE FACULTY DEVELOPMENT CENTER (FDC) IN SUPPORT Board membership shall be as specified in UPS 100.001 Academic Senate Bylaws [BL 11-8]. (b) Functions Statement #12;UPS 102.001 Effective Date: 5-11-12 UPS 102.001 Page 2 of 2 · Review, assess and evaluate

  16. UPS 292.000 Effective Date: 5-6-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 292.000 Effective Date: 5-6-12 UPS 292.000 FACULTY LEADERSHIP IN COLLEGIAL GOVERNANCE AWARD contributions to the principle and practice of shared governance. Up to five letters of support may be made part Statement #12;UPS 292.000 Page 2 of 2 UPS 292.000 Effective Date: 5-6-12 c. The nominee's record of service

  17. N du march Objet Date du march Attributaires Code postal

    E-Print Network [OSTI]

    Naud Frédéric

    N° du marché Objet Date du marché Attributaires Code postal attributaire Procédure 06029/1 Travaux marché Objet Date du marché Attributaires Code postal attributaire Procédure 07001/1 Restructuration des/01/2007 FOURQUET SARL 01801 A.O.O. 07012/2 Réaménagement du parc de l'Université Lot n° 1 : travaux d'abattage 06

  18. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOE Patents [OSTI]

    Hankins, Matthew G. (Albuquerque, NM)

    2009-10-06T23:59:59.000Z

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  19. Save the Date- 14th Annual Small Business Forum & Expo flyer...

    Office of Environmental Management (EM)

    Date- 14th Annual Small Business Forum & Expo flyer Save the Date- 14th Annual Small Business Forum & Expo flyer Save the Date- 14th Annual Small Business Forum & Expo flyer The...

  20. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01T23:59:59.000Z

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  1. Power MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    , an axisymmetric convergent-divergent nozzle having a throat diameter of 42 µm is fabricateed by electro of ejector is set as 11.6 Pa. Keywords: Micro Catalytic Combustor, Axisymmetric Convergent-divergent Nozzle, various concepts such as MEMS gas turbine, micro rotary IC engine, micro fuel cell, and micro

  2. Optical Characterization ofMEMS Deformable Mirror Array Structures Soe-Mie F. Nee*a, Lewis F. DeSandrea, Thomas Bifano**b, Linda F. johnsona and Mark B. Morana

    E-Print Network [OSTI]

    Sandrea, Thomas Bifano**b, Linda F. johnsona and Mark B. Morana aResearch Department, Naval Air Warfare Center. The mirror arrays are micro-electronic-mechanical system (MEMS) devices which were fabricated by Boston and electronic elements were fabricated through conventional surface micro-machining using polycrystalline

  3. Phenological development of grain sorghum as affected by planting date

    E-Print Network [OSTI]

    Medley, James C.

    1998-01-01T23:59:59.000Z

    . Variance Source df Mean S uares Pr)F 1994 Model Replications (REP) Planting Date (PD) PD x REP Genotype (G) GxPD 25 6. 4867 0. 0001 1. 5238 0. 0038 4. 5667 0. 0001 1. 7417 0. 0040 1. 0417 0. 0366 112. 6667 0. 0001 Error 70 0. 4542 1995 Model... College Station, TX, 1994 and 1995. Variance Source df Mean S uares Pr)F 1994 Model Replications (REP) Planting Date (PD) PD x REP Genotype (G) Gx PD 25 11. 9204 0. 3913 256. 7604 0. 4509 2. 6104 4. 4604 0. 0001 0. 2751 0. 0001 0. 1924...

  4. UPS 100.601 1 Effective Date: 7-7-06

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 100.601 1 Effective Date: 7-7-06 UPS 100.601 PROCEDURES FOR DEPARTMENT/PROGRAM NAME CHANGES I California State University, Fullerton #12;UPS 100.601 UPS 100.601 2 Effective Date: 7-7-06 E. If opposition. Source: University Curriculum Committee EFFECTIVE DATE: July 7, 2006 Supersedes UPS 100.601 dated 10

  5. California Institute of Technology Request for Employee Clearance Prior to Termination Date

    E-Print Network [OSTI]

    Faraon, Andrei

    California Institute of Technology Date: Request for Employee Clearance Prior to Termination Date/Supervisor Name: Phone Number: Termination Date: International Scholar Services Library Lock and Key Shop P by employee. The following departments will be notified by Human Resources after the termination date: Campus

  6. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry

    E-Print Network [OSTI]

    Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays fault of northeastern Tibet by dating several size fractions of fault gouge clay that represent variable Ma and continued until at least Middle Miocene time and that authigenic clay growth occurred

  7. Finance 2nd Option Worksheet 2010 -2012 Name: Date: UNOFFICIAL

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Finance 2nd Option Worksheet 2010 - 2012 Name: Date: UNOFFICIAL Fall Credits Spring Credits ECNS 3 Spring only BFIN 456 Entrp Finance 3 Fall/Spring BFIN 452 Int'l Finance 3 Spring only BFIN 466/2012 Senior-Level Option Courses Finance Restricted Electives (9 crds required) Form can be found online

  8. Finance 2nd Option Worksheet 2012 -2014 Name: Date: UNOFFICIAL

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Finance 2nd Option Worksheet 2012 - 2014 Name: Date: UNOFFICIAL Fall Credits Spring Credits ECNS 3 Spring only BFIN 456 Entrp Finance 3 Fall/Spring BFIN 452 Int'l Finance 3 Spring only BFIN 466/2012 Senior-Level Option Courses Finance Restricted Electives (9 crds required) Form can be found online

  9. Revision Date: May 22, 2014 MATERIAL & DISBURSEMENT SERVICES, DISBURSEMENT SERVICES

    E-Print Network [OSTI]

    Crews, Stephen

    Revision Date: May 22, 2014 MATERIAL & DISBURSEMENT SERVICES, DISBURSEMENT SERVICES Web Vendor Purpose: The web vendor system is an electronic solution for departments to update and add a vendor with Online Check Request, Web Travel, and InDEPTh. #12;Material & Disbursement Services Training for Web

  10. Forestry Internship Summer 2013 June -August (flexible dates)

    E-Print Network [OSTI]

    Mazzotti, Frank

    Forestry Internship ­ Summer 2013 June - August (flexible dates) Plum Creek is the largest, private landowner in the United States with approximately 6 million acres in 19 states. We are seeking forestry to learn forestry practices from a company with a reputation for excellence earned by years of hard work

  11. HONORARY DEGREES AWARDED -MAY 1960 TO PRESENT Name Date Awarded

    E-Print Network [OSTI]

    deYoung, Brad

    BROWN, George Malcolm (D.Sc.) September 1969 BROWNE, Norah (LL.D.) May 1987 BROWNE, The Hon. William, Dennis (D.Sc.) May 1980 CHEYNE, Alexander Campbell (D.Litt.) October 1983 CHISLETT, Albert Edgar (LL.DHONORARY DEGREES AWARDED - MAY 1960 TO PRESENT Name Date Awarded ADAM, Mike (LL.D.) May 2006 AITKEN

  12. Date: June 12, 2007 To: Pacific Northwest Demand Response Project

    E-Print Network [OSTI]

    Date: June 12, 2007 To: Pacific Northwest Demand Response Project From: Rich Sedano/RAP and Chuck, 2007 meeting of the Pacific Northwest Demand Response Project, we agreed to form three Working Groups for the evaluation of cost-effectiveness of Demand Response resources. One potential outcome would be for state

  13. Scholarship Updated (date) Illinois State Wild Turkey Scholarship

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    Scholarship Updated (date) Illinois State Wild Turkey Scholarship Scholarship source: Illinois State Wild Turkey Federation Address: Dr. Robert E. Reich, Chair Illinois State Wild Turkey Federation: The Illinois state wild turkey federation is awarding scholarships to 1 st , 2 nd , 3 rd , and 4 th year

  14. EE 361L Report Grading Date: 8/30/04

    E-Print Network [OSTI]

    Sasaki, Galen H.

    EE 361L Report Grading Fall 2004 Date: 8/30/04 Instruction: The following are the guidelines that your report should conform to. Each missed guideline is a deduction of 10% of your lab grade (up to a maximum 50% deduction). The missed guidelines are recorded on your graded reports, and are denoted

  15. DATE 13 Janual'y 1969 PSEP Power Transient Analysis

    E-Print Network [OSTI]

    Rathbun, Julie A.

    will probably not exceed 29 volts during sunrise. SOLAR PANEL CHARACTERISTICS The time dependence of the solar;DATE The solar panel array I-V curves are shown in Figure 3. These curves show an open circuit voltage the system. Any degradation of the solar panel could delay first day operation of EASEP until very near

  16. Risk Management Policy Date: 08/01/2013

    E-Print Network [OSTI]

    Brierley, Andrew

    Risk Management Policy Date: 08/01/2013 Approving body: Risk Management Group Version number: 2013.01 Steward: Brian Kennedy, Risk Adviser Principles Through a process of Risk Management, the University objectives. In particular, Risk Management has the aim of helping to protect the University's reputation

  17. Date: 12/6/2014 Page 1 of 2

    E-Print Network [OSTI]

    Brierley, Andrew

    activities by: 2.1. audit and assessment of buildings within NERC estate in order to provide Display EnergyNERC ISSUE: 6 Date: 12/6/2014 Page 1 of 2 NERC NERC Energy Policy Document Control Sheet Document Title Energy Policy Author(s) J Emmerson/J Eacott Document Status Original /agreed document Document

  18. Kalman Filter in Real Time URBIS Date Jan 2010

    E-Print Network [OSTI]

    Vuik, Kees

    2010-0000 Kalman Filter in Real Time URBIS Date Jan 2010 Author(s) R. Kranenburg Projectnumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Kalman Filter 14 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Algorithm of Kalman Filtering . . . . . . . . . . . . . . . . . . . . 14 4.3 Sensitivity Tests

  19. Publish date: 06/27/2011 ECE 4375: Microprocessor Architecture

    E-Print Network [OSTI]

    Gelfond, Michael

    Publish date: 06/27/2011 ECE 4375: Microprocessor Architecture Credit / Contact hours: 3 / 3 Course to the architecture, organization, and design of microprocessors. Hardware design related to various microprocessors. Analysis of current microprocessors and applications. Pre-requisite(s) or co-requisites: ECE 3362

  20. Business Continuity Management Policy Commencement Date: 27 April, 2010

    E-Print Network [OSTI]

    Business Continuity Management Policy Commencement Date: 27 April, 2010 Category: Strategic Management 1. PURPOSE 1.1 To assist the University to conduct and maintain Business Continuity Planning (BCP activities as soon as possible following an emergency or critical incident. 1.2 Create a culture of Business

  1. MINI-MUSEUM Schedule 2014 DATE TOPIC SPEAKER

    E-Print Network [OSTI]

    Shoubridge, Eric

    MINI-MUSEUM Schedule 2014 DATE TOPIC SPEAKER Oct 15 Dinosaurs and the origin of birds Prof. Hans amphibians Prof. David M. Green (Director, Redpath Museum) Oct. 29 Nov.5 Nov. 12 Pandora's Ballast Tank) Barbara Lawson (Curator of World Cultures, Redpath Museum) Nov. 19 Humans, evolution, and the future

  2. TEAM AWARDS TEAM SUBMITTED BY ENDORSEMENT DATE AWARDED # OF MEMBERS

    E-Print Network [OSTI]

    Oliver, Douglas L.

    TEAM AWARDS TEAM SUBMITTED BY ENDORSEMENT DATE AWARDED # OF MEMBERS Neuromuscular Team Deborah Feigenbaum ALS Association & Patients 9/17/2007 9 Affirmative Action Production Team Carolyn Lyle Susan Whetstone & Brian Eaton 4/17/2007 4 Labor & Delivery Team Samtha Angelini & Gwyn Muscillo Ellen Leone & Joan

  3. NOTICE OF REGULATION REPEAL Date: May 5, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: May 5, 2009 REGULATION TITLE: REGULATION NO.: Student Rights and Responsibilities 6C7-5.003 SUMMARY OF REGULATION REPEAL: This regulation is being repealed. New regulations OF PERSON WHO INITIATED REGULATION REPEAL: Patricia MacKown, Director, Office of Student Rights

  4. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Purchase and Sale of Real Property 6C7-7.202 SUMMARY OF REGULATION REPEAL: This regulation is not necessary and does REGULATION REPEAL: Regulations Administrator COMMENTS CONCERNING THE REGULATION REPEAL SHOULD BE SUBMITTED

  5. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Code Compliance in Lease Space 6C7-7.207 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.203. AUTHORITY: BOG

  6. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Approval of Real Property Leases 6C7-7.205 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.203. AUTHORITY: BOG

  7. NOTICE OF REGULATION REPEAL Date: June 9, 2014

    E-Print Network [OSTI]

    Pattanaik, Sumanta N.

    NOTICE OF REGULATION REPEAL Date: June 9, 2014 REGULATION TITLE: REGULATION NO.: Tenure UCF-3.011 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal because the material contained in this regulation has been moved to regulation UCF-3.015. AUTHORITY: BOG Regulations 1.001 NAME OF PERSON WHO

  8. NOTICE OF REGULATION REPEAL Date: July 9, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: July 9, 2009 REGULATION TITLE: REGULATION NO.: Grievance Procedures for Non-unit Faculty and UCF-3.0132 A&P Staff Members SUMMARY OF REGULATION REPEAL: This regulation is being repealed. New regulations are being adopted that will cover the subject matter. AUTHORITY

  9. NOTICE OF REGULATION REPEAL Date: July 31, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: July 31, 2009 REGULATION TITLE: REGULATION NO.: Exception to Competitive Bidding for Leased Space 6C7-7.220 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7

  10. NOTICE OF REGULATION REPEAL Date: July 31, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: July 31, 2009 REGULATION TITLE: REGULATION NO.: Evaluation of Lease Proposals 6C7-7.212 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.209. AUTHORITY: BOG

  11. NOTICE OF REGULATION REPEAL Date: August 6, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: August 6, 2009 REGULATION TITLE: REGULATION NO.: Standard Lease Agreement Form 6C7-7.206 SUMMARY OF REGULATION REPEAL: This regulation is noticed for repeal due to the inclusion of the relevant information in the proposed amendment to regulation UCF-7.203. AUTHORITY: BOG

  12. NOTICE OF REGULATION REPEAL Date: May 8, 2009

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: May 8, 2009 REGULATION TITLE: REGULATION NO.: Confidential Information Policy for Faculty 6C73.030 SUMMARY OF REGULATION REPEAL: This regulation is being repealed NAME OF PERSON WHO INITIATED REGULATION REPEAL: Mark Roberts, Director, Human Resources COMMENTS

  13. NOTICE OF REGULATION REPEAL Date: May 24, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    NOTICE OF REGULATION REPEAL Date: May 24, 2010 REGULATION TITLE: REGULATION NO.: Conflict of Interest 6C7-3.008 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal, because the material contained in this regulation has been moved to regulation UCF-3.018 AUTHORITY: BOG Regulation 1

  14. NOTICE OF REGULATION REPEAL Date: June 9, 2014

    E-Print Network [OSTI]

    Pattanaik, Sumanta N.

    NOTICE OF REGULATION REPEAL Date: June 9, 2014 REGULATION TITLE: REGULATION NO.: Promotion of Tenured and Tenure-earning faculty UCF-3.017 SUMMARY OF REGULATION REPEAL: This regulation is proposed for repeal because the material contained in this regulation has been moved to regulation UCF-3

  15. Cluster Report or Survey Description Date due to IEA Responsible

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Cluster Report or Survey Description Date due to IEA Responsible person(s) Comments Reports IEA will activate and distribute survey in August 2011 Summer Activity Report Faculty activity report for summer, 2012 December 20, 2012 Academic Department Heads By October 8, 2012, data is provided by IEA

  16. FMEA for Solar Cell Array DATE 23 Jan, 1969

    E-Print Network [OSTI]

    Rathbun, Julie A.

    " .- Astronaut Handle Central Station ·~ Solar Panel Deployment Linkage Eas~ ALSEPAXES z Carrying Handle Antenna Positioning Mechanism Antenna Mast _ Outboard Solar Panel "B" PSEP Deployed Configuration N'"CJtx w Pl >!'...t. 3 15 PAGE OF DATE 23 Jan. 1969 The solar panels are assembled by bonding a thin sheet of G-1 0 glass

  17. ETSU Emergency Preparedness Plan (EPP) July 2012 ________________________________Date___________________

    E-Print Network [OSTI]

    Karsai, Istvan

    #12;#12;ETSU Emergency Preparedness Plan (EPP) July 2012 1 ________________________________Date the information to ETSU Public Safety (439-4480 or 911 from campus phones) or the local emergency response office action. When the decision has been made to activate the ETSU Emergency Command Center, key personnel

  18. THOMPSON FELLOWSHIPS 2015 CLOSING DATE: 16 May 2014

    E-Print Network [OSTI]

    Viglas, Anastasios

    GUIDELINES THOMPSON FELLOWSHIPS 2015 CLOSING DATE: 16 May 2014 Background The University of Sydney, Thompson Fellowships (to Promote and Enhance the Career of Academic Women) are named after Isola Florence Thompson, one of the first women graduates of this University. The Thompson Fellowships recognize

  19. Bachelor of Science, Geophysics, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Geophysics, 2013-2014 Name ID# Date General Degree Requirements Residency with Lab 4 COMPSCI 115 Introduction to C 2 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOPH 300 Physics of the Earth 3 GEOPH 305 Applied Geophysics 3 GEOPH 420 Geophysical Applications

  20. UNCORRECTED PROOF Date: 12:15 Thursday 21 June 2012

    E-Print Network [OSTI]

    Jiggins, Francis

    sensitivity, six additional species of flies were found to be infected with sigma viruses (Longdon et alUNCORRECTED PROOF Date: 12:15 Thursday 21 June 2012 File: Rhabdoviruses 3P 8The Sigma Viruses of Drosophila Ben Longdon, Lena Wilfert and Francis M. Jiggins Abstract The sigma virus of Drosophila

  1. DATE Aug 15 2011 RECD. Aug 15 2011

    E-Print Network [OSTI]

    to Sections 1207 and 1236.5 ofTitle 20 ofthe California Code of Regulations, Solar Point Resources, IncDATE Aug 15 2011 RECD. Aug 15 2011 DOCKET 11-CAI-03 BEFORE THE ENERGY RESOURCES CONSERVAn. ll-CAI-03 (Proceeding initiated July 26, 2011) PETITION TO INTERVENE BY SOLAR POINT RESOURCES, INC

  2. UPS 210.050 Effective Date: 6-16-04

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.050 Effective Date: 6-16-04 University Policy Statement California State University, Fullerton UPS 210.050 PERSONNEL POLICY FOR FULL-TIME TEMPORARY FACULTY 1. DEFINITIONS A. In this document UPS documents, temporary faculty have the same rights and responsibilities as do tenure track faculty

  3. UPS 240.200 Effective Date: 9-19-94

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 240.200 Effective Date: 9-19-94 University Policy Statement California State University, Fullerton UPS 240.200 POLICY ON AMOROUS OR SEXUAL RELATIONSHIPS BETWEEN FACULTY, STAFF AND STUDENTS Amorous relationship will be deemed to have violated this policy. #12;UPS 240.200 Page 2 of 2 UPS 240.200 Effective

  4. UPS 300.018 Effective Date: 5-11-12

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 300.018 Effective Date: 5-11-12 UPS 300.018 WITHDRAWAL UNAUTHORIZED ­ ISSUANCE OF WU GRADE When, UPS 300.016 summarizes the campus policy on authorized withdrawals; the administrative grade of W in a class. Such reasons must be documented by the student, in accordance with UPS 300.016. In the first

  5. UPS 210.500 Effective Date: 1-30-13

    E-Print Network [OSTI]

    de Lijser, Peter

    UPS 210.500 Effective Date: 1-30-13 UPS 210.500 PROCEDURES: SEARCH COMMITTEES FOR ADMINISTRATIVE by UPS 210.007. A. The work of a search committee is confidential. It is similar in its functions temporary positions. C. Search committees created pursuant to UPS 210.007 shall follow these procedures. 1

  6. Peer Review Plan Date: 11/1/2012

    E-Print Network [OSTI]

    Torgersen, Christian

    Peer Review Plan Date: 11/1/2012 Source Center: U.S. Geological Survey (USGS) Texas Water Science Center 1505 Ferguson Lane Austin, TX 78754 Title: Cancer Risk from Incidental Ingestion Exposures to PAHs (PAHs) in settings near coal-tar-sealed pavement. The assessment found that the estimate of excess

  7. BOARD TEST SHEET HDI LINK CARD NO. DATE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    BOARD TEST SHEET HDI LINK CARD NO. DATE: Changes on card as delivered from loading company at the rear edge of the board. Verify that all mounting screws are loaded. Crowbar Overvoltage Trip Test Test high limit. Use bench top power supply with test clips on ends of leads. Clip supply leads directly

  8. Math 110 Homework Assignment 21 due date: Mar. 18, 2013

    E-Print Network [OSTI]

    Roth, Mike

    Math 110 Homework Assignment 21 due date: Mar. 18, 2013 1. Consider a fish population with adult fish and young fish where the transition from one year's population to the next is 0.7 0.2 3 0 representing a 70% adult survival rate from year to year, a 20% survival rate for young fish, and the fact

  9. Publish date: 06/27/2011 ECE 4345: Pulsed Power

    E-Print Network [OSTI]

    Gelfond, Michael

    (gas, vacuum, liquid, solid, and surface) - 3 hours High power switching (closing and opening) - 5Publish date: 06/27/2011 ECE 4345: Pulsed Power Credit / Contact hours: 3 / 3 Course coordinator: Hermann Krompholz Textbook(s) and/or other required material: Pai and Zhang, Introduction to High Power

  10. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    . James Fenton, Director, Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULDNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal Collector and PV Module UCF-8.002 Testing Standards SUMMARY OF REGULATION REPEAL: This regulation

  11. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    , Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULD BE SUBMITTED WITHIN 14 DAYSNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal Collector and PV Module UCF-8.003 Certification SUMMARY OF REGULATION REPEAL: This regulation is proposed

  12. NOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Director of Florida Solar Energy Center COMMENTS CONCERNING THE PROPOSED REGULATION AMENDMENT SHOULDNOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005 REGULATION TITLE: REGULATION NO.: Testing Fees, Testing, Inspection, Services 6C7-8.004 SUMMARY OF REGULATION AMENDMENT: This regulation has

  13. NOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005

    E-Print Network [OSTI]

    Wu, Shin-Tson

    PROPOSED REGULATION AMENDMENT: Philip Fairey, Deputy Director of Florida Solar Energy Center COMMENTSNOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005 REGULATION TITLE: REGULATION NO.: Solar Collector Certification 6C7-8.003 SUMMARY OF REGULATION AMENDMENT: This regulation is revised

  14. NOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005

    E-Print Network [OSTI]

    Wu, Shin-Tson

    PROPOSED REGULATION AMENDMENT: Philip Fairey, Deputy Director of Florida Solar Energy Center COMMENTSNOTICE OF PROPOSED REGULATION AMENDMENT Date: August 18, 2005 REGULATION TITLE: REGULATION NO.: Solar Collector Testing Standards 6C7-8.002 SUMMARY OF REGULATION AMENDMENT: This regulation is revised

  15. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    . James Fenton, Director, Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULDNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Solar Thermal and Photovoltaic System UCF-8.005 Standards and Certification SUMMARY OF REGULATION REPEAL: This regulation

  16. NOTICE OF REGULATION REPEAL Date: July 1, 2010

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Fenton, Director, Florida Solar Energy Center COMMENTS CONCERNING THE REGULATION REPEAL SHOULDNOTICE OF REGULATION REPEAL Date: July 1, 2010 REGULATION TITLE: REGULATION NO.: Fees for Testing, Certification, Inspection and UCF-8.004 Services SUMMARY OF REGULATION REPEAL: This regulation is proposed

  17. Records Management Procedures Commencement Date: 1 October, 2003

    E-Print Network [OSTI]

    Records Management Procedures Commencement Date: 1 October, 2003 Category: Information Management 1 Management). Archive Means those records that are appraised as having continuing or permanent value. Capture. POLICY SUPPORTED Information Management Policy 2. APPLICATION All Staff 3. EXCEPTIONS Nil 4. DEFINITIONS

  18. CONFIRMATION OF COST SHARING OR MATCHING COMMITMENT Data Entry Date

    E-Print Network [OSTI]

    Krovi, Venkat

    CONFIRMATION OF COST SHARING OR MATCHING COMMITMENT Data Entry Date F286-480 ACCOUNT NO. SPONSOR MATCHING PROJECT DIRECTOR NAME COST SHARING DEPARTMENT AWARD PERIOD PROJECT TITLE PARTICIPATION OF SUNY = Project Director; C = Co-Project Director; Blank = Other Participant OTHER SUNY COSTS: Please indicate any

  19. DATE: May 23, 2003 TO: ALL LBNL EMPLOYEES

    E-Print Network [OSTI]

    Knowles, David William

    DATE: May 23, 2003 TO: ALL LBNL EMPLOYEES SUBJECT: Employee Information for Individuals government contractor, LBNL is required to take affirmative action to hire and promote individuals may be notified. The information may also be made available to government official investigating LBNL

  20. Bachelor of Applied Science, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Writing and Research 3 CID BAS 300 Communication in the Applied Sciences 3 UF 100 Intellectual FoundationsBachelor of Applied Science, 2014-2015 Name ID# Date General Degree Requirements Residency: Total 3 UF 200 Civic and Ethical Foundations 3 FF BAS 400 Capstone in Applied Sciences 3 DLM Mathematics 3