National Library of Energy BETA

Sample records for megawatthour gigawatt hours

  1. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25...

  2. Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",2043614,2761518,1359680,0,"NA",6164812 2014,"AL","Total Electric

  3. Investigation of gigawatt millimeter wave source applications

    SciTech Connect (OSTI)

    Bruder, J.A.; Belcher, M.L.

    1991-09-01

    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  4. Gigawatts of Geothermal: JASON Study Highlights Huge Potential for EGS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gigawatts of Geothermal: JASON Study Highlights Huge Potential for EGS Gigawatts of Geothermal: JASON Study Highlights Huge Potential for EGS February 21, 2014 - 3:46pm Addthis JASON study members take in the landscape at Sugarloaf, an 86,000-year-old rhyolite dome in eastern California, and among the youngest dated volcanoes in the field. Andy Sabin (right), director of the Navy Geothermal Program Office, led the field trip to the Coso geothermal field, where the Navy

  5. Investigation of gigawatt millimeter wave source applications. Final technical report

    SciTech Connect (OSTI)

    Bruder, J.A.; Belcher, M.L.

    1991-09-01

    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  6. On a QUEST to Save Oakland 8.4 Gigawatt Hours

    Broader source: Energy.gov [DOE]

    Local businessman works to make Oakland's downtown one of the greenest, making buildings as highly energy efficient as possible along the way.

  7. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-23

    This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

  8. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030

    Broader source: Energy.gov [DOE]

    DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

  9. Lidar sensing of the atmosphere with gigawatt laser pulses of femtosecond duration

    SciTech Connect (OSTI)

    Bukin, O A; Golik, S S; Il'in, A A; Kulchin, Yu N; Lisitsa, V V; Shmirko, K A; Babii, M Yu; Kolesnikov, A V; Kabanov, A M; Matvienko, G G; Oshlakov, V K

    2014-06-30

    We present the results of sensing of the atmosphere in the condition of a transition 'continent – ocean' zone by means of gigawatt femtosecond pulses of the fundamental and second harmonics of a Ti : sapphire laser. In the regime of multi-frequency sensing (supercontinuum from the fundamental harmonic) the emission lines of the first positive system of the nitrogen molecule B{sup 3}Π{sub g} – A{sup 3}Σ{sub u}{sup +} have been recorded, while the sensing using of the second harmonic have revealed the possibility of detecting the lines of Raman scattering of nitrogen (λ = 441 nm). The intensity ratio of the line of Raman scattering of nitrogen and the line of elastic scattering at the wavelength of λ = 400 nm amounts to 5.6 × 10{sup -4}. (extreme light fields and their applications)

  10. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    ...84570,3357486,0,12002661 "Massachusetts",20071160,26076208,7960941,360983,54469292 "New Hampshire",4510487,4464530,1969064,0,10944081 "Rhode Island",3070347,3657679,887150,27928,76...

  11. Soliton delivery of few-cycle optical gigawatt pulses in Kagome-lattice hollow-core photonic crystal fibers

    SciTech Connect (OSTI)

    Im, Song-Jin; Husakou, Anton; Herrmann, Joachim

    2010-08-15

    We study the delivery of few-cycle soliton-like pulses at 800 nm with gigawatt power or microjoule energy through a hollow-core kagome-lattice photonic crystal fiber over 1 m with preserved temporal and spectral shape. We show that with optimized pressure of the argon filling, 5 fs input pulses are compressed up to 2.5 fs after 20 cm and restore their shape after 1 m propagation.

  12. Hopper Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage ... Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in ...

  13. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Office Location & Hours Ombuds Office Location & Hours Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

  14. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    SciTech Connect (OSTI)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth

  15. Franklin Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Franklin Hours Used Franklin Hours Used 2011 Franklin Usage in Hours 2011 Franklin Usage in Hours 2010 2010 Franklin Usage in Hours 2009 2009 Franklin Usage in Hours 2007-2008 2008 Franklin Usage in Hours 2008 Franklin Usage in Hours Date Hours Used (in thousands) Percentage of Maximum Possible (24 hours/day) 04/28/2012 0.00 0.00 04/27/2012 272.62 29.40 04/26/2012 692.81 74.71 04/25/2012 841.60 90.75 04/24/2012 53.86 5.81 04/23/2012 432.01 46.59 04/22/2012 823.23 88.77 04/21/2012 473.95 51.11

  16. Edison Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Hours Used 2015 Edison Usage Chart Edison Usage Chart 2014 Edison Usage Chart Edison Usage Chart 2013 Edison Usage Chart Edison Usage Chart 2015 Date Hours Used (in ...

  17. Contacts / Hours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts / Hours Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Contacts / Hours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Note: Using the telephone is the ONLY way to get up to the minute information. On duty Forecaster (509) 373-2716 Current

  18. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator

    SciTech Connect (OSTI)

    Ju, J.-C. Fan, Y.-W.; Shu, T.; Zhong, H.-H.

    2014-10-15

    We present a gigawatt (GW)-class magnetically insulated transmission line oscillator (MILO) which is capable of generating dual-band high power microwaves (HPMs). The proposed device, deriving from previously studied complex MILO and dual-frequency MILO, is designed to produce two HPMs in L-band and Ku-band, respectively. It is found in particle-in-cell (PIC) simulation that when the diode voltage is 610 kV, HPMs with frequencies of 1.72 GHz and 14.6 GHz can be achieved with powers of 3.3 GW and 2.4 GW, respectively. The corresponding total power conversion efficiency is approximately 12.8%. Power difference of the two generated HPMs is approximately 1.4 dB, and frequency difference of them reaches a level as high as ∼10 dB.

  19. Allocation of Flight Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocation of Flight Hours for G-1 Pattern Number Name/Description Hours per flight Number of Flights Total # of Hours Fraction of Allotment (60hrs) Likely Start Time Weather Conditions 1 Stack Pattern 1 (Instrument testing) 3.5 1 3.5 6% 10:00-12:00 Shallow clouds, Cu Hu- Cu Me, Ci are okay 2 Stack Pattern 2 Basic OKC Cloudy Air Flight Plan (some in coordination with ER-2) 3.5 5 17.5 30% 10:00-12:00 Shallow clouds, Cu Hu- Cu Me, Ci are okay 3 Stack Pattern 3 Basic OKC Clear Air Flight Plan 3.5 5

  20. Hopper Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage Chart Hopper Usage Chart 2013 Hopper Usage Chart Hopper Usage Chart 2012 Hopper Usage Chart Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 09/20/2015 3.247 88.2 09/19/2015 3.401 92.4 09/18/2015 3.425 93.0 09/17/2015 3.450 93.7 09/16/2015 3.413 92.7 09/15/2015 3.466 94.1 09/14/2015 3.299 89.6 09/13/2015 3.436 93.3

  1. Carver Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carver Hours Used Carver Hours Used Hopper Usage Chart Hopper Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 12/15/2014 161.25 84.75 12/14/2014 162.32 85.31 12/13/2014 165.95 87.22 12/12/2014 172.69 90.76 12/11/2014 174.45 91.69 12/10/2014 170.09 89.39 12/09/2014 166.50 87.50 12/08/2014 169.20 88.92 12/07/2014 167.44 88.00 12/06/2014 172.83 90.83 12/05/2014 176.73 92.89 12/04/2014 174.69 91.81 12/03/2014 178.77 93.96 12/02/2014 172.30 90.55 12/01/2014 176.12

  2. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  3. Edison Phase I Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Phase I Hours Used Edison Phase I Hours Used Edison Usage Chart Edison Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 06/23/2013 0.226 88.6 06/22/2013 0.239 93.9 06/21/2013 0.248 97.1 06/20/2013 0.240 94.0 06/19/2013 0.233 91.3 06/18/2013 0.245 96.0 06/17/2013 0.251 98.4 06/16/2013 0.243 95.3 06/15/2013 0.245 95.9 06/14/2013 0.246 96.5 06/13/2013 0.240 94.1 06/12/2013 0.128 50.4 06/11/2013 0.215 84.5 06/10/2013 0.225 88.4 06/09/2013 0.228 89.6

  4. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  5. EIA-930 Hourly and Daily Balancing ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... file retrieval using business-to-business data transfer or web services technology. ... but are to be included in the posted hourly value for balancing authority net generation. ...

  6. Happy Birthday Unmet Hours! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unmet Hours is a question-and-answer resource for the building energy modeling community. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy Modeling Technology Manager A year ago ...

  7. Bradbury Science Museum announces winter opening hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum winter hours Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). December 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Communications Office (505) 667-7000 Often called "a window to the Laboratory," the museum annually attracts thousands of visitors from all over the world. LOS ALAMOS, New Mexico, December 21, 2010-Los Alamos National Laboratory's

  8. Fermilab | Visit Fermilab | Hours, Maps and Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours and site access Check the Fermilab home page for our latest news and a calendar of events, which also includes days that our main building and exhibits are closed. Hours Fermilab's site is open to the public every day of the week from 8 a.m. to 6 p.m. from November to March and from 8 a.m. to 8 p.m. the rest of the year. A map of Fermilab's public areas is available online. Fermilab visitors are allowed to visit two buildings on their own: Wilson Hall and the Leon Lederman Science

  9. Hour of Code | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences School Competitions Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in Search of Women

  10. Team Surpasses 1 Million Hours Safety Milestone

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  11. Electric System Intra-hour Operation Simulator

    Energy Science and Technology Software Center (OSTI)

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  12. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  13. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  14. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  15. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  16. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  17. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  18. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  19. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  20. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  1. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Genevieve Saur (PI), Chris Ainscough (Presenter), Kevin Harrison, Todd Ramsden National Renewable Energy Laboratory January 17 th , 2013 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Acknowledgements * This work was made possible by support from the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and

  2. Energy Savings Performance Contracting 14-hour Agency Onsite...

    Energy Savers [EERE]

    Energy Savings Performance Contracting 14-hour Agency Onsite Workshop Energy Savings Performance Contracting 14-hour Agency Onsite Workshop January 20, 2016 8:30AM PST to January...

  3. NREL: Education Center - Hours, Directions, and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours, Directions, and Contact Information An aerial photo of a tan Education Center. NREL's Education Center Credit: NREL 18591 Hours The Education Center is open Monday through...

  4. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  5. Oak Ridge: Approaching 4 Million Safe Work Hours | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours February 27, 2013 - 12:00pm Addthis Mike Tidwell performs a leak check and ...

  6. 1999 Commercial Buildings Characteristics--Off-Hour Equipment...

    U.S. Energy Information Administration (EIA) Indexed Site

    such programs (Figure 1). About the same amount of floorspace had either heating system or cooling system off-hour reduction. Off-hour reduction was least for office...

  7. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Energy Savers [EERE]

    Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom ...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  9. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  10. Hour of Code sparks interest in computer science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Hour of Code sparks interest in computer science Taking the mystery out of programming February 1, 2016 Hour of Code participants work their way through fun computer programming tutorials. Hour of Code participants work their way through fun computer programming tutorials. Contacts Community Programs Director Kathy Keith Email

  11. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmental risk. The LATA Environmental Services of Kentucky Team, the Department's prime cleanup contractor, in October reached a milestone of 1 million hours without a lost...

  12. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  13. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9th-12th Grade Classroom | Department of Energy Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom bioenergize_me_ngss_20151210.pdf (5.35 MB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge

  14. Hospital Triage in First Hours After Nuclear or Radiological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

  15. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-09-30

    The order establishes policy, requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty.

  16. Labor Standards/Wage and Hour Laws | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards/Wage and Hour Laws Labor Standards/Wage and Hour Laws Labor Standards and Wage/Hour laws establish minimum wage, overtime pay, recordkeeping, and minimum leave requirements: 40 U.S.C. chapter 31, subchapter IV, (Davis-Bacon Act) 41 U.S.C. chapter 67, (Service Contract Act) Fair Labor Standards Act Family and Medical Leave Act Migrant and Seasonal Agricultural Worker Protection Act DOE training on some of these laws are available below: Labor Standards 101 (1.76 MB) Davis-Bacon Act

  17. Oak Ridge: Approaching 4 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  18. Delayed Start or Cancellation of Business Hours | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hours of 6:30 a.m. to 6:30 p.m. should report to work as usual. Depending on their job duties and directives from their line management, some employees may be required to...

  19. Commercial and Residential Hourly Load Data Question | OpenEI...

    Open Energy Info (EERE)

    Commercial and Residential Hourly Load Data Question Home Hi, I saw that you were actively replying to the questions on that page, so thought I'd contact you to ask about the data...

  20. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Cancels DOE O 322.1B and DOE O 535.1

  1. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-14

    This Order establishes requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty. Cancels DOE O 322.1A. Canceled by DOE O 322.1C.

  2. DOE ZERH Virtual Office Hours (4 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  3. DOE ZERH Virtual Office Hours (2 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  4. DOE ZERH Virtual Office Hours (3 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  5. DOE ZERH Virtual Office Hours (1 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  6. EM River Corridor Cleanup Contractor Surpasses 7 Million Safe Hours

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office contractor Washington Closure Hanford (WCH) and its subcontractor employees achieved a significant safety milestone by working 7 million hours without a lost workday injury.

  7. Balancing Authority Cooperation Concepts - Intra-Hour Scheduling

    SciTech Connect (OSTI)

    Hunsaker, Matthew; Samaan, Nader; Milligan, Michael; Guo, Tao; Liu, Guangjuan; Toolson, Jacob

    2013-03-29

    The overall objective of this study was to understand, on an Interconnection-wide basis, the effects intra-hour scheduling compared to hourly scheduling. Moreover, the study sought to understand how the benefits of intra-hour scheduling would change by altering the input assumptions in different scenarios. This report describes results of three separate scenarios with differing key assumptions and comparing the production costs between hourly scheduling and 10-minute scheduling performance. The different scenarios were chosen to provide insight into how the estimated benefits might change by altering input assumptions. Several key assumptions were different in the three scenarios, however most assumptions were similar and/or unchanged among the scenarios.

  8. Intra-Hour Dispatch and Automatic Generator Control Demonstration with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting | Department of Energy Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting UCSD logo2.png The University of California at San Diego (UCSD) is leading a project that will reduce power system operation cost by providing a prediction of the generation fleet's behavior in real time for realistic photovoltaic penetration scenarios. APPROACH The primary

  9. Ames Laboratory Scientists Receive Hours through DOE's INCITE Program | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory You are here Home Ames Laboratory Scientists Receive Hours through DOE's INCITE Program Scientist Mark Gordon was awarded 200 million processor hours through the INCITE program to work on a research project utilizing Argonne National Laboratory's supercomputer. Gordon and his co-investigators will study the behaviors of liquids and their solutes specifically water and ionic liquids. For more information about the team's work with INCITE visit Argonne Leadership Computing

  10. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Code' Campaign | Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign To raise awareness of the need for digital literacy and a basic understanding of computer science,

  11. INCITE Program Doles Out Hours on Supercomputers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INCITE Program Doles Out Hours on Supercomputers INCITE Program Doles Out Hours on Supercomputers November 5, 2012 - 1:30pm Addthis Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National Laboratory, is capable of carrying out 10 quadrillion calculations per second. Each year researchers apply to the INCITE program to get to use this machine's incredible computing power. | Photo courtesy of Argonne National Lab. Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    per megawatt-hour (MWh) of electric generation. Electric suppliers must provide this information to customers twice annually in a standardized, uniform format. The Michigan Public...

  13. Solar Renewable Energy Certificates Program (SRECs)

    Broader source: Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation... Eligibility: Commercial, Industrial, Local Government,...

  15. NREL Highlights 2010 Utility Green Power Leaders - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility programs exceeded 6 million megawatt-hours (MWh) in 2010. Wind energy now represents more than three-fourths of electricity generated for green energy programs nationwide. ...

  16. 100,000 hour design life of turbo compressor packages

    SciTech Connect (OSTI)

    1998-05-20

    Many turbomachinery manufacturers and operators typically quote 100,000 hours as a design limit for service life of turbo compressor components. The Pipeline Research Committee initiated this study to review the life limiting criteria for certain critical components and determine if the design target of 100,000 hours can be safely and reliably met or extended with special component management practices. The first phase of the project was to select the turbomachinery components that would be included in the review. Committee members were surveyed with a detailed questionnaire designed to identify critical components based on: high hours (e.g. at or approaching 100,000 hours) the most common engine types operated by the member organizations, and the components of greatest concern from a risk and expense point of view. The selection made covers a wide range of engine types that are of interest to most of the committee companies. This selection represents some 78% of the high hour units operated by the committee and includes components from GE Frame 3 and Frame 5, Solar Saturn, Rolls Royce Avon, and Cooper RT56 engines. The report goes into detail regarding the various damage mechanism which can be the main life limiting factor of the component; creep, fatigue, environmental attack, wear and microstructure instability. For each of the component types selected, the study identifies the life limiting criteria and outlines how the components may be managed for extended life. Many of the selected components can be reliably operated beyond 100,000 hours by following the management practices set out in the report.

  17. Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts Making Wind Energy Predictable: New Profilers Provide Hourly Forecasts May 11, 2016 - 6:48pm Addthis Balancing the power grid is an art-or at least a scientific study in chaos-and the Energy Department is hoping wind energy can take a greater role in the act. Yet, the intermittency of wind-sometimes it's blowing, sometimes it's not-makes adding it smoothly to the nation's electrical grid a challenge.

  18. Differential Angstrom model for predicting insolation from hours of sunshine

    SciTech Connect (OSTI)

    Yeboah-Amankwah, D.; Agyeman, K.

    1990-01-01

    The Angstrom model for predicting insolation is limited in scope because it gives equal weighting to sunshine hours recorded at any time of the day. The differential Angstrom model presented in this paper removes this limitation and relates insolation, q{sub j}, in the j{sup th} hour to the sunshine duration, n{sub j}, of the same period by the equation: q{sub j} = a{sub j} + b{sub j}. By regression analysis of monthly data, the set of constants a{sub j} and b{sub j} for each hour of each month of the year can be determined. Thus, using the appropriate set of a and b regression coefficients, any sunshine data can be transformed to insolation. The sum of the equation over a day gives the daily insolation from which monthly means can be calculated. The method has been applied to the 1986 and 1988 sunshine data recorded at the University of Papua New Guinea to predict the observed insolation to within 3.5%. The differential Angstrom method has applications in places which have much recorded data on hours of sunshine but have limited observed insolation data.

  19. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Admin Chg 1, dated 5-10-12, supersedes DOE O 322.1C.

  20. 20131201-1231_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  1. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  2. 20140201-0228_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  3. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  4. 20140601-0630_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  5. 20140301-0331_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  6. 20140101-0131_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  7. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  8. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  9. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  10. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  11. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  12. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  13. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  14. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  15. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  16. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  17. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  18. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  19. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  20. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  1. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  2. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  3. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  4. Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient 24 Hour SO2 Values: Model vs Monitor Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor Docket No. EO-05-01: Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor, March ...

  5. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  6. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American...

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation ... February Monthly Peak Hour Demand, by North American Electric Reliability Corporation ...

  7. ,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American...

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation ... 3B.2. NPCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation ...

  8. BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  9. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Docket No. ...

  10. Scalable Tuning of Building Models to Hourly Data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  11. Scalable tuning of building models to hourly data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less

  12. Scalable tuning of building models to hourly data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-03-31

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The "Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Furthermore, accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  13. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February ... a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. ...

  14. Is the hourly data I get from NREL's PV Watts program adjusted...

    Open Energy Info (EERE)

    Is the hourly data I get from NREL's PV Watts program adjusted for daylight savings time. Home I take the hourly AC output numbers and apply them to a program I built that assigns...

  15. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME ...

  16. EPA ENERGY STAR Webcast- Portfolio Manager Office Hours, Focus Topic: Weather Data and Metrics

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  17. Kenya Hourly DNI, GHI and Diffuse Solar Data - Datasets - OpenEI...

    Open Energy Info (EERE)

    Kenya Hourly DNI, GHI and Diffuse Solar Data Abstract Each data file is a set of hourly values of solar radiation (DNI, GHI and diffuse) and meteorological elements for a 1-year...

  18. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Sharing Forward and Transfer Ownership

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  19. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs October 19, 2015 - 12:38pm Addthis ICM Inc. announced ...

  20. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics biomas_basics_webinar_20150827.pdf (3.05 MB) More Documents & Publications BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Toolkit

  1. Radar applications of gigawatt sources at millimeter wave frequencies

    SciTech Connect (OSTI)

    Bruder, J.A.; Belcher, M.L. . Research Inst.)

    1991-06-01

    The high transmit powers provided by free electron laser (FEL) sources in combination with the narrow antenna beamwidths achievable at millimeter wave (MMW) frequencies offer potential for use in a number of radar applications. Potential applications of high power millimeter wave sources include satellite imaging, low angle radar tracking, radar astronomy, and a number of other possible applications such as atmospheric research, space debris detection, and space vehicle tracking. 3 refs., 3 figs.

  2. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Office of Environmental Management (EM)

    Using NREL's Regional Energy Deployment System (ReEDS) model for electricity generation and transmission, the study surveyed appropriate locations (excluding military zones, ...

  3. DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Research Projects | Department of Energy 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects January 17, 2008 - 10:38am Addthis WASHINGTON, DC -The U.S. Department of Energy's (DOE) Office of Science today announced that 265 million processor-hours were awarded to 55 scientific projects, the largest amount of supercomputing resource awards

  4. Join the Call: One Million Hours of STEM Volunteer Service | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Call: One Million Hours of STEM Volunteer Service Join the Call: One Million Hours of STEM Volunteer Service June 30, 2015 - 10:19am Addthis Join the Call: One Million Hours of STEM Volunteer Service America's ability to meet the demands of its energy future depends on having a trained, dedicated science, technology, engineering, and mathematics (STEM) workforce. To answer this call, the Energy Department has an obligation to do all that is possible to attract, engage, educate, and

  5. Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in VolunteerMatch Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Lab employees and retirees should log their VolunteerMatch hours to benefit local nonprofits. March 1, 2013 Volunteers help fill

  6. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market Hacking Away at Soft Costs: ... at the National Renewable Energy Laboratory's Industry Growth ...

  7. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar...

  8. Museum Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide a listening-assistance system and translations of the script in French and Spanish. Sorry, a local shop has closed The Otowi Bookstore and Museum Shop, which had been...

  9. Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15

    National Nuclear Security Administration (NNSA)

    Supplement to PLAs Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15 Craft Agmt. Type Classification (Alphabetical) BN Job Code Current Hourly Wage Rates (Use most recent 04/01/15 Re- Allocation (increase HW emploee portion) (letter dated 5/1/15 states for April hours) 10/01/15 (Allocation $1.00 wages) $0.00 $1.00 MEE Maintenance Engineer I (ME-I) 037502 28.26 29.26 MEE Maintenance Engineer II (ME-II) 037503 32.40 33.40 MEE Lead Maintenance Engineer (LME) $1.50 over ME-II

  10. SunShot Announces 24-Hour Solar Data Hackathon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Announces 24-Hour Solar Data Hackathon SunShot Announces 24-Hour Solar Data Hackathon May 8, 2014 - 11:45am Addthis SunShot will host a 24-hour solar data hackathon at the 2014 SunShot Grand Challenge Summit. Learn more over at the EERE blog and register here. Addthis Related Articles Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The

  11. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  12. Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Group Gets 10 Million Hours of Supercomputer Time Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time January 25, 2007 XT3 The Cray XT3 at DOE's Oak Ridge National Laboratory. Newport News, Va. - A project led by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility's Theory Center has been allotted 10 million hours of processing time by DOE's 2007 INCITE program on the Cray XT3 located at Oak Ridge National Laboratory. According to Jefferson Lab

  13. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  14. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  15. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  16. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Responding to a Data Request

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  17. Y-12 Construction hits one million-hour mark without a lost-time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has ...

  18. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.34

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.34 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  19. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.31

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.31 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  20. Department of Energy’s Paducah Site Reaches Million-Hour Safety Milestone

    Broader source: Energy.gov [DOE]

    PADUCAH, KY – The U.S. Department of Energy’s Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk.

  1. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME ...

  2. Paducah Site Exceeds 2.5 Million Hours Without Lost Workdays

    Broader source: Energy.gov [DOE]

    This month, EM’s cleanup contractor at the Paducah site celebrated surpassing 2.5 million work hours without lost workdays resulting from job-related injury or illness.

  3. EPA ENERGY STAR Webcast- Portfolio Manager® Office Hours, Focus Topic: Portfolio Manager 2015 Priorities

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  4. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  5. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.40

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.40 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  6. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  7. EPA ENERGY STAR Webinar: Portfolio Manager Office Hours, Focus Topic: Understanding Energy Metrics

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  8. Earth Hour 2009: March 28, 8:30-9:30 PM Local Time | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This global event asks everyone to "go dark" for an hour to make a powerful statement of ... Residents are requested to turn off their lights (and other energy-consuming appliances). ...

  9. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioenergizeME Infographic Challenge | Department of Energy Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge bioenergizeme_challenge_guide_20151015.pdf (3.12 MB) More Documents & Publications BioenergizeME Infographic Challenge Rubric BioenergizeME Infographic Challenge Toolkit Webinar:

  10. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema (OSTI)

    Andy Nonaka

    2010-01-08

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

  11. renewable energy certificates | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  12. REC | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  13. The Defense Logistics Agency (DLA) RFP - Deadline - July 31,...

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  14. rfp | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  15. OpenEI Community - rfp

    Open Energy Info (EERE)

    rel"nofollow">The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  16. Jleyshon's blog | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  17. Request for Proposals | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  18. DOE Quadrennial Energy Review 1.2, Electricity: Generation to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The project uses Toshiba's lithium-ion battery, with 2-MW output and 0.8 megawatt-hour capacity. Duke Energy, LG Chem and Greensmith are teaming up for a 2-MW storage project will ...

  19. Use of annual profiles of hourly data for analyzing DOE-2 building simulation program results

    SciTech Connect (OSTI)

    Haberl, J.; MacDonald, M.; Eden, A.

    1987-06-01

    This paper presents an approach for improving potential building energy analyses using the DOE-2 computer program. The approach makes use of the ability to generate hour-by-hour data results from DOE-2 simulations, and uses a plotting package to generate 3-dimensional annual profiles of the hour-by-hour data for specific quantities of interest. The annual profiles of hourly data provide a graphical check of voluminous data in a condensed form allowing several different types of data to be plotted over a year. These profiles provide the user the opportunity to: check simulation results, check potential problems with simulations, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where weak areas may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential errors in modeling buildings, and better understand how simulations compared with data from real buildings. 14 refs., 24 figs.

  20. Sub-Hour Solar Data for Power System Modeling From Static Spatial Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Ibanez, E.; Brinkman, G.; Lew, D.

    2012-12-01

    High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. This paper will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one-minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km.

  1. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema (OSTI)

    Applin, Bradford

    2013-05-29

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html

  2. Y-12 Construction hits one million-hour mark without a lost-time accident |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has worked one million hours, covering a 633-day period, without a lost-time injury. Some 285 people including building trade crafts, non-manual staff and escorts worked without a lost-time accident during this period. The Construction team's last lost workday was in September 2010. A

  3. SHINES - the Answer to 24-Hour Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SHINES - the Answer to 24-Hour Solar Energy SHINES - the Answer to 24-Hour Solar Energy May 6, 2016 - 4:27pm Addthis Austin Energy – Mueller development<br /> SHINES is a funding program from the Department of Energy’s SunShot Initiative Austin Energy - Mueller development SHINES is a funding program from the Department of Energy's SunShot Initiative As part of the Grid Modernization Initiative, EERE recently announced $18 million in funding for six new projects that could make

  4. ALCC program awards 1.7 billion core-hours to 26 projects at the ALCF |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility ALCC program awards 1.7 billion core-hours to 26 projects at the ALCF Author: Jim Collins July 5, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version The U.S. Department of Energy's (DOE's) ASCR Leadership Computing Challenge (ALCC) has awarded 26 projects a total of 1.7 billion core-hours at the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility. The one-year awards began July 1. Each year, the ALCC

  5. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  6. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  7. West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM’s West Valley Demonstration Project (WVDP) contractor CH2M HILL BWXT West Valley (CHBWV) and its subcontractors achieved this month 2 million safe work hours without a lost-time accident over the past 30 months

  8. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.91

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.91 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  9. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.90

    Office of Energy Efficiency and Renewable Energy (EERE)

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.90 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  10. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    17 031007 Firefighter/CIC/EMT $33.13 Engineer/CIC/EMT $19.76 Engineer/CIC/EMT $35.99 Chiefs Aide/CIC/EMT $19.76 Chiefs Aide/CIC/EMT $35.99 Lieutenant/CIC/EMT $20.99 Lieutenant/CIC/EMT $38.21 Captain/CIC/EMT $22.23 Captain/CIC/EMT $40.44 Assistant Chief/CIC/EMT $25.42 Assistant Chief/CIC/EMT $46.18 FP Tech/CIC/EMT $21.13 031019 FP Tech/CIC/EMT $38.47 031049 FP Captain/CIC/EMT $23.60 FP Captain/CIC/EMT $42.91 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  11. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    71 031007 Firefighter/CIC/EMT $33.67 Engineer/CIC/EMT $20.30 Engineer/CIC/EMT $36.53 Chiefs Aide/CIC/EMT $20.30 Chiefs Aide/CIC/EMT $36.53 Lieutenant/CIC/EMT $21.53 Lieutenant/CIC/EMT $38.75 Captain/CIC/EMT $22.77 Captain/CIC/EMT $40.98 Assistant Chief/CIC/EMT $25.96 Assistant Chief/CIC/EMT $46.72 FP Tech/CIC/EMT $21.67 031019 FP Tech/CIC/EMT $39.01 031049 FP Captain/CIC/EMT $24.14 FP Captain/CIC/EMT $43.45 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  12. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  13. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 10, 2015 BioenergizeME Office Hours Integrating Bioenergy into the 9 th__ 12 th Grade Classroom Alexis Martin Knauss Fellow Bioenergy Technologies Office U.S. Department of Energy Shannon Zaret Contractor, The Hannon Group Bioenergy Technologies Office U.S. Department of Energy 2 | Bioenergy Technologies Office Agenda 1. Overview Of Energy Literacy 2. Overview of Next Generation Science Standards 3. Bioenergy Basics 5. Incorporation of Bioenergy into the Classroom 4. 2016 BioenergizeME

  14. BioenergizeME Office Hours: Guide to the 2016 BioenergizeME Infographic Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 15, 2015 BioenergizeME Office Hours Guide to the 2016 BioenergizeME Infographic Challenge Shannon Zaret Communications Specialist, The Hannon Group Contractor to the U.S. Department of Energy's Bioenergy Technologies Office 2 | Bioenergy Technologies Office | Bioenergy Technologies Office Agenda * Overview * Research Topic Areas And Prompts * Research Resources * Infographic Resources * Rubric * Social Media Campaign * Awards * Registration * Resources for Educators * Questions 3 |

  15. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  16. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  17. SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Using SolOPT (835 KB) Technology Marketing Summary In order to increase the speed and scale of Renewable Energy (RE) solar project deployment on buildings, energy savings

  18. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  19. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  20. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  1. Coso Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Power LLC. Since 1987, the field has produced more than 26,000 gigawatt hours (GWh) of electricity. The US Navy is the Surface Management Entity for four power plants at Coso:...

  2. SeizAlert could give patients 4.5 hour warning of seizure

    ScienceCinema (OSTI)

    Dr. Lee Hively and Kara Kruse

    2010-01-08

    One percent of Americans, 3 million people, suffer from epilepsy. And their lives are about to be dramatically changed by scientists at Oak Ridge National Laboratory. For 15 years, Dr. Lee Hively has been working on "SeizAlert", a seizure-detecting device that resembles a common PDA. "It allows us to analyze scalp brain waves and give us up to 4.5 hours' forewarning of that event," he said. With the help of partner Kara Kruse, he's now able to help patients predict the previously unpredictable.

  3. 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country’s oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for comparison purposes.

  4. Customer Strategies for Responding to Day-Ahead Market HourlyElectricity Pricing

    SciTech Connect (OSTI)

    Goldman, Chuck; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Boisvert, Dick; Cappers, Peter; Pratt, Donna; Butkins, Kim

    2005-08-25

    Real-time pricing (RTP) has been advocated as an economically efficient means to send price signals to customers to promote demand response (DR) (Borenstein 2002, Borenstein 2005, Ruff 2002). However, limited information exists that can be used to judge how effectively RTP actually induces DR, particularly in the context of restructured electricity markets. This report describes the second phase of a study of how large, non-residential customers' adapted to default-service day-ahead hourly pricing. The customers are located in upstate New York and served under Niagara Mohawk, A National Grid Company (NMPC)'s SC-3A rate class. The SC-3A tariff is a type of RTP that provides firm, day-ahead notice of hourly varying prices indexed to New York Independent System Operator (NYISO) day-ahead market prices. The study was funded by the California Energy Commission (CEC)'s PIER program through the Demand Response Research Center (DRRC). NMPC's is the first and longest-running default-service RTP tariff implemented in the context of retail competition. The mix of NMPC's large customers exposed to day-ahead hourly prices is roughly 30% industrial, 25% commercial and 45% institutional. They have faced periods of high prices during the study period (2000-2004), thereby providing an opportunity to assess their response to volatile hourly prices. The nature of the SC-3A default service attracted competitive retailers offering a wide array of pricing and hedging options, and customers could also participate in demand response programs implemented by NYISO. The first phase of this study examined SC-3A customers' satisfaction, hedging choices and price response through in-depth customer market research and a Constant Elasticity of Substitution (CES) demand model (Goldman et al. 2004). This second phase was undertaken to answer questions that remained unresolved and to quantify price response to a higher level of granularity. We accomplished these objectives with a second customer

  5. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  6. An overview of 3-D graphical analysis using DOE-2 hourly simulation data

    SciTech Connect (OSTI)

    Haberl, J.S.; MacDonald, M.; Eden, A.

    1988-01-01

    This paper presents an overview of a 3-D graphical approach for improving the potential of building energy analyses using the DOE-2 computer program. The approach produces 3-D annual profiles from hourly data generated by DOE-2 simulations using a statistical plotting package for specific quantities of interest. The annual profiles of hourly data provide a useful graphical check of voluminous data in a condensed form, allowing several different types of data to be plotted over a year. These profiles provide the user with the opportunity to check simulation results, check for potential problems with user input, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where inappropriate modeling conditions may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential hidden errors in modeling buildings, and better understand how simulations compare with data from real buildings. 22 refs., 23 figs., 1 tab.

  7. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  8. Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1994-02-01

    The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

  9. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  10. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  11. Performance of Blackglas{trademark} composites in 4000-hour oxidation study

    SciTech Connect (OSTI)

    Campbell, S.; Gonczy, S.; McNallan, M.; Cox, A.

    1996-12-31

    The effect of long term (4000 hour) oxidation on the mechanical properties of Blackglas{trademark}-Nitrided Nextel{trademark}312 Ceramic Matrix Composites in the temperature range of 500{degrees} - 700{degrees}C was investigated. Flexure specimens of the title composites prepared using three different pyrolysis processes were subjected to oxidation in flowing dry air at 500{degrees}, 600{degrees}C, and 700{degrees}C. Samples were removed at several different time intervals for 3-point flexure analysis. Results indicate that processing conditions had very little effect on the oxidation resistance of this system. At 600{degrees} and 700{degrees}C the mechanical properties degrade continuously to a steady value about half the original flexure strength. At 500{degrees}C, material properties initially improve then begin to slowly degrade. Optical microscopy indicates that oxidation of the matrix begins at the matrix/fiber interface and microcracks and proceeds into the bulk of the matrix.

  12. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th–12th Grade Classroom

    Broader source: Energy.gov [DOE]

    Biofuel is the only viable substitute for petroleum-based liquid transportation fuel in the near term. It is, therefore, increasingly relevant to enhance conceptual knowledge of biofuels and other types of bioenergy in today’s classroom environment. Bioenergy has applications across multiple science and engineering disciplines and also provides opportunities for real-world learning. This webinar is designed to support high school educators in planning activities for their classrooms that integrate bioenergy topics with the life sciences, physical sciences, earth and space sciences, and engineering and technology. This information can also help support advisors who are interested in participating in the 2016 BioenergizeME Infographic Challenge. This webinar is part of the BioenergizeME Office Hours webinar series developed by the U.S. Department of Energy’s Bioenergy Technologies Office.

  13. Three-Stage Production Cost Modeling Approach for Evaluating the Benefits of Intra-Hour Scheduling between Balancing Authorities

    SciTech Connect (OSTI)

    Samaan, Nader A.; Milligan, Michael; Hunsaker, Matthew; Guo, Tao

    2015-07-30

    This paper introduces a Production Cost Modeling (PCM) approach to evaluate the benefits of intra-hour scheduling between Balancing Authorities (BAs). The system operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA)-real time (RT). In addition to contingency reserve, each BA will need to carry out “up” and “down” load following and regulation reserve capacity requirements in the DA and HA time frames. In the real-time simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current real-time operation with hourly schedules, a new constraint was introduced to force each BA net exchange schedule deviation from HA schedules to be within NERC ACE limits. Case studies that investigate the benefits of moving from hourly exchange schedules between WECC BAs into 10-min exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.

  14. DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science has awarded a total of 18.2 million hours of computing time on some of the world's most powerful...

  15. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science announced today that 45 projects were awarded a total of 95 million hours of computing time on some of the world's most...

  16. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry

  17. ISDAC - NRC Convair-580 Flight Hours Date Flight From To Start

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - NRC Convair-580 Flight Hours Date Flight From To Start End hrs 03/21/08 F01-Test-01 Ottawa Ottawa 16:15Z 18:15Z 2.2 03/22/08 F02-Test-02 Ottawa Ottawa 12:45Z 15:50Z 3.3 03/28/08 F03-Transit-01 Ottawa, ON Kenora, ON 12:23Z 15:44Z 3.6 03/28/08 F04-Transit-02 Kenora, ON Calgary, AB 16:30Z 19:36Z 3.3 03/28/08 F05-Transit-03 Calgary, AB Comox, BC 20:24Z 22:17Z 2.1 03/29/08 F06-Transit-04 Comox, BC Whitehorse, YK 17:43Z 20:50Z 3.3 03/29/08 F07-Transit-05 Whitehorse, YK Fairbanks 21:51Z 23:42Z 2.1

  18. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta

  19. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II Job

    National Nuclear Security Administration (NNSA)

    Wage TR-I Job Code TR I Wage TR-II Job Code TR II Wage TR-III Job Code TR III Wage Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II Job Code TR II Wage TR-III Job Code TR III Wage 56-HOUR TOUR Hourly Premiums TR-I 0.25 TR-II $0.50 TR-III $0.75 10-HOUR SHIFT Hourly Premiums TR-I $0.45 TR-II $0.90 TR-III $1.35 CIC $0.60 CIC $1.08 HAZ $0.81 HAZ $1.46 UD/BA $0.25 UD/BA $0.45 ELF $0.30 ELF $0.54 TR-I $0.25 TR-I $0.45 TR-II $0.50 TR-II $0.90 TR-III $0.75 TR-III $1.35 021450 Entry-Level

  20. PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /23/14 from 2:30 to 4:00 pm at LBNL PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL January 22, 2014 PDSF office hours will be from 2:30 to 4:00 pm in 50B-2222 tomorrow. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September 2013 August 2013 March 2012 February 2012 January 2012 October 2011 July 2011 May 2011 April 2011 March 2011 February 2011 January 2011 December 2010 Last edited: 2014-01-22 16:33:02

  1. Fluidized-bed combustion 1000-hour test program. Volume IV. Engineering details and post-test inspections

    SciTech Connect (OSTI)

    Roberts, A. G.; Barker, S. N.; Phillips, R. N.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01

    Volume IV of the report on the 1000 hour programme consists of three appendices giving details of the enginmering/construction aspects of the plant and reports from Stal-Laval Turbin A.B. Appendix N has been entered individually. (LTN)

  2. PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0/17/13 from 2:00 to 4:00 pm at LBNL PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL October 7, 2013 I have biweekly office hours on Thursdays at LBNL. The next one is Thursday 10/17/13 from 2:00 - 4:00 pm in the NERSC drop in office at 050A-0143A (in the basement by the bus offices). Please feel free to stop by if you have any questions or want some hands on help with PDSF issues. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September

  3. Hours of Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Careers Find & Apply Benefits & New...

  4. Carver Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 174.69 91.81 12032014 178.77 93.96 12022014 172.30 90.55 12012014 176.12 92.56 11302014 170.11 89.40 11292014 162.74 85.53 11282014 168.71 88.67 11272014...

  5. Intra-Hour Scheduling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Initiatives Columbia River Treaty Non...

  6. Hours Available FY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 12232015 LA-UR-15-29688...

  7. Hours Available FY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 782015 LA-UR-15-25395...

  8. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect (OSTI)

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  9. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectively. However, you do not need to be an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 2016 BioenergizeME Infographic Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative approaches that can bring attention to your infographic and motivate others to share it across their social media networks. The webinar will also include lessons learned from previous challenges and tips from last year’s winning team. The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and design an infographic to share what they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  10. NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

  11. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small

  12. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  13. Simulation of a gigawatt level Ku-band overmoded Cerenkov type oscillator operated at low guiding magnetic field

    SciTech Connect (OSTI)

    Zhang, Hua; Shu, Ting Ju, Jinchuan; Wu, Dapeng

    2014-03-15

    We present the simulation results of a Ku-band overmoded Cerenkov type high power microwave oscillator. A guiding magnetic field as low as 0.6?T has been operated in the device. Overmoded slow wave structures with gradually tapered vanes are used in order to increase power capacity and the efficiency of beam-wave interaction. The drift cavity is adopted to enhance the beam-wave interaction of the device. After numerical optimization, the designed generator with an output microwave power of 1.2?GW, a frequency of 13.8 GHz, and a power conversion efficiency as high as 38% can be achieved, when the diode voltage and current are, respectively, 540?kV and 5.8?kA. The power compositions of TM{sub 0n} modes of the output microwave have been analyzed, the results of which show that TM{sub 01} mode takes over almost 95% of the power proportion.

  14. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  15. Gigawatt-class radiation generated by a Ka-band overmoded Cherenkov-type high power millimeter wave generator

    SciTech Connect (OSTI)

    Wu, Dapeng Shu, Ting; Ju, Jinchuan; Peng, Shengren

    2015-08-15

    Particle simulation and experimental results are presented about a Ka-band overmoded Cherenkov-type high power millimeter wave generator in this paper. The relativistic electron beam with peak current of 8.4 kA was generated by a pulsed power accelerator working at the voltage of 625 kV, which was guided by an axial magnetic field of 1.05 T and transported through the beam-wave interaction structures. After careful calibration, the microwave power radiated in the far field was as high as about 500 MW, with a frequency of 32.1 GHz and a pulse width of 20 ns. The radiation mode was well controlled to be TM{sub 0n} mode.

  16. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  17. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  18. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  19. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  20. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect (OSTI)

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for

  1. Respiratory effects of two-hour exposure with intermittent exercise to ozone, sulfur dioxide and nitrogen dioxide alone and in combination in normal subjects

    SciTech Connect (OSTI)

    Kagawa, J.

    1983-01-01

    Seven adult male healthy volunteer subjects were exposed to 0.15 ppm each of O/sub 3/, SO/sub 2/ and NO/sub 2/ alone and in combination, with intermittent light exercise for two hours. Three of the 7 subjects developed cough during deep inspiration and one subject had chest pain during exposure to O/sub 3/ alone. Among the various indices of pulmonary function tests, specific airway conductane (G/sub aw//V/sub tg/) was the most sensitive index to examine the changes produced by the exposure to O/sub 3/ and other pollutants. Significant decrease of G/sub aw//V/sub tg/ in comparison with control measurements was observed in 6 of 7 subjects during exposure to O/sub 3/ alone, and in all subjects during exposures to the mixture of O/sub 3/ and other pollutants. However, no significant enhancement of effect was observed in the mixture of O/sub 3/ and other pollutants, although a slightly greater decrease of airway resistance/volume of thoracic gas (G/sub aw//V/sub tg/) was observed for the mixture of O/sub 3/ and other pollutants than for O/sub 3/ alone.

  2. U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

    SciTech Connect (OSTI)

    Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G.

    2012-07-01

    This report presents the state-level results of a spatial analysis effort calculating energy technical potential, reported in square kilometers of available land, megawatts of capacity, and gigawatt-hours of generation, for six different renewable technologies. For this analysis, the system specific power density (or equivalent), efficiency (capacity factor), and land-use constraints were identified for each technology using independent research, published research, and professional contacts. This report also presents technical potential findings from previous reports.

  3. U.S. Renewable Energy Technical Potentials. A GIS-Based Analysis

    SciTech Connect (OSTI)

    Lopez, Anthony; Roberts, Billy; Heimiller, Donna; Blair, Nate; Porro, Gian

    2012-07-01

    This report presents the state-level results of a spatial analysis effort calculating energy technical potential, reported in square kilometers of available land, megawatts of capacity, and gigawatt-hours of generation, for six different renewable technologies. For this analysis, the system specific power density (or equivalent), efficiency (capacity factor), and land-use constraints were identified for each technology using independent research, published research, and professional contacts. This report also presents technical potential findings from previous reports.

  4. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  5. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect (OSTI)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  6. International Voluntary Renewable Energy Markets (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2012-06-01

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  7. Class Deviation by General Services Administration (GSA) to Federal Acquisition Regulation (FAR) 51.1, Contractor Use of Government Supply Sources, for Time and Material or Labor Hour Procurements

    Office of Energy Efficiency and Renewable Energy (EERE)

    The attached GSA class deviation to FAR Part 51, Contractor Use of Government Supply Sources, dated October 8,2009, permits contracting officers to authorize all GSA contractors, who are performing an order on a time and material (T&M) or labor-hour (LH) basis, to purchase supplies and service from other schedule contractors or process requisitions through the GSA Supply Program. This deviation is effective for five years to October 7,2014, unless otherwise revised or rescinded.

  8. Fermilab | Visit Fermilab | Hours, Maps and Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map and directions Check the Fermilab home page for our latest news and a calendar of events, which also includes days that our main building and exhibits are closed. Map of Fermilab Fermilab site map (pdf) Directions to Fermilab Fermilab's main entrance is located at the intersection of Kirk Road and Pine Street in Batavia, Illinois, about 45 miles west of Chicago. Delivery trucks need to use the entrance at Kirk Road and Wilson Street. There is no street number assigned to this entrance

  9. LED Solutions for the Dark Hours

    Energy Savers [EERE]

    technologies 5 LEDs for Street and Roadway Lighting Portland, OR Philadelphia, PA New York, NY Kansas City, MO 6 Boston Las Vegas Seattle Number of LED Replacements to Date (4...

  10. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    personnel contactdirectory (SLAC phone directory) assistance, and directions and maps. ... Satellite view | Aerial view detail Gate 17 Sector 30 Gate 247 proximity access for ...

  11. Property:OperatingHours | Open Energy Information

    Open Energy Info (EERE)

    B Blundell 1 Geothermal Facility + 8,587 + Blundell 2 Geothermal Facility + 7,883 + R Raft River Geothermal Facility + 8,338 + Retrieved from "http:en.openei.orgw...

  12. Final Scientific/Technical Report to the U.S. Department of Energy on NOVA's Einstein's Big Idea (Project title: E-mc2, A Two-Hour Television Program on NOVA)

    SciTech Connect (OSTI)

    Susanne Simpson

    2007-05-07

    Executive Summary A woman in the early 1700s who became one of Europe’s leading interpreters of mathematics and a poor bookbinder who became one of the giants of nineteenth-century science are just two of the pioneers whose stories NOVA explored in Einstein’s Big Idea. This two-hour documentary premiered on PBS in October 2005 and is based on the best-selling book by David Bodanis, E=mc2: A Biography of the World’s Most Famous Equation. The film and book chronicle the scientific challenges and discoveries leading up to Einstein’s startling conclusion that mass and energy are one, related by the formula E = mc2.

  13. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  14. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production

    Broader source: Energy.gov [DOE]

    Presentation slides from the US DOE Fuel Cell Technologies Office webinar, Wind-to-Hydrogen Cost Modeling and Project Findings, on held January 17, 2013.

  15. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Liquid Hydrogen Production and Delivery from a ...

  16. Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries by Capacity in 2014 | Department of Energy 1: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014 Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014 SUBSCRIBE to the Fact of the Week Japan produced about 2 gigawatt-hours (GWh) of automotive lithium-ion battery cells in 2014, which is more than any other country/region. In 2014, China had the greatest potential for increased production with

  17. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  18. Nellis Air Force Base solar array provides model for renewable projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north of Las Vegas, took a big step in 2007 when it installed a 14.2-megawatt, 70,000-panel photovoltaic solar array that reduced carbon dioxide emissions by 24,000 tons a year. Built partly on a landfill, the field of solar panels takes advantage of two resources plentiful in Nevada: sunshine and empty land. At its unveiling in December of 2007, the Nellis array was the largest solar panel installation in North America. The project was originally expected to produce about 30,000 megawatt-hours of electricity per year, but Steven Dumont, Air Combat Command Energy Manager, says it’s actually producing closer to 32,000 megawatt-hours, which is about 8 percent above expectations. Despite this success, Dumont said he nearly didn’t pursue the project.

  19. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Furthermore, due to the significant number of coal-fired plant retirements-97 gigawatts by 2035 versus 33 gigawatts in the Reference case-there is greater need for additional ...

  20. Analysis of the Clean Energy Standard Act of 2012

    Gasoline and Diesel Fuel Update (EIA)

    ... Furthermore, due to the significant number of coal-fired plant retirements-97 gigawatts by 2035 versus 33 gigawatts in the Reference case-there is greater need for additional ...

  1. Energy Savings Performance Contracting 14-hour Agency Onsite Workshop

    Broader source: Energy.gov [DOE]

    Two-day workshop at General Services Administration Region 9 educates students about how to implement energy and water projects through an energy savings performance contract (ESPC).

  2. Commercial and Residential Hourly Load Data Now Available on...

    Open Energy Info (EERE)

    Login to post comments Russmach32 Russmach321 year 8 weeks ago Validation of dataset Hello, in the description of this dataset it states that these load profiles are simulated....

  3. PPPL team wins 80 million processor hours on nation's fastest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For more information, please visit science.energy.gov. Contact Info PPPL Office of Communications Email: PPPLOOC@pppl.gov Phone: 609-243-2755 Download Select and View High ...

  4. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-05-10

    Proposed revision to one paragraph of the Order to satisfy an action item in the Office of the Inspector General's FY 11 Audit Report of DOE's Consolidated Financial Statements.

  5. Center for Nanophase Materials Sciences (CNMS) - Hours & Scheduling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made in advance. 2016 ORNL Holiday Schedule New Year's Day Friday, January 1 Martin Luther King Jr.'s Birthday Monday, January 18 Good Friday (Easter) Friday, March 25 Memorial...

  6. DOE Awards 265 Million Hours of Supercomputing Time to Advance...

    Energy Savers [EERE]

    ... TN, DOE's Pacific Northwest National Laboratory in Richland, WA, DOE's Princeton Plasma Physics Laboratory in Princeton, NJ; DOE's Sandia National Laboratories in ...

  7. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Energy Savers [EERE]

    ... of accretion in the cosmos through simulation and experiment by modeling an experiment being done at the Princeton Plasma Physics Lab to understand magneto-rotational instability. ...

  8. DOE's Office of Science Awards 95 Million Hours of Supercomputing...

    Energy Savers [EERE]

    ... Los Alamos, Oak Ridge and Sandia National Laboratories, Thomas Jefferson National Accelerator Facility, the Princeton Plasma Physics Lab and the Stanford Linear Accelerator Center. ...

  9. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Broader source: Energy.gov (indexed) [DOE]

    0, 2015 4:00PM to 4:45PM EST Online Biofuel is the only viable substitute for petroleum-based liquid transportation fuel in the near term. It is, therefore, increasingly relevant ...

  10. DOE Awards Over a Billion Supercomputing Hours to Address Scientific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects receiving INCITE awards utilize complex simulations to accelerate discoveries in ground-breaking technologies such as lithium air batteries and nano solar cells. The ...

  11. Calibrating hourly rainfall-runoff models with daily forcings...

    Office of Scientific and Technical Information (OSTI)

    Cite: Chicago Format Close Bibtex Cite: Bibtex Format Close Export Metadata EndNote Excel CSV XML Save Share this Record Send to Email Send to Email Email address:...

  12. DOE Awards Over a Billion Supercomputing Hours to Address Scientific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    devices Climate change, featuring projects to improve climate models, understand global warming, study the effects of turbulence in oceans, and simulate clouds on a global...

  13. 2015 Hour of Code Video | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ...

  14. SSLS Coffee/Dessert Hour Calendar of Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 ... Applications National Solar Thermal Test Facility Nuclear ... 10, 2009 Jeff Tsao What's Hot in SSL Research September ...

  15. Moab Project Safely Logs 2 Million Work Hours | Department of...

    Energy Savers [EERE]

    Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 (Grand Junction, CO) - The number 1,584 may not mean ...

  16. After-hours, weekend changes through East Jemez road vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bicyclists must stop at the center lane guard post and proceed only upon verbal or hand-signal direction from a LANL protective force officer. Orange traffic safety cones will be...

  17. Making Wind Energy Predictable: New Profilers Provide Hourly...

    Broader source: Energy.gov (indexed) [DOE]

    It is possible, however, to get better at predicting it, which is what the Energy Department's Wind Forecast Improvement Project (WFIP) seeks to accomplish. Under the second phase ...

  18. Intra-Hour Dispatch and Automatic Generator Control Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Solar Forecasting UCSD logo2.png The University of California at San Diego (UCSD) is leading a project that will reduce power system operation cost by providing a ...

  19. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Piette, Mary Ann

    2011-04-28

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  20. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Energy Savers [EERE]

    Technical Report Technical Report Appendix More Documents & Publications Insights from Smart Meters: Identifying Specific Actions, Behaviors, and Characteristics That Drive Savings ...

  1. Commercial and Residential Hourly Load Profiles for all TMY3...

    Open Energy Info (EERE)

    Software Sectors Buildings washarvested true Package Relationships Relationship Dataset License CC0 1.0 Open Data Author Office of Energy Efficiency & Renewable Energy (EERE)...

  2. Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

    SciTech Connect (OSTI)

    Alvin, M.A.

    1993-04-05

    (1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

  3. Status and Trends in the U.S. Voluntary Green Power Market (2013 Data)

    SciTech Connect (OSTI)

    Heeter, J.; Belyeu, K.; Kuskova-Burns, K.

    2014-11-01

    Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This report surveys utilities, competitive suppliers, renewable energy certificate (REC) marketers, and, for the first time, the community choice aggregation market. This report finds that the voluntary market totaled 62 million megawatt-hours in 2013. Approximately 5.4 million customers are purchasing green power. This report presents data and analysis on voluntary market sales and customer participation, products and premiums, green pricing marketing, and administrative expenses. The report also details trends in REC tracking systems, REC pricing in voluntary and compliance markets, community and crowd-funded solar, and interest in renewable energy by the information and communication technologies sector.

  4. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and ...

  5. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and ...

  6. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and ...

  7. FORM EIA-826 MONTHLY ELECTRIC SALES AND REVENUE WITH STATE DISTRIBUTIO...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... megawatthours sold to the nearest 0.001 value. 7. Attach additional sheet(s), if ... The commercial sector includes non- manufacturing business establishments such as: * ...

  8. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, ...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  17. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1 of N Date Time" "Monthly Nuclear Utility Generation by State and Reactor, 2011 (megawatthours)" "State","Plant ID","Plant Name","Unit ID","Net Capacity ...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  19. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  20. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  1. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  2. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  5. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Historical Net Energy For Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load ...

  6. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  7. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado

    SciTech Connect (OSTI)

    Roberts, B.

    2011-07-01

    The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

  8. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  9. Technical Review Panel …NRELs Wind Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novus Energy Partners Charles (Charlie) Smith - Executive Director, Utility ... Charlie Smith -The previous "20% by 2030" study contained a target GW (gigawatt) ...

  10. Energy Department Announces $3 Million to Identify New Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in geothermal energy projects and significantly lower the costs of geothermal energy. The U.S. Geological Survey estimates that 30 gigawatts of undiscovered hydrothermal energy...

  11. Statement of Dr. Ernest J. Moniz

    Office of Environmental Management (EM)

    and gigawatt-class reactors are deployed depending on the requirements. Nuclear power has reliably and ... leader on issues of nuclear safety and nonproliferation. ...

  12. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Geological Survey estimates that, in the United States alone, 30 gigawatts of ... The Geothermal Technologies Office (GTO) supports research and development in innovative ...

  13. Biopower Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Biopower is the production of electricity or heat from biomass resources. With 10 gigawatts of installed capacity, biopower technologies are proven options in the United States today.

  14. Alertness, performance and off-duty sleep on 8-hour and 12-hour night shifts in a simulated continuous operations control room setting

    SciTech Connect (OSTI)

    Baker, T.L.

    1995-04-01

    A growing number of nuclear power plants in the United States have adopted routine 12-hr shift schedules. Because of the potential impact that extended work shifts could have on safe and efficient power plant operation, the U.S. Nuclear Regulatory Commission funded research on 8-hr and 12-hr shifts at the Human Alertness Research Center (HARC) in Boston, Massachusetts. This report describes the research undertaken: a study of simulated 8-hr and 12-hr work shifts that compares alertness, speed, and accuracy at responding to simulator alarms, and relative cognitive performance, self-rated mood and vigor, and sleep-wake patterns of 8-hr versus 12-hr shift workers.

  15. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost...

    Office of Environmental Management (EM)

    Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses ... from the former mill buildings at the Moab site is excavated from the mill ...

  16. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  17. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market

    Broader source: Energy.gov [DOE]

    Find out how to register for the SunShot Hackathon, which is taking place at the SunShot Grand Challenge Summit in Anaheim, California.

  18. Use of DAC-Hours for Radiation Work Permit Suspension Guides...

    Office of Scientific and Technical Information (OSTI)

    used some multiple of the expected Derived Air Concentration (DAC) of a radionuclide as a ... The term DAC expresses the concentration of a radionuclide in air, typically in mCicc. ...

  19. Workers at EM's West Valley Site Surpass 1 Million Hours without...

    Office of Environmental Management (EM)

    years without a lost-time accident. Portsmouth Site Plant Surpasses Five Years Without Lost-Time Accident Workers load an overpack container into a vertical storage cask. EM's...

  20. Derivation of 24-Hour Average SO2, Background for the Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Downwash from Mirant's Potomac River PowerPlant: Modeling Unit 1 Emissions in a Cycling ... Downwash from Mirant's Potomac River Power Plant" Letter from Elizabeth Chimento and ...

  1. Insights from Smart Meters: The Potential for Peak-Hour Savings...

    Office of Scientific and Technical Information (OSTI)

    ... Authors: Todd, Annika ; Perry, Michael ; Smith, Brian ; Sullivan, Michael ; Cappers, Peter ; Goldman, Charles Publication Date: 2014-03-25 OSTI Identifier: 1129523 Report ...

  2. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    which oversees electric reliability. * NERC Regional names may be found on the EIA web page for electric reliability. " ," * Regional name and function has changed from ...

  3. Is the hourly data from the NREL PV Watts program adjusted for...

    Open Energy Info (EERE)

    it is stated, "No adjustments are made for leap years or daylight savings time." Hope this helps. Pgray on 1 July, 2014 - 07:04 Points: 0 Thank you. I appreciate the help....

  4. Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours

    Broader source: Energy.gov [DOE]

    Consumers may soon have the option of purchasing a do-it-yourself rooftop solar photovoltaic (PV) system at their local home improvement store that can be installed and connected to the grid in...

  5. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-27

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  6. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    71 031007 FirefighterCICEMT 33.67 EngineerCICEMT 20.30 EngineerCICEMT 36.53 Chiefs AideCICEMT 20.30 Chiefs AideCICEMT 36.53 LieutenantCICEMT 21.53 LieutenantCIC...

  7. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    17 031007 FirefighterCICEMT 33.13 EngineerCICEMT 19.76 EngineerCICEMT 35.99 Chiefs AideCICEMT 19.76 Chiefs AideCICEMT 35.99 LieutenantCICEMT 20.99 LieutenantCIC...

  8. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is hosting the Guide to the 2016 BioenergizeME Infographic Challenge webinar on Oct. 15, 2015, from 4 p.m. to 4:45 p.m. Eastern...

  9. Towards Intra-Hour Solar Forecasting using Two Sky Imagers at...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Proceedings of the World Renewable Energy Forum, 13-17 May 2012, Denver, Colorado (CD-ROM) Publisher: Boulder, CO: American ...

  10. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury or Illness

    Broader source: Energy.gov [DOE]

    GRAND JUNCTION, Colo. – The number 1,584 may not mean much to most people, but for the workers on EM’s Moab Uranium Mill Tailings Remedial Action Project, it represents the number of days without a work-related, lost-time injury or illness, as defined by the Occupational Safety and Health Administration.

  11. Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1997-05-01

    Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

  12. Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1998-03-01

    An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

  13. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury...

    Office of Environmental Management (EM)

    Empty containers on haul trucks are loaded with mill tailings. GRAND JUNCTION, Colo. - The number 1,584 may not mean much to most people, but for the workers on EM's Moab Uranium ...

  14. 100 Hour test of the pressurized woodchip-fired gravel bed combustor

    SciTech Connect (OSTI)

    Ragland, K.W.; Aerts, D.J.

    1994-08-01

    Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.

  15. 100 Hour test of the pressurized woodchip-fired gravel bed combustor

    SciTech Connect (OSTI)

    Ragland, K.W.; Aerts, D.J.

    1992-08-01

    In this project a downdraft, packed bed combustor for a gas turbine cogeneration system using woodchips is being developed. The combustor is designed to promote intense combustion in a thin reaction zone and to control particulate growth by using high excess air. The combustor contains a magnesia and alumina gravel bed on top of which woodchips are fed. The following test objectives were established for the 100 hr test: (a) demonstrate preliminary durability of the combustor; (b) demonstrate steady operation of the system; (c) investigate combustor pressure drop; (d) investigate bed ash cake buildup; (e) expose metal alloy coupons for corrosion examination; (f) obtain closure within 10% on mass and energy balances; and (g) obtain emissions data. The plan for the 100 hr test was to operate the combustor at the following conditions: day 1, 4 atm (absolute) pressure and 700--800 C outlet temperature; day 2, 4 atm pressure and 800--900 C outlet temperature; day 3, 5 atm pressure and 800--900 C outlet temperature; days 4 and 5, repeat day 3. The inlet air was not preheated. The paper gives test results and discusses fuel characterization, combustor performance, mass and energy balance, emissions, composition of ash and deposits, and metal coupons representing turbine blade material.

  16. Use of DAC-Hours for Radiation Work Permit Suspension Guides...

    Office of Scientific and Technical Information (OSTI)

    Conversely, if the task consisted of several small or ongoing releases, such as with welding or grinding, to where the air activity was just under the suspension guide until 2...

  17. NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the relative value of CSP. CSP could also allow greater penetration of PV by making the grid more flexible and reducing curtailment of PV by generating energy after the sun sets. ...

  18. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation

    Energy Savers [EERE]

    Department of Energy Proposes First Revision to its NEPA Rules in More than a Decade DOE Proposes First Revision to its NEPA Rules in More than a Decade December 20, 2010 - 5:22pm Addthis Today, the Department of Energy issued a Notice of Proposed Rulemaking to amend its regulations governing compliance with the National Environmental Policy Act (NEPA). The proposals focus primarily on the Department's categorical exclusion provisions, and reflect the first update to these provisions in

  19. Hospital Triage in the First 24 Hours after a Nuclear or Radiological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... take place before laboratory test results are available. ... Diagnosis and Treatment of Radiation Injuries. Safety ... In CRC Handbook of Management of Radiation Protection Programs, ...

  20. Workers at EM's West Valley Site Surpass 1 Million Hours without

    Office of Environmental Management (EM)

    Energy Safely Tear Down Towers at Manhattan Project Site Workers Safely Tear Down Towers at Manhattan Project Site August 21, 2014 - 12:00pm Addthis Workers observe the demolition of the West Water Tower at Los Alamos National Laboratory. Workers observe the demolition of the West Water Tower at Los Alamos National Laboratory. The East Water Tower falls. The East Water Tower falls. EM’s federal team for the demolition project, from left, Fire Coordinator Allan Trujillo, DOE Intern Kathy

  1. Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued...

    National Nuclear Security Administration (NNSA)

    (was 1115.169, 913.93, 928.60, 768.00) (H&W 497.78 Employer; 795.49 Employee) (previous employee portion 617.41, 416.15, 430.82, 270.22) Pension 7.00 7.00 Vacation 0.00 ...

  2. Question/comment: An estimate of the direct productive labor hours (DPLH) per l

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Season? | Department of Energy Question of the Week: What Are You Doing to Save Energy this Holiday Season? Question of the Week: What Are You Doing to Save Energy this Holiday Season? December 4, 2008 - 1:31pm Addthis On Tuesday, we gave you some tips to save energy during the holidays. What are you doing to save energy this holiday season? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: What Is Your Main Form of

  3. Webinar: 20K Hour GATEWAY Testing Results for I-35W Bridge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September...

  4. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Administration, Form EIA-411, ""Coordinated Bulk Power Supply Program Report.""" ,"Form EIA-411 for 2005" ,"Released: September 26, 2007" ,"Next Update: October 2007" ,"Table 3d. ...

  5. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Form EIA-411, ""Coordinated Bulk Power Supply and Demand Program Report.""" " ","Form EIA-411 for 2008" ,"Released: February 2010" ,"Next Update: October 2010" ,"Table 3d. ...

  6. Proposed Rule To Implement the 1997 8-Hour Ozone National Ambient...

    National Nuclear Security Administration (NNSA)

    ... The http:www.regulations.gov Web Site is an ''anonymous access'' system, which means EPA ... The telephone number for the Public Reading Room is (202) 566-1744. The EPA Web site for ...

  7. Microsoft PowerPoint - 2_THOMAS_MORELLO_NMMSS_2014_Powerpoint_hour.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Details on the SFAQ submission to the NRC, the SFAQ process and expected future actions involving the SFAQ submission Thomas Morello Exelon SFAQ  During the 2012 NMMSS meeting, several issues were presented by the licensees. They were: -Inspection/Inspector consistency -"All" versus "reportable quantity" 2 SFAQ  First Step... - Meeting held with Paul Peduzzi (NRC), Ron Albert (NRC), Andrew Mauer (NEI) and Tom Morello ( then CENG) in October of 2012. - The issues from

  8. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge...

    Energy Savers [EERE]

    The U.S. Department of Energy has released a report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 ...

  9. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A.

    1994-12-31

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  10. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol...

    Broader source: Energy.gov (indexed) [DOE]

    pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum. ICM's pilot plant is ...

  11. Fuel Cell Stacks Still Going Strong After 5,000 Hours | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... higher than today's average U.S.-based coal-fired power plant--while separating at least 90 percent of the carbon dioxide emissions for capture and environmentally secure storage. ...

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  13. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,..."Texas Power ...

  14. Tidd PFBC demonstration project

    SciTech Connect (OSTI)

    Marrocco, M.

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  15. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  16. Brighter Future: A Study on Solar in U.S. Schools

    Broader source: Energy.gov [DOE]

    In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools with solar energy systems. These PV systems have a combined capacity of 490 megawatts (MW), and generate roughly 642,000 megawatt-hours (MWh) of electricity each year, equivalent to $77.8 million worth of utility bills and enough clean, renewable energy to offset 50 million gallons of gasoline. Solar potential on schools remains largely untapped. Of the 125,000 K-12 schools in the country, up to 72,000 schools (60%) can "go solar" cost-effectively. Approximately 450 individual schools districts have the potential to save more than $1 million over 30 years by installing a solar PV system.

  17. Enhanced Geothermal Systems (EGS)- the Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    While the amount of conventional hydrothermal power worldwide has reached nearly 12 gigawatts, exponentially more geothermal resources can be accessed through next-generation technologies known as enhanced geothermal systems (EGS).

  18. Quiz: Test Your Wind Energy IQ | Department of Energy

    Energy Savers [EERE]

    wind capacity in the U.S. is nearing 1 gigawatt. | Energy Department photo. 13. How many offshore wind farms are there in the U.S.? 5 2 12 0 The Energy Department's Wind Program...

  19. Remarks by Secretary Moniz at the Summit on Improving the Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    And I think an important distinction: 54 gigawatts of capacity in regulated markets, and the rest in restructured markets. And we'll come back to that, because obviously these ...

  20. New Stream-Reach Hydropower Development (NSD) Fact Sheet

    SciTech Connect (OSTI)

    2014-04-25

    This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

  1. New Stream-reach Development (NSD) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

  2. Huge Potential for Hydropower: Assessment Highlights New Possible Clean Energy Sources

    Broader source: Energy.gov [DOE]

    The Energy Department’s New Stream-reach Development Assessment, conducted by Oak Ridge National Laboratory, has identified more than 65 gigawatts of untapped sustainable hydropower potential in U.S. rivers and streams.

  3. FORGE, 2015 Peer Review Plenary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this effort with five years could be market-ready advances in large-scale, reproducible EGS systems generating on the order of 100 - 500 gigawatts of electricity. download the...

  4. Secretary Moniz's Remarks at the 2014 White House Solar Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to government period, that I certainly am very bullish on the future of solar. We can talk about numbers, like nearly 5 gigawatts total of solar technologies installation in...

  5. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms

    Broader source: Energy.gov [DOE]

    More than 4,000 gigawatts of estimated gross offshore wind potential lies off the U.S. coastline—that’s more than four times the current generation capacity of the United States. With the coastal...

  6. Benjamin Phillips | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benjamin Phillips About Us Benjamin Phillips - SRA International Most Recent Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy July 17 Gigawatts of Geothermal: JASON Study...

  7. 2013 Wind Week

    Broader source: Energy.gov [DOE]

    Topping more than 61 gigawatts of installed capacity at the end of 2013 -- enough electricity to power nearly 16 million American homes a year -- wind energy is quickly becoming a critical source of clean, renewable power for the United States.

  8. First Solar Manufacturing Facility in Ohio

    Broader source: Energy.gov [DOE]

    This photograph features the First Solar facilty, which manufactures more than 1 gigawatt (GW) of solar modules and announced capacity in excess of 1.4 GW by the end of 2010. The company is an...

  9. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Case CO 2 Fee 10ton CO 2 Fee 25ton Coal plant retirements 8 gigawatts Source: EIA, ... gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040 9 ...

  10. Presentation title: This can be up to 2 lines

    U.S. Energy Information Administration (EIA) Indexed Site

    represented by requiring scrubbers or dry sorbent injection and fabric filter - CO2: ... ARE SUBJECT TO CHANGE 15 Cumulative SO2 scrubber retrofits, 2012-2040 gigawatts 0 5 10 15 ...

  11. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  12. Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; S. Beuning

    2011-10-01

    The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

  13. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect (OSTI)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  14. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  17. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  18. 24-hour human urine and serum profiles of Bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    SciTech Connect (OSTI)

    Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; Yang, Xiaoxia; Fisher, Jeffrey W.; Seryak, Liesel M.; Doerge, Daniel R.

    2015-09-01

    Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analytical methods employed and is related to [4].

  19. Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12 ppm ozone with moderate exercise

    SciTech Connect (OSTI)

    Folinsbee, L.J.; McDonnell, W.F.; Horstman, D.H.

    1988-01-01

    Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. Small decrements in lung function have been reported following 2-h exposures to 0.12 ppm O/sub 3/. For short exposures to higher O/sub 3/ concentrations, lung function decrements are a function of exposure duration. Thus, we investigated the hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time. Ten nonsmoking males were exposed once to clean air and once to 0.12 ppm O/sub 3/ for 6.6 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 35-min lunch period followed by the third exercise period. Exercise ventilation averaged approximately 40 L/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Airway reactivity to methacholine was determined after each exposure. After correcting for the air exposures, FEV 1.0 was found to decrease linearly during the O/sub 3/ exposure and was decreased by an average of 13.0 percent at the end of exposure. Decreases in FVC and FEF24-75% were also linear and averaged 8.3 and 17.4 percent, respectively, at the end of exposure. On forced inspiratory tests, the FIVC and FIV05 were decreased 12.6 and 20.7 percent, respectively. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with clean air. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure.

  20. Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12-ppm ozone with moderate exercise (journal version)

    SciTech Connect (OSTI)

    Folinsbee, L.J.; Horstman, D.H.; McDonnell, W.F.

    1988-01-01

    Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. The hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time was tested. Ten nonsmoking males (18-35 yr) were exposed once to clear air (CA) and once to 0.12 pp, O/sub 3/ for 6.75 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 45-min lunch period followed the third exercise period. Exercise ventilation averaged approximately 40 1/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with CA. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure. Spirometry results indicate that prolonged exposure to 0.12 ppm O/sub 3/ results in a marked increase in non-specific airway reactivity and progressive changes in respiratory function.

  1. DOE Moab Project Reaches Halfway Mark in Mill Tailings Removal 2.5 Million Hours Safely Worked

    Office of Energy Efficiency and Renewable Energy (EERE)

    (Grand Junction, CO) ― The U.S. Department of Energy (DOE) has reached 8 million tons of uranium mill tailings removed from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

  2. Pain Levels Within 24 Hours After UFE: A Comparison of Morphine and Fentanyl Patient-Controlled Analgesia

    SciTech Connect (OSTI)

    Kim, Hyun S. Czuczman, Gregory J.; Nicholson, Wanda K.; Pham, Luu D.; Richman, Jeffrey M.

    2008-11-15

    The purpose of this study was to assess the presence and severity of pain levels during 24 h after uterine fibroid embolization (UFE) for symptomatic leiomyomata and compare the effectiveness and adverse effects of morphine patient-controlled analgesia (PCA) versus fentanyl PCA. We carried out a prospective, nonrandomized study of 200 consecutive women who received UFE and morphine or fentanyl PCA after UFE. Pain perception levels were obtained on a 0-10 scale for the 24-h period after UFE. Linear regression methods were used to determine pain trends and differences in pain trends between two groups and the association between pain scores and patient covariates. One hundred eighty-five patients (92.5%) reported greater-than-baseline pain after UFE, and 198 patients (99%) required IV opioid PCA. One hundred thirty-six patients (68.0%) developed nausea during the 24-h period. Seventy-two patients (36%) received morphine PCA and 128 (64%) received fentanyl PCA, without demographic differences. The mean dose of morphine used was 33.8 {+-} 26.7 mg, while the mean dose of fentanyl was 698.7 {+-} 537.4 {mu}g. Using this regimen, patients who received morphine PCA had significantly lower pain levels than those who received fentanyl PCA (p < 0.0001). We conclude that patients develop pain requiring IV opioid PCA within 24 h after UFE. Morphine PCA is more effective in reducing post-uterine artery embolization pain than fentanyl PCA. Nausea is a significant adverse effect from opioid PCA.

  3. ENERGY STAR Webinar: Ask the Expert: Office Hours on Mid-Year Review of Portfolio Manager Enhancement

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar gives all users an opportunity to ask questions directly to EPA experts in an open forum. There will be an...

  4. 24-hour human urine and serum profiles of Bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teeguarden, Justin G.; Twaddle, Nathan C.; Churchwell, Mona I.; Yang, Xiaoxia; Fisher, Jeffrey W.; Seryak, Liesel M.; Doerge, Daniel R.

    2015-09-01

    Here we present data to evaluate potential absorption of Bisphenol A through non-metabolizing tissues of the upper digestive tract. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 h period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. The pharmacokinetic behavior of BPA and its metabolites in this cohort (rapid absorption, complete elimination, evidence against sublingual absorption) was reported. This Data in Brief article contains the corresponding individual pharmacokinetic data, reports the demographics of the cohort and provides additional details related to the analyticalmore » methods employed and is related to [4].« less

  5. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  6. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Electric

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Total (All Sectors), 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Electric Utilities, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Commercial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric and Solar Hydroelectric Pumped Storage Other Total Generation at Utility Scale Facilities Estimated Distributed Solar

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Generation from Renewable Sources: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From Utility Scale Facilities and Distributed Generation Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Generation at Utility Scale Facilities Estimated Distributed Solar

  19. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  20. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  1. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  2. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  3. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  4. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  5. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  6. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  7. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  8. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  9. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  10. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  11. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  12. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  13. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  14. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  15. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  16. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  17. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  18. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  19. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  20. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  1. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  2. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  3. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  4. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  5. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  6. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  7. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  8. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  9. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  10. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  11. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  12. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  13. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  14. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  15. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  16. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  17. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  18. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  19. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  20. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  1. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  2. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  3. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  4. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  5. Table 10. Supply and disposition of electricity, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" "Category", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Supply",,,,,,,,,,,,,,,,,,,,,,,,, "Generation",,,,,,,,,,,,,,,,,,,,,,,,, "Electric

  6. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    20 Reference case Table A9. Electricity generating capacity (gigawatts) Energy Information Administration / Annual Energy Outlook 2015 Table A9. Electricity generating capacity (gigawatts) Net summer capacity 1 Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Electric power sector 2 Power only 3 Coal 4 .................................................................... 300.2 296.1 255.4 252.8 252.8 252.8 252.9 -0.6% Oil and natural gas steam 4,5

  7. RECOVERY AND UTILIZATION OF COALMINE METHANE: PILOT-SCALE DEMONSTRATION PHASE

    SciTech Connect (OSTI)

    George Steinfeld; Jennifer Hunt

    2004-09-28

    A fuel cell demonstration was conducted on coalmine methane to demonstrate the utilization of methane emissions associated with underground coal mining operations in a carbonate Direct FuelCell{reg_sign} (DFC{reg_sign}) power plant. FuelCell Energy (FCE) conducted the demonstration with support from the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and in cooperation with Northwest Fuel Development, the operator of the Rose Valley test site in Hopedale, Ohio. The fuel cell power plant, a first generation sub megawatt power plant, was operated on CMM between August 1, 2003 and December 13, 2003. The direct fuel cell operated on low-Btu CMM with 42% methane content and achieved performance levels comparable to natural gas on a Btu feed basis. During this period 1456 hours on-load operation was achieved. The total power generated using CMM was 134 megawatt-hours (MWh) of electricity. The power generated was connected to the American Electric Power grid by a 69-kilovolt (kV) transformer. The maximum power level achieved was 140 kW. Efficiency of power generation was 40% based on the lower heating value (LHV) of the CMM. Compression and drying of the CMM resulted in additional parasitic load, which reduced the overall efficiency to 36 % LHV. In future applications, on-board compression and utilization of the saturated CMM without drying will be investigated in order to reduce the auxiliary power requirements. By comparison, the internal combustion engines operating on CMM at the Hopedale site operate at an over efficiency of 20%. The over-all efficiency for the fuel cell is therefore 80% higher than the internal combustion engine (36% vs. 20%). Future operation of a 250 kW Fuel Cell Power Plant on CMM will utilize 18,400,000 cubic feet of methane per year. This will be equivalent to: (a) avoiding 7428 metric tons of CO{sub 2} emissions, (b) avoiding 16.4 million pounds of CO{sub 2} emissions, (c) removing 1640 cars off the road for one

  8. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    SciTech Connect (OSTI)

    Stępnik, Maciej; Arkusz, Joanna; Smok-Pieniążek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzińska, Jolanta; De Jong, Wim H.; Rydzyński, Konrad

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows alterations in both cell lines with both silica NP tested. ► Buthionine sulfoximine enhances cytotoxicity of Ludox CL-X in 3T3-L1 cells.

  9. More Than 410,000 Hours of Real-World Fuel Cell System Operation Have Been Analyzed by NREL's Technology Validation Team (Fact Sheet)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2011-02-01

    This fact sheet discusses how researchers at the National Renewable Energy Laboratory (NREL) are working to validate hydrogen and fuel cell systems in real-world settings. NREL strives to provide an independent third-party technology assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, and safety.

  10. Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOx Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

    SciTech Connect (OSTI)

    Thornton, M.; Webb, C. C.; Weber, P. A.; Orban, J.; Slone, E.

    2006-05-01

    Discusses the emission results of a nitrogen oxide adsorber catalyst and a diesel particle filter in a medium-duty, diesel pick-up truck.

  11. SunShot’s National Laboratory Projects Target Grid Integration Challenges

    Broader source: Energy.gov [DOE]

    National Laboratories are tackling systems integration challenges through the SunShot National Laboratory Multiyear Partnership (SuNLaMP) funding program. These research and development projects will enable hundreds of gigawatts of solar energy to be integrated reliably and cost-effectively onto the U.S. electric power grid.

  12. How old are U.S. power plants?

    Reports and Publications (EIA)

    2011-01-01

    The current fleet of electric power generators has a wide range of ages. About 530 gigawatts, or 51% of all generating capacity, were at least 30 years old at the end of 2010. Trends in generating capacity additions vary by fuel type, for coal, hydropower, natural gas, nuclear, petroleum, and wind.

  13. Combined Heat and Power: A Clean Energy Solution, August 2012

    SciTech Connect (OSTI)

    2012-08-30

    This paper provides a foundation for national discussions on effective ways to reach the 40 gigawatts (GW) target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the dialogue.

  14. FORGE, 2015 Peer Review Plenary

    Broader source: Energy.gov [DOE]

    Geothermal energy potential could climb to more than 100 gigawatts - one tenth of America's energy demand - with next-generation EGS technologies. Now, an Energy Department subsurface laboratory will undertake transformative science that could unlock the earth's potential and harness a commercial pathway for this clean, domestic energy source.

  15. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  16. Orimulsion conversion boosts prospects of `fourth` fossil fuel

    SciTech Connect (OSTI)

    1995-04-01

    This article describes how, by retrofitting a 100-MW oil-fired and a 215-MW coal-fired unit, one utility turned a plant destined for peaking service into a base-load asset with a predictable fuel bill and manageable emissions-even in environmentally sensitive Atlantic Canada. Six years ago, New Brunswick Power Corp (NB Power) found itself on the horns of a dilemma. For years, the utility had been searching for a powerplant fuel with a more stable price than oil, which at the time was fueling one-third of its generating capacity. Buying and burning more domestic coal-even at twice the price of offshore supplies-was the preferred option, because that would also help keep New Brunswick`s coal mines open. But by 1989, federal and provincial legislation had begun to plan for stringent limits on SO{sub 2} emissions that would take the local-coal card out of NB Power`s hand. Containing up to 8% sulfur, New Brunswick coal would be too dirty to burn by itself; emissions from a 200-MW unit would alone use up nearly half of the utility`s system-wide annual quota for SO{sub 2} emissions schedules for imposition in 1994. Enter Bitor America Corp, the Boca Raton (Fla) marketing subsidiary of the world`s third-largest oil company, Petroleos de Venezuela SA (PdVSA). Looking to further the fortunes of Orimulsion, a liquid emulsion of bitumen and water from the Orinoco region of Venezuela, Bitor funded and provided technical support for the first large-scale test burn of the fuel in the 100-MW Unit 1 of NB Power`s Dalhousie station in northern New Brunswick. After making the required modifications, NB Power burned Orimulsion in Unit 1 for two years. By 1991, the utility had cleanly converted more than a million barrels of the fuel to nearly half a million megawatt-hours of electricity-in the process finding few reasons not to commit to permanently converting Dalhousie`s Unit 1, as well as coal fired 215-MW Unit 2, to burn Orimulsion.

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-owned",21049257,8069917,6170936,6808318,86 2,"Southwestern Electric Power Co","Investor-owned",4018839,1121436,1354356,1543047,0 3,"Mississippi County Electric

  18. Table 8. Retail sales, revenue, and average retail price by sector, 1990 through

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Sector", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2014" "Retail sales (megawatthours)",,,,,,,,,,,,,,,,,,,,,,,,,," "," "," "

  19. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Arizona Public Service Co","Investor-owned",27584533,12837752,12477518,2269263,0 2,"Salt River Project","Public",27548529,12293633,11099759,4155137,0 3,"Tucson Electric Power

  1. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Southern California Edison Co","Investor-owned",75828585,29972416,37903351,7874457,78361 2,"Pacific Gas & Electric Co","Investor-owned",75114523,29289082,28107971,17717470,0 3,"Los Angeles Department of Water &

  2. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28671219,9008526,12886370,6712282,64041 2,"City of Colorado Springs - (CO)","Public",4477715,1425423,1097160,1955132,0 3,"Intermountain Rural Elec

  3. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Connecticut Light & Power Co","Investor-owned",8945482,6146224,2365991,367962,65305 2,"Constellation NewEnergy, Inc","Investor-owned",2018823,0,1320397,692814,5612 3,"United Illuminating

  4. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Constellation NewEnergy, Inc","Investor-owned",3556542,40286,3515507,749,0 2,"Potomac Electric Power Co","Investor-owned",3015764,1733437,1282327,0,0 3,"WGL Energy Services,

  5. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Duke Energy Florida, Inc","Investor-owned",37240099,19002681,14970106,3267312,0 3,"Tampa Electric

  6. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-Owned",83740365,27132065,32894391,23548775,165134 2,"Jackson Electric Member Corp - (GA)","Cooperative",5201199,3003210,1476773,721216,0 3,"Cobb Electric Membership

  7. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6781665,1611149,2270495,2900021,0 2,"Maui Electric Co Ltd","Investor-owned",1132056,381979,373947,376130,0 3,"Hawaii Electric Light Co

  8. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Commonwealth Edison Co","Investor-owned",18061768,9114941,7890441,1056386,0 2,"Constellation Energy Services, Inc.","Investor-owned",10686139,5208659,5477480,0,0 3,"Homefield

  9. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32904509,9047299,6757407,17099803,0 2,"Entergy Gulf States - LA LLC","Investor-owned",20822523,5368421,5529206,9924896,0 3,"Cleco Power

  10. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",1984446,859679,1082377,42390,0 2,"New Brunswick Power Generation Corp.","Investor-owned",2101006,1963787,58020,79199,0 3,"Electricity Maine,

  11. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",12270475,8927905,3147168,195402,0 2,"WGL Energy Services, Inc.","Investor-owned",7202209,1077458,6124751,0,0 3,"Potomac Electric Power

  12. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Massachusetts Electric Co","Investor-owned",10602381,7180002,3013034,409068,277 2,"NSTAR Electric Company","Investor-owned",8805023,5064032,3531796,209195,0 3,"Direct Energy

  13. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",41923906,14932840,16790364,10199382,1320 2,"Consumers Energy Co","Investor-owned",33253922,12593983,11045552,9614387,0 3,"Constellation Energy Services,

  14. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Union Electric Co - (MO)","Investor-owned",37022540,13649267,14751404,8600114,21755 2,"Kansas City Power & Light Co","Investor-owned",8554331,2571510,4454312,1528509,0 3,"KCP&L Greater Missouri Operations

  15. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-owned",3799020,2390026,1240068,168926,0 2,"Constellation Energy Services, Inc.","Investor-owned",1008956,3870,1005086,0,0 3,"Constellation NewEnergy,

  16. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Elec & Gas Co","Investor-owned",19571938,11374261,7430854,766823,0 2,"Jersey Central Power & Lt Co","Investor-owned",9957517,7264641,2445207,247669,0 3,"Direct Energy

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Consolidated Edison Co-NY Inc","Investor-owned",19756921,9869409,9783465,102499,1548 2,"New York Power Authority","Public",18956177,0,8062381,8156837,2736959 3,"Long Island Power

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24307160,8652606,9472917,6181637,0 2,"Public Service Co of Oklahoma","Investor-owned",17947669,6320906,6389387,5237376,0 3,"Grand River Dam

  19. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",4281682,1551471,1572378,1157833,0 2,"Vermont Electric Cooperative, Inc","Cooperative",446870,222366,122807,101697,0 3,"City of Burlington Electric -

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",75562974,29406355,39038242,6916360,202017 2,"Appalachian Power Co","Investor-owned",15954286,6461192,4013267,5479827,0 3,"Rappahannock Electric