National Library of Energy BETA

Sample records for megawatts energy source

  1. Spallation Neutron Source reaches megawatt power

    SciTech Connect (OSTI)

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  2. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  3. MegaWatt Solar | Open Energy Information

    Open Energy Info (EERE)

    energy company that delivers scalable solar power generation systems to the utility market. References: MegaWatt Solar1 This article is a stub. You can help OpenEI by...

  4. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Zionsville, Indiana Sector: Renewable Energy, Services, Solar, Wind energy Phone Number: 317.797.3381 Website: www.mwenergysystems.com Coordinates:...

  5. Mass Megawatts Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Megawatts Wind Power Inc Jump to: navigation, search Name: Mass Megawatts Wind Power Inc Address: 95 Prescott Street Place: Worcester, Massachusetts Zip: 01605 Region: Greater...

  6. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect (OSTI)

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  7. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect (OSTI)

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  8. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Debut a Dynamic 5-Megawatt Dynamometer DOE to Debut a Dynamic 5-Megawatt Dynamometer October 1, 2013 - 12:44pm Addthis Test Test A specially configured truck, delivers a GE 2.75-MW wind turbine nacelle weighing more than 96 tons to the new 5-MW dynamometer at the NWTC. Photo by Mark McDade/NREL Read more Test Test The nacelle/drivetrain installed on the 5-MW dynamometer test stand. Photo by Mark McDade/NREL Read more This is an excerpt from the Third Quarter 2013 edition of the Wind Program

  9. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  10. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune; Curtis, Amy

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  11. Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune

    2015-08-20

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  12. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon

  13. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  14. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  15. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  16. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Hydrogen? * Fossil fuels release CO 2 , SO X , NO X SO X , NO X * Declining reserves, national security security GM Hydrogen Energy Hydrogen- the use of Hydrogen gas in...

  17. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MW Electrolysis Scale Up E Anderson DOE Electrolytic Hydrogen Production Workshop 27-28 February 2014 27 28 February 2014 National Renewable Energy Laboratory Golden, CO (tm) ® Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen Control System and design, HOGEN, and FuelGen are trademarks or registered trademarks of Proton Energy Systems, Inc. Any other brands and/or names used herein are the property of their respective owners. Motivation - MW

  18. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources June 6, 2016 Installing a concentrating solar power system in Gila Bend, Arizona. The curved mirrors are tilted toward the sun, focusing sunlight on tubes that run the length of the mirrors. The reflected sunlight heats a fluid flowing through the tubes. The hot fluid then is used to boil water in a conventional steam-turbine generator to produce electricity. | Photo by Dennis Schroeder. Top 6 Things You Didn't Know About Solar Energy Counting down our list of top things

  19. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) ...

  20. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to

  1. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The ...

  2. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED ...

  3. Alternative Energy Sources Inc | Open Energy Information

    Open Energy Info (EERE)

    Sources Inc Jump to: navigation, search Name: Alternative Energy Sources Inc Place: Kansas City, Missouri Zip: 64108 Product: Kansas City-based company that constructs, owns and...

  4. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  5. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. | Department of Energy Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. December 17, 2015 - 10:26am Addthis The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar energy across 18 federal buildings in Washington, D.C. The

  6. From medium-sized to megawatt turbines...

    SciTech Connect (OSTI)

    Dongen, W. van

    1996-12-31

    One of the world`s first 500 kW turbines was installed in 1989 in the Netherlands. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first 500 kW turbines with steel rotor blades and rotor diameter of 34 m, several design modifications followed, e.g. the rotor diameter was increased to 35 m and a tip brake was added. Later polyester blades were introduced and the rotor diameter was increased with 5 in. The drive train was also redesigned. Improvements on the 500 kW turbine concept has resulted in decreased cost, whereas annual energy output has increased to approx. 1.3 million kWh. Wind energy can substantially contribute to electricity supply. Maximum output in kiloWatthours is the target. Further improvement of the existing technology and implementation of flexible components may well prove to be a way to increase energy output, not only in medium or large sized wind turbines. 7 figs.

  7. Energy Intensity Indicators: Commercial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the...

  8. Alternate sources of energy

    SciTech Connect (OSTI)

    1980-01-01

    Eleven papers are included. A separate abstract was prepared for each for Energy Research Abstracts (ERA); seven were selected for Energy Abstracts for Policy Analysis (EAPA).

  9. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by ... federal standards that are part of the Energy Policy Act of 2005. This is not intended ...

  10. Energy Bill Literature Sources

    Broader source: Energy.gov (indexed) [DOE]

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, ... federal standards that are part of the Energy Independence and Security Act of 2007. ...

  11. megatons to megawatts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    megatons to megawatts Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity WASHINGTON, D.C. - The United States and Russia are today commemorating the completion of the 1993 U.S.-Russia HEU Purchase Agreement, commonly known as the Megatons to Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of

  12. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. The result is a reliable, competitive solution that optimizes CLFR technology benefits by ensuring that the energy harvested can be dispatched night or day through the...

  13. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  14. Understanding Earth's Energy Sources

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    In Part 1, students will know how fossil fuels were formed; recognize common uses of Earth’s fossil energy resources and develop an understanding of the risks and benefits of their continued use. In Part 2, students focus on the importance of renewable energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and geothermal) are discussed. Information on solar is located on a separate power point (2006 Solar PP) as is hydrogen and transportation alternatives. Students will be able to distinguish between renewable and nonrenewable energy resources and identify the positive and negative effects of each. The long-term understanding of this unit is for the students to make informed energy decisions in the future.

  15. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Mike Murphy iii Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State

  16. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Karl Meeusen Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Karl Meeusen,

  17. E Source | Open Energy Information

    Open Energy Info (EERE)

    use and provision of energy. Who Is E Source? Whether you're an electric or natural gas utility or a large business customer served by a utility, your problems are probably...

  18. higher penetration of renewable energy sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher penetration of renewable energy sources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  19. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Interdisciplinary Module for Energy Education Alternative Energy Sources - An ... Energy Basics, Wind Energy, Solar Summary Find activities focused on renewable energy ...

  20. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  1. Alternative Energy Sources -- An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy - An Interdisciplinary Module for Energy Education Alternative Energy Sources -- An Interdisciplinary Module for Energy Education Find activities focused on renewable energy sources such as solar and wind. lesson302.pdf (735.79 KB) More Documents & Publications Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources

  2. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Buildings in Washington, D.C. | Department of Energy Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. June 15, 2015 - 12:41pm Addthis On June 9, 2015, the U.S. General Services Administration (GSA) issued a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed

  3. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  4. Final Environmental Impact Report: North Brawley Ten Megawatt...

    Open Energy Info (EERE)

    Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract NA Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979...

  5. Wuxi Guofei Green Energy Source Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guofei Green Energy Source Co Ltd Jump to: navigation, search Name: Wuxi Guofei Green Energy Source Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214142 Sector: Solar Product:...

  6. Aparna Renewable Energy Sources Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aparna Renewable Energy Sources Pvt Ltd Jump to: navigation, search Name: Aparna Renewable Energy Sources Pvt. Ltd. Place: Bangalore, Karnataka, India Zip: 56003 Sector: Wind...

  7. Property:EnergyAccessPowerSource | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name EnergyAccessPowerSource Property Type String Description Power Source Retrieved from "http:en.openei.orgwindex.php?titleProperty:Energy...

  8. Development of a Multi Megawatt Circulator for X Band

    SciTech Connect (OSTI)

    Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

    2008-03-24

    Research is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present-generation accelerators. This will require development of high power RF sources generating of 50-100 MW per source. Transmission of power at this level requires overmoded waveguide to avoid breakdown. In particular, the TE{sub 01} circular waveguide mode is currently the mode of choice for waveguide transmission at Stanford Linear Accelerator Center (SLAC) in the Multimode Delay Line Distribution System (MDLDS). A common device for protecting an RF source from reflected power is the waveguide circulator. A circulator is typically a three-port device that allows low loss power transmission from the source to the load, but diverts power coming from the load (reflected power) to a third terminated port. To achieve a low loss, matched, three port junction requires nonreciprocal behavior. This is achieved using ferrites in a static magnetic field which introduces a propagation constant dependent on RF field direction relative to the static magnetic field. Circulators are currently available at X-Band for power levels up to 1 MW in fundamental rectangular waveguide; however, the next generation of RF sources for TeV-level accelerators will require circulators in the 50-100 MW range. Clearly, conventional technology is not capable of reaching the power level required. In this paper, we discuss the development of an X-Band circulator operating at multi-megawatt power levels in overmoded waveguide. The circulator will employ an innovative coaxial geometry using the TE{sub 01} mode. Difficulties in maintaining mode purity in oversized rectangular guide preclude increasing guide area to allow increasing the power level to the desired 50-100 MW range. The TE{sub 01} mode in circular waveguide is very robust mode for transmission of high power in overmoded waveguide. The mode is ideal for transmission of high power microwaves because of its low-losses, zero tangential

  9. Power Sources Inc | Open Energy Information

    Open Energy Info (EERE)

    Sources Inc Jump to: navigation, search Name: Power Sources Inc. Place: Charlotte, North Carolina Sector: Biomass Product: US-based operator and developer of biomass-to-energy...

  10. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  11. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  12. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  13. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  14. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  15. Nonrenewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  16. Renewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  17. Secondary Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  18. A Solar Win for Arizona | Department of Energy

    Office of Environmental Management (EM)

    The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, ...

  19. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the student activity/lesson plan from your search. Grades: 5-8 Subject: Energy Basics, Wind Energy, Solar Summary: Find activities focused on renewable energy sources such as solar and wind. Curriculum: Science, Mathematics, Language Arts Plan Time: Varies by activity Standards:

  20. Reaching Underground Sources (from MIT Energy Initiative's Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaching Underground Sources (from MIT Energy Initiative's Energy Futures, Spring 2012) American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Reaching ...

  1. EnergySource formerly Char LLC | Open Energy Information

    Open Energy Info (EERE)

    Char LLC Jump to: navigation, search Name: EnergySource (formerly Char LLC) Place: El Centro, California Zip: 92244 Product: California-based clean energy project developer....

  2. Wonder Source Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wonder Source Energy Technology Co, Ltd Place: China Product: China-based maker of Lithium Polymer and LiFeO4 batteries. References: Wonder Source Energy Technology Co, Ltd1...

  3. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  4. ThermaSource Inc | Open Energy Information

    Open Energy Info (EERE)

    ThermaSource Inc Jump to: navigation, search Name: ThermaSource Inc Place: Santa Rosa, California Zip: 95403 Sector: Geothermal energy, Services Product: A US-based company...

  5. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Energy Basics, Wind Energy, Solar Summary Find activities focused on renewable energy sources such as solar and wind. Curriculum Science, Mathematics, Language Arts Plan Time Varies by activity Materials Vary by activity Standards not

  6. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Sources","Row" "Code(a)","Subsector and ... 324,"Petroleum and Coal ... Division, Form EIA-810, 'Monthly Refinery Report' for 2002.

  7. Source Selection | Department of Energy

    Office of Environmental Management (EM)

    Status Reporting Requirement (pdf) Source Evaluation Board (SEB) Secretariat and Knowledge Manager - Acquisition Guide Chapter 1.4 (pdf) Acquisition Planning - Acquisition...

  8. Design of megawatt power level heat pipe reactors

    SciTech Connect (OSTI)

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  10. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  11. BrightSource Energy | Open Energy Information

    Open Energy Info (EERE)

    California-based company that develops, builds, owns, and operates large scale solar plants. These solar plants deliver solar energy to industrial and utility companies....

  12. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Harvesting Energy from Abundant, Low Quality Sources of Heat Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryThe basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to

  13. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  14. Capital Sources and Providers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital Sources and Providers Capital Sources and Providers An image of a blue diagram showing an arrow labeled "Lender" pointing to a rectangle labeled "Borrower" with a curved arrow labeled "Repayment" pointing back to "Lender." Another arrow labeled "Capital Sources" also points to the arrow labeled "Lender." The most important elements of a clean energy lending program are the capital source and the capital provider. The capital

  15. Energy Upgrade of the Siam Photon Source

    SciTech Connect (OSTI)

    Rugmai, S.; Rujirawat, S.; Hoyes, G. G.; Prawanta, S.; Kwankasem, A.; Siriwattanapitoon, S.; Suradet, N.; Pimol, P.; Junthong, N.; Boonsuya, S.; Janpuang, P.; Prawatsri, P.; Klysubun, P.

    2007-01-19

    The energy upgrade of the storage ring is part of the plans to develop x-ray production capability of the Siam Photon Source. Simulations have been carried out. The bending magnet power supply has been replaced. Energy of the injected 1 GeV beam from the injector is then ramped up 20% in the storage ring. Studies for modification of bending magnet poles have been done to evaluate possibility of further increasing the beam energy to 1.4 GeV in the future. Studies of the energy upgrade plan and details of energy ramping process, together with beam measurements are presented.

  16. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect (OSTI)

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  17. Geothermal Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... to produce and disseminate both the exploration gap analysis and Enhanced Geothermal ... 1 megawatt) power generation geothermal projects; sources of useful information including ...

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ... National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ...

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update (EIA)

    (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ... (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources ...

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  1. Purchasing Energy-Efficient Residential Air Source Heat Pumps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Source Heat Pumps Purchasing Energy-Efficient Residential Air Source Heat Pumps The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air ...

  2. "Table B26. Water-Heating Energy Sources, Floorspace, 1999"

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used ...

  3. Kansas Energy Sources: A Geological Review

    SciTech Connect (OSTI)

    Merriam, Daniel F.; Brady, Lawrence L.; Newell, K. David

    2012-03-15

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

  4. Central airport energy systems using alternate energy sources

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  5. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  6. Worcester, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Worcester, Massachusetts BiOctane Biomass Combustion Systems Inc Mass Megawatts Wind Power Inc ThermoEnergy Corporation References US...

  7. COLLOQUIUM: Energy Return on Investment for Future Energy Sources |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab October 26, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Energy Return on Investment for Future Energy Sources Dr. Charles Neumeyer Princeton Plasma Physics Laboratory Colloquium Committee: The Princeton Plasma Physics Laboratory 2016-2017 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin,

  8. EA-164 Constellation Power Source, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constellation Power Source, Inc EA-164 Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. EA-164 Constellation Power Source, Inc (44.81 KB) More Documents & Publications EA-162 PP&L, Inc EA-163 Duke Energy Trading and Marketing, L.L.C EA-158 Williams Energy Services Company

  9. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Cost Reductions with Multi-Megawatt Centralized Inverter Systems Alencon Systems, LLC *99.1% Efficient Inverter System *Power Factor Control +/- 0.9 *2,500VDC *Low/Zero Voltage Ride Through *Compact Design *Liquid Cooling *Hot-Swap Capability *Lower Total Cost of Ownership *Large BOS System Savings Designed to be "Made in the USA" * Up to 25kW * String-wise MPPT * 300 to 1,000V DC Input Voltage * 2,500V DC Bi-polar Output Voltage * "Plug and Play" Topology *

  10. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  11. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar ...

  12. Purchasing Energy-Efficient Residential Air Source Heat Pumps

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR qualified product category.

  13. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  14. Alternative Water Sources Maps | Department of Energy

    Office of Environmental Management (EM)

    Facilities Water Efficiency Alternative Water Sources Maps Alternative Water Sources Maps Rainwater Harvesting Regulations Rainwater Harvesting Regulations Read more ...

  15. Department of Energy review of the National Spallation Neutron Source Project

    SciTech Connect (OSTI)

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic.

  16. Property:HeatSource | Open Energy Information

    Open Energy Info (EERE)

    HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what...

  17. Blue Source LLC | Open Energy Information

    Open Energy Info (EERE)

    Source LLC Jump to: navigation, search Name: Blue Source LLC Place: Salt Lake City, Utah Zip: 84121 Product: Salt Lake City-based emission offset aggregation company. References:...

  18. Source Selection Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source Selection Guide PDF icon Source Selection Guide More Documents & Publications Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions (January 2009) Chapter...

  19. Agri Source Fuels | Open Energy Information

    Open Energy Info (EERE)

    search Name: Agri-Source Fuels Place: Pensacola, Florida Zip: 32505 Product: Biodiesel producer located in Florida that owns a plant in Dade City. References: Agri-Source...

  20. Open Source Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What are the benefits of open source software?The open source approach to software development engages a community of interested users and developers in a collaborative ...

  1. 1999 Commercial Buildings Characteristics--Energy Sources and...

    U.S. Energy Information Administration (EIA) Indexed Site

    that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and...

  2. FACTSHEET: Energy Department Launches Open-Source Online Training Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Help Students, Workers Gain Valuable Skills | Department of Energy FACTSHEET: Energy Department Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills FACTSHEET: Energy Department Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills June 21, 2012 - 7:47am Addthis The Energy Department and SRI International today officially launched the National Training and Education Resource (NTER), an open-source platform for

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",24048,17 " Electric Utilities",17045,17 " IPP & CHP",7003,16 "Net generation (megawatthours)",70155504,22 " Electric Utilities",48096026,19 " IPP & CHP",22059478,14 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",78556,18 " Nitrogen

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",3948,45 " Electric Utilities",3450,36 " IPP & CHP",499,48 "Net generation (megawatthours)",10995240,45 " Electric Utilities",9344872,38 " IPP & CHP",1650368,48 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13852,35 " Nitrogen

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",30949,10 " Electric Utilities",27376,5 " IPP & CHP",3573,26 "Net generation (megawatthours)",116334363,11 " Electric Utilities",102294256,5 " IPP & CHP",14040107,24 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",13716,36 "

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",17166,23 " Electric Utilities",14377,18 " IPP & CHP",2788,32 "Net generation (megawatthours)",61064796,25 " Electric Utilities",47301782,20 " IPP & CHP",13763014,26 "Emissions (thousand metric tons)",, " Sulfur Dioxide (short tons)",81239,17 " Nitrogen

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",28249,13 " Electric utilities",21311,11 " IPP & CHP",6938,17 "Net generation (megawatthours)",112257187,13 " Electric utilities",94847135,8 " IPP & CHP",17410053,19 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",22597,32 " Nitrogen

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",74646,2 " Electric utilities",28201,4 " IPP & CHP",46446,2 "Net generation (megawatthours)",198807622,5 " Electric utilities",71037135,14 " IPP & CHP",127770487,4 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3102,46 "

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14933,29 " Electric utilities",10204,28 " IPP & CHP",4729,18 "Net generation (megawatthours)",53847386,30 " Electric utilities",43239615,26 " IPP & CHP",10607771,30 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",28453,30 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",8832,35 " Electric utilities",161,45 " IPP & CHP",8671,12 "Net generation (megawatthours)",33676980,38 " Electric utilities",54693,45 " IPP & CHP",33622288,11 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",1897,47 " Nitrogen

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",3086,46 " Electric utilities",102,46 " IPP & CHP",2984,31 "Net generation (megawatthours)",7703584,47 " Electric utilities",49050,46 " IPP & CHP",7654534,35 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",824,48 " Nitrogen

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",9,51 " Electric utilities",, " IPP & CHP",9,51 "Net generation (megawatthours)",67612,51 " Electric utilities",, " IPP & CHP",67612,51 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",0,51 " Nitrogen oxide (short

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",59440,3 " Electric utilities",51775,1 " IPP & CHP",7665,15 "Net generation (megawatthours)",230015937,2 " Electric utilities",211970587,1 " IPP & CHP",18045350,15 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",126600,10 "

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",38250,7 " Electric utilities",28873,3 " IPP & CHP",9377,10 "Net generation (megawatthours)",125837224,10 " Electric utilities",109523336,4 " IPP & CHP",16313888,20 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",105998,11 " Nitrogen

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item","Value","Rank" "Primary energy source","Petroleum", "Net summer capacity (megawatts)",2672,47 " Electric utilities",1732,40 " IPP & CHP",939,45 "Net generation (megawatthours)",10204158,46 " Electric utilities",5517389,39 " IPP & CHP",4686769,40 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",21670,33 " Nitrogen

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4944,42 " Electric utilities",3413,37 " IPP & CHP",1531,39 "Net generation (megawatthours)",15184417,43 " Electric utilities",9628016,37 " IPP & CHP",5556400,39 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",5777,42 " Nitrogen

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",44727,4 " Electric utilities",5263,35 " IPP & CHP",39464,4 "Net generation (megawatthours)",202143878,4 " Electric utilities",10457398,36 " IPP & CHP",191686480,3 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",187536,6 " Nitrogen

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27499,14 " Electric utilities",23319,7 " IPP & CHP",4180,23 "Net generation (megawatthours)",115395392,12 " Electric utilities",100983285,6 " IPP & CHP",14412107,22 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",332396,3 " Nitrogen

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16507,24 " Electric utilities",12655,20 " IPP & CHP",3852,25 "Net generation (megawatthours)",56853282,28 " Electric utilities",43021954,27 " IPP & CHP",13831328,25 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",74422,19 " Nitrogen oxide

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14227,31 " Electric utilities",11468,24 " IPP & CHP",2759,33 "Net generation (megawatthours)",49728363,31 " Electric utilities",39669629,29 " IPP & CHP",10058734,31 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31550,29 " Nitrogen

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20878,21 " Electric utilities",19473,15 " IPP & CHP",1405,40 "Net generation (megawatthours)",90896435,17 " Electric utilities",90133403,10 " IPP & CHP",763032,49 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",204873,5 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",26657,15 " Electric utilities",18120,16 " IPP & CHP",8537,13 "Net generation (megawatthours)",104229402,15 " Electric utilities",58518271,17 " IPP & CHP",45711131,8 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",96240,14 "

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",4470,43 " Electric utilities",10,49 " IPP & CHP",4460,20 "Net generation (megawatthours)",13248710,44 " Electric utilities",523,49 " IPP & CHP",13248187,27 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10990,38 " Nitrogen oxide

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",12264,33 " Electric utilities",85,47 " IPP & CHP",12179,8 "Net generation (megawatthours)",37833652,35 " Electric utilities",20260,47 " IPP & CHP",37813392,9 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",41370,26 " Nitrogen oxide

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",13128,32 " Electric utilities",971,42 " IPP & CHP",12157,9 "Net generation (megawatthours)",31118591,40 " Electric utilities",679986,43 " IPP & CHP",30438606,12 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",6748,41 "

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30435,12 " Electric utilities",22260,9 " IPP & CHP",8175,14 "Net generation (megawatthours)",106816991,14 " Electric utilities",84075322,12 " IPP & CHP",22741669,13 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",173521,7 " Nitrogen

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15621,28 " Electric utilities",11557,22 " IPP & CHP",4064,24 "Net generation (megawatthours)",56998330,27 " Electric utilities",45963271,22 " IPP & CHP",11035059,29 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",39272,27 " Nitrogen

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",16090,26 " Electric utilities",13494,19 " IPP & CHP",2597,34 "Net generation (megawatthours)",55127092,29 " Electric utilities",47084382,21 " IPP & CHP",8042710,34 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",101093,13 "

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21790,19 " Electric utilities",20538,13 " IPP & CHP",1252,42 "Net generation (megawatthours)",87834468,18 " Electric utilities",85271253,11 " IPP & CHP",2563215,46 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",149842,9 " Nitrogen

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6330,41 " Electric utilities",3209,38 " IPP & CHP",3121,30 "Net generation (megawatthours)",30257616,41 " Electric utilities",12329411,35 " IPP & CHP",17928205,16 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",14426,34 " Nitrogen

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8732,36 " Electric utilities",7913,30 " IPP & CHP",819,46 "Net generation (megawatthours)",39431291,34 " Electric utilities",36560960,30 " IPP & CHP",2870331,45 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",63994,22 " Nitrogen oxide

  12. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",10485,34 " Electric utilities",8480,29 " IPP & CHP",2006,35 "Net generation (megawatthours)",36000537,37 " Electric utilities",27758728,33 " IPP & CHP",8241809,33 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10229,40 "

  13. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",4418,44 " Electric utilities",1121,41 " IPP & CHP",3297,28 "Net generation (megawatthours)",19538395,42 " Electric utilities",2085585,41 " IPP & CHP",17452810,18 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3107,45 " Nitrogen

  14. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",19399,22 " Electric utilities",544,43 " IPP & CHP",18854,7 "Net generation (megawatthours)",68051086,23 " Electric utilities",-117003,50 " IPP & CHP",68168089,7 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",3369,44 " Nitrogen oxide

  15. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8072,39 " Electric utilities",6094,33 " IPP & CHP",1978,37 "Net generation (megawatthours)",32306210,39 " Electric utilities",26422867,34 " IPP & CHP",5883343,38 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",12064,37 " Nitrogen oxide

  16. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",40404,6 " Electric utilities",10989,27 " IPP & CHP",29416,5 "Net generation (megawatthours)",137122202,7 " Electric utilities",34082856,31 " IPP & CHP",103039347,5 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",31878,28 " Nitrogen

  17. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30498,11 " Electric utilities",26941,6 " IPP & CHP",3557,27 "Net generation (megawatthours)",128143588,9 " Electric utilities",119432144,2 " IPP & CHP",8711444,32 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",64168,21 " Nitrogen

  18. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6790,40 " Electric utilities",5516,34 " IPP & CHP",1274,41 "Net generation (megawatthours)",36462508,36 " Electric utilities",32088446,32 " IPP & CHP",4374062,42 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",52716,23 " Nitrogen oxide

  19. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",31507,9 " Electric utilities",11134,26 " IPP & CHP",20372,6 "Net generation (megawatthours)",134476405,8 " Electric utilities",43290512,25 " IPP & CHP",91185893,6 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",355108,1 " Nitrogen oxide

  20. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",15884,27 " Electric utilities",11175,25 " IPP & CHP",4709,19 "Net generation (megawatthours)",60119907,26 " Electric utilities",44565239,24 " IPP & CHP",15554668,21 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",10595,39 "

  1. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",42723,5 " Electric utilities",39,48 " IPP & CHP",42685,3 "Net generation (megawatthours)",221058365,3 " Electric utilities",90994,44 " IPP & CHP",220967371,2 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",297598,4 " Nitrogen

  2. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",1810,49 " Electric utilities",8,50 " IPP & CHP",1803,38 "Net generation (megawatthours)",6281748,49 " Electric utilities",10670,48 " IPP & CHP",6271078,36 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",100,49 " Nitrogen

  3. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",22824,18 " Electric utilities",20836,12 " IPP & CHP",1988,36 "Net generation (megawatthours)",97158465,16 " Electric utilities",93547004,9 " IPP & CHP",3611461,43 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",43659,25 "

  4. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",20998,20 " Electric utilities",20490,14 " IPP & CHP",508,47 "Net generation (megawatthours)",79506886,20 " Electric utilities",76986629,13 " IPP & CHP",2520257,47 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",89357,16 " Nitrogen

  5. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",112914,1 " Electric utilities",29113,2 " IPP & CHP",83800,1 "Net generation (megawatthours)",437629668,1 " Electric utilities",94974953,7 " IPP & CHP",342654715,1 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",349245,2 " Nitrogen

  6. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8325,38 " Electric utilities",7296,31 " IPP & CHP",1029,44 "Net generation (megawatthours)",43784526,33 " Electric utilities",40741425,28 " IPP & CHP",3043101,44 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",23646,31 " Nitrogen oxide

  7. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",650,50 " Electric utilities",337,44 " IPP & CHP",313,49 "Net generation (megawatthours)",7031394,48 " Electric utilities",868079,42 " IPP & CHP",6163315,37 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",70,50 " Nitrogen oxide

  8. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",26292,16 " Electric utilities",22062,10 " IPP & CHP",4231,22 "Net generation (megawatthours)",77137438,21 " Electric utilities",62966914,16 " IPP & CHP",14170524,23 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",68550,20 "

  9. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16276,25 " Electric utilities",11981,21 " IPP & CHP",4295,21 "Net generation (megawatthours)",81059577,19 " Electric utilities",63331833,15 " IPP & CHP",17727743,17 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",102406,12 "

  10. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8458,37 " Electric utilities",7233,32 " IPP & CHP",1225,43 "Net generation (megawatthours)",49696183,32 " Electric utilities",45068982,23 " IPP & CHP",4627201,41 "Emissions (thousand metric tons)",, " Sulfur dioxide (short tons)",45704,24 " Nitrogen oxide

  11. "Sources: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report."" U.S. Energy Information Administration, Form EIA-861,""Annual Electric Power Industry Report."" U.S. Energy Information Administration, Form EIA-923, ""Power Plant Operations Report"" and predecessor forms."

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item","Value" "Primary energy source","Coal" "Net summer capacity (megawatts)",1068422 " Electric utilities",616632 " IPP & CHP",451791 "Net generation (megawatthours)",4093606005 " Electric utilities",2382473495 " IPP & CHP",1711132510 "Emissions (thousand metric tons)", " Sulfur dioxide (short tons)",3842005 " Nitrogen oxide (short

  12. Vermont Source Testing Review | Open Energy Information

    Open Energy Info (EERE)

    ReviewLegal Abstract This form initiates the review and approval process for required studies and testing to be conducted on source(s) to serve Proposed or Existing Public...

  13. Colorado Nonpoint Source Website | Open Energy Information

    Open Energy Info (EERE)

    Source Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Nonpoint Source Website Abstract This is the website of the Colorado...

  14. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northwest Smart Grid Demonstration Project, which will use the center's 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo...

  15. EA-164-A Constellation Power Source, Inc | Department of Energy

    Office of Environmental Management (EM)

    PDF icon EA-164-A Constellation Power Source, Inc More Documents & Publications EA-164 Constellation Power Source, Inc EA-196-A Minnesota Power, Sales EA-232 OGE Energy Resources

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  17. EPA Climate Leaders Mobile Source Guidance | Open Energy Information

    Open Energy Info (EERE)

    EPA Climate Leaders Mobile Source Guidance AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Phase: Determine...

  18. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Info (EERE)

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  19. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; ...

  20. Sources for Department of Energy Scientific and Technical Reports...

    Office of Scientific and Technical Information (OSTI)

    Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to ...

  1. EIA's Energy in Brief: What are the major sources and users of energy in

    Gasoline and Diesel Fuel Update (EIA)

    the United States? the major sources and users of energy in the United States? Last Updated: December 29, 2015 The major energy sources consumed in the United States are petroleum (oil), natural gas, coal, nuclear energy, and renewable energy. The major user sectors of these energy sources are residential and commercial buildings, industry, transportation, and electric power. The pattern of energy use varies widely by sector. For example, petroleum provides 92% of the energy used for

  2. Green Source Consulting | Open Energy Information

    Open Energy Info (EERE)

    Consulting Jump to: navigation, search Name: Green Source Consulting Place: Wien Vienna, Austria Zip: 1010 Product: Private Austrian project developer with a focus in the Central...

  3. Air-Source Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of...

  4. Department Announces Loan Guarantee for BrightSource Energy Inc...

    Office of Environmental Management (EM)

    of Energy has finalized a 1.6 billion loan guarantee with the California company BrightSource Energy, Inc. to complete the construction of three concentrated solar power plants. ...

  5. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  6. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Teach & Learn Energy Literacy Education & Professional Development Postdoctoral Research Awards Competitions EERE Office Activities Multimedia Related Links Blog Contact Us

  7. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  8. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    Statement Public Meetings February 21 - 23, 2012 * An approximately 200 megawatt wind energy facility and associated infrastructure proposed by Searchlight Wind Energy, LLC * ...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Assessment Solar photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes....

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Property Tax Assessment Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes....

  11. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Heat Pump Systems » Air-Source Heat Pumps Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your home. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel like combustion heating systems do. Air-source heat pumps have been used for many years in

  12. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... It does not include electricity inputs from onsite" "cogeneration or generation from combustible fuels because that energy has" "already been included as generating fuel (for ...

  13. Radiological Source Registry and Tracking (RSRT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive

  14. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It...

  15. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  16. Property:File/Source | Open Energy Information

    Open Energy Info (EERE)

    (next 25) A Australia-Solar-Map.png + Australian Government + Awstwspd100onoff3-1.jpg + National Renewable Energy Laboratory + B BOEMRE OCS.oil.gas.2007-12.map.pdf + Bureau of...

  17. EarthSource Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 02446 Region: Greater Boston Area Sector: Geothermal energy Product: Manufacture geothermal heat pumps Website: www.earthsource-energy.com Coordinates:...

  18. Waste Stream to Energy source: What if America's Next Big Fuel Source is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its Trash? | The Ames Laboratory Waste Stream to Energy source: What if America's Next Big Fuel Source is its Trash? Ames Laboratory Waste Stream to Energy According to the U.S. Environmental Protection Agency, the United States produced 254 million tons of municipal solid waste in 2013. And though 87 million tons of that material from the landfill was diverted through recycling and composting, what if the nation could do better? What if landfills could become local sources of clean energy

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  20. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  1. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  2. SourceGas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for commercial customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment. The Program...

  3. SourceGas- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for residential customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment. The Program...

  4. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  5. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  6. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  7. Waste stream to energy source: What if America's next big fuel source is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its trash? | The Ames Laboratory Waste stream to energy source: What if America's next big fuel source is its trash? According to the U.S. Environmental Protection Agency, the United States produced 254 million tons of municipal solid waste in 2013. And though 87 million tons of that material from the landfill was diverted through recycling and composting, what if the nation could do better? What if landfills could become local sources of clean energy production? Better yet, what if all

  8. NREL Incubator Alliance Helps Entrepreneurs Build Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., Feb. 23, 2001 - The U.S. Department of Energy's National Renewable Energy ... Texas has an electric utility restructuring law that mandates 2000 megawatts of new ...

  9. Renew 300: Advancing Renewable Energy in Affordable Housing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This program encourages organizations to make public commitments toward the federal renewable energy target of 300 megawatts of onsite or community-scale renewable energy capacity. Organizations...

  10. Indiana's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Indianapolis Power Light Megawatt Energy Systems Simon Property Group Solarvest BioEnergy Utility Companies in Indiana's 4th congressional district Indianapolis Power & Light...

  11. Methods of performing downhole operations using orbital vibrator energy sources

    DOE Patents [OSTI]

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  12. Design of megawatt power level heat pipe reactors (Technical...

    Office of Scientific and Technical Information (OSTI)

    pipe reactors An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at ...

  13. Low energy spread ion source with a coaxial magnetic filter

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  14. 11 Carbon-Fighting Energy Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Carbon-Fighting Energy Technologies 11 Carbon-Fighting Energy Technologies Addthis SCALING NEW HEIGHTS WITH WIND ENERGY 1 of 11 SCALING NEW HEIGHTS WITH WIND ENERGY Wind is here to stay as a mainstream power source in the United States, providing 4.4 percent of total electricity generation. As of 2014, there were more than 65,000 megawatts of utility-scale wind power deployed across 39 states -- enough to generate electricity for more than 16 million households. This upswing, thanks in part to

  15. Community Wind Toolkit | Open Energy Information

    Open Energy Info (EERE)

    American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. Community wind projects may be a single turbine or multi-megawatt...

  16. Solar Renewable Energy Certificates Program (SRECs)

    Broader source: Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  17. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  18. Massachusetts's 3rd congressional district: Energy Resources...

    Open Energy Info (EERE)

    CTP Hydrogen CellTech Power Inc Conservation Services Group Evergreen Solar, Inc. Guardian Energy Management Solutions Hy9 Hy9 Corporation Mass Megawatts Wind Power Inc...

  19. OE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, 2013 The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in...

  20. CCPI Round 2 Selections | Department of Energy

    Office of Environmental Management (EM)

    Energy Company LLC's 300 megawatt coal-fired Mustang Generating Station in Milan, New Mexico. ... total system removal of mercury from plant emissions, while turning the byproducts ...

  1. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the direction and maintanence of the core code * The code base is platform- neutral ... Its core function is to allow users to merge multiple sources of building energy data into ...

  2. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  3. EPA Mobile Source Rule Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile Source Rule Update EPA Mobile Source Rule Update 2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program deer_2003_charmley.pdf (847.05 KB) More Documents & Publications EPA Diesel Update Technical Challenges and Opportunities Light-Duty Diesel Engines in North America Development on simultaneous reduction system of NOx and PM from a diesel engine

  4. Building Energy Management Open-Source Software (BEMOSS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Management Open---Source So=ware (BEMOSS) HVAC Controllers LighNng Controllers LighNng circuit(s) Plug load Controllers BEMOSS Core VOLTTRON MeeKng July 23, 2015 Saifur Rahman (srahman@vt.edu) Virginia Tech What is BEMOSS? BEMOSS is a Building Energy Management Open Source So=ware (BEMOSS) soluKon that is engineered to improve sensing and control of equipment in small--- and medium---sized commercial buildings. BEMOSS BEMOSS monitoring and control: Three major loads in buildings

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2006;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  9. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  10. Table 7.9 Expenditures for Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  11. Table 7.9 Expenditures for Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107

  12. Table 7.4 Average Prices of Selected Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " ...

  13. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  14. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  15. VOLTTRONTM as an Open Source Platform for Energy Management Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saifur Rahman (srahman@vt.edu) Virginia Tech VOLTTRON TM as an Open Source Platform for Energy Management Applications HVAC Controllers Lighting Controllers Lighting circuit(s) Plug load Controllers July 23, 2014 Software Framework for Transactive Energy Case Western Reserve University Cleveland, OH Plug load circuit(s) 2 History Attended AAMAS conference 2013 in MN, which had a VOLTTRON TM demonstration May 2013 July 2013 Visited PNNL and was formally introduced to VOLTTRON TM Aug 2013 Started

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  18. September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 362 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 79 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 79 A study of

  19. September 2015 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Renewable Energy Sources Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 257 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 217 Thermal conductivity of aqueous NaCl solutions

  20. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  1. Most Viewed Documents for Renewable Energy Sources: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: September 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 224 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 179 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 138 Hybrid Cooling

  2. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  3. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM

    Broader source: Energy.gov [DOE]

    Clemson University – North Charleston, SC New motor power converter technologies will be used to develop a pre-commercial megawatt class variable speed drive. The fully integrated prototype system will be made by TECO Westinghouse Motor Company in its Round Rock, TX facility and be demonstrated at Clemson’s eGRID Center. Fact sheet coming soon.

  4. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  5. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Broader source: Energy.gov (indexed) [DOE]

    Conversation Block Grants … Formula Grants | Department of Energy Funding opportunity announcement for the Energy Efficiency and Conversation Block Grants, an opportunity open from March 26, 2009 to May 26, 2009 for state applicants and June 25, 2009 for local government and tribal applicants. eecbg_foa.pdf (799.41 KB) More Documents & Publications Microsoft Word - DE-FOA-0000013 Amendment 000003.doc Funding for state, city, and county governments in the state includes: Funding for

  6. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L.

    1998-12-31

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  7. Property:Incentive/EligSysSize | Open Energy Information

    Open Energy Info (EERE)

    minimum
    Recycled Energy: 15 Megawatt maximum Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Maximum size is 1 MW or 110% of customer's...

  8. Department of Energy Finalizes $197 Million Loan Guarantee to...

    Office of Environmental Management (EM)

    Efficiencies in the Manufacturing of Photovoltaic Modules Washington D.C. - U.S. Energy ... are expected to produce over 400 megawatts of flexible photovoltaic (PV) modules annually. ...

  9. Baiyin Zhongke Yuneng Technology Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Co Ltd Place: Baiyin, Gansu Province, China Sector: Wind energy Product: Chinese blade manufacture for multiple megawatt wind turbine. Coordinates: 36.548901, 104.201012...

  10. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and...

  11. DOE Office of Indian Energy Foundational Course on Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Course Renewable Energy Technologies: Geothermal Webinar (text version) Below ... This can be compared with the 3,000 megawatts that are currently in production. The third ...

  12. EA-1884: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This EA evaluates the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western's...

  13. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    SciTech Connect (OSTI)

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  14. Sources for Department of Energy Scientific and Technical Reports | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to 1991) online at SciTech Connect. A fee-based digitization or copying service for reports currently not available in digital format is available by calling (865) 576-8401 or e-mailing reports@osti.gov. If you do not find what you are searching for in

  15. Directory of financing sources for foreign energy projects

    SciTech Connect (OSTI)

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  1. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  2. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  3. Building Energy Management Open-Source Software (BEMOSS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Management Open-Source Software (BEMOSS) 2014 Building Technologies Office Peer Review Saifur Rahman (srahman@vt.edu) Virginia Tech Project Summary Timeline: Key Partners: Start date: November 1, 2013 Planned end date: October 31, 2014 Key Milestones 1.First cut of the BEMOSS software - 10/31/2014 2.User interface app - 10/31/2014 3.Functioning plug & play compatible controllers - 10/31/2014 Arlington County, VA Danfoss Corporation Virginia Tech Foundation Project Goal:

  4. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect (OSTI)

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Dipartimento di Ingegneria dellInformazione, delle Infrastrutture e dellEnergia Sostenibile, Universit Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria ; Cheymol, B.; Ponton, A.; Galat, A.; Patti, G.; Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro ; Gozzo, A.; Lega, L.; Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universit degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  5. On the Frontiers of a New Energy Source | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source May 2, 2012 - 3:59pm Addthis Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Secretary Chu Secretary Chu Former Secretary of Energy What are the key facts? Methane hydrates

  6. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  7. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  8. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  9. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  10. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped