Powered by Deep Web Technologies
Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

2

MagLab Audio Dictionary: Megawatt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt? Now Playing: What's a Megawatt? Enable Javascript and Flash to stream the Magnet Minute Bryon Dalton Associated Links How We Keep the World's Most Powerful Magnets in...

3

Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost  

E-Print Network [OSTI]

All POUs Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 20122013 ($) Projected Annual Cost 20132014 ($) Projected Annual Cost 20142015 ($) Legend LADWP 22,856,346 720,123 720,123 720 Attachment B Response Utility Name Retail Sales for 2010 (MWh) Projected Annual Cost 2012 2013 ($) LADWP 22

4

Developing and Financing Renewable Energy Projects in Indian Country  

Broader source: Energy.gov (indexed) [DOE]

Presenter: Presenter: Robert Springer, National Renewable Energy Laboratory (NREL) RES2012 CONFERENCE LAS VEGAS, NEVADA MARCH 1, 2012 Context Technically, Indian lands have enough renewable energy resource to produce:  1 billion megawatt-hours (MWh) of wind (about 148,000 homes)  7 billion MWh of solar photovoltaics (PV)  4 trillion MWh of biomass There are a number of barriers constraining this potential including: * Infrastructure and transmission; * Project development capacity; * Project financing options; * Permitting barriers; * Expertise; * Other Project Development & Finance Project Development & Project Finance Finance? "and then" Finance Or? Hey that doesn't make sense!

5

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Presenters: Presenters: Samuel Booth, NREL Matthew Ferguson, Reznick Group TRIBAL LEADER FORUM EXPLORING THE BUSINESS LINK OPPORTUNITY: TRANSMISSION & CLEAN ENERGY DEVELOPMENT IN THE WEST DENVER, COLORADO FEBRUARY 7-8, 2012 Presentation Overview * Context & Objective * Overview of Renewable Energy: - Project Development - Project Financing * Questions Context Indian lands have enough renewable energy resource to produce:  1.3 million megawatt- hours (MWh) of wind (about 148,000 homes)  9.2 million MWh of solar photovoltaics (PV)  4 million MWh of biomass There are a number of barriers constraining this potential including: * Infrastructure & transmission; * Project development capacity; * Project financing options;

6

megatons to megawatts | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Working at NNSA Blog Home megatons to megawatts megatons to megawatts Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads...

7

Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report  

E-Print Network [OSTI]

ESL-TR-06-06-08 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME II ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality September 2004 ? December 2005..., the following results were determined for energy-code compliant new residential single- and multi-family construction in non-attainment and affected counties built in 2004: ? The annual savings in 2005 amounted to 348,794 megawatt hours (MWh...

Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

2006-11-01T23:59:59.000Z

8

Hydropower Generators Will Deliver New Energy from an Old Dam  

Office of Energy Efficiency and Renewable Energy (EERE)

City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

9

Property:Com sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

sales (mwh) sales (mwh) Jump to: navigation, search This is a property of type Number. Sales to commercial consumers Pages using the property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 26,367 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 15,395 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 16,880 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 16,286 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,519 +

10

MagLab - MagLab Dictionary: Megawatt (Transcript)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt As explained by Bryon Dalton, Magnet Operations director. Substation This substation furnishes the MagLab with its 56 megawatts of electricity. Our magnets here at the...

11

Property:PotentialCSPGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPGeneration PotentialCSPGeneration Jump to: navigation, search Property Name PotentialCSPGeneration Property Type Quantity Description The estimated potential energy generation from CSP for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialCSPGeneration" Showing 25 pages using this property. (previous 25) (next 25)

12

Property:PotentialBiopowerSolidGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidGeneration PotentialBiopowerSolidGeneration Jump to: navigation, search Property Name PotentialBiopowerSolidGeneration Property Type Quantity Description The estimated potential energy generation from solid biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerSolidGeneration" Showing 25 pages using this property. (previous 25) (next 25)

13

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

14

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

15

Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVGeneration PotentialRuralUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialRuralUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in rural areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialRuralUtilityScalePVGeneration"

16

Property:PotentialUrbanUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVGeneration PotentialUrbanUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in urban areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialUrbanUtilityScalePVGeneration"

17

Property:PotentialEGSGeothermalGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalGeneration PotentialEGSGeothermalGeneration Jump to: navigation, search Property Name PotentialEGSGeothermalGeneration Property Type Quantity Description The estimated potential energy generation from EGS Geothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialEGSGeothermalGeneration" Showing 25 pages using this property. (previous 25) (next 25)

18

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

19

Property:PotentialRooftopPVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVGeneration PotentialRooftopPVGeneration Jump to: navigation, search Property Name PotentialRooftopPVGeneration Property Type Quantity Description The estimated potential energy generation from Rooftop PV for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialRooftopPVGeneration" Showing 25 pages using this property. (previous 25) (next 25)

20

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:PotentialBiopowerGaseousGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousGeneration PotentialBiopowerGaseousGeneration Jump to: navigation, search Property Name PotentialBiopowerGaseousGeneration Property Type Quantity Description The estimated potential energy generation from gaseous biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25 pages using this property. (previous 25) (next 25)

22

Megawatt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Megawatt Energy Systems Megawatt Energy Systems Jump to: navigation, search Name Megawatt Energy Systems Place Zionsville, Indiana Sector Renewable Energy, Services, Solar, Wind energy Phone number 317.797.3381 Website http://www.mwenergysystems.com Coordinates 39.9508733°, -86.261937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Property:Oth sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

other consumers other consumers Pages using the property "Oth sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) C Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008 + 1,113 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December 2008 + 1,202 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 + 536 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2009 + 2,187 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2008 + 707 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2009 + 1,537 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 + 697 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008 + 880 +

24

Property:Ind sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

industrial consumers industrial consumers Pages using the property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 19,022 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 14,148 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 18,516 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 14,517 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,398 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 14,930 +

25

Property:Tot sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

all consumers all consumers Pages using the property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 104,175 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 78,855 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 93,756 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 87,806 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 87,721 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 88,236 +

26

Property:Res sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

residential consumers residential consumers Pages using the property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 58,786 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 49,312 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 58,360 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 57,003 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 52,804 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 56,047 +

27

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

28

Spallation Neutron Source reaches megawatt power  

ScienceCinema (OSTI)

The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

Dr. William F. Brinkman

2010-01-08T23:59:59.000Z

29

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

30

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

31

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract N/A Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Citation County of Imperial Planning Department. 1979. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility. (!) : WESTEC SERVICES, INC.. Report No.: N/A. Retrieved from

32

Multi-Megawatt Power System Trade Study  

SciTech Connect (OSTI)

A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics systems capable of operating at high temperatures. The gas-Brayton systems showed an apparent specific mass advantage (3.53 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used, but reconciling differences in conservatism in the design algorithms used would make results much more comparable. Brayton systems eliminate the need to deal with two-phase working fluid flows in the microgravity environment of space.

Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

2002-02-01T23:59:59.000Z

33

Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1400.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 +

34

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

35

Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrWoodChips SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

36

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtHeating SPPurchasedEngyNrmlYrMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2193.0 + Sweden Building 05K0002 + 521.2 + Sweden Building 05K0003 + 498.4 + Sweden Building 05K0004 + 1869.0 + Sweden Building 05K0005 + 646.0 + Sweden Building 05K0006 + 1843.0 + Sweden Building 05K0007 + 1542.0 + Sweden Building 05K0008 + 898.0 + Sweden Building 05K0009 + 2313.0 + Sweden Building 05K0010 + 65.0 + Sweden Building 05K0011 + 1032.0 + Sweden Building 05K0012 + 1256.0 + Sweden Building 05K0013 + 1817.6002445 + Sweden Building 05K0014 + 162.0 + Sweden Building 05K0015 + 158.0 +

37

Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrLogs SPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

38

Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrNaturalGas SPPurchasedEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

39

Property:Building/SPPurchasedEngyForPeriodMwhYrLogs | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrLogs SPPurchasedEngyForPeriodMwhYrLogs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrLogs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

40

Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrWoodChips SPPurchasedEngyNrmlYrMwhYrWoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Property:Building/SPPurchasedEngyNrmlYrMwhYrOther | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOther SPPurchasedEngyNrmlYrMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

42

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtColg SPPurchasedEngyForPeriodMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

43

Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrPellets SPPurchasedEngyForPeriodMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

44

Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

45

Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrOther SPPurchasedEngyForPeriodMwhYrOther Jump to: navigation, search This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

46

Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTotal SPPurchasedEngyNrmlYrMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003 + 872.1 + Sweden Building 05K0004 + 4466.9 + Sweden Building 05K0005 + 768.6 + Sweden Building 05K0006 + 3031.1 + Sweden Building 05K0007 + 3479.0 + Sweden Building 05K0008 + 1336.0 + Sweden Building 05K0009 + 4876.0 + Sweden Building 05K0010 + 131.52 + Sweden Building 05K0011 + 1501.0 + Sweden Building 05K0012 + 2405.65 + Sweden Building 05K0013 + 3436.6002445 + Sweden Building 05K0014 + 389.66 + Sweden Building 05K0015 + 270.0 +

47

Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrPellets SPPurchasedEngyNrmlYrMwhYrPellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

48

Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTotal SPPurchasedEngyForPeriodMwhYrTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003 + 847.1 + Sweden Building 05K0004 + 4360.9 + Sweden Building 05K0005 + 727.6 + Sweden Building 05K0006 + 2915.1 + Sweden Building 05K0007 + 3385.0 + Sweden Building 05K0008 + 1282.0 + Sweden Building 05K0009 + 4739.0 + Sweden Building 05K0010 + 127.52 + Sweden Building 05K0011 + 1436.0 + Sweden Building 05K0012 + 2334.65 + Sweden Building 05K0013 + 3323.0 + Sweden Building 05K0014 + 381.66 + Sweden Building 05K0015 + 257.0 +

49

Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrElctrtyTotal SPPurchasedEngyForPeriodMwhYrElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003 + 321.8 + Sweden Building 05K0004 + 1689.9 + Sweden Building 05K0005 + 122.6 + Sweden Building 05K0006 + 843.1 + Sweden Building 05K0007 + 1487.0 + Sweden Building 05K0008 + 315.0 + Sweden Building 05K0009 + 1963.0 + Sweden Building 05K0010 + 66.52 + Sweden Building 05K0011 + 391.0 + Sweden Building 05K0012 + 809.65 + Sweden Building 05K0013 + 1199.0 + Sweden Building 05K0014 + 227.66 +

50

Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

51

Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTownGas SPPurchasedEngyNrmlYrMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

52

Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDstrtHeating SPPurchasedEngyForPeriodMwhYrDstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003 + 473.4 + Sweden Building 05K0004 + 1763.0 + Sweden Building 05K0005 + 605.0 + Sweden Building 05K0006 + 1727.0 + Sweden Building 05K0007 + 1448.0 + Sweden Building 05K0008 + 844.0 + Sweden Building 05K0009 + 2176.0 + Sweden Building 05K0010 + 61.0 + Sweden Building 05K0011 + 967.0 + Sweden Building 05K0012 + 1185.0 + Sweden Building 05K0013 + 1704.0 + Sweden Building 05K0014 + 154.0 + Sweden Building 05K0015 + 145.0 +

53

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

54

Property:Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDstrtColg SPPurchasedEngyNrmlYrMwhYrDstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 + 51.9 + Sweden Building 05K0004 + 908.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 345.0 + Sweden Building 05K0007 + 450.0 + Sweden Building 05K0008 + 123.0 + Sweden Building 05K0009 + 600.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 78.0 + Sweden Building 05K0012 + 340.0 + Sweden Building 05K0013 + 420.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

55

Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTownGas SPPurchasedEngyForPeriodMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

56

Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrNaturalGas SPPurchasedEngyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

57

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

0, 2013 | Release Date: March 21, 0, 2013 | Release Date: March 21, 2013 | Next Release: March 28, 2013 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: In the News: Average price spread of natural gas delivered to the power sector over coal declined by over three-quarters in 2012, while ratio of net natural gas power generation to coal rose by 39 percent. The average price of natural gas delivered in the United States to electric power generators decreased to $28.16 per megawatt hour (MWh) in 2012, 28 percent below the average for 2011, according to data from the U.S. Energy Information Administration's (EIA) Electric Power Monthly. This reflects a spread of $3.22 per MWh over the average annual price of coal delivered

58

Mass Megawatts Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Megawatts Wind Power Inc Megawatts Wind Power Inc Jump to: navigation, search Name Mass Megawatts Wind Power Inc Address 95 Prescott Street Place Worcester, Massachusetts Zip 01605 Sector Wind energy Product Development of low-cost, wind energy production systems Website http://www.massmegawatts.com/ Coordinates 42.2776492°, -71.7996281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2776492,"lon":-71.7996281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Notices  

Broader source: Energy.gov (indexed) [DOE]

72 Federal Register 72 Federal Register / Vol. 76, No. 112 / Friday, June 10, 2011 / Notices module would contain 2 generating units with a total combined capacity of 2.2 megawatts (MW); (5) a new switchyard containing a transformer; (6) a proposed 300-feet-long, 13-kilovolt (kV) transmission line to an existing distribution line. The proposed project would have an average annual generation of 10.6 megawatt-hours (MWh), which would be sold to a local utility. Applicant Contact: Mr. Wayne Krouse, Hydro Green Energy LLC, 5090 Richmond Avenue #390, Houston, TX 77056; phone (877) 556-6566 x709. FERC Contact: Michael Spencer, (202) 502-6093. Deadline for filing comments, motions to intervene, competing applications (without notices of intent), or notices of intent to file competing applications: 60

60

untitled  

Broader source: Energy.gov (indexed) [DOE]

BREA POWER II, LLC'S BREA POWER II, LLC'S OLINDA COMBINED CYCLE ELECTRIC GENERATING PLANT FUELED BY WASTE LANDFILL GAS, BREA, CALIFORNIA U.S. Department of Energy National Energy Technology Laboratory October 2010 DOE/EA-1744 ACRONYMS AND ABBREVIATIONS CEQA California Environmental Quality Act CFR Code of Federal Regulations CHP combined heat and power CO carbon monoxide dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency kWh kilowatt-hour mmscfd million standard cubic feet of landfill gas per day MW megawatt MWh megawatt-hour NAAQS National Ambient Air Quality Standards NEPA National Environmental Policy Act, as amended NO 2 nitrogen dioxide

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

approximately 200 megawatts (MWs) of power from TCEP, making  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 200 megawatts (MWs) of power from TCEP, making approximately 200 megawatts (MWs) of power from TCEP, making it the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture. The 400-MW TCEP plant is a first-of-its-kind integrated gasification combined cycle (IGCC) poly-generation facility capable of capturing 90 percent of the carbon dioxide (CO 2 ) it produces. The $2.4-billion plant was a third round selection under DOE's Clean Coal Power Initiative

62

Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

63

DOE to Debut a Dynamic 5-Megawatt Dynamometer  

Broader source: Energy.gov [DOE]

Boulder, Colorado -- As wind turbine capacity continues to grow, so does the need to test the electrical and mechanical power-producing components of those turbines. Currently, only a few test facilities worldwide have the capability to test wind turbine drivetrains with capacity ratings up to 5 megawatts--and DOE's National Wind Technology Center at the National Renewable Energy Laboratory is now one of them.

64

The 5-megawatt power plant with 126 metre rotor diameter  

E-Print Network [OSTI]

The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut-in speed 3.5m/s Rated wind speed 13.0m/s Cut-out speed 25.0m/s onshore 30.0m/s offshore Wind zone up to DIBt 3 Type class up to IEC Ib / GL offshore type class I Rotor Diameter 126.0m Rotor area 12,469m2

Firestone, Jeremy

65

Definition: Gross generation | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gross generation Jump to: navigation, search Dictionary.png Gross generation The total amount of electric energy produced by generating units (e.g. power plants) and measured at the generating terminal in kilowatt-hours (kWh) or megawatt-hours (MWh).[1] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Net generation, power References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=G#gross_gen Retri Like Like You like this.Sign Up to see what your friends like. eved from "http://en.openei.org/w/index.php?title=Definition:Gross_generation&oldid=480543" Category: Definitions What links here Related changes Special pages Printable version Permanent link

66

Fuel Mix and Emissions Disclosure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Maryland Program Type Generation Disclosure Provider Maryland Public Service Commission Maryland's 1999 electric utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of electric generation. Emissions data must be expressed in terms of pounds per megawatt-hour (MWh). This information must be provided to customers every six months and annually to the Maryland Public Service Commission (PSC). Past reports are available in Case No. 8738 through the [http://webapp.psc.state.md.us/Intranet/Casenum/caseform_new.cfm? PSC's

67

Fuel Mix and Emissions Disclosure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Michigan Program Type Generation Disclosure Provider Michigan Public Service Commission Michigan's Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds per megawatt-hour (MWh) of electric generation. Electric suppliers must provide this information to customers twice annually in a standardized, uniform format. The Michigan Public Service Commission (MPSC) staff must calculate the regional electricity generation and environmental characteristics and make it available to be used by the state's generation providers. The web site above describes the

68

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

69

Renewable and Recycled Energy Objective | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective Renewable and Recycled Energy Objective < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Wind Program Info State North Dakota Program Type Renewables Portfolio Standard Provider North Dakota Public Service Commission In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled energy by 2015. The objective must be measured by qualifying megawatt-hours (MWh) delivered at retail, or by credits purchased and retired to offset non-qualifying

70

Multicriteria decision making in electricity demand management: the case of Kuwait  

Science Journals Connector (OSTI)

Electricity demand in Kuwait has substantially increased over the years and this increase is attributed to population growth, increase in the number of buildings, and the extensive use of air-conditioning system during the very hot weather in the summer. The amount of electrical energy generated reached 48 444 308 megawatt hour (MWH) in 2007. Such growth calls for extensive investment in the continuous expansion of the existing power plants and constructing new ones. To rationalise the consumption of electricity, several conservation policies have to be implemented. In this work, we have attempted to diagnose such problem and solicit expert opinions in order to provide the proper remedies. Because the problem comprises several criteria that are subjective in nature, multicriteria decision-making approaches were suggested. The Analytical Hierarchy Process (AHP) was used as a decision tool to assess the different policies that could be used to bring about electricity conservation.

Mohammed Hajeeh

2010-01-01T23:59:59.000Z

71

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

72

Municipal Utilities' Investment in Smart Grid Technologies Improves...  

Office of Environmental Management (EM)

cities and taxpayers. ii. Glendale's customer programs include a home energy report and web portal program that helped 46,000 users save an estimated 5,777 megawatt-hours of...

73

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

ScienceCinema (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2014-06-10T23:59:59.000Z

74

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Broader source: Energy.gov (indexed) [DOE]

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

75

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

76

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

77

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena  

E-Print Network [OSTI]

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena. For the development of a purification procedure, knowledge about the chemical state of the different elements present-components are of different origin: Gaseous impurities include oxygen, nitrogen and water. The construction materials

McDonald, Kirk

78

MARS15 study of the Energy Production Demonstrator Model for Megawatt  

E-Print Network [OSTI]

MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

McDonald, Kirk

79

Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters fromOntario zonal data  

Science Journals Connector (OSTI)

Abstract With the growing share of wind production, understanding its impacts on electricity price and greenhouse gas (GHG) emissions becomes increasingly relevant, especially to design better wind-supporting policies. Internal grid congestion is usually not taken into account when assessing the price impact of fluctuating wind output. Using 20062011 hourly data from Ontario (Canada), we establish that the impact of wind output, both on price level and marginal GHG emissions, greatly differs depending on the congestion level. Indeed, from an average of 3.3% price reduction when wind production doubles, the reduction jumps to 5.5% during uncongested hours, but is only 0.8% when congestion prevails. Similarly, avoided GHG emissions due to wind are estimated to 331.93 kilograms per megawatt-hour (kg/MWh) using all data, while for uncongested and congested hours, estimates are respectively 283.49 and 393.68kg/MWh. These empirical estimates, being based on 20062011 Ontario data, cannot be generalized to other contexts. The main contribution of this paper is to underscore the importance of congestion in assessing the price and GHG impacts of wind. We also contribute by developing an approach to create clusters of data according to the congestion status and location. Finally, we compare different approaches to estimate avoided GHG emissions.

Mourad Ben Amor; Etienne Billette de Villemeur; Marie Pellat; Pierre-Olivier Pineau

2014-01-01T23:59:59.000Z

80

Project X - a new multi-megawatt proton source at Fermilab  

E-Print Network [OSTI]

Project X is a multi-megawatt proton facility being developed to support intensity frontier research in elementary particle physics, with possible applications to nuclear physics and nuclear energy research, at Fermilab. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a future facility at the energy frontier.

Nagaitsev, S

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

eGRID2007 Version 1.1 - All Files | OpenEI  

Open Energy Info (EERE)

eGRID2007 Version 1.1 - All Files eGRID2007 Version 1.1 - All Files Dataset Summary Description The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive inventory of environmental attributes of electric power systems. The preeminent source of air emissions data for the electric power sector, eGRID is based on available plant-specific data for all U.S. electricity generating plants that provide power to the electric grid and report data to the U.S. government. eGRID integrates many different federal data sources on power plants and power companies, from three different federal agencies: EPA, the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). Emissions data from EPA are carefully integrated with generation data from EIA to produce useful values like pounds per megawatt-hour (lb/MWh) of emissions, which allows direct comparison of the environmental attributes of electricity generation. eGRID also provides aggregated data by state, U.S. total, company, and by three different sets of electric grid boundaries.This particular distribution consists of a single zip file that contains all available eGrid 2007 spreadsheet files, state import-export files, Technical Support Documents, Summary Tables, GHG output emission rates, the EUEC2010 paper, and graphical representations of eGRID subregions and NERC regions maps.

82

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

83

A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade  

SciTech Connect (OSTI)

The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

Taylor, Gary [PPPL

2014-04-01T23:59:59.000Z

84

Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector  

SciTech Connect (OSTI)

Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaboration: NBI Team

2012-01-15T23:59:59.000Z

85

Water Power for a Clean Energy Future (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

Not Available

2012-03-01T23:59:59.000Z

86

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

87

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

88

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US Army Corps of Engineers US Army Corps of Engineers BUILDING STRONG ® ® Dan Brueggenjohann - Project Manager Programs & Project Management Division Tulsa District 14 June 2011 Webbers Falls and Ozark Powerhouse Major Rehabilitation Briefing for 2011 Southwestern Federal Hydropower Conference BUILDING STRONG ® 2 McClellan-Kerr Navigation Project Webbers Falls BUILDING STRONG ® * Run of River Plants * Webbers - 69 MW from three inclined axis units (23 MW each) which were placed in service in 1973. Average annual energy production is 213,000 Megawatt-hours. * Ozark - 115 MW from five inclined axis units (23 MW each) which were placed in service in 1974. Average annual energy production is 429,000 Megawatt -hours. Background BUILDING STRONG ® * Project Scope: Rehabilitation of the Webbers

89

Audit Report: OAS-M-12-04 | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-04 2-04 Audit Report: OAS-M-12-04 April 30, 2012 The Department of Energy's Renewable Energy Efforts In an effort to promote generation of renewable energy, the Energy Policy Act of 2005 (EPAct) requires that by Fiscal Year (FY) 2013 at least 7.5 percent of a Federal agency's annual electricity consumption be from renewable sources. Because of the importance of the Department of Energy's (Department) commitment to sustainability, we initiated this audit to determine whether the Department was effectively meeting the EPAct renewable energy requirements. In FY 2010, the Department acquired approximately 461,000 megawatt hours from renewable sources, representing over 9 percent of its annual electricity consumption of 4.8 million megawatt hours. Although the Department's progress exceeded EPAct

90

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

91

Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980  

SciTech Connect (OSTI)

Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

Burkhardt, F.R.; Persnger, M.M.

1980-01-01T23:59:59.000Z

92

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

93

Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry  

SciTech Connect (OSTI)

The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

1980-01-31T23:59:59.000Z

94

Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak  

SciTech Connect (OSTI)

The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 {micro}H saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency.

Reass, W.A.; Wurden, G.A.

1997-10-06T23:59:59.000Z

95

Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

2012-01-01T23:59:59.000Z

96

International Voluntary Renewable Energy Markets (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

Heeter, J.

2012-06-01T23:59:59.000Z

97

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

98

Saving Megawatts with Voltage Optimization  

E-Print Network [OSTI]

that had been installed at several electric utility distribution substations in the U.S. and Canada. These systems, being operated in Conservation Voltage Regulation mode, have provided significant energy conservation where they have been installed...

Wilson, T.; Bell, D.

2010-01-01T23:59:59.000Z

99

Life cycle water use for electricity generation: a review and harmonization of literature estimates  

Science Journals Connector (OSTI)

This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

J Meldrum; S Nettles-Anderson; G Heath; J Macknick

2013-01-01T23:59:59.000Z

100

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

71 - 20480 of 31,917 results. 71 - 20480 of 31,917 results. Article Nellis Air Force Base solar array provides model for renewable projects A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north of Las Vegas, took a big step in 2007 when it installed a 14.2-megawatt, 70,000-panel photovoltaic solar array that reduced carbon dioxide emissions by 24,000 tons a year. Built partly on a landfill, the field of solar panels takes advantage of two resources plentiful in Nevada: sunshine and empty land. At its unveiling in December of 2007, the Nellis array was the largest solar panel installation in North America. The project was originally expected to produce about 30,000 megawatt-hours of electricity per year,

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Southern California Edison 32MWh Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

102

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",27638,13 " Electric Utilities",23008,8 " Independent Power Producers & Combined Heat and Power",4630,23 "Net Generation (megawatthours)",125180739,11 " Electric Utilities",107852560,5 " Independent Power Producers & Combined Heat and Power",17328179,20 "Emissions (thousand metric tons)" " Sulfur Dioxide",385,4 " Nitrogen Oxide",120,4 " Carbon Dioxide",116283,5 " Sulfur Dioxide (lbs/MWh)",6.8,4 " Nitrogen Oxide (lbs/MWh)",2.1,12 " Carbon Dioxide (lbs/MWh)",2048,4

103

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",18424,22 " Electric Utilities",460,43 " Independent Power Producers & Combined Heat and Power",17964,6 "Net Generation (megawatthours)",65682494,23 " Electric Utilities",-186385,50 " Independent Power Producers & Combined Heat and Power",65868878,6 "Emissions (thousand metric tons)" " Sulfur Dioxide",14,40 " Nitrogen Oxide",15,41 " Carbon Dioxide",19160,37 " Sulfur Dioxide (lbs/MWh)",0.5,45 " Nitrogen Oxide (lbs/MWh)",0.5,48 " Carbon Dioxide (lbs/MWh)",643,43

104

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",26392,15 " Electric Utilities",20115,14 " Independent Power Producers & Combined Heat and Power",6277,16 "Net Generation (megawatthours)",111750957,12 " Electric Utilities",91232664,11 " Independent Power Producers & Combined Heat and Power",20518293,17 "Emissions (thousand metric tons)" " Sulfur Dioxide",33,33 " Nitrogen Oxide",57,17 " Carbon Dioxide",55683,15 " Sulfur Dioxide (lbs/MWh)",0.7,43 " Nitrogen Oxide (lbs/MWh)",1.1,31 " Carbon Dioxide (lbs/MWh)",1099,35

105

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "NERC Region(s)",,"SERC/SPP" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",26744,14 " Electric Utilities",16471,17 " Independent Power Producers & Combined Heat and Power",10272,10 "Net Generation (megawatthours)",102884940,16 " Electric Utilities",51680682,19 " Independent Power Producers & Combined Heat and Power",51204258,8 "Emissions (thousand metric tons)" " Sulfur Dioxide",126,15 " Nitrogen Oxide",75,11 " Carbon Dioxide",58706,14 " Sulfur Dioxide (lbs/MWh)",2.7,21 " Nitrogen Oxide (lbs/MWh)",1.6,21 " Carbon Dioxide (lbs/MWh)",1258,27

106

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",27674,12 " Electric Utilities",25553,6 " Independent Power Producers & Combined Heat and Power",2121,34 "Net Generation (megawatthours)",128678483,10 " Electric Utilities",121251138,3 " Independent Power Producers & Combined Heat and Power",7427345,34 "Emissions (thousand metric tons)" " Sulfur Dioxide",131,14 " Nitrogen Oxide",57,16 " Carbon Dioxide",73241,13 " Sulfur Dioxide (lbs/MWh)",2.2,31 " Nitrogen Oxide (lbs/MWh)",1,34 " Carbon Dioxide (lbs/MWh)",1255,28

107

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",3990,44 " Electric Utilities",3035,36 " Independent Power Producers & Combined Heat and Power",955,42 "Net Generation (megawatthours)",12024564,44 " Electric Utilities",8589208,37 " Independent Power Producers & Combined Heat and Power",3435356,40 "Emissions (thousand metric tons)" " Sulfur Dioxide",7,45 " Nitrogen Oxide",4,48 " Carbon Dioxide",1213,49 " Sulfur Dioxide (lbs/MWh)",1.2,39 " Nitrogen Oxide (lbs/MWh)",0.8,43 " Carbon Dioxide (lbs/MWh)",222,50

108

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "NERC Region(s)",,"MRO/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",7857,38 " Electric Utilities",7647,30 " Independent Power Producers & Combined Heat and Power",210,50 "Net Generation (megawatthours)",36630006,36 " Electric Utilities",36242921,30 " Independent Power Producers & Combined Heat and Power",387085,50 "Emissions (thousand metric tons)" " Sulfur Dioxide",65,24 " Nitrogen Oxide",40,30 " Carbon Dioxide",24461,34 " Sulfur Dioxide (lbs/MWh)",3.9,12 " Nitrogen Oxide (lbs/MWh)",2.4,9 " Carbon Dioxide (lbs/MWh)",1472,19

109

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "NERC Region(s)",,"MRO/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",12543,32 " Electric Utilities",11732,20 " Independent Power Producers & Combined Heat and Power",812,45 "Net Generation (megawatthours)",47923762,32 " Electric Utilities",45270047,24 " Independent Power Producers & Combined Heat and Power",2653716,44 "Emissions (thousand metric tons)" " Sulfur Dioxide",41,30 " Nitrogen Oxide",46,26 " Carbon Dioxide",36321,26 " Sulfur Dioxide (lbs/MWh)",1.9,33 " Nitrogen Oxide (lbs/MWh)",2.1,13 " Carbon Dioxide (lbs/MWh)",1671,14

110

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",14261,29 " Electric Utilities",10846,27 " Independent Power Producers & Combined Heat and Power",3415,28 "Net Generation (megawatthours)",55126999,27 " Electric Utilities",41142684,26 " Independent Power Producers & Combined Heat and Power",13984316,26 "Emissions (thousand metric tons)" " Sulfur Dioxide",16,37 " Nitrogen Oxide",15,42 " Carbon Dioxide",10094,40 " Sulfur Dioxide (lbs/MWh)",0.6,44 " Nitrogen Oxide (lbs/MWh)",0.6,47 " Carbon Dioxide (lbs/MWh)",404,48

111

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "NERC Region(s)",,"MRO/RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",29831,11 " Electric Utilities",21639,10 " Independent Power Producers & Combined Heat and Power",8192,14 "Net Generation (megawatthours)",111551371,13 " Electric Utilities",89666874,13 " Independent Power Producers & Combined Heat and Power",21884497,16 "Emissions (thousand metric tons)" " Sulfur Dioxide",254,6 " Nitrogen Oxide",89,6 " Carbon Dioxide",74480,11 " Sulfur Dioxide (lbs/MWh)",5,8 " Nitrogen Oxide (lbs/MWh)",1.8,19 " Carbon Dioxide (lbs/MWh)",1472,20

112

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "NERC Region(s)",,"SERC/SPP" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",21739,18 " Electric Utilities",20360,12 " Independent Power Producers & Combined Heat and Power",1378,39 "Net Generation (megawatthours)",92312989,18 " Electric Utilities",90176805,12 " Independent Power Producers & Combined Heat and Power",2136184,46 "Emissions (thousand metric tons)" " Sulfur Dioxide",233,8 " Nitrogen Oxide",56,18 " Carbon Dioxide",78815,10 " Sulfur Dioxide (lbs/MWh)",5.6,6 " Nitrogen Oxide (lbs/MWh)",1.3,26 " Carbon Dioxide (lbs/MWh)",1882,7

113

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",16495,24 " Electric Utilities",11719,21 " Independent Power Producers & Combined Heat and Power",4775,19 "Net Generation (megawatthours)",80788947,20 " Electric Utilities",56719755,18 " Independent Power Producers & Combined Heat and Power",24069192,13 "Emissions (thousand metric tons)" " Sulfur Dioxide",105,20 " Nitrogen Oxide",49,23 " Carbon Dioxide",74283,12 " Sulfur Dioxide (lbs/MWh)",2.9,20 " Nitrogen Oxide (lbs/MWh)",1.3,25 " Carbon Dioxide (lbs/MWh)",2027,5

114

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Petroleum" "Net Summer Capacity (megawatts)",790,51 " Independent Power Producers & Combined Heat and Power",790,46 "Net Generation (megawatthours)",199858,51 " Independent Power Producers & Combined Heat and Power",199858,51 "Emissions (thousand metric tons)" " Sulfur Dioxide",1,49 " Nitrogen Oxide","*",51 " Carbon Dioxide",191,50 " Sulfur Dioxide (lbs/MWh)",8.8,2 " Nitrogen Oxide (lbs/MWh)",4,3 " Carbon Dioxide (lbs/MWh)",2104,1 "Total Retail Sales (megawatthours)",11876995,43 " Full Service Provider Sales (megawatthours)",3388490,50

115

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "NERC Region(s)",,"--" "Primary Energy Source",,"Petroleum" "Net Summer Capacity (megawatts)",2536,47 " Electric Utilities",1828,40 " Independent Power Producers & Combined Heat and Power",708,47 "Net Generation (megawatthours)",10836036,45 " Electric Utilities",6416068,38 " Independent Power Producers & Combined Heat and Power",4419968,38 "Emissions (thousand metric tons)" " Sulfur Dioxide",17,36 " Nitrogen Oxide",21,36 " Carbon Dioxide",8287,42 " Sulfur Dioxide (lbs/MWh)",3.4,16 " Nitrogen Oxide (lbs/MWh)",4.3,2 " Carbon Dioxide (lbs/MWh)",1686,13

116

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "NERC Region(s)",,"RFC/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",20453,21 " Electric Utilities",18945,16 " Independent Power Producers & Combined Heat and Power",1507,38 "Net Generation (megawatthours)",98217658,17 " Electric Utilities",97472144,7 " Independent Power Producers & Combined Heat and Power",745514,48 "Emissions (thousand metric tons)" " Sulfur Dioxide",249,7 " Nitrogen Oxide",85,7 " Carbon Dioxide",93160,7 " Sulfur Dioxide (lbs/MWh)",5.6,5 " Nitrogen Oxide (lbs/MWh)",1.9,15 " Carbon Dioxide (lbs/MWh)",2091,3

117

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "NERC Region(s)",,"SPP" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",21022,20 " Electric Utilities",16015,18 " Independent Power Producers & Combined Heat and Power",5006,17 "Net Generation (megawatthours)",72250733,22 " Electric Utilities",57421195,17 " Independent Power Producers & Combined Heat and Power",14829538,24 "Emissions (thousand metric tons)" " Sulfur Dioxide",85,21 " Nitrogen Oxide",71,12 " Carbon Dioxide",49536,17 " Sulfur Dioxide (lbs/MWh)",2.6,24 " Nitrogen Oxide (lbs/MWh)",2.2,11 " Carbon Dioxide (lbs/MWh)",1512,17

118

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",3389,46 " Electric Utilities",55,48 " Independent Power Producers & Combined Heat and Power",3334,29 "Net Generation (megawatthours)",5627645,50 " Electric Utilities",30059,46 " Independent Power Producers & Combined Heat and Power",5597586,36 "Emissions (thousand metric tons)" " Sulfur Dioxide",13,41 " Nitrogen Oxide",5,47 " Carbon Dioxide",4187,45 " Sulfur Dioxide (lbs/MWh)",5.2,7 " Nitrogen Oxide (lbs/MWh)",1.9,16 " Carbon Dioxide (lbs/MWh)",1640,15 "Total Retail Sales (megawatthours)",11605932,44

119

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",11421,34 " Electric Utilities",8713,29 " Independent Power Producers & Combined Heat and Power",2708,33 "Net Generation (megawatthours)",35146248,38 " Electric Utilities",23710917,34 " Independent Power Producers & Combined Heat and Power",11435331,29 "Emissions (thousand metric tons)" " Sulfur Dioxide",7,44 " Nitrogen Oxide",15,40 " Carbon Dioxide",17020,38 " Sulfur Dioxide (lbs/MWh)",0.4,46 " Nitrogen Oxide (lbs/MWh)",1,37 " Carbon Dioxide (lbs/MWh)",1068,37 "Total Retail Sales (megawatthours)",33772595,33

120

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",36636,7 " Electric Utilities",26639,3 " Independent Power Producers & Combined Heat and Power",9998,11 "Net Generation (megawatthours)",137576941,8 " Electric Utilities",120425913,4 " Independent Power Producers & Combined Heat and Power",17151028,21 "Emissions (thousand metric tons)" " Sulfur Dioxide",265,5 " Nitrogen Oxide",79,10 " Carbon Dioxide",82592,8 " Sulfur Dioxide (lbs/MWh)",4.2,10 " Nitrogen Oxide (lbs/MWh)",1.3,28 " Carbon Dioxide (lbs/MWh)",1324,25

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "NERC Region(s)",,"RFC/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",21417,19 " Electric Utilities",20968,11 " Independent Power Producers & Combined Heat and Power",450,49 "Net Generation (megawatthours)",82348625,19 " Electric Utilities",79816049,15 " Independent Power Producers & Combined Heat and Power",2532576,45 "Emissions (thousand metric tons)" " Sulfur Dioxide",138,13 " Nitrogen Oxide",33,31 " Carbon Dioxide",48196,18 " Sulfur Dioxide (lbs/MWh)",3.7,14 " Nitrogen Oxide (lbs/MWh)",0.9,40 " Carbon Dioxide (lbs/MWh)",1290,26

122

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "NERC Region(s)",,"MRO/WECC" "Primary Energy Source",,"Hydroelectric" "Net Summer Capacity (megawatts)",3623,45 " Electric Utilities",2994,37 " Independent Power Producers & Combined Heat and Power",629,48 "Net Generation (megawatthours)",10049636,46 " Electric Utilities",8682448,36 " Independent Power Producers & Combined Heat and Power",1367188,47 "Emissions (thousand metric tons)" " Sulfur Dioxide",12,43 " Nitrogen Oxide",12,43 " Carbon Dioxide",3611,47 " Sulfur Dioxide (lbs/MWh)",2.6,23 " Nitrogen Oxide (lbs/MWh)",2.6,8 " Carbon Dioxide (lbs/MWh)",792,41

123

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" Texas" "NERC Region(s)",,"SERC/SPP/TRE/WECC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",108258,1 " Electric Utilities",26533,4 " Independent Power Producers & Combined Heat and Power",81724,1 "Net Generation (megawatthours)",411695046,1 " Electric Utilities",95099161,9 " Independent Power Producers & Combined Heat and Power",316595885,1 "Emissions (thousand metric tons)" " Sulfur Dioxide",430,2 " Nitrogen Oxide",204,1 " Carbon Dioxide",251409,1 " Sulfur Dioxide (lbs/MWh)",2.3,28 " Nitrogen Oxide (lbs/MWh)",1.1,32 " Carbon Dioxide (lbs/MWh)",1346,22

124

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "NERC Region(s)",,"WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",7986,37 " Electric Utilities",6931,31 " Independent Power Producers & Combined Heat and Power",1056,41 "Net Generation (megawatthours)",48119254,31 " Electric Utilities",44738543,25 " Independent Power Producers & Combined Heat and Power",3380711,42 "Emissions (thousand metric tons)" " Sulfur Dioxide",67,23 " Nitrogen Oxide",61,15 " Carbon Dioxide",45703,21 " Sulfur Dioxide (lbs/MWh)",3.1,19 " Nitrogen Oxide (lbs/MWh)",2.8,7 " Carbon Dioxide (lbs/MWh)",2094,2

125

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" Wisconsin" "NERC Region(s)",,"MRO/RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",17836,23 " Electric Utilities",13098,19 " Independent Power Producers & Combined Heat and Power",4738,20 "Net Generation (megawatthours)",64314067,24 " Electric Utilities",45579970,22 " Independent Power Producers & Combined Heat and Power",18734097,18 "Emissions (thousand metric tons)" " Sulfur Dioxide",145,12 " Nitrogen Oxide",49,25 " Carbon Dioxide",47238,19 " Sulfur Dioxide (lbs/MWh)",5,9 " Nitrogen Oxide (lbs/MWh)",1.7,20 " Carbon Dioxide (lbs/MWh)",1619,16

126

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "NERC Region(s)",,"MRO/SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",14592,28 " Electric Utilities",11282,24 " Independent Power Producers & Combined Heat and Power",3310,30 "Net Generation (megawatthours)",57508721,26 " Electric Utilities",46188988,21 " Independent Power Producers & Combined Heat and Power",11319733,30 "Emissions (thousand metric tons)" " Sulfur Dioxide",108,18 " Nitrogen Oxide",50,22 " Carbon Dioxide",47211,20 " Sulfur Dioxide (lbs/MWh)",4.1,11 " Nitrogen Oxide (lbs/MWh)",1.9,14 " Carbon Dioxide (lbs/MWh)",1810,10

127

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "NERC Region(s)",,"FRCC/SERC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",59147,3 " Electric Utilities",50853,1 " Independent Power Producers & Combined Heat and Power",8294,13 "Net Generation (megawatthours)",229095935,3 " Electric Utilities",206062185,1 " Independent Power Producers & Combined Heat and Power",23033750,15 "Emissions (thousand metric tons)" " Sulfur Dioxide",160,11 " Nitrogen Oxide",101,5 " Carbon Dioxide",123811,2 " Sulfur Dioxide (lbs/MWh)",1.5,37 " Nitrogen Oxide (lbs/MWh)",1,35 " Carbon Dioxide (lbs/MWh)",1191,31

128

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",13697,31 " Electric Utilities",937,42 " Independent Power Producers & Combined Heat and Power",12760,8 "Net Generation (megawatthours)",42804824,34 " Electric Utilities",802906,43 " Independent Power Producers & Combined Heat and Power",42001918,10 "Emissions (thousand metric tons)" " Sulfur Dioxide",35,31 " Nitrogen Oxide",17,38 " Carbon Dioxide",20291,36 " Sulfur Dioxide (lbs/MWh)",1.8,34 " Nitrogen Oxide (lbs/MWh)",0.9,39 " Carbon Dioxide (lbs/MWh)",1045,38

129

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" Hampshire" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",4180,43 " Electric Utilities",1132,41 " Independent Power Producers & Combined Heat and Power",3048,32 "Net Generation (megawatthours)",22195912,42 " Electric Utilities",3979333,41 " Independent Power Producers & Combined Heat and Power",18216579,19 "Emissions (thousand metric tons)" " Sulfur Dioxide",34,32 " Nitrogen Oxide",6,46 " Carbon Dioxide",5551,43 " Sulfur Dioxide (lbs/MWh)",3.4,17 " Nitrogen Oxide (lbs/MWh)",0.6,46 " Carbon Dioxide (lbs/MWh)",551,47

130

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "NERC Region(s)",,"SERC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",32417,9 " Electric Utilities",23642,7 " Independent Power Producers & Combined Heat and Power",8775,12 "Net Generation (megawatthours)",152150512,6 " Electric Utilities",122766490,2 " Independent Power Producers & Combined Heat and Power",29384022,12 "Emissions (thousand metric tons)" " Sulfur Dioxide",218,10 " Nitrogen Oxide",66,14 " Carbon Dioxide",79375,9 " Sulfur Dioxide (lbs/MWh)",3.2,18 " Nitrogen Oxide (lbs/MWh)",1,36 " Carbon Dioxide (lbs/MWh)",1150,33

131

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "NERC Region(s)",,"MRO" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",14715,27 " Electric Utilities",11547,22 " Independent Power Producers & Combined Heat and Power",3168,31 "Net Generation (megawatthours)",53670227,29 " Electric Utilities",45428599,23 " Independent Power Producers & Combined Heat and Power",8241628,32 "Emissions (thousand metric tons)" " Sulfur Dioxide",57,27 " Nitrogen Oxide",44,27 " Carbon Dioxide",32946,29 " Sulfur Dioxide (lbs/MWh)",2.3,27 " Nitrogen Oxide (lbs/MWh)",1.8,18 " Carbon Dioxide (lbs/MWh)",1353,21

132

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "NERC Region(s)",,"SPP/WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",8130,36 " Electric Utilities",6345,33 " Independent Power Producers & Combined Heat and Power",1785,36 "Net Generation (megawatthours)",36251542,37 " Electric Utilities",30848406,33 " Independent Power Producers & Combined Heat and Power",5403136,37 "Emissions (thousand metric tons)" " Sulfur Dioxide",15,38 " Nitrogen Oxide",56,19 " Carbon Dioxide",29379,31 " Sulfur Dioxide (lbs/MWh)",0.9,42 " Nitrogen Oxide (lbs/MWh)",3.4,5 " Carbon Dioxide (lbs/MWh)",1787,11

133

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "NERC Region(s)",,"MRO/RFC/SERC" "Primary Energy Source",,"Nuclear" "Net Summer Capacity (megawatts)",44127,5 " Electric Utilities",4800,35 " Independent Power Producers & Combined Heat and Power",39327,3 "Net Generation (megawatthours)",201351872,5 " Electric Utilities",12418332,35 " Independent Power Producers & Combined Heat and Power",188933540,3 "Emissions (thousand metric tons)" " Sulfur Dioxide",232,9 " Nitrogen Oxide",83,8 " Carbon Dioxide",103128,6 " Sulfur Dioxide (lbs/MWh)",2.5,25 " Nitrogen Oxide (lbs/MWh)",0.9,38 " Carbon Dioxide (lbs/MWh)",1129,34

134

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "NERC Region(s)",,"NPCC" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",1782,49 " Electric Utilities",7,50 " Independent Power Producers & Combined Heat and Power",1775,37 "Net Generation (megawatthours)",7738719,47 " Electric Utilities",10827,47 " Independent Power Producers & Combined Heat and Power",7727892,33 "Emissions (thousand metric tons)" " Sulfur Dioxide","*",50 " Nitrogen Oxide",3,49 " Carbon Dioxide",3217,48 " Sulfur Dioxide (lbs/MWh)","*",50 " Nitrogen Oxide (lbs/MWh)",0.8,42 " Carbon Dioxide (lbs/MWh)",916,39

135

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "NERC Region(s)",,"--" "Primary Energy Source",,"Gas" "Net Summer Capacity (megawatts)",2067,48 " Electric Utilities",1889,39 " Independent Power Producers & Combined Heat and Power",178,51 "Net Generation (megawatthours)",6759576,48 " Electric Utilities",6205050,40 " Independent Power Producers & Combined Heat and Power",554526,49 "Emissions (thousand metric tons)" " Sulfur Dioxide",3,46 " Nitrogen Oxide",16,39 " Carbon Dioxide",4125,46 " Sulfur Dioxide (lbs/MWh)",1,41 " Nitrogen Oxide (lbs/MWh)",5.2,1 " Carbon Dioxide (lbs/MWh)",1345,23 "Total Retail Sales (megawatthours)",6247038,50

136

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",45575,4 " Electric Utilities",455,44 " Independent Power Producers & Combined Heat and Power",45120,2 "Net Generation (megawatthours)",229752306,2 " Electric Utilities",1086500,42 " Independent Power Producers & Combined Heat and Power",228665806,2 "Emissions (thousand metric tons)" " Sulfur Dioxide",387,3 " Nitrogen Oxide",136,2 " Carbon Dioxide",122830,3 " Sulfur Dioxide (lbs/MWh)",3.7,13 " Nitrogen Oxide (lbs/MWh)",1.3,27 " Carbon Dioxide (lbs/MWh)",1179,32

137

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "NERC Region(s)",,"MRO/WECC" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",5866,41 " Electric Utilities",2340,38 " Independent Power Producers & Combined Heat and Power",3526,27 "Net Generation (megawatthours)",29791181,41 " Electric Utilities",6271180,39 " Independent Power Producers & Combined Heat and Power",23520001,14 "Emissions (thousand metric tons)" " Sulfur Dioxide",22,35 " Nitrogen Oxide",21,35 " Carbon Dioxide",20370,35 " Sulfur Dioxide (lbs/MWh)",1.6,35 " Nitrogen Oxide (lbs/MWh)",1.6,22 " Carbon Dioxide (lbs/MWh)",1507,18

138

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "NERC Region(s)",,"MRO" "Primary Energy Source",,"Coal" "Net Summer Capacity (megawatts)",6188,40 " Electric Utilities",4912,34 " Independent Power Producers & Combined Heat and Power",1276,40 "Net Generation (megawatthours)",34739542,39 " Electric Utilities",31343796,32 " Independent Power Producers & Combined Heat and Power",3395746,41 "Emissions (thousand metric tons)" " Sulfur Dioxide",116,17 " Nitrogen Oxide",52,21 " Carbon Dioxide",31064,30 " Sulfur Dioxide (lbs/MWh)",7.3,3 " Nitrogen Oxide (lbs/MWh)",3.3,6 " Carbon Dioxide (lbs/MWh)",1971,6 "Total Retail Sales (megawatthours)",12956263,42

139

Energy Production Demonstrator for Megawatt Proton Beams  

E-Print Network [OSTI]

A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

Vitaly S. Pronskikh; Nikolai Mokhov; Igor Novitski; Sergey I. Tyutyunnikov

2014-07-16T23:59:59.000Z

140

Developing Mt. Hope: The megawatt line  

SciTech Connect (OSTI)

After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

Rodzianko, P.; Fisher, F.S.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

College Fights Energy Rate Hikes with 'Grid Positive' Plan | Department of  

Broader source: Energy.gov (indexed) [DOE]

College Fights Energy Rate Hikes with 'Grid Positive' Plan College Fights Energy Rate Hikes with 'Grid Positive' Plan College Fights Energy Rate Hikes with 'Grid Positive' Plan August 26, 2010 - 4:11pm Addthis Butte College's solar panels are helping it make more energy than it uses, providing it financial as well environmental benefits. | Photo courtesy of Butte College | Butte College's solar panels are helping it make more energy than it uses, providing it financial as well environmental benefits. | Photo courtesy of Butte College | Lorelei Laird Writer, Energy Empowers What does this mean for me? Community college campus will have 25,000 solar panels after latest installation and will generate 6,381 megawatt-hours of solar energy annually. $12.65 million in Clean Renewable Energy Bonds helped fund final 15,000 panels.

142

Fact Sheet: Sodium-Beta Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sodium-Beta Batteries Sodium-Beta Batteries Improving the performance and reducing the cost of sodium-beta batteries for large-scale energy storage Sodium-beta batteries (Na-beta batteries or NBBs) use a solid beta-alumina (ß˝-Al 2 O 3 ) electrolyte membrane that selectively allows sodium ion transport between a positive electrode (e.g., a metal halide) and a negative sodium electrode. NBBs typically operate at temperatures near 350˚C. They are increasingly used in renewable storage and utility applications due to their high round-trip efficiency, high energy densities, and energy storage capacities ranging from a few kilowatt-hours to multiple megawatt-hours. In fact, U.S. utilities

143

Solar Generation Has a Bright Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generation Has a Bright Future Generation Has a Bright Future Solar Generation Has a Bright Future September 12, 2012 - 3:06pm Addthis Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013. A growing solar industry presents a tremendous economic opportunity for the United States, and that is why the Energy Department's SunShot Initiative

144

CX-005992: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

92: Categorical Exclusion Determination 92: Categorical Exclusion Determination CX-005992: Categorical Exclusion Determination American Recovery and Reinvestment Act/State Energy Program - State of Louisiana Community Church Unitarian CX(s) Applied: B5.1 Date: 05/23/2011 Location(s): New Orleans, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Louisiana State Energy Office through the Louisiana Department of Natural Resources proposes to provide $51,213 of State Energy Program funds for the Community Church Unitarian Universalist at 316 38th Street in New Orleans, Louisiana to purchase and install a solar photovoltaic system on the church's roof. The system would provided 18.8 megawatt-hours of electrical generation per year. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

145

Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM)  

U.S. Energy Information Administration (EIA) Indexed Site

INDUSTRY REPORT (SHORT FORM) INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 2.01 Hours Page 1 Draft for Discussion only PURPOSE Form EIA-861S collects information on the status of selected electric power industry participants involved in the sale, and distribution of electric energy in the United States. The data collected on this form are used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS The Form EIA-861S is to be completed by all electric utilities with annual retail sales in the prior year of 100,000 megawatt-hours or less, with the following exceptions: 1. A respondent has retail sales of unbundled service; 2. A full set of data is required from the respondent to ensure that statistical estimates

146

SPPR Group Proposal  

Broader source: Energy.gov (indexed) [DOE]

Transmission Transmission Expansion in the West DOE Tribal Leader Energy Forum: Transmission and Clean Energy Development in the West February 7 - 8, 2012 Sheraton Hotel, Denver, Colorado Tim Meeks Western Area Power Administration Presentation Overview Overview of Western Area Power Admin. Western as a neighbor Common challenges Initiatives - what we're working on Current Projects On the Horizon Overview of Western 3 One of Four Dept. of Energy PMAs 4 Markets 10,479 MW from 57 Federal Hydropower Projects owned by BOR , Corps, and IB&WC to preference power entities 17,100 miles of high-voltage transmission line across 15-states About 100 tribal customers who receive around 1.2 million megawatt hours per year Tribes make up 10% of Western's core power customers

147

Exemption from Electric Generation Tax (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) Exemption from Electric Generation Tax (Connecticut) < Back Eligibility Commercial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Start Date 07/01/2011 Expiration Date 10/01/2013 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable energy facilities and customer-sited facilities are exempt from the tax. The tax and related

148

Document  

Broader source: Energy.gov (indexed) [DOE]

0 Federal Register 0 Federal Register / Vol. 74, No. 178 / Wednesday, September 16, 2009 / Notices River, in Cheshire County, New Hampshire. The proposed project would consist of: (1) The existing 160-foot-long, 16- foot-high Ashuelot Park Dam with 2- foot-high flashboards; (2) the existing 34-acre reservoir with 120 acre-feet of storage capacity; (3) a new powerhouse below the existing outlet works containing two generating units with a installed capacity of 240 kilowatts; (4) a new 150-foot-long tailrace; and (5) an approximately 500-foot-long transmission line. The project would have an estimated average annual generation of 1,000 megawatts-hours. Applicant Contact: Mr. John Maclean, City Manager, 3 Washington Street, Keene, NH 03431, phone (603) 357- 9804. FERC Contact: Michael Spencer, (202)

149

EA-1754: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment Final Environmental Assessment EA-1754: Final Environmental Assessment Public Service Company Of New Mexico Photovoltaic Plus Battery For Simultaneous Voltage Smoothing And Peak Shifting Project, Bernalillo County, New Mexico DOE prepared this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) in a cooperative agreement with the Public Service Company of New Mexico (PNM) as part of the Smart Grid Demonstrations Program. If PNM received the funding, the company would install a 2- to 4-megawatt-hour advanced absorbed valve-regulated lead acid battery, an access road, a parking lot, and a 3,000-foot underground electrical tie-in to the existing power distribution system (the proposed

150

CX-001575: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

75: Categorical Exclusion Determination 75: Categorical Exclusion Determination CX-001575: Categorical Exclusion Determination Modernization of Boulder Canyon Hydro Project CX(s) Applied: A9 Date: 03/30/2010 Location(s): Boulder, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This project will refurbish the existing Boulder Canyon hydroelectric facility with a new turbine, generator, and wiring. Without new equipment, operation of the outdated facility is expected to cease within 5 years or less. The facility could produce over 500,000 megawatt hours of electricity over the lifetime of the project using existing water storage and transmission facilities. There will be no new construction outside of the facility. The bridge over Boulder Creek that provides access to the

151

CX-001202: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

02: Categorical Exclusion Determination 02: Categorical Exclusion Determination CX-001202: Categorical Exclusion Determination Cushman North Fork Skokomish Powerhouse CX(s) Applied: A9 Date: 03/21/2010 Location(s): Tacoma, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This project will focus on the design and construction a new North Fork Skokomish Powerhouse, which will include an integral fish collection facility and fish handling and sorting device. The new powerhouse, which will produce about 23,500 megawatts hours of energy, increasing electrical generation capacity by 14 percent, requires design, engineering and construction. A fish transport system will be included as part of the design. Which will allow federally listed salmonids and trout that are swimming upstream to be trapped, sorted, and then released in the upper

152

Campo 2020 Vision  

Broader source: Energy.gov (indexed) [DOE]

Campo's Renewable Energy Campo's Renewable Energy * One of 12 Kumeyaay tribes * Over 350 tribal members * Approximately 64 miles from the City of San Diego in Eastern San Diego County, California * Located on the U.S.- Mexico border  50 MW Wind Project completed in 2005, online in 2006  Electricity production of over 175 thousand megawatt hours in 2010  Largest utility-scale wind farm operating in Indian Country  Increased opportunity created with state and federal incentives for renewable energy projects  Transmission availability 4  August 2009 - Begin installation of met towers  December 2009 - Tribal Economic Development Bond  October 2010 - DOE grant funds confirmed 5  Phase I  Up to 250 MW  Wind and Solar

153

Smart Meter Company Boosting Production, Workforce | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce September 30, 2010 - 10:53am Addthis Kevin Craft What does this mean for me? This South Carolina company is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours Smart meters provide detailed data on energy usage to both utilities and consumers and is a key component of the Smart Grid. In 2009, Itron Inc.'s manufacturing facility in West Union, South Carolina was the third largest industrial employer in Oconee County. Then, the company used a $5.2 million 48C Advanced Manufacturing Tax Credit awarded via the Recovery Act to re-equip the facility and hired 420 additional employees. "Improving our production capacity allowed us to hire more employees, and

154

Smart Meter Company Boosting Production, Workforce | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce Smart Meter Company Boosting Production, Workforce September 30, 2010 - 10:53am Addthis Kevin Craft What does this mean for me? This South Carolina company is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours Smart meters provide detailed data on energy usage to both utilities and consumers and is a key component of the Smart Grid. In 2009, Itron Inc.'s manufacturing facility in West Union, South Carolina was the third largest industrial employer in Oconee County. Then, the company used a $5.2 million 48C Advanced Manufacturing Tax Credit awarded via the Recovery Act to re-equip the facility and hired 420 additional employees. "Improving our production capacity allowed us to hire more employees, and

155

Utility rebates for ENERGY STAR appliances: Are they effective?  

Science Journals Connector (OSTI)

Abstract We estimate the impact of utility cash rebates on the market share of ENERGY STAR appliances by exploiting the variation in timing and size of rebates across US states. We find that a dollar increase in the population-weighted utility rebate raises the share of ENERGY STAR qualified clothes washers by 0.4%, but does not affect dishwasher and refrigerator shares. Using information on energy saved by an ENERGY STAR appliance and assuming a redemption rate of 40%, the cost per tonne of carbon saved is about $140 for the clothes washers rebate program. The corresponding cost of a megawatt hour saved, about $28, is lower than the estimated cost of building and operating an additional power plant and the average on-peak spot price. We conclude that the ENERGY STAR clothes washers rebate program is, on average, a cost-effective way for utilities to reduce electricity demand.

Souvik Datta; Sumeet Gulati

2014-01-01T23:59:59.000Z

156

Solar Trough Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00289  

SciTech Connect (OSTI)

New HCEs were installed on the hot sides of the thermal loops at SEGS VIII and IX from mid-2007 to mid-2008. Due to significant increases in plant performance, an interest in a further increase performance by installing new HCEs on the cold portions of the loop developed. Although it was assumed that the plant performance would increase, the exact amount was unknown. The objective of this project was to estimate the performance improvements with new HCEs installed on the cold sides of the loop, with performance being evaluated as potential increases in electrical power production (megawatt-hours). A comparison of performance prior to and post installation of new HCEs on the hot sides of the loops was done. For completeness, an estimate of performance losses - such as the optical efficiency, mirror reflectivity, and optical accuracy - was also included in this analysis. National Renewable Energy Laboratory's (NREL's) HCE Survey System was used to determine if the HCEs were hot or cold.

Gray, A.

2011-05-01T23:59:59.000Z

157

Water watch  

SciTech Connect (OSTI)

The Hydropower Generation Report provides generation figures for the largest hydropower producers in each of six regions in the US. The report compares, for each month, the amount of hydroelectricity generated (in thousands of megawatt-hours) by each producers in the last two years to the ten-year average for that month. This database is used to figure long-term generation averages and percent of averages. The producers regularly provide current generation data to update the database. This issue of [open quotes]Water Watch[close quotes] focuses on winter snow conditions across the US as of mid-January. In addition, the department provides an outlook of spring flood potential. The information presented is based on data from the US Geological Survey, the National Weather Service, and the Soil Conservation Service.

Not Available

1991-02-01T23:59:59.000Z

158

Status and Trends in the U.S. Voluntary Green Power Market (2013 Data)  

SciTech Connect (OSTI)

Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This report surveys utilities, competitive suppliers, renewable energy certificate (REC) marketers, and, for the first time, the community choice aggregation market. This report finds that the voluntary market totaled 62 million megawatt-hours in 2013. Approximately 5.4 million customers are purchasing green power. This report presents data and analysis on voluntary market sales and customer participation, products and premiums, green pricing marketing, and administrative expenses. The report also details trends in REC tracking systems, REC pricing in voluntary and compliance markets, community and crowd-funded solar, and interest in renewable energy by the information and communication technologies sector.

Heeter, J.; Belyeu, K.; Kuskova-Burns, K.

2014-11-01T23:59:59.000Z

159

Dear Speaker -  

Energy Savers [EERE]

Industrial Electricity Prices 2008 2012 USA 68MWh 66MWh Germany 130MWh 148MWh Japan 115MWh 194MWh France 104MWh 116MWh Source: OECD Electricity Statistics 2013...

160

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,83,83,83,800,1,2 6893,36894,36894,83,83,83,800,1,2 "Entergy",36894,36895,36895,93,93,93,800,1,2 "Entergy",36895,36896,36896,83,78.5,80.83,7200,9,4 "Entergy",36896,36899,36899,78,67,74.25,3200,4,5 "Entergy",36899,36900,36900,57,54,55.5,1600,2,4 "Entergy",36900,36901,36901,53,53,53,1600,1,2 "Entergy",36902,36903,36903,67.5,65,66.5,4000,5,3 "Entergy",36903,36906,36906,52.5,48,50.25,1600,2,3 "Entergy",36907,36908,36908,52,45,48.86,8800,11,4 "Entergy",36908,36909,36909,56,51,51.95,16800,21,6 "Entergy",36909,36910,36910,50,48.5,49.33,24000,30,7 "Entergy",36910,36913,36913,56.5,54,55.25,11200,13,7 "Entergy",36913,36914,36914,63,57,58.38,6400,8,3 "Entergy",36914,36915,36915,61.5,42,55.75,15200,19,9

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,180,158,161.65,26400,33,22 449,39450,39450,180,158,161.65,26400,33,22 "NEPOOL MH DA LMP",39450,39451,39451,123,108,114.27,36800,46,28 "NEPOOL MH DA LMP",39451,39454,39454,77,75.5,76.31,21600,26,17 "NEPOOL MH DA LMP",39454,39455,39455,68.25,66,67.1,41600,51,26 "NEPOOL MH DA LMP",39455,39456,39456,69.5,68,68.71,21600,27,18 "NEPOOL MH DA LMP",39456,39457,39457,81,74,75.75,30400,35,17 "NEPOOL MH DA LMP",39457,39458,39458,75,69.75,71.18,24800,31,19 "NEPOOL MH DA LMP",39458,39461,39461,80.5,77,79.38,17600,19,17 "NEPOOL MH DA LMP",39461,39462,39462,102,95,98.76,52000,64,24 "NEPOOL MH DA LMP",39462,39463,39463,90.5,87.5,88.59,34400,43,25 "NEPOOL MH DA LMP",39463,39464,39464,85,83.5,84.21,20800,26,14

162

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,43,42.5,42.75,5.17,1600,2,4 815,39818,39818,43,42.5,42.75,5.17,1600,2,4 "ERCOT-South",39818,39819,39819,40,39.5,39.88,-2.87,3200,4,3," " "ERCOT-South",39819,39820,39820,39,38,38.73,-1.15,8800,9,9 "ERCOT-South",39820,39821,39821,41.5,39,39.82,1.09,8800,11,9 "ERCOT-South",39821,39822,39822,38.75,37.5,38.03,-1.79,6400,8,10 "ERCOT-South",39822,39825,39825,43.5,43.5,43.5,5.47,800,1,2 "ERCOT-South",39825,39826,39826,55,50.5,52.95,9.45,8800,11,12,,," " "ERCOT-South",39826,39827,39827,45.5,43.5,44.44,-8.51,14400,18,18 "ERCOT-South",39827,39828,39828,45,44.25,44.68,0.24,12000,14,12 "ERCOT-South",39828,39829,39829,44,42.75,43.18,-1.5,8000,10,10 "ERCOT-South",39833,39834,39834,33,32.5,32.75,-10.43,9600,12,8

163

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.5,53.4,53.98,5.44,3200,4,7 54.5,53.4,53.98,5.44,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,47.25,48.27,-5.71,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53.5,54.75,6.48,4800,6,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",97,87,89.96,35.21,20800,18,16 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.25,51,53.71,-36.25,16800,19,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,46,46.33,-7.38,17600,22,17

164

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 Nepool MH Da Lmp ",39815,39818,39818,65.55,65,65.44,-5.89,12000,15,9 "Nepool MH Da Lmp",39818,39819,39819,67,65,66.22,0.78,39200,46,22 "Nepool MH Da Lmp ",39819,39820,39820,65,63.25,63.83,-2.39,20000,24,18 "Nepool MH Da Lmp ",39820,39821,39821,67.5,65.75,66.47,2.64,28000,33,16 "Nepool MH Da Lmp ",39821,39822,39822,78.5,76,77.31,10.84,21600,27,16 "Nepool MH Da Lmp ",39822,39825,39825,100,90,94.19,16.88,28800,35,19 "Nepool MH Da Lmp ",39825,39826,39826,81,72.75,74.76,-19.43,36000,44,24 "Nepool MH Da Lmp ",39826,39827,39827,101,98,99.83,25.07,16000,20,18 "Nepool MH Da Lmp",39827,39828,39828,130,117,120.32,20.49,40000,50,27 "Nepool MH Da Lmp ",39828,39829,39829,120,106,109.76,-10.56,72800,91,35

165

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 SP 15",39449,39450,39450,74.6,69.25,73.56,97200,234,36 "SP 15",39450,39451,39452,70,63,68.49,291200,275,37 "SP 15",39451,39454,39454,75,68,69.2,140000,326,39 "SP 15",39454,39455,39455,73.25,69,71.52,144800,329,37 "SP 15",39455,39456,39456,72.25,70.25,71.32,198000,425,35 "SP 15",39456,39457,39457,73.75,70.75,72.79,157600,351,37 "SP 15",39457,39458,39459,70.25,67.25,68.46,226400,268,33 "SP 15",39458,39461,39461,75,73.25,73.77,184000,366,38 "SP 15",39461,39462,39462,78.25,75,75.77,110800,235,34 "SP 15",39462,39463,39464,88,77.5,79.42,323200,351,36 "SP 15",39463,39465,39466,79,74.25,77.52,259200,302,36 "SP 15",39464,39468,39468,84.45,77,82.35,126400,287,36

166

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

54.55,54.05,54.37,1.9,8800,20,11 54.55,54.05,54.37,1.9,8800,20,11 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",53.25,52.75,53.09,-1.28,35200,64,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,51.25,51.51,-1.58,13600,28,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56.5,53.25,54.08,2.57,65600,71,17 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.15,50.8,51.01,-3.07,27600,53,19 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50.75,50,50.18,-0.83,23200,39,11

167

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,62,55,55.98,10400,13,10 084,39085,39085,62,55,55.98,10400,13,10 "NEPOOL MH DA LMP",39085,39086,39086,54.75,52.75,53.53,30400,38,20 "NEPOOL MH DA LMP",39086,39087,39087,56,55,55.35,24800,31,19 "NEPOOL MH DA LMP",39087,39090,39090,58,56.5,57.08,8000,10,12 "NEPOOL MH DA LMP",39090,39091,39091,58.75,57.25,57.86,34400,41,19 "NEPOOL MH DA LMP",39091,39092,39092,60.5,59,59.8,20800,25,19 "NEPOOL MH DA LMP",39092,39093,39093,65,63.5,64.04,13600,16,15 "NEPOOL MH DA LMP",39093,39094,39094,61.25,59.75,60.82,15200,19,14 "NEPOOL MH DA LMP",39094,39097,39097,62,59,60.95,16800,21,16 "NEPOOL MH DA LMP",39097,39098,39098,69.25,67,68.25,22400,28,15 "NEPOOL MH DA LMP",39098,39099,39099,89,84.5,86.33,34400,43,26

168

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

53.5,48,50.93,,13600,17,11 53.5,48,50.93,,13600,17,11 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,52.75,55,4.07,31200,39,15 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.5,49.5,50.38,-4.62,3200,4,4 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52,49.5,51.25,0.87,19200,24,12 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.75,45.25,45.8,-5.45,21600,27,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43,39.5,41.3,-4.5,10400,13,8

169

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 1246,41247,41247,28.5,26.5,27.76,-0.16,63200,141,25 "Mid Columbia Peak",41247,41248,41248,28.5,27,27.86,0.1,79200,187,26 "Mid Columbia Peak",41248,41249,41249,28,23.5,27.02,-0.84,76000,170,25 "Mid Columbia Peak",41249,41250,41251,23.25,21.25,22.44,-4.58,159200,191,23 "Mid Columbia Peak",41250,41253,41253,25.25,21.25,23.45,1.01,74800,176,25 "Mid Columbia Peak",41253,41254,41254,23.75,20.75,22.51,-0.94,92800,209,26 "Mid Columbia Peak",41254,41255,41255,24.5,23,23.84,1.33,100800,222,27 "Mid Columbia Peak",41255,41256,41256,28,25.5,26.88,3.04,80800,182,26 "Mid Columbia Peak",41256,41257,41258,27.75,26.5,27.13,0.25,152000,171,25 "Mid Columbia Peak",41257,41260,41260,25.75,23.25,24.43,-2.7,76000,180,25

170

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

38.75,37.25,37.95,-2.02,13600,17,14 38.75,37.25,37.95,-2.02,13600,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,40,42.39,4.44,10000,25,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,37.75,38.26,-4.13,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.25,37.25,38.46,0.2,7600,19,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,38,38.93,0.47,9200,23,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38.25,36.5,37.29,-1.64,13600,17,17

171

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,37.45,33.75,35.69,28800,36,19 623,37624,37624,37.45,33.75,35.69,28800,36,19 "PJM West",37624,37627,37627,48,47,47.58,28800,32,20 "PJM West",37627,37628,37628,50.5,48,49.53,33600,42,19 "PJM West",37628,37629,37629,47,44.25,45.39,35200,44,20 "PJM West",37629,37630,37630,39,37,37.73,27200,33,19 "PJM West",37630,37631,37631,43.5,41.75,42.44,25600,27,17 "PJM West",37631,37634,37634,64,56.5,58.31,20800,26,19 "PJM West",37634,37635,37635,56,54.8,55.52,19200,24,19 "PJM West",37635,37636,37636,56.5,54.9,55.51,28000,33,19 "PJM West",37636,37637,37637,53,50.25,51.89,32000,40,22 "PJM West",37637,37638,37638,54,52,52.63,30400,38,23 "PJM West",37638,37641,37641,48.25,47,47.48,26400,33,17

172

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,33.75,32.5,33.23,10400,13,12 258,37259,37259,33.75,32.5,33.23,10400,13,12 "NEPOOL",37259,37260,37260,36.25,35,35.98,24800,31,18 "NEPOOL",37260,37263,37263,34,33.25,33.66,8800,11,12 "NEPOOL",37263,37264,37264,34,33.5,33.67,10400,13,11 "NEPOOL",37264,37265,37265,32.6,31,32.04,9600,11,13 "NEPOOL",37265,37266,37266,29.5,28.7,29.1,10400,13,11 "NEPOOL",37266,37267,37267,29.25,28.25,28.75,12000,15,12 "NEPOOL",37267,37270,37270,31,30,30.24,16800,17,13 "NEPOOL",37270,37271,37271,30.5,29.75,30.09,30400,36,15 "NEPOOL",37271,37272,37272,29.5,28.65,28.98,23200,28,15 "NEPOOL",37272,37273,37273,30.4,29.8,30.02,32800,39,16 "NEPOOL",37273,37274,37274,30,29.1,29.37,11200,14,15 "NEPOOL",37274,37277,37277,30,29.25,29.72,6400,8,9

173

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,89,82.75,86.08,20.49,214400,242,55 182,40183,40183,89,82.75,86.08,20.49,214400,242,55 "PJM Wh Real Time Peak",40183,40184,40184,80.65,74.5,77.16,-8.92,270400,295,56 "PJM Wh Real Time Peak",40184,40185,40185,80.5,77.5,78.92,1.76,93600,111,47 "PJM Wh Real Time Peak",40185,40186,40186,86,78.25,80.64,1.72,278400,316,62 "PJM Wh Real Time Peak",40186,40189,40189,82.75,72,80.64,0,81600,98,36 "PJM Wh Real Time Peak",40189,40190,40190,73,65.75,67.86,-12.78,178400,205,50 "PJM Wh Real Time Peak",40190,40191,40191,55.25,53,53.89,-13.97,162400,180,50 "PJM Wh Real Time Peak",40191,40192,40192,49.75,48,48.84,-5.05,97600,109,45 "PJM Wh Real Time Peak",40192,40193,40193,46.25,43.5,44.65,-4.19,99200,117,46 "PJM Wh Real Time Peak",40193,40196,40196,46,44.95,45.38,0.73,59200,71,35

174

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 8721,38722,38722,57.5,57.5,57.5,-22.5,800,1,2 "ERCOT-South",38748,38749,38749,57,57,57,-0.5,800,1,2 "ERCOT-South",38751,38754,38754,59,59,59,2,1600,2,3 "ERCOT-South",38786,38789,38789,48,48,48,-11,800,1,2 "ERCOT-South",38803,38804,38804,52.5,50.5,51.06,3.06,6400,8,7 "ERCOT-South",38804,38805,38805,54.75,54.75,54.75,3.69,3200,2,3 "ERCOT-South",38805,38806,38806,55.25,53.5,54.21,-0.54,4800,6,5 "ERCOT-South",38806,38807,38807,58,58,58,3.79,800,1,2,,,,," " "ERCOT-South",38810,38811,38811,60,60,60,2,800,1,2 "ERCOT-South",38811,38812,38812,64,64,64,4,800,1,2 "ERCOT-South",38812,38813,38813,63,62.5,62.63,-1.37,3200,4,6 "ERCOT-South",38813,38814,38814,62,62,62,-0.63,800,1,2

175

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 546,40547,40547,51,47.5,48.71,-0.32,96800,116,39 "PJM Wh Real Time Peak",40547,40548,40548,49.25,47.45,48.14,-0.57,64000,67,40 "PJM Wh Real Time Peak",40548,40549,40549,53.5,51.5,52.27,4.13,55200,66,37 "PJM Wh Real Time Peak",40549,40550,40550,60.5,57,58.43,6.16,80000,93,39 "PJM Wh Real Time Peak",40550,40553,40553,63.5,57,60.43,2,105600,124,41 "PJM Wh Real Time Peak",40553,40554,40554,69.5,64.25,66.98,6.55,128800,145,44 "PJM Wh Real Time Peak",40554,40555,40555,72.25,62,67.54,0.56,158400,194,51 "PJM Wh Real Time Peak",40555,40556,40556,84,75,80.13,12.59,92800,116,46 "PJM Wh Real Time Peak",40556,40557,40557,89.5,80.5,84.09,3.96,108800,133,42 "PJM Wh Real Time Peak",40557,40560,40560,57.55,55,56.11,-27.98,88800,105,40

176

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 40182,40183,40183,52.5,51.5,51.85,0.9,67600,116,25 "SP-15 Gen DA LMP Peak",40183,40184,40184,51.75,50.5,51.01,-0.84,61600,115,25 "SP-15 Gen DA LMP Peak",40184,40185,40185,53,50.5,51.39,0.38,59600,115,24 "SP-15 Gen DA LMP Peak",40185,40186,40187,58.5,55,56.79,5.4,394400,381,29 "SP-15 Gen DA LMP Peak",40186,40189,40189,51.25,50.75,51,-5.79,59200,116,26 "SP-15 Gen DA LMP Peak",40189,40190,40190,50.25,49,49.8,-1.2,53600,102,25 "SP-15 Gen DA LMP Peak",40190,40191,40192,51.5,50.75,51.12,1.32,59200,61,19 "SP-15 Gen DA LMP Peak",40191,40193,40194,49,48.25,48.35,-2.77,77600,71,20 "SP-15 Gen DA LMP Peak",40192,40196,40196,50.5,50,50.3,1.95,38800,71,18 "SP-15 Gen DA LMP Peak",40193,40197,40197,51.35,50,50.93,0.63,66800,84,19

177

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43,43,43,4800,6,6 084,39085,39085,43,43,43,4800,6,6 "Entergy",39085,39086,39086,40,34,38.3,4000,5,6 "Entergy",39086,39087,39087,38,37,37.5,1600,2,2 "Entergy",39087,39090,39090,41,41,41,800,1,2 "Entergy",39090,39091,39091,49,46,48.14,5600,6,6 "Entergy",39091,39092,39092,48,48,48,2400,3,4 "Entergy",39092,39093,39093,49,47,48,1600,2,3 "Entergy",39093,39094,39094,45,44,44.5,1600,2,4 "Entergy",39094,39097,39097,51,47,49.33,2400,3,5 "Entergy",39097,39098,39098,58.5,53.5,56.06,6400,8,8 "Entergy",39098,39099,39099,62,56,58.97,7200,9,9 "Entergy",39099,39100,39100,54.5,53,53.6,4000,5,5 "Entergy",39100,39101,39101,50.75,50,50.15,4000,5,9 "Entergy",39101,39104,39104,55,53,54,2400,3,3

178

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,55.25,54,54.67,7.01,27200,29,18 546,40547,40547,55.25,54,54.67,7.01,27200,29,18 "Nepool MH DA LMP",40547,40548,40548,50,48.75,49.39,-5.28,14400,16,14 "Nepool MH DA LMP",40548,40549,40549,54.25,53,53.44,4.05,24800,31,23 "Nepool MH DA LMP",40549,40550,40550,55.5,53.25,54.05,0.61,84800,80,24 "Nepool MH DA LMP",40550,40553,40553,65.5,64.75,65.01,10.96,21600,25,18 "Nepool MH DA LMP",40553,40554,40554,71,68.5,69.33,4.32,15200,18,17 "Nepool MH DA LMP",40554,40555,40555,79,72,77.51,8.18,68800,85,29 "Nepool MH DA LMP",40555,40556,40556,100.5,88,94.96,17.45,40000,49,23 "Nepool MH DA LMP",40556,40557,40557,92.25,87,87.7,-7.26,25600,31,23 "Nepool MH DA LMP",40557,40560,40560,66,63.5,65.03,-22.67,28000,30,17

179

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,41,39,40.13,6.73,12000,14,13 355,38356,38356,41,39,40.13,6.73,12000,14,13 "PJM Wh Real Time Peak",38356,38357,38357,41,40,40.57,0.44,13600,15,15 "PJM Wh Real Time Peak",38357,38358,38358,44,42,43.23,2.66,30400,35,16 "PJM Wh Real Time Peak",38358,38359,38359,46.25,44,45.07,1.84,17600,22,12 "PJM Wh Real Time Peak",38359,38362,38362,39.5,38.75,39.17,-5.9,9600,12,11 "PJM Wh Real Time Peak",38362,38363,38363,45,41.5,43.31,4.14,26400,32,17 "PJM Wh Real Time Peak",38363,38364,38364,44,41.25,41.8,-1.51,16000,19,15 "PJM Wh Real Time Peak",38364,38365,38365,39.5,38.5,39.1,-2.7,10400,13,13 "PJM Wh Real Time Peak",38365,38366,38366,51.5,47,48.26,9.16,57600,58,17 "PJM Wh Real Time Peak",38366,38369,38369,65,63,63.48,15.22,23200,21,14

180

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

34.5,34.5,34.5,3.21,1600,2,3 34.5,34.5,34.5,3.21,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35.75,35.5,35.58,1.08,2400,3,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.5,36,36.25,0.67,4000,5,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36,36.13,-0.12,3200,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,43.5,43.75,7.62,3200,4,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.25,43.75,44.04,0.29,5600,7,8

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 0911,40912,40912,27,26.5,26.63,-2.76,6400,8,6 "ERCOT-South",40912,40913,40913,28,27.25,27.72,1.09,8000,9,7 "ERCOT-South",40913,40914,40914,25.75,25.75,25.75,-1.97,2400,3,4 "ERCOT-South",40914,40917,40917,27,27,27,1.25,1600,2,4 "ERCOT-South",40919,40920,40920,31,31,31,4,800,1,2 "ERCOT-South",40920,40921,40921,30.25,30.25,30.25,-0.75,800,1,2 "ERCOT-South",40925,40926,40926,25.5,25.5,25.5,-4.75,800,1,2 "ERCOT-South",40926,40927,40927,23.25,23.25,23.25,-2.25,800,1,2 "ERCOT-South",40931,40932,40932,24.5,24.5,24.5,1.25,800,1,2 "ERCOT-South",40932,40933,40933,26,25.75,25.96,1.46,4800,6,4 "ERCOT-South",40933,40934,40934,28,27,27.5,1.54,1600,2,4 "ERCOT-South",40934,40935,40935,29,28.75,28.88,1.38,1600,2,4

182

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

68.5,66,67.29,5.05,28400,71,21 68.5,66,67.29,5.05,28400,71,21 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.5,63.85,-3.44,27200,66,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,61.75,63.39,-0.46,80800,99,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,63.5,64.58,1.19,49200,107,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.75,64,64.98,0.4,32400,81,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65.25,62.25,63.26,-1.72,78400,96,25

183

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.75,63,64.97,4.97,29600,55,25 65.75,63,64.97,4.97,29600,55,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.25,59,61.4,-3.57,106400,109,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,59.25,60.22,-1.18,45600,102,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.5,61.75,62.26,2.04,40400,86,26 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",64.2,62,62.52,0.26,38400,75,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.45,62,63.19,0.67,45200,87,27

184

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 PJM-West Real Time Peak",41276,41277,41277,44,41.75,42.64,-6.4,60000,72,34 "PJM-West Real Time Peak",41277,41278,41278,37,36,36.53,-6.11,19200,23,23 "PJM-West Real Time Peak",41278,41281,41281,36.5,36,36.17,-0.36,41600,48,32 "PJM-West Real Time Peak",41281,41282,41282,33.05,32.5,32.61,-3.56,20800,26,18 "PJM-West Real Time Peak",41282,41283,41283,33.75,32.5,32.91,0.3,37600,43,30 "PJM-West Real Time Peak",41283,41284,41284,31,30.25,30.64,-2.27,26400,31,26 "PJM-West Real Time Peak",41284,41285,41285,29.9,29.25,29.66,-0.98,38400,26,23 "PJM-West Real Time Peak",41285,41288,41288,32.5,31.5,32.14,2.48,40000,50,28 "PJM-West Real Time Peak",41288,41289,41289,37.5,34.5,36.5,4.36,64800,74,35

185

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

182,40183,40183,100.5,95,97,19.88,33600,42,27 182,40183,40183,100.5,95,97,19.88,33600,42,27 "Nepool MH DA LMP",40183,40184,40184,95,90,92.96,-4.04,39200,49,25 "Nepool MH DA LMP",40184,40185,40185,94,83,86.45,-6.51,33600,42,30 "Nepool MH DA LMP",40185,40186,40186,90,81.5,83.19,-3.26,47200,53,27 "Nepool MH DA LMP",40186,40189,40189,91,88.75,89.88,6.69,42400,53,30 "Nepool MH DA LMP",40189,40190,40190,71,67.75,68.95,-20.93,78400,95,30 "Nepool MH DA LMP",40190,40191,40191,61.25,58.75,59.99,-8.96,52800,64,31 "Nepool MH DA LMP",40191,40192,40192,56.25,54.75,55.33,-4.66,71200,82,32 "Nepool MH DA LMP",40192,40193,40193,53.75,53,53.36,-1.97,44000,55,25 "Nepool MH DA LMP",40193,40196,40196,55.75,54.75,55.64,2.28,21600,25,12

186

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 Indiana Rt Peak",41246,41247,41247,31.5,31.5,31.5,-1.5,1600,2,3 "Indiana Rt Peak",41247,41248,41248,34,33.5,33.75,2.25,1600,2,3 "Indiana Rt Peak",41248,41249,41249,37.25,37,37.13,3.38,8000,10,9 "Indiana Rt Peak",41249,41250,41250,34.25,33.25,33.67,-3.46,2400,3,6 "Indiana Rt Peak",41250,41253,41253,38.25,37,37.5,3.83,12800,16,13 "Indiana Rt Peak",41253,41254,41254,37.75,37.5,37.63,0.13,1600,2,4 "Indiana Rt Peak",41254,41255,41255,34,34,34,-3.63,2400,3,4 "Indiana Rt Peak",41255,41256,41256,32.25,32,32.19,-1.81,3200,4,6 "Indiana Rt Peak",41256,41257,41257,31,31,31,-1.19,1600,2,3 "Indiana Rt Peak",41257,41260,41260,33,32,32.5,1.5,1600,2,4 "Indiana Rt Peak",41260,41261,41261,33.9,33.5,33.66,1.16,3200,4,7

187

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 40911,40912,40912,35.25,34,34.38,-13.52,6400,8,9 "Indiana",40912,40913,40913,31,30.45,30.73,-3.65,4800,6,7 "Indiana",40913,40914,40914,31,28.75,30.27,-0.46,20000,25,14 "Indiana",40917,40918,40918,29.05,29,29.03,-1.24,1600,2,4 "Indiana",40918,40919,40919,29.5,28.5,29.02,-0.01,5600,7,8 "Indiana",40919,40920,40920,32.25,30.75,31.59,2.57,6400,8,7 "Indiana",40920,40921,40921,35,33.25,33.92,2.33,30400,37,19 "Indiana",40921,40924,40924,29.5,29,29.25,-4.67,1600,2,4 "Indiana",40924,40925,40925,31.5,29.75,30.52,1.27,7200,9,8 "Indiana",40925,40926,40926,30.25,29.5,30,-0.52,3200,4,6 "Indiana",40926,40927,40927,33.75,32,32.61,2.61,13600,17,16 "Indiana",40927,40928,40928,33.5,32.5,33,0.39,9600,12,12

188

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

37.25,35.5,36.16,3.13,27200,25,16 37.25,35.5,36.16,3.13,27200,25,16 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",32,31,31.63,-4.53,12800,15,14 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",26.25,25.5,25.86,-5.77,7200,7,10 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.5,38.5,39.21,13.35,20000,24,13 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,45,46.51,7.3,27200,32,19 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,42,42.79,-3.72,39200,46,20

189

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

26,25.25,25.71,-1.15,6800,16,15 26,25.25,25.71,-1.15,6800,16,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",24,23.25,23.63,-2.08,14400,17,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",23.85,22,23.36,-0.27,8800,22,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.85,19.25,20.77,-2.59,10000,25,15 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.75,20,21.32,0.55,9600,23,14 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",21.25,19,20.42,-0.9,7200,16,14

190

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

40.5,40.35,40.43,2.67,3200,8,3 40.5,40.35,40.43,2.67,3200,8,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41,40.85,40.97,0.54,2000,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-4.72,3200,1,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.05,39,39.02,2.77,1200,2,2 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.25,36.25,36.25,-2.77,3200,2,3 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",36.75,36.5,36.63,0.38,1600,4,3

191

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,31,27.5,29.51,108000,101,28 258,37259,37259,31,27.5,29.51,108000,101,28 "PJM West",37259,37260,37260,28.25,26.95,27.38,107200,96,32 "PJM West",37260,37263,37263,26.7,26.25,26.45,102400,106,29 "PJM West",37263,37264,37264,26.25,25.45,25.75,87200,81,27 "PJM West",37264,37265,37265,24.85,24.2,24.45,53600,58,27 "PJM West",37265,37266,37266,23.6,22.5,23.05,88000,87,25 "PJM West",37266,37267,37267,23.05,22.75,22.91,72000,79,24 "PJM West",37267,37270,37270,25.1,24.55,24.88,75200,82,29 "PJM West",37270,37271,37271,23.65,22.6,23.44,47200,44,22 "PJM West",37271,37272,37272,23.05,22.85,22.95,42400,47,21 "PJM West",37272,37273,37273,23.6,23.1,23.33,68000,76,27 "PJM West",37273,37274,37274,23.8,23.3,23.47,72800,73,28

192

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

50.25,49,49.68,2.51,19200,46,20 50.25,49,49.68,2.51,19200,46,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.5,48.5,49.1,-0.58,18000,43,18 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49.25,47,48.32,-0.78,27200,63,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55,50.5,52.65,4.33,23200,29,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,46.5,47.18,-5.47,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.75,44.75,45.82,-1.36,13600,28,18

193

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

8,50.33,2.26,87200,193,30 8,50.33,2.26,87200,193,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.5,48.4,-1.93,70400,154,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,46.48,-1.92,62000,146,28 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",49,51.48,5,90400,108,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,45.53,-5.95,38800,94,28

194

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 1246,41247,41247,44.25,43.5,43.87,2.68,16400,29,14 "SP-15 Gen DA LMP Peak",41247,41248,41248,43,42,42.36,-1.51,36800,59,23 "SP-15 Gen DA LMP Peak",41248,41249,41249,40.25,39.75,40,-2.36,17200,24,11 "SP-15 Gen DA LMP Peak",41249,41250,41251,37,36.5,36.56,-3.44,31200,28,13 "SP-15 Gen DA LMP Peak",41250,41253,41253,41.25,40,40.84,4.28,12000,26,16 "SP-15 Gen DA LMP Peak",41253,41254,41254,39.5,38.5,39.08,-1.76,12400,26,15 "SP-15 Gen DA LMP Peak",41254,41255,41255,39.45,39,39.11,0.03,15600,26,13 "SP-15 Gen DA LMP Peak",41255,41256,41256,43.75,42,43.02,3.91,16000,32,20 "SP-15 Gen DA LMP Peak",41256,41257,41258,43,40.5,42.17,-0.85,38400,32,18 "SP-15 Gen DA LMP Peak",41257,41260,41260,42,41.5,41.62,-0.55,6400,10,11

195

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

7,49.6,0.49,22400,56,24 7,49.6,0.49,22400,56,24 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54,56.09,6.49,29200,73,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,60.07,3.98,28400,71,26 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",50,55.19,-4.88,32800,41,20 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,56.14,0.95,20800,52,22

196

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 084,39085,39085,43.25,43.25,43.25,-1.79,800,1,2 "ERCOT-South",39086,39087,39087,42.5,42.25,42.38,-0.87,1600,2,4 "ERCOT-South",39087,39090,39090,43.25,43.25,43.25,0.87,800,1,2 "ERCOT-South",39090,39091,39091,45,45,45,1.75,800,1,2 "ERCOT-South",39091,39092,39092,44.5,44.5,44.5,-0.5,800,1,2,,,," " "ERCOT-South",39099,39100,39100,62,62,62,17.5,3200,4,6 "ERCOT-South",39100,39101,39101,56.5,56,56.17,-5.83,2400,3,5 "ERCOT-South",39101,39104,39104,55,55,55,-1.17,800,1,2 "ERCOT-South",39104,39105,39105,57.25,57,57.08,2.08,2400,3,4 "ERCOT-South",39105,39106,39106,59,58,58.54,1.46,4800,6,5 "ERCOT-South",39106,39107,39107,58,57.75,57.81,-0.73,3200,4,5 "ERCOT-South",39107,39108,39108,54.5,54.5,54.5,-3.31,800,1,2

197

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

720,38721,38721,69,68,68.6,1.54,74400,63,23 720,38721,38721,69,68,68.6,1.54,74400,63,23 "PJM Wh Real Time Peak",38721,38722,38722,74.25,69,70.77,2.17,68000,68,33 "PJM Wh Real Time Peak",38722,38723,38723,77.75,73.5,76.91,6.14,61600,70,35 "PJM Wh Real Time Peak",38723,38726,38726,74,69,70.06,-6.85,55200,57,22 "PJM Wh Real Time Peak",38726,38727,38727,63,61.75,62.52,-7.54,60800,72,29 "PJM Wh Real Time Peak",38727,38728,38728,55,51,53.51,-9.01,68800,55,30 "PJM Wh Real Time Peak",38728,38729,38729,50.5,49,49.37,-4.14,56000,55,25 "PJM Wh Real Time Peak",38729,38730,38730,50.6,49.5,50.17,0.8,54400,55,25 "PJM Wh Real Time Peak",38730,38733,38733,63.5,59,60.85,10.68,36800,37,23 "PJM Wh Real Time Peak",38733,38734,38734,65,64,64.63,3.78,12000,10,13

198

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,74,72,73,1600,2,4 449,39450,39450,74,72,73,1600,2,4 "Entergy",39450,39451,39451,64,64,64,800,1,2 "Entergy",39451,39454,39454,47.5,46.5,47,2400,3,3 "Entergy",39454,39455,39455,41.5,41,41.17,2400,3,3 "Entergy",39455,39456,39456,43,43,43,800,1,2 "Entergy",39456,39457,39457,52,49,50.33,2400,3,5 "Entergy",39457,39458,39458,49,49,49,800,1,2 "Entergy",39458,39461,39461,67,67,67,800,1,2 "Entergy",39461,39462,39462,73,73,73,800,1,2 "Entergy",39462,39463,39463,69,68,68.33,2400,3,5 "Entergy",39463,39464,39464,70,64,68,2400,3,3 "Entergy",39464,39465,39465,65,65,65,1600,2,2 "Entergy",39465,39468,39468,79,75,76.67,2400,3,5 "Entergy",39468,39469,39469,74,73,73.7,4000,5,8

199

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

8720,38721,38721,51,50,50.625,3200,4,4 8720,38721,38721,51,50,50.625,3200,4,4 "Entergy",38721,38722,38722,56.5,53.5,55.3,4000,5,7 "Entergy",38722,38723,38723,60,60,60,5600,6,5 "Entergy",38723,38726,38726,59,58,58.5,1600,2,3 "Entergy",38726,38727,38727,55.5,53,54.1,4000,5,5 "Entergy",38727,38728,38728,53.5,52,53.0938,6400,8,9 "Entergy",38728,38729,38729,49,46,47.6667,9600,11,8 "Entergy",38729,38730,38730,49,47.5,48.0417,4800,6,7 "Entergy",38730,38733,38733,54.25,54.25,54.25,800,1,2 "Entergy",38733,38734,38734,53.75,53.75,53.75,800,1,2 "Entergy",38734,38735,38735,62,58,60.1,4000,5,6 "Entergy",38735,38736,38736,60,58,58.875,4800,4,5 "Entergy",38736,38737,38737,55,50,53.1944,7200,9,8

200

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

623,37624,37624,32.5,29,30.16,20800,26,20 623,37624,37624,32.5,29,30.16,20800,26,20 "Entergy",37624,37627,37627,36.75,34.75,35.54,28800,27,18 "Entergy",37627,37628,37628,38,35.5,36.31,45600,53,26 "Entergy",37628,37629,37629,35,31.25,33.69,26400,33,21 "Entergy",37629,37630,37630,33.55,32.75,33.19,22400,26,20 "Entergy",37630,37631,37631,37.75,34.5,35.51,36000,45,24 "Entergy",37631,37634,37634,43.75,38.25,41.62,36800,46,20 "Entergy",37634,37635,37635,42.5,38,40.72,17600,22,18 "Entergy",37635,37636,37636,43,42,42.61,16800,21,17 "Entergy",37636,37637,37637,43,41.25,42.02,12000,15,15 "Entergy",37637,37638,37638,50,44.15,45.85,8800,10,13 "Entergy",37638,37641,37641,41,39.25,40.1,31200,29,16 "Entergy",37641,37642,37642,41.75,38,40.09,25600,27,15

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.75,40,42.24,2.81,10000,25,19 43.75,40,42.24,2.81,10000,25,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40,38.75,39.35,-2.89,12400,31,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,41.5,43.54,4.19,16000,38,20 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,42.25,43.09,-0.45,13600,34,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,40,40.64,-2.45,20000,25,16 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,41,41.35,0.71,14000,34,17

202

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6894,36895,36895,74.5,74,74.25,1600,2,3 6894,36895,36895,74.5,74,74.25,1600,2,3 "NEPOOL",36899,36900,36900,83,81,82,1600,2,3 "NEPOOL",36900,36901,36901,89,88,88.67,2400,3,3 "NEPOOL",36901,36902,36902,77.5,73,75.25,1600,2,3 "NEPOOL",36902,36903,36903,75.75,75.75,75.75,800,1,2 "NEPOOL",36903,36906,36906,75,74,74.5,2400,3,3 "NEPOOL",36906,36907,36907,80,76.5,77.75,3200,4,3 "NEPOOL",36907,36908,36908,79.5,76,78.38,3200,4,4 "NEPOOL",36908,36909,36909,75.5,74.5,75,3200,3,4 "NEPOOL",36909,36910,36910,71.75,70.75,71.25,1600,2,3 "NEPOOL",36910,36913,36913,74.75,74,74.4,4000,5,3 "NEPOOL",36914,36915,36915,67.5,66.5,67,2400,3,3 "NEPOOL",36915,36916,36916,67,65.75,66.33,2400,3,2 "NEPOOL",36916,36917,36917,65,61.25,63.38,3200,4,3

203

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,47,48.2,3.37,9600,24,17 1,47,48.2,3.37,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,53,55.36,7.17,9600,24,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.2,55,57.22,1.85,9200,23,17 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.25,49,50.04,-7.18,8400,21,19 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,43.5,44.24,-5.8,26400,28,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,50,51.46,7.22,7600,19,15

204

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

48,45.75,46.49,-0.96,30000,63,25 48,45.75,46.49,-0.96,30000,63,25 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.5,45,46.75,0.26,31600,79,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51,45,45.83,-0.92,40000,50,24 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",51.25,47.75,48.43,2.6,26000,51,22 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.75,49.25,50.5,2.07,27200,68,23 "Palo Verde","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",52.5,51.5,52.02,1.52,46400,55,20

205

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62,66.21,-0.74,44400,109,30 62,66.21,-0.74,44400,109,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60,64.12,-2.09,45200,113,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,60.9,-3.22,99200,123,29 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,63.2,2.3,50400,114,31 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.98,-0.22,48800,122,31

206

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43.25,42,42.63,4.13,1600,2,4 43.25,42,42.63,4.13,1600,2,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.65,42.65,42.65,0.02,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.25,44,44.86,2.21,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,45.75,46.08,1.22,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45,45,45,-1.08,4000,4,4 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.75,44.75,44.75,-0.25,1600,2,4

207

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

355,38356,38356,56.85,56.25,56.7,6400,7,7 355,38356,38356,56.85,56.25,56.7,6400,7,7 "NEPOOL MH DA LMP",38356,38357,38357,55.25,55,55.0833,2400,3,3 "NEPOOL MH DA LMP",38357,38358,38358,59,59,59,800,1,2 "NEPOOL MH DA LMP",38358,38359,38359,57.5,57,57.25,2400,3,5 "NEPOOL MH DA LMP",38359,38362,38362,55.5,55.5,55.5,3200,4,6 "NEPOOL MH DA LMP",38362,38363,38363,58.75,58,58.575,9600,11,10 "NEPOOL MH DA LMP",38363,38364,38364,57.75,57.5,57.625,1600,2,4 "NEPOOL MH DA LMP",38364,38365,38365,55.75,55.25,55.4688,12800,15,11 "NEPOOL MH DA LMP",38365,38366,38366,58.5,58.25,58.4583,4800,5,6 "NEPOOL MH DA LMP",38366,38369,38369,92,85,88.7143,5600,7,8 "NEPOOL MH DA LMP",38369,38370,38370,97.5,97,97.1667,2400,3,5

208

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

22.6,23.25,-1.53,6400,14,16 22.6,23.25,-1.53,6400,14,16 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18.25,18.97,-4.28,6400,8,9 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,19.32,0.35,5600,14,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",17,17.24,-2.08,7200,12,10 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",18,18.61,1.38,7200,17,17

209

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,38.5,38,38.29,10400,13,11 988,37991,37991,38.5,38,38.29,10400,13,11 "Entergy",37991,37992,37992,56,50.5,51.79,15200,19,13 "Entergy",37992,37993,37993,60,56,58.95,12000,15,9 "Entergy",37993,37994,37994,55,51,52.44,16800,21,14 "Entergy",37994,37995,37995,43,40.5,41.28,7200,9,9 "Entergy",37995,37998,37998,45,39,40.86,5600,7,8 "Entergy",37998,37999,37999,39.5,38,38.42,8000,10,7 "Entergy",37999,38000,38000,39,36,37.48,10400,12,9 "Entergy",38000,38001,38001,40.25,38,38.66,14400,17,10 "Entergy",38001,38002,38002,39,36.25,36.98,10400,12,9 "Entergy",38002,38005,38005,39,37,37.44,13600,12,9 "Entergy",38005,38006,38006,55,48,52.64,5600,7,10 "Entergy",38006,38007,38007,54,47,50.58,12000,15,11

210

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

65.25,63,64.48,0.53,9600,12,15 65.25,63,64.48,0.53,9600,12,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59,57,57.68,-6.8,20000,23,13 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58,57,57.45,-0.23,8800,9,9 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57,55.75,56.53,-0.92,8000,10,12 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",57.5,56,56.46,-0.07,10400,13,10 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",59.25,56.75,58.09,1.63,20000,25,17

211

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

7988,37991,37991,62,62,62,800,1,2 7988,37991,37991,62,62,62,800,1,2 "NEPOOL MH DA LMP",37991,37992,37992,70,69,69.5,1600,2,2 "NEPOOL MH DA LMP",37992,37993,37993,75.25,72,73.81,3200,4,6 "NEPOOL MH DA LMP",37993,37994,37994,81,76,78.3,8000,10,11 "NEPOOL MH DA LMP",37994,37995,37995,85.75,81.5,84.24,12800,16,12 "NEPOOL MH DA LMP",37998,37999,37999,77,72.5,74.12,6400,8,9 "NEPOOL MH DA LMP",37999,38000,38000,120,92,104.81,16800,21,11 "NEPOOL MH DA LMP",38000,38001,38001,375,270,311.75,6400,8,8 "NEPOOL MH DA LMP",38001,38002,38002,175,170,171,4000,5,5 "NEPOOL MH DA LMP",38005,38006,38006,90,84,86.78,7200,9,7 "NEPOOL MH DA LMP",38006,38007,38007,94,81.5,87.42,10400,13,13 "NEPOOL MH DA LMP",38007,38008,38008,76,72,74.69,6400,8,8

212

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

31.9,30.75,31.02,,14000,34,10 31.9,30.75,31.02,,14000,34,10 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.85,28,28.3,-2.72,52000,59,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",31.5,31,31.22,2.92,20000,41,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",34.25,33.4,33.8,2.58,22000,47,13 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",30,29.75,29.9,-3.9,52800,54,16 "NP15","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",28.25,27.85,27.95,-1.95,48000,57,11

213

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

59.05,59,59.03,2.03,1600,2,3 59.05,59,59.03,2.03,1600,2,3 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63,63,63,3.97,800,1,2 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.5,60,61,-2,2400,3,6 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",63.75,63,63.32,2.32,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",56,55,55.5,-7.82,3200,4,5 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",55.5,55.5,55.5,0,800,1,2

214

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 815,39818,39818,58.5,55.25,56.28,5.13,40000,45,27 "PJM Wh Real Time Peak",39818,39819,39819,60.25,57.75,58.92,2.64,109600,119,41 "PJM Wh Real Time Peak",39819,39820,39820,58,55,56.66,-2.26,49600,60,29 "PJM Wh Real Time Peak",39820,39821,39821,55.55,55,55.21,-1.45,48000,56,34 "PJM Wh Real Time Peak",39821,39822,39822,63,60.75,61.9,6.69,38400,46,28 "PJM Wh Real Time Peak",39822,39825,39825,69,66,67.63,5.73,62400,74,37 "PJM Wh Real Time Peak",39825,39826,39826,66.5,61,64.03,-3.6,91200,107,40 "PJM Wh Real Time Peak",39826,39827,39827,85.5,80,82.91,18.88,103200,124,50 "PJM Wh Real Time Peak",39827,39828,39828,100,88,93.22,10.31,110400,135,51 "PJM Wh Real Time Peak",39828,39829,39829,110,93,98.58,5.36,77600,93,37

215

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

988,37991,37991,43.25,36,38.11,35200,40,16 988,37991,37991,43.25,36,38.11,35200,40,16 "PJM West",37991,37992,37992,53.5,50,51.99,33600,41,24 "PJM West",37992,37993,37993,70,66.25,67.48,34400,40,25 "PJM West",37993,37994,37994,62,59.65,60.58,36000,41,19 "PJM West",37994,37995,37995,56.75,53,54.66,32800,39,23 "PJM West",37995,37998,37998,53.75,51.25,52.44,40000,47,25 "PJM West",37998,37999,37999,54,52.55,53.14,37600,47,24 "PJM West",37999,38000,38000,65.25,61.5,63.18,30400,37,20 "PJM West",38000,38001,38001,88,77,82.58,50400,57,28 "PJM West",38001,38002,38002,90,77,80.76,31200,37,20 "PJM West",38002,38005,38005,53.25,52.75,53.03,30400,38,18 "PJM West",38005,38006,38006,70,67,68.64,36000,45,24

216

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

150,150,,400,1,2 150,150,,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",180,180,30,2400,3,4 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",310,310,130,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",350,350,40,400,1,2 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",165,165,-185,800,1,2

217

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 1246,41247,41247,27.5,27.5,27.5,0.17,800,1,2 "Entergy Peak",41247,41248,41248,28.5,28.5,28.5,1,800,1,2 "Entergy Peak",41248,41249,41249,30,30,30,1.5,800,1,2 "Entergy Peak",41250,41253,41253,30,29,29.5,-0.5,1600,2,3 "Entergy Peak",41253,41254,41254,30,29.75,29.88,0.38,1600,2,2 "Entergy Peak",41254,41255,41255,29.75,29.75,29.75,-0.13,800,1,2 "Entergy Peak",41269,41270,41270,32,32,32,2.25,1600,2,2 "Entergy Peak",41355,41358,41358,38.5,38.5,38.5,6.5,800,1,2 "Entergy Peak",41367,41368,41368,35,35,35,-3.5,800,1,2 "Entergy Peak",41425,41428,41428,37,37,37,2,800,1,2 "Entergy Peak",41436,41437,41437,42,42,42,5,800,1,2 "Entergy Peak",41446,41449,41449,41,41,41,-1,800,1,2

218

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

32.5,33.04,-3.33,15200,19,19 32.5,33.04,-3.33,15200,19,19 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,37.32,4.28,7600,19,18 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",35,35.46,-1.86,9600,24,22 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",37,38.66,3.2,14800,36,27 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.75,40.34,1.69,9200,23,22

219

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 0911,40912,40912,27,26.5,26.83,-2.17,8800,11,6 "ERCOT Houston",40912,40913,40913,28.3,28,28.18,1.35,4800,6,7 "ERCOT Houston",40913,40914,40914,26.35,26.2,26.29,-1.89,3200,4,6 "ERCOT Houston",40914,40917,40917,27.25,27,27.13,0.84,8000,10,5 "ERCOT Houston",40917,40918,40918,27.75,27.5,27.58,0.45,2400,3,3 "ERCOT Houston",40918,40919,40919,27.5,27.5,27.5,-0.08,1600,2,2 "ERCOT Houston",40919,40920,40920,31.5,31,31.33,3.83,2400,3,4 "ERCOT Houston",40920,40921,40921,31,30.25,30.5,-0.83,2400,2,4 "ERCOT Houston",40925,40926,40926,26,25.75,25.96,-4.54,5600,7,4 "ERCOT Houston",40926,40927,40927,23.75,23.75,23.75,-2.21,2400,3,5 "ERCOT Houston",40928,40931,40931,22.15,22.15,22.15,-1.6,800,1,2

220

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

258,37259,37259,26,22.95,24.08,51200,64,19 258,37259,37259,26,22.95,24.08,51200,64,19 "Entergy",37259,37260,37260,28.25,24.5,26.09,38400,47,17 "Entergy",37260,37263,37263,22.5,17,20.72,34400,43,16 "Entergy",37263,37264,37264,25,19,20.17,19200,24,15 "Entergy",37264,37265,37265,20,19,19.55,44000,54,19 "Entergy",37265,37266,37266,23,18.75,19.31,50400,62,18 "Entergy",37266,37267,37267,19,15,18.21,45600,56,18 "Entergy",37267,37270,37270,18.85,17.4,18.21,65600,81,17 "Entergy",37270,37271,37271,21.75,18.2,19.01,24800,28,18 "Entergy",37271,37272,37272,22.35,18.95,20.98,31200,38,16 "Entergy",37272,37273,37273,22,19,21.2,49600,62,22 "Entergy",37273,37274,37274,22.5,19.5,20.93,46400,55,20 "Entergy",37274,37277,37277,19.75,18.75,19.26,36000,45,18

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total Cost Per MwH for all common large scale power generation...  

Open Energy Info (EERE)

out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

222

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 SP-15 Gen DA LMP Peak",39904,39905,39905,30.85,30,30.44,"na",69200,129,16 "SP-15 Gen DA LMP Peak",39905,39906,39907,28.7,27.5,28.03,-2.41,119200,103,17 "SP-15 Gen DA LMP Peak",39906,39909,39909,31.5,30.25,30.5,2.47,43200,89,17 "SP-15 Gen DA LMP Peak",39909,39910,39910,33.3,32.45,32.83,2.33,40800,80,20 "SP-15 Gen DA LMP Peak",39910,39911,39912,29,28,28.69,-4.14,116000,117,22 "SP-15 Gen DA LMP Peak",39911,39913,39914,27.25,26.55,26.88,-1.81,96800,110,21 "SP-15 Gen DA LMP Peak",39912,39916,39916,28.5,27.5,28.01,1.13,58000,119,19 "SP-15 Gen DA LMP Peak",39916,39917,39917,26.65,25,26.27,-1.74,26400,51,17 "SP-15 Gen DA LMP Peak",39917,39918,39918,28.25,27.7,27.97,1.7,55600,101,20

223

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

43,39.05,41.9,4.15,5600,7,8 43,39.05,41.9,4.15,5600,7,8 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",40.5,38.5,39.53,-2.37,3200,4,7 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39.25,38.25,38.9,-0.63,13600,17,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",41.5,39,40,1.1,10400,13,11 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,37.75,38.3,-1.7,12000,14,15 "ERCOT Houston","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44.5,43,43.4,5.1,4000,5,5

224

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

62.5,65.15,3.64,62800,150,34 62.5,65.15,3.64,62800,150,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",54.25,61.54,-3.61,153600,172,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",60.5,62.02,0.48,81200,188,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",61.75,62.73,0.71,69600,168,34 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62.75,63.47,0.74,74400,170,34

225

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1,45.5,-0.2,22800,57,25 1,45.5,-0.2,22800,57,25 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",43.5,45.44,-0.06,96000,198,32 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.25,43.27,-2.17,89600,210,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",39,42.7,-0.57,118400,261,35 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",42.5,43.86,1.16,169600,196,33

226

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 40182,40183,40183,60.5,60.5,60.5,7.5,800,1,2 "Entergy Peak",40183,40184,40184,62.25,62.25,62.25,1.75,800,1,2 "Entergy Peak",40189,40190,40190,63.5,60.75,62.42,0.17,2400,3,3 "Entergy Peak",40190,40191,40191,46,45,45.5,-16.92,1600,2,2 "Entergy Peak",40196,40197,40197,40,40,40,-5.5,800,1,2 "Entergy Peak",40197,40198,40198,40,40,40,0,800,1,2 "Entergy Peak",40198,40199,40199,38,38,38,-2,800,1,2 "Entergy Peak",40199,40200,40200,38,38,38,0,800,1,2 "Entergy Peak",40204,40205,40205,47,47,47,9,800,1,2 "Entergy Peak",40205,40206,40206,45,45,45,-2,800,1,2 "Entergy Peak",40206,40207,40207,48,48,48,3,800,1,2 "Entergy Peak",40210,40211,40211,43,43,43,-5,800,1,2

227

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

449,39450,39450,131,114,125.81,37.67,95200,116,49 449,39450,39450,131,114,125.81,37.67,95200,116,49 "PJM Wh Real Time Peak",39450,39451,39451,106,99,102.43,-23.38,78400,96,39 "PJM Wh Real Time Peak",39451,39454,39454,54,52.5,53.44,-48.99,65600,74,34 "PJM Wh Real Time Peak",39454,39455,39455,45,41,42.69,-10.75,87200,98,48 "PJM Wh Real Time Peak",39455,39456,39456,47.5,45,46.31,3.62,47200,57,36 "PJM Wh Real Time Peak",39456,39457,39457,59.5,54.25,57.53,11.22,35200,44,34 "PJM Wh Real Time Peak",39457,39458,39458,51,46.25,48.3,-9.23,72800,88,51 "PJM Wh Real Time Peak",39458,39461,39461,76.5,70,74.88,26.58,103200,121,42 "PJM Wh Real Time Peak",39461,39462,39462,80,75.5,77.94,3.06,109600,127,40 "PJM Wh Real Time Peak",39462,39463,39463,72,68,70.47,-7.47,78400,95,35

228

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

911,40912,40912,56,52,53.84,-11.87,161600,191,55 911,40912,40912,56,52,53.84,-11.87,161600,191,55 "PJM Wh Real Time Peak",40912,40913,40913,39,38,38.7,-15.14,45600,54,30 "PJM Wh Real Time Peak",40913,40914,40914,33.25,33,33.05,-5.65,42400,53,33 "PJM Wh Real Time Peak",40914,40917,40917,37.25,36.5,36.8,3.75,43200,51,34 "PJM Wh Real Time Peak",40917,40918,40918,36,35.25,35.53,-1.27,48000,57,31 "PJM Wh Real Time Peak",40918,40919,40919,35,34.2,34.6,-0.93,32000,40,28 "PJM Wh Real Time Peak",40919,40920,40920,35.5,35,35.14,0.54,43200,48,27 "PJM Wh Real Time Peak",40920,40921,40921,40.75,38.6,39.44,4.3,108000,111,39 "PJM Wh Real Time Peak",40921,40924,40924,43.5,41.6,42.69,3.25,61600,74,39 "PJM Wh Real Time Peak",40924,40925,40925,35.25,34.5,34.68,-8.01,36000,44,23

229

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 Da LMP Peak",41246,41247,41247,48,45.75,47.16,-7.85,40000,48,21 "Nepool MH Da LMP Peak",41247,41248,41248,58.5,55,57.81,10.65,26400,32,21 "Nepool MH Da LMP Peak",41248,41249,41249,79.75,75,76.49,18.68,32800,39,18 "Nepool MH Da LMP Peak",41249,41250,41250,65,50.5,51.47,-25.02,35200,42,23 "Nepool MH Da LMP Peak",41250,41253,41253,47,45.5,46.48,-4.99,12800,16,14 "Nepool MH Da LMP Peak",41253,41254,41254,50,46,47.3,0.82,38400,44,22 "Nepool MH Da LMP Peak",41254,41255,41255,70,57,59.54,12.24,39200,49,19 "Nepool MH Da LMP Peak",41255,41256,41256,50,48.25,48.97,-10.57,53600,59,29 "Nepool MH Da LMP Peak",41256,41257,41257,39.25,38.5,38.98,-9.99,11200,14,10 "Nepool MH Da LMP Peak",41257,41260,41260,45,45,45,6.02,3200,4,6

230

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

82,75,79.66,6.43,30400,38,26 82,75,79.66,6.43,30400,38,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",62,58,60.11,-19.55,24000,30,22 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.05,43.75,44.81,-15.3,24000,28,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",38,36,36.89,-7.92,35200,39,17 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",44,41.5,42.84,5.95,32000,39,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.44,3.6,22400,28,20

231

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

46,48.6,-4.22,46000,115,33 46,48.6,-4.22,46000,115,33 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.21,0.61,51600,120,30 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",45.75,46.71,-2.5,123200,150,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",46.5,49.35,2.64,63600,151,36 "Mid Columbia Peak","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",47.3,49.44,0.09,65600,163,34

232

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

39815,39818,39818,42,39,41,4.5,2400,3,4 39815,39818,39818,42,39,41,4.5,2400,3,4 "Entergy Peak",39818,39819,39819,44.5,44.5,44.5,3.5,800,1,2 "Entergy Peak",39819,39820,39820,44.5,44,44.25,-0.25,1600,2,4 "Entergy Peak",39820,39821,39821,46,45,45.5,1.25,2400,3,6 "Entergy Peak",39821,39822,39822,45,45,45,-0.5,800,1,2 "Entergy Peak",39822,39825,39825,45,40,42.5,-2.5,1600,2,3 "Entergy Peak",39825,39826,39826,48,48,48,5.5,1600,2,3 "Entergy Peak",39827,39828,39828,55,53,54,6,1600,2,4 "Entergy Peak",39828,39829,39829,56,53,54.33,0.33,2400,3,5 "Entergy Peak",39832,39833,39833,42.5,42.5,42.5,-11.83,800,1,2 "Entergy Peak",39833,39834,39834,43,42,42.5,0,1600,2,4 "Entergy Peak",39836,39839,39839,40,38,39,-3.5,1600,2,3

233

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

1246,41247,41247,30,30,30,-2.63,1600,2,2 1246,41247,41247,30,30,30,-2.63,1600,2,2 "ERCOT Houston",41250,41253,41253,33,33,33,3,800,1,2 "ERCOT Houston",41260,41261,41261,27,26.9,26.98,-6.02,4000,5,4 "ERCOT Houston",41263,41264,41264,28.5,28.25,28.33,1.35,2400,3,4 "ERCOT Houston",41270,41271,41271,26.5,26.5,26.5,-1.83,800,1,2 "ERCOT Houston",41288,41289,41289,34.25,34,34.13,7.63,1600,2,3 "ERCOT Houston",41289,41290,41290,33.85,33.75,33.78,-0.35,2400,3,4 "ERCOT Houston",41338,41339,41339,34.75,34.25,34.58,0.8,2400,3,3 "ERCOT Houston",41372,41373,41373,42.75,42.75,42.75,8.17,800,1,2 "ERCOT Houston",41381,41382,41382,35.55,35.55,35.55,-7.2,800,1,2 "ERCOT Houston",41386,41387,41387,37.5,37.5,37.5,1.95,800,1,2

234

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

60.75,57.5,59.33,7.47,34400,42,23 60.75,57.5,59.33,7.47,34400,42,23 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,56.62,-2.71,36800,45,25 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",65,62.25,63.61,6.99,76000,86,34 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",66.5,60,63.84,0.23,43200,52,26 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",58.5,55,57.1,-6.74,36000,41,21 "Indiana","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel",48,44,46.02,-11.08,33600,42,27

235

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

546,40547,40547,37,37,37,0,800,1,2 546,40547,40547,37,37,37,0,800,1,2 "Entergy Peak",40547,40548,40548,36,36,36,-1,800,1,2 "Entergy Peak",40548,40549,40549,33.75,33.75,33.75,-2.25,1600,2,2 "Entergy Peak",40550,40553,40553,42,42,42,8.25,800,1,2 "Entergy Peak",40555,40556,40556,52.75,49,50.88,8.88,1600,2,3 "Entergy Peak",40562,40563,40563,38.5,38,38.1,-12.78,4000,5,4 "Entergy Peak",40563,40564,40564,39,39,39,0.9,800,1,2 "Entergy Peak",40567,40568,40568,39,39,39,0,800,1,2 "Entergy Peak",40568,40569,40569,38,38,38,-1,800,1,2 "Entergy Peak",40571,40574,40574,36,36,36,-2,800,1,2 "Entergy Peak",40574,40575,40575,39.5,39.5,39.5,3.5,800,1,2 "Entergy Peak",40575,40576,40576,37,36.5,36.75,-2.75,1600,2,2

236

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Change","Daily Volume MWh","Number of Trades","Number of Counterparties"  

U.S. Energy Information Administration (EIA) Indexed Site

DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 DA LMP",40911,40912,40912,92,84.75,87.16,-14.07,46400,56,29 "Nepool MH DA LMP",40912,40913,40913,49,46,47.55,-39.61,78400,77,24 "Nepool MH DA LMP",40913,40914,40914,39.75,39.25,39.57,-7.98,12000,15,10 "Nepool MH DA LMP",40914,40917,40917,39,38,38.39,-1.18,8800,11,9 "Nepool MH DA LMP",40917,40918,40918,38.25,38,38.14,-0.25,8000,9,11 "Nepool MH DA LMP",40918,40919,40919,41.5,39.9,40.88,2.74,70400,83,25 "Nepool MH DA LMP",40919,40920,40920,37.25,36.75,36.83,-4.05,20000,23,16 "Nepool MH DA LMP",40920,40921,40921,44,43.5,43.73,6.9,11200,11,12 "Nepool MH DA LMP",40921,40924,40924,67,65.5,66.35,22.62,16800,21,15 "Nepool MH DA LMP",40924,40925,40925,50.75,50,50.24,-16.11,11200,14,12

237

"Price Hub","Trade Date","Delivery Start Date","Delivery End Date","High Price $/MWh","Low Price $/MWh","Wtd Avg Price $/MWh","Daily Volume MWh","Number of Trades","Number of Companies"  

U.S. Energy Information Administration (EIA) Indexed Site

6893,36894,36894,65.5,64.5,65,1600,2,2 6893,36894,36894,65.5,64.5,65,1600,2,2 "PJM West",36894,36895,36895,63,59.5,61.25,3200,4,2 "PJM West",36895,36896,36896,60,58.5,59.12,4800,6,4 "PJM West",36899,36900,36900,59.5,59.5,59.5,800,1,2 "PJM West",36900,36901,36901,58,55.5,56.61,5600,7,6 "PJM West",36901,36902,36902,50.5,49,49.75,3200,4,4 "PJM West",36902,36903,36903,47,46,46.33,4800,6,3 "PJM West",36903,36906,36906,45.5,45,45.12,3200,4,6 "PJM West",36906,36907,36907,46,42,44.21,5600,7,6 "PJM West",36907,36908,36908,42.5,42,42.4,4000,4,7 "PJM West",36908,36909,36909,41,39,39.56,7200,7,6 "PJM West",36909,36910,36910,39.5,39,39.25,2400,3,5 "PJM West",36910,36913,36913,51,50,50.43,5600,5,6

238

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

239

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

240

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

242

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

243

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

244

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

245

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

246

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

247

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

248

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

249

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

250

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

251

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

252

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

253

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

254

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

255

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

256

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

257

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

258

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

259

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

260

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

262

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

263

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

264

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

265

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

266

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

267

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

268

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

269

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

270

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

271

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

272

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

273

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

274

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

275

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

276

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

277

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

278

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

279

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

280

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

282

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

283

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

284

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

285

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

286

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

287

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

288

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

289

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

290

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

291

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

292

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

293

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

294

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

295

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

296

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

297

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

298

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

299

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

300

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

302

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

303

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

304

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

305

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

306

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

307

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

308

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

309

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

310

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

311

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

312

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

313

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

314

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

315

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

316

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

317

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

318

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

319

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

320

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

322

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

323

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

324

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

325

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

326

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

327

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

328

10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2  

Broader source: Energy.gov [DOE]

This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

329

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

September 2007. 5. "Hywind the Worlds First Full-scaleOffshore/Hywind/Pages/HywindPuttingWindPowerToTheTest. aspx4 Figure 1.3: Hywind concept floating wind turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

330

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

331

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

332

LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT...  

U.S. Energy Information Administration (EIA) Indexed Site

1,"Bowling Green City of",2056,1999,"TVA",,788853509,167559,0,0,36812315 999999,"Bowling Green City of",2056,1999,,,0,0,0,0,0 1,"Bozrah Light & Power Co",2089,1999,"CT Municipal...

333

LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT...  

U.S. Energy Information Administration (EIA) Indexed Site

Service","NF",123991,0,0,3566208,3566208 438,"Bonneville Power Admin",1738,1999,"Williams Energy Service","OT",0,0,0,2621,2621 999999,"Bonneville Power Admin",1738,1999,,,78575192,...

334

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

for floating turbines [4]. ..15 Figure 3.1: Floating turbine degrees of freedom [the motion of a 5 MW floating turbine subjected to ocean

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

335

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network [OSTI]

lead acid absorption solar photo- storage batteries chillerMWh) adopted solar thermal (MW) adopted heat storage (MWh)MWh) adopted solar thermal (MW) adopted heat storage (MWh)

Stadler, Michael

2010-01-01T23:59:59.000Z

336

Philadelphia Navy Yard: UESC Project  

Broader source: Energy.gov (indexed) [DOE]

Navy Yard Navy Yard UESC project with PGW ESCO Perspective Presented by Christopher Abbuehl Constellation Energy Integrated Energy Company * Generation - 12,000+ megawatts of owned generating capacity (fossil, nuclear &renewable ) * Electric Commodity - 62 million MWH peak load served to retail power customers (2010) Trusted supplier to 2/3 of the Fortune 100 * Gas Commodity - 334 million mmBTUs of natural gas delivered in open retail markets (2010) * Owns Baltimore Gas and Electric ESCO Services * More than 25 years of comprehensive energy projects through performance contracting. * Over 4,000 Energy Savings Projects implemented for large governmental, institutional, and private sector customers Constellation Energy Key Facts 2 * Established: 1816 *

337

SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II  

SciTech Connect (OSTI)

This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

Collaboration/ University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

2014-01-01T23:59:59.000Z

338

Health physics considerations in 131I production at a one megawatt TRIGA reactor  

E-Print Network [OSTI]

neutron irradiation of an enriched target of tellurium dioxide and tellurium trioxide. A 500 g sample of this mixture was studied for placemencjn location A-5 of thzTeactor core ehavmg a thermal neutron flux of 1. 0 x 10" n cm' s '. Calculations.... 3. Neutron activation of tellurium involves the capture of a neutron and the emission of prompt gamma rays. Production of "'I by irradiation of ' Te is depicted in Fig. 4 (Constant 1970). Yield of "'I is proportional to the enrichment of '"Te...

Flora, Jason Todd

1993-01-01T23:59:59.000Z

339

Progress Toward Megawatt Class Superconducting Generators which Operate at Greater than 20 Kelvin  

Science Journals Connector (OSTI)

Recent advances in conductor development have enabled short lengths of Ag/BSCCO tape to carry current in excess of 6.5104 A/cm2 at 2T and 20K. While prereacted long lengths of conductor are not yet able to provi...

C. E. Oberly; C. Joshi; A. J. Rodenbush; S. J. Young

1994-01-01T23:59:59.000Z

340

Application of industrial heat pumps Proven applications in 2012 for Megawatt+  

E-Print Network [OSTI]

food and the environment High-quality, reliable and energy efficient HVAC solutions for every type it work?Source and Need: How does it work?Source and Need: How does it work? High temperature (high as Hot Water Boiler 99°C 61.5 Bar Ammonia #12;9 Factors affecting economic viabilityFactors affecting

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network [OSTI]

operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."...

Good, R.

342

Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam  

SciTech Connect (OSTI)

Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotational temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.

Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2012-12-15T23:59:59.000Z

343

A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION  

SciTech Connect (OSTI)

This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

W.A. REASS; J.D. DOSS; R.F. GRIBBLE

2001-06-01T23:59:59.000Z

344

Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power  

SciTech Connect (OSTI)

The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

2014-08-01T23:59:59.000Z

345

A multi-reactor configuration for multi-megawatt spacecraft power supplies  

E-Print Network [OSTI]

, and various conceptual designs were explored. One design was selected for further refinement and analysis. Various configurations of power units with differing number, size, and conversion technology were involved. Optimum reactor/payload separation... distances were found to run from 60 to 80m. It was found that reliability studies utilizing spare power conversion units and reactors do not necessarily result in the most mass effective means of insuring mission success for NEP vehicles. By increasing...

George, Jeffrey Alan

2012-06-07T23:59:59.000Z

346

Design and analysis of megawatt-class heat-pipe reactor concepts  

SciTech Connect (OSTI)

There is growing interest in finding an alternative to diesel-powered systems at locations removed from a reliable electrical grid. One promising option is a 1- to 10-MW mobile reactor system, that could provide robust, self-contained, and long-term ({>=} 5 years) power in any environment. The reactor and required infrastructure could be transported to any location within one or a few standard transport containers. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than 'traditional' reactors that rely on pumped coolant through the core. This paper examines a heat pipe reactor that is fabricated and shipped as six identical core segments. Each core segment includes a heat-pipe-to-gas heat exchanger that is coupled to the condenser end of the heat pipes. The reference power conversion system is a CO{sub 2}-Brayton system. The segments by themselves are deeply subcritical during transport, and they would be locked into an operating configuration (with control inserted) at the final destination. Two design options are considered: a near-term option and an advanced option. The near-term option is a 5-MWt concept that uses uranium-dioxide fuel, a stainless-steel structure, and potassium as the heat-pipe working fluid. The advanced option is a 15-MWt concept that uses uranium-nitride fuel, a molybdenum/TZM structure, and sodium as the heat-pipe working fluid. The materials used in the advanced option allow for higher temperatures and power densities, and enhanced power throughput in the heat pipes. Higher powers can be obtained from both concepts by increasing the core size and the number of heat pipes. (authors)

Poston, D.; Kapernick, R. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

347

Advantages and applications of megawatt-sized heat-pipe reactors  

SciTech Connect (OSTI)

Recently, worldwide interest in nuclear energy has focused on small reactors (10 to 300 MWe) to address emerging energy needs in remote locations. These designs are new to varying degrees but share similar approaches and common weaknesses with regard to primary heat rejection that differ little from reactor designs of the late 1950's. Here, an innovative concept, heat-pipe reactors, is discussed. The concept is unique in its simplicity and potential for safe, affordable, and reliable energy. Given the potential for reactors to meet worldwide energy needs and the pivotal role of heat rejection in overall reactor safety, the potential societal impact of this type of innovation is substantial. Heat-pipe-cooled, fast-spectrum reactors have been proposed for government applications requiring a robust, reliable, remotely controlled system with capacity much less than 1 MWe; however, they have not been designed for power ranges greater than 1 MWe. Los Alamos National Laboratory has initiated a study to design heat-pipe-cooled, fast-fission reactors and to generate a point design of a > 10-MWe-class machine suitable for next-generation compact reactors at remote locations. (authors)

McClure, P. R.; Reid, R. S.; Dixon, D. D. [Los Alamos National Laboratory, MS C921, Los Alamos, NM 87545 (United States)

2012-07-01T23:59:59.000Z

348

An electron source with a multiarc plasma emitter for obtaining submillisecond pulsed megawatt beams  

Science Journals Connector (OSTI)

An electron source with a plasma emitter based on an...2...area. The arc-current amplitude for each cathode amounts to 100300 A. Under the action of a constant accelerating voltage applied between the plasma emi...

M. S. Vorobev; S. A. Gamermaister; V. N. Devyatkov

2014-06-01T23:59:59.000Z

349

Price hub","Trade date","Delivery start date","Delivery  

U.S. Energy Information Administration (EIA) Indexed Site

MWh","Low price MWh","Wtd avg price MWh","Change","Daily volume MWh","Number of trades","Number of counterparties" "ERCOT North 345KV Peak","applicationvnd.ms-excel","applicat...

350

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network [OSTI]

Biomass, Biogas, Landfill gas, Sewage gas, Geothermal)/MWh; Sewage and landfill gas: 45-60 /MWh; Wind OnshoreMWh; Landfill-, Sewage- & Landfill gas: 64.5-74.4 /MWh; PV:

Haas, Reinhard

2008-01-01T23:59:59.000Z

351

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Unit of Measure Equivalents 5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours Terawatthours (TWh) 1,000,000,000,000 (One Trillion) Watthours Gigawatthours 1,000,000 (One Million) Kilowatthours Thousand Gigawatthours 1,000,000,000(One Billion Kilowatthours U.S. Dollar 1,000 (One Thousand) Mills U.S. Cent 10 (Ten) Mills Barrel of Oil 42 Gallons

352

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

1,1,"AK",213,"Alaska Electric Light&Power Co",9111,782,58,0,9951,0,0,0,0,0,0,0,0,0,0 1,1,"AK",213,"Alaska Electric Light&Power Co",9111,782,58,0,9951,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",1651,"Bethel Utilities Corp",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2011,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,2974,264,2,0,3240,4461,786,114,0,5361 2011,1,"AK",10433,"Kodiak Electric Assn Inc",4574,976,101,0,5651,,,,,0,,,,,0 2011,1,"AK",11824,"Matanuska Electric Assn Inc",47365,3590,,,50955,,,,,0,,,,,0 2011,1,"AK",19558,"Homer Electric Assn Inc",24337,2482,0,0,26819,31,4,0,0,35,1.29,0.01,0,0,1.31 2011,1,"AL",195,"Alabama Power Co",,,,,,1227639,172463,5845,0,1405947,1548871.17,1047712.67,1805530.5,0,4402114.33

353

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,"AK",213,"Alaska Electric Light&Power Co",10105,925,62,0,11092,0,0,0,0,0,0,0,0,0,0 2,1,"AK",213,"Alaska Electric Light&Power Co",10105,925,62,0,11092,0,0,0,0,0,0,0,0,0,0 2012,1,"AK",3522,"Chugach Electric Assn Inc",77639,,,,77639,,,,,0,,,,,0 2012,1,"AK",7353,"Golden Valley Elec Assn Inc",37816,6372,488,,44676,,,,,0,,,,,0 2012,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,3262,312,0,0,3574,5074.17,742.17,0,0,5816.34 2012,1,"AK",10433,"Kodiak Electric Assn Inc",4574,1018,100,,5692,,,,,0,,,,,0 2012,1,"AK",10451,"Kotzebue Electric Assn Inc",915,6,,,921,,,,,0,,,,,0 2012,1,"AK",11824,"Matanuska Electric Assn Inc",47769,3513,0,0,51282,,,,,0,,,,,0 2012,1,"AK",19558,"Homer Electric Assn Inc",24988,2579,,,27567,41,5,,,46,2.05,0.06,,,2.1

354

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

3,1,"AK",213,"Alaska Electric Light&Power Co",10789,1063,76,0,11928,0,0,0,0,0,0,0,0,0,0 3,1,"AK",213,"Alaska Electric Light&Power Co",10789,1063,76,0,11928,0,0,0,0,0,0,0,0,0,0 2013,1,"AK",3522,"Chugach Electric Assn Inc",69377,8707,,,78084,,,,,0,,,,,0 2013,1,"AK",7353,"Golden Valley Elec Assn Inc",38017,6318,503,,44838,,,,,0,,,,,0 2013,1,"AK",10210,"Ketchikan Public Utilities",0,0,0,0,0,3437,350,0,0,3787,5208.03,789.27,0,0,5997.31 2013,1,"AK",10433,"Kodiak Electric Assn Inc",4585,1038,105,0,5728,,,,,0,,,,,0 2013,1,"AK",10451,"Kotzebue Electric Assn Inc",915,6,0,0,921,,,,,0,,,,,0 2013,1,"AK",11824,"Matanuska Electric Assn Inc",47829,3616,0,0,51445,0,0,0,0,0,0,0,0,0,0 2013,1,"AK",19558,"Homer Electric Assn Inc",25421,2737,,,28158,46,6,,,52,2.37,0.87,,,3.24

355

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection  

E-Print Network [OSTI]

0.20-2.33 (0.80) 0.35-4.09 (1.78) BPA 0.10-0.85 (0.35) 0.14-of Load M [ PSE i _ SCL 339%! BpA 032? a 042? } TPWR; 285 MWh 275 MWh 3,200 MWh BPA 68 MW 788 MW 97 MWh 478 MWh

Olsen, Daniel J.

2014-01-01T23:59:59.000Z

356

Presented at Solar World Congress, Beijing, September 18 22 2007 PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT  

E-Print Network [OSTI]

MWe of installed capacity in California, operating continuously for 20 years. After a long periodPresented at Solar World Congress, Beijing, September 18 ­ 22 2007 PARABOLOIDAL DISH SOLAR ,AUSTRALIA AUSTRALIA keith.lovegrove@anu.edu.au ABSTRACT Large scale solar thermal electric power generation

357

Update report on the performance of 400 megawatt and larger nuclear and coal-fired generating units. Performance through 1977  

SciTech Connect (OSTI)

Forty-seven nuclear generating units and 125 coal-fired generating plants that have had at least one full year of commercial operation are covered in this report. Their performances are evaluated using the capacity factor, availability factor, equivalent availability, and forced outage rate. The data are arranged by state and utility. (DLC)

None

1981-01-01T23:59:59.000Z

358

Experience in integrated control of the multi-megawatt electron cyclotron heating system on the TCV tokamak: the first decade  

Science Journals Connector (OSTI)

The ECH system on the TCV tokamak consists of six gyrotrons (82.6?GHz/0.5?MW/2?s) used for X2 and electron Bernstein wave (EBW) ECH/ECCD with individual low-field-side launchers. Three additional gyrotrons (118?GHz/0.5?MW/2?s) are used for X3-ECH in a top-launch configuration to provide central heating of high-density plasmas, at nearly 3 times the cutoff density of X2. The X2 subsystem was installed by the end of 1999 and the X3 subsystem by the end of 2003, making 4.2?MW available for experiments. The installation work provides data related to testing, repair and reliability of a complex ECH system designed to allow the highest possible degree of automation, integration and flexibility in the experimental programme. Its effective integration into the TCV plant is evidenced by the fact that the mean time between shots when operating with ECH increases roughly in proportion to the increase in the resources required to prepare, monitor and record the experimental sessions. Each of the X2 and X3 subsystems is routinely individually operated by one person. This gives confidence that with proper layout, planning and integration, the EC systems of future fusion experiments, such as ITER, can routinely provide reliable actuators, on demand.

T.P. Goodman; the TCV team

2008-01-01T23:59:59.000Z

359

The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S.  

E-Print Network [OSTI]

results and an assumed avoided cost of $45/MWh. Same as Loweffective potential at an avoided cost of $85/MWh Savings

Barbose, Galen L

2011-01-01T23:59:59.000Z

360

20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

costs would be generally less than 10% wholesale cost of energy Date Study Wind Capacity Penetration (%) Regulation Cost (MWh) Load Following Cost (MWh) Unit Commit- ment Cost...

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Essays on energy and environmental policy  

E-Print Network [OSTI]

from the EPA dataset and hourly generation from nuclear,dataset. Table 1.7: Average Generation Avoided by Fuel ? Gas (MWh) ? Coal (MWh) ? Nuclear (

Novan, Kevin Michael

2012-01-01T23:59:59.000Z

362

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...  

Open Energy Info (EERE)

Commercial Sales (MWh) 128656 Commercial Consumers 48190 Industrial Revenue (Thousand ) 871 Industrial Sales (MWh) 14240 Industrial Consumers 485 Other Revenue (Thousand ) 70...

363

Energy Transmission and Infrastructure  

SciTech Connect (OSTI)

The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

Mathison, Jane

2012-12-31T23:59:59.000Z

364

Pacific Northwest Power Supply Adequacy Assessment  

E-Print Network [OSTI]

, about 1,200 megawatts of new wind capacity and about 250 megawatts of small hydro and hydro upgrades

365

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection  

E-Print Network [OSTI]

0.12-2.47 (0.72) 0.37-3.96 (1.81) SRP 0.14-2.72 (0.72) 0.19-294 MWh 102 MWh 3,323 MWh SRP 196 MW 2,183 MW 58 MWh 1,357SPP Sierra Pacific Power Company SRP Salt River Project TEP

Olsen, Daniel J.

2014-01-01T23:59:59.000Z

366

Technical Report NREL/TP-6A2-48258  

E-Print Network [OSTI]

Emissions Trading Scheme (European Union) EU European Union GHG greenhouse gas ITC investment tax credit MWh

367

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ind power is one of the fastest-growing forms of ind power is one of the fastest-growing forms of new power generation in the United States. Industry growth in 2007 was an astounding 45%. New wind power installations constituted 35% of all new electric power installations. This growth is the result of many drivers, includ- ing increased economic competitiveness and favorable state policies such as Renewable Portfolio Standards. However, new wind power installations provide more than cost-competitive electricity. Wind power brings economic development to rural regions, reduces greenhouse gas production by displacing fossil fuels, and reduces water consumption in the electric power sector. The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers

368

PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,  

E-Print Network [OSTI]

based solar thermal plants using steam is being investigated using the transient simulation package of distributed dish, central generation solar thermal power systems using either direct steam generation-dish, steam-based, solar thermal power station in White Cliffs (Kaneff 1991). A parallel line

369

Data:B96e93c6-25be-455c-af39-df480a1fa45c | Open Energy Information  

Open Energy Info (EERE)

e93c6-25be-455c-af39-df480a1fa45c e93c6-25be-455c-af39-df480a1fa45c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/12/21 End date if known: Rate name: INTERRUPTIBLE SUPPLY RATE D8 Primary Service (Less than 24 kV)-Full Service Sector: Commercial Description: Available to customers desiring separately metered service at primary voltage who contract for a specified quantity of demonstrated interruptible load of not less than 50 kilowatts at a single location. Contracted interruptible capacity on this rate is limited to 150 megawatts. HOURS OF INTERRUPTION: All electric power delivered hereunder shall be subject to curtailment on order of the Company. Customers may be ordered to interrupt only when the Company finds it necessary to do so either to maintain system integrity or when the existence of such loads shall lead to a capacity deficiency by the utility. A System Integrity Interruption Order may be given by the Company when the failure to interrupt will contribute to the implementation of the rules for emergency electrical procedures under Section C3. A Capacity Deficiency Interruption Order may be given by the Company when available system generation is insufficient to meet anticipated system load. NOTICE OF INTERRUPTION: The customer shall be provided, whenever possible, notice in advance of probable interruption and the estimated duration of the interruption. NON-INTERRUPTION FEE: Customers who do not interrupt within one hour following notice of a capacity deficiency interruption order shall be billed at the cost of replacement energy plus 0.576¢ per kWh during the time of interruption plus the applicable voltage level charge, but not less than the normal D8 rate. Voltage level charges for service other than transmission voltage are: 0.15¢ per kWh at the distribution level. 0.05¢ per kWh at the subtransmission level. NON-INTERRUPTION PENALTY: A customer who does not interrupt within one hour following a system integrity interruption order shall be billed at the rate of $10 per kW for the highest 30-minute kW demand created during the interruption period for all usage above the customer's firm demand, in addition to the prescribed monthly rate. In addition, the interruptible contract capacity of a customer who does not interrupt within one hour following notice shall be immediately reduced by the amount by which the customer failed to interrupt, unless the customer demonstrates that failure to interrupt was beyond its control. Substation Credit: Available to customers where service at sub-transmission voltage level (24 to 41.6 kV) or higher is required, who provide the on-site substation including all necessary transforming, controlling and protective equipment. A credit of $.30 per kW of maximum demand shall be applied to the maximum demand charge. A credit of .040¢ per kWh shall be applied to the energy charge where the service is metered on the primary side of the transformer.

370

Data:095a28cc-3ba7-488f-8e0d-80d411cc579e | Open Energy Information  

Open Energy Info (EERE)

cc-3ba7-488f-8e0d-80d411cc579e cc-3ba7-488f-8e0d-80d411cc579e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/10/29 End date if known: Rate name: INTERRUPTIBLE SUPPLY RATE D8 TRANSMISSION (120 kV and ABOVE)-Retail Service Sector: Commercial Description: Available to customers desiring separately metered service at primary voltage who contract for a specified quantity of demonstrated interruptible load of not less than 50 kilowatts at a single location. Contracted interruptible capacity on this rate is limited to 150 megawatts. HOURS OF INTERRUPTION: All electric power delivered hereunder shall be subject to curtailment on order of the Company. Customers may be ordered to interrupt only when the Company finds it necessary to do so either to maintain system integrity or when the existence of such loads shall lead to a capacity deficiency by the utility. A System Integrity Interruption Order may be given by the Company when the failure to interrupt will contribute to the implementation of the rules for emergency electrical procedures under Section C3. A Capacity Deficiency Interruption Order may be given by the Company when available system generation is insufficient to meet anticipated system load. NOTICE OF INTERRUPTION: The customer shall be provided, whenever possible, notice in advance of probable interruption and the estimated duration of the interruption. NON-INTERRUPTION FEE: Customers who do not interrupt within one hour following notice of a capacity deficiency interruption order shall be billed at the cost of replacement energy plus 0.576¢ per kWh during the time of interruption plus the applicable voltage level charge, but not less than the normal D8 rate. Voltage level charges for service other than transmission voltage are: 0.15¢ per kWh at the distribution level. 0.05¢ per kWh at the subtransmission level. NON-INTERRUPTION PENALTY: A customer who does not interrupt within one hour following a system integrity interruption order shall be billed at the rate of $10 per kW for the highest 30-minute kW demand created during the interruption period for all usage above the customer's firm demand, in addition to the prescribed monthly rate. In addition, the interruptible contract capacity of a customer who does not interrupt within one hour following notice shall be immediately reduced by the amount by which the customer failed to interrupt, unless the customer demonstrates that failure to interrupt was beyond its control. Substation Credit: Available to customers where service at sub-transmission voltage level (24 to 41.6 kV) or higher is required, who provide the on-site substation including all necessary transforming, controlling and protective equipment. A credit of $.30 per kW of maximum demand shall be applied to the maximum demand charge. A credit of .040¢ per kWh shall be applied to the energy charge where the service is metered on the primary side of the transformer.

371

Data:D62a4173-2f47-4b52-833c-3ca8d76b3030 | Open Energy Information  

Open Energy Info (EERE)

73-2f47-4b52-833c-3ca8d76b3030 73-2f47-4b52-833c-3ca8d76b3030 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/12/21 End date if known: Rate name: INTERRUPTIBLE SUPPLY RATE D8 TRANSMISSION (120 kV and ABOVE)-Full Service Sector: Commercial Description: Voltage discount $0.0015 included. Available to customers desiring separately metered service at primary voltage who contract for a specified quantity of demonstrated interruptible load of not less than 50 kilowatts at a single location. Contracted interruptible capacity on this rate is limited to 150 megawatts. HOURS OF INTERRUPTION: All electric power delivered hereunder shall be subject to curtailment on order of the Company. Customers may be ordered to interrupt only when the Company finds it necessary to do so either to maintain system integrity or when the existence of such loads shall lead to a capacity deficiency by the utility. A System Integrity Interruption Order may be given by the Company when the failure to interrupt will contribute to the implementation of the rules for emergency electrical procedures under Section C3. A Capacity Deficiency Interruption Order may be given by the Company when available system generation is insufficient to meet anticipated system load. NOTICE OF INTERRUPTION: The customer shall be provided, whenever possible, notice in advance of probable interruption and the estimated duration of the interruption. NON-INTERRUPTION FEE: Customers who do not interrupt within one hour following notice of a capacity deficiency interruption order shall be billed at the cost of replacement energy plus 0.576¢ per kWh during the time of interruption plus the applicable voltage level charge, but not less than the normal D8 rate. Voltage level charges for service other than transmission voltage are: 0.15¢ per kWh at the distribution level. 0.05¢ per kWh at the subtransmission level. NON-INTERRUPTION PENALTY: A customer who does not interrupt within one hour following a system integrity interruption order shall be billed at the rate of $10 per kW for the highest 30-minute kW demand created during the interruption period for all usage above the customer's firm demand, in addition to the prescribed monthly rate. In addition, the interruptible contract capacity of a customer who does not interrupt within one hour following notice shall be immediately reduced by the amount by which the customer failed to interrupt, unless the customer demonstrates that failure to interrupt was beyond its control. Substation Credit: Available to customers where service at sub-transmission voltage level (24 to 41.6 kV) or higher is required, who provide the on-site substation including all necessary transforming, controlling and protective equipment. A credit of $.30 per kW of maximum demand shall be applied to the maximum demand charge. A credit of .040¢ per kWh shall be applied to the energy charge where the service is metered on the primary side of the transformer.

372

STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS  

SciTech Connect (OSTI)

This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

JOel D. Dieland; Kirby D. Mellegard

2001-11-01T23:59:59.000Z

373

Data:1465ff78-1e87-4f9f-837e-c8cca1bd50f8 | Open Energy Information  

Open Energy Info (EERE)

ff78-1e87-4f9f-837e-c8cca1bd50f8 ff78-1e87-4f9f-837e-c8cca1bd50f8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/12/21 End date if known: Rate name: INTERRUPTIBLE SUPPLY RATE D8 Subtransmission (24 to 41.6 kV)-Retail Service Sector: Commercial Description: Available to customers desiring separately metered service at primary voltage who contract for a specified quantity of demonstrated interruptible load of not less than 50 kilowatts at a single location. Contracted interruptible capacity on this rate is limited to 150 megawatts. HOURS OF INTERRUPTION: All electric power delivered hereunder shall be subject to curtailment on order of the Company. Customers may be ordered to interrupt only when the Company finds it necessary to do so either to maintain system integrity or when the existence of such loads shall lead to a capacity deficiency by the utility. A System Integrity Interruption Order may be given by the Company when the failure to interrupt will contribute to the implementation of the rules for emergency electrical procedures under Section C3. A Capacity Deficiency Interruption Order may be given by the Company when available system generation is insufficient to meet anticipated system load. NOTICE OF INTERRUPTION: The customer shall be provided, whenever possible, notice in advance of probable interruption and the estimated duration of the interruption. NON-INTERRUPTION FEE: Customers who do not interrupt within one hour following notice of a capacity deficiency interruption order shall be billed at the cost of replacement energy plus 0.576¢ per kWh during the time of interruption plus the applicable voltage level charge, but not less than the normal D8 rate. Voltage level charges for service other than transmission voltage are: 0.15¢ per kWh at the distribution level. 0.05¢ per kWh at the subtransmission level. NON-INTERRUPTION PENALTY: A customer who does not interrupt within one hour following a system integrity interruption order shall be billed at the rate of $10 per kW for the highest 30-minute kW demand created during the interruption period for all usage above the customer's firm demand, in addition to the prescribed monthly rate. In addition, the interruptible contract capacity of a customer who does not interrupt within one hour following notice shall be immediately reduced by the amount by which the customer failed to interrupt, unless the customer demonstrates that failure to interrupt was beyond its control. Substation Credit: Available to customers where service at sub-transmission voltage level (24 to 41.6 kV) or higher is required, who provide the on-site substation including all necessary transforming, controlling and protective equipment. A credit of $.30 per kW of maximum demand shall be applied to the maximum demand charge. A credit of .040¢ per kWh shall be applied to the energy charge where the service is metered on the primary side of the transformer.

374

Data:3109034f-5607-41a5-8c8f-ed0cbddf52ed | Open Energy Information  

Open Energy Info (EERE)

4f-5607-41a5-8c8f-ed0cbddf52ed 4f-5607-41a5-8c8f-ed0cbddf52ed No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Detroit Edison Co Effective date: 2011/10/29 End date if known: Rate name: INTERRUPTIBLE SUPPLY RATE D8 Primary Service (Less than 24 kV)-Retail Service Sector: Commercial Description: Available to customers desiring separately metered service at primary voltage who contract for a specified quantity of demonstrated interruptible load of not less than 50 kilowatts at a single location. Contracted interruptible capacity on this rate is limited to 150 megawatts. HOURS OF INTERRUPTION: All electric power delivered hereunder shall be subject to curtailment on order of the Company. Customers may be ordered to interrupt only when the Company finds it necessary to do so either to maintain system integrity or when the existence of such loads shall lead to a capacity deficiency by the utility. A System Integrity Interruption Order may be given by the Company when the failure to interrupt will contribute to the implementation of the rules for emergency electrical procedures under Section C3. A Capacity Deficiency Interruption Order may be given by the Company when available system generation is insufficient to meet anticipated system load. NOTICE OF INTERRUPTION: The customer shall be provided, whenever possible, notice in advance of probable interruption and the estimated duration of the interruption. NON-INTERRUPTION FEE: Customers who do not interrupt within one hour following notice of a capacity deficiency interruption order shall be billed at the cost of replacement energy plus 0.576¢ per kWh during the time of interruption plus the applicable voltage level charge, but not less than the normal D8 rate. Voltage level charges for service other than transmission voltage are: 0.15¢ per kWh at the distribution level. 0.05¢ per kWh at the subtransmission level. NON-INTERRUPTION PENALTY: A customer who does not interrupt within one hour following a system integrity interruption order shall be billed at the rate of $10 per kW for the highest 30-minute kW demand created during the interruption period for all usage above the customer's firm demand, in addition to the prescribed monthly rate. In addition, the interruptible contract capacity of a customer who does not interrupt within one hour following notice shall be immediately reduced by the amount by which the customer failed to interrupt, unless the customer demonstrates that failure to interrupt was beyond its control. Substation Credit: Available to customers where service at sub-transmission voltage level (24 to 41.6 kV) or higher is required, who provide the on-site substation including all necessary transforming, controlling and protective equipment. A credit of $.30 per kW of maximum demand shall be applied to the maximum demand charge. A credit of .040¢ per kWh shall be applied to the energy charge where the service is metered on the primary side of the transformer.

375

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

Chiller (kW) Solar Thermal (kW) Energy gen. on site (MWh/Chiller (kW) Solar Thermal (kW) Energy gen. on site (MWh/in Energy and Buildings outcome, investment in solar thermal

Mendes, Goncalo

2014-01-01T23:59:59.000Z

376

Uranyl Adsorption onto Hydrous Ferric OxideA Re-Evaluation for the Diffuse Layer Model Database  

Science Journals Connector (OSTI)

Mahoney Geochemical Consulting LLC, Lakewood, Colorado 80226, GeoTrans, Inc., Louisville, Colorado 80027, and MWH Americas, Inc. Steamboat Springs, Colorado 80487 ... GeoTrans, Inc. ... We thank MWH Americas, Inc. and GeoTrans, Inc. in supporting this work. ...

John J. Mahoney; Sonya A. Cadle; Ryan T. Jakubowski

2009-11-20T23:59:59.000Z

377

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Cost ($/MWh) Regulation Load Following Unit Commitment Gas31 Regulation and load-following impacts are generally found

2008-01-01T23:59:59.000Z

378

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

megawatts on regulated sales of 980 average megawatts. Additionally, we will hear from Ross Holter who recently received top honors from the Bonneville Power Administration for Excellence in Energy Efficiency savings of 2.4 average megawatts on sales of about 150 average megawatts. We have asked the presenters

379

TidGen Power System Commercialization Project  

SciTech Connect (OSTI)

ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPCs tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

Sauer, Christopher R. [President & CEO] [President & CEO; McEntee, Jarlath [VP Engineering & CTO] [VP Engineering & CTO

2013-12-30T23:59:59.000Z

380

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - November  

Open Energy Info (EERE)

November November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for November 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-11 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-11-01 End Date 2008-12-01 Residential Revenue(Thousand $) 4227 Residential Sales (MWh) 35279 Residential Consumers 35982 Commercial Revenue(Thousand $) 2029 Commercial Sales (MWh) 15195 Commercial Consumers 8707 Industrial Revenue (Thousand $) 1178 Industrial Sales (MWh) 14250 Industrial Consumers 19 Total Revenue (Thousand $) 7434 Total Sales (MWh) 64724 Total Consumers 44708 Source: Energy Information Administration. Form EIA-826 Database Monthly

382

New York Nuclear Profile - Indian Point  

U.S. Energy Information Administration (EIA) Indexed Site

Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

383

Vermont Nuclear Profile - Vermont Yankee  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

384

EV Project Overview Report - Project to Date through December...  

Broader source: Energy.gov (indexed) [DOE]

December 2011 Charging Infrastructure Number of EV Project Number of Electricity Charging Units Charging Events Consumed Region Installed To Date Performed (AC MWh) Phoenix, AZ...

385

Property:PlantParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Property Name PlantParasiticConsump Property Type Number Description Plant Parasitic Consumption (MWh). Pages using the property "PlantParasiticConsump" Showing 3 pages using this...

386

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

387

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

388

Connecticut Nuclear Profile - Millstone  

U.S. Energy Information Administration (EIA) Indexed Site

Millstone" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

389

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

390

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

391

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

392

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

393

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

394

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

395

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

396

Alabama Nuclear Profile - Joseph M Farley  

U.S. Energy Information Administration (EIA) Indexed Site

Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

397

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

398

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

399

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

400

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

402

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

403

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

404

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

405

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

406

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

407

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

408

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

409

Arizona Nuclear Profile - Palo Verde  

U.S. Energy Information Administration (EIA) Indexed Site

Palo Verde" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

410

Georgia Nuclear Profile - Edwin I Hatch  

U.S. Energy Information Administration (EIA) Indexed Site

Edwin I Hatch" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

411

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

412

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

413

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

414

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

415

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

416

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

417

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

418

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

419

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

420

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Georgia Nuclear Profile - Vogtle  

U.S. Energy Information Administration (EIA) Indexed Site

Vogtle" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

422

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

423

Arkansas Nuclear Profile - Arkansas Nuclear One  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

424

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

425

Florida Nuclear Profile - St Lucie  

U.S. Energy Information Administration (EIA) Indexed Site

St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

426

Alabama Nuclear Profile - Browns Ferry  

U.S. Energy Information Administration (EIA) Indexed Site

Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

427

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

428

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

429

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

430

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network [OSTI]

Figure 6. Monthly electricity cost savings. Savings fromstructure. The annual electricity cost savings per MWh ofsystems reduced annual electricity cost by 5% to 15% across

DeForest, Nicolas

2014-01-01T23:59:59.000Z

431

China Energy and Emissions Paths to 2030  

E-Print Network [OSTI]

vary widely depending on electricity costs. ASDs for clinkerof Conserved Electricity (CCE) and Cost of Conserved Fuel (Cost of Conserved Electricity ($/MWh) Cost effective and

Fridley, David

2012-01-01T23:59:59.000Z

432

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Price (RMB /MWh) Electricity Cost- Effective Saving (GWh)Saving (GWh) Electricity Cost- Effective Cumulative CO 2widely, depending on electricity costs. ASDs for clinker

Price, Lynn

2010-01-01T23:59:59.000Z

433

Council's Regional Hydropower Potential Scoping  

E-Print Network [OSTI]

Hydroelectric Association Lisa Larson, HDR Rick Miller, HDR Discussion of analysis Reaction? 2 #12;Objective Northwest Hydroelectric Association HDR, Inc. MWH Global Black & Veatch Bonneville Environmental

434

Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana  

E-Print Network [OSTI]

small changes in electricity consumption. Table 8: Thethe DST change in electricity consumption of 166,217 MWh/DST effects on electricity consumption in the United States

Kotchen, Matthew J; Grant, Laura E.

2008-01-01T23:59:59.000Z

435

Investigation of how Insulation affects the pipe system in the soil for ice rinks.  

E-Print Network [OSTI]

?? In Sweden, ice rinks are one of the largest energy consumers in the public building sector, requiring, each ice rink, about 1050 MWh/year, from (more)

Marco Estruc, Ignacio

2014-01-01T23:59:59.000Z

436

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

437

South Carolina Nuclear Profile - Catawba  

U.S. Energy Information Administration (EIA) Indexed Site

Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

438

North Carolina Nuclear Profile - McGuire  

U.S. Energy Information Administration (EIA) Indexed Site

McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

439

North Carolina Nuclear Profile - Harris  

U.S. Energy Information Administration (EIA) Indexed Site

Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

440

New Hampshire Nuclear Profile - Seabrook  

U.S. Energy Information Administration (EIA) Indexed Site

Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

442

South Carolina Nuclear Profile - Oconee  

U.S. Energy Information Administration (EIA) Indexed Site

Oconee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

443

South Carolina Nuclear Profile - V C Summer  

U.S. Energy Information Administration (EIA) Indexed Site

V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

444

North Carolina Nuclear Profile - Brunswick  

U.S. Energy Information Administration (EIA) Indexed Site

Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

445

South Carolina Nuclear Profile - H B Robinson  

U.S. Energy Information Administration (EIA) Indexed Site

H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

446

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

447

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

448

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February  

Open Energy Info (EERE)

February February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2009-02-01 End Date 2009-03-01 Residential Revenue(Thousand $) 6100 Residential Sales (MWh) 57003 Residential Consumers 36097 Commercial Revenue(Thousand $) 2044 Commercial Sales (MWh) 16286 Commercial Consumers 8682 Industrial Revenue (Thousand $) 1219 Industrial Sales (MWh) 14517 Industrial Consumers 19 Total Revenue (Thousand $) 9363 Total Sales (MWh) 87806 Total Consumers 44798 Source: Energy Information Administration. Form EIA-826 Database Monthly

449

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales -  

Open Energy Info (EERE)

September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-09 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand $) 4960 Residential Sales (MWh) 49913 Residential Consumers 35998 Commercial Revenue(Thousand $) 2510 Commercial Sales (MWh) 24408 Commercial Consumers 8569 Industrial Revenue (Thousand $) 1308 Industrial Sales (MWh) 17792 Industrial Consumers 19 Total Revenue (Thousand $) 8778 Total Sales (MWh) 92113 Total Consumers 44586 Source: Energy Information Administration. Form EIA-826 Database Monthly

450

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

451

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

452

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

453

Property:PotentialCSPCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPCapacity PotentialCSPCapacity Jump to: navigation, search Property Name PotentialCSPCapacity Property Type Quantity Description The nameplate capacity technical potential from CSP for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

454

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

455

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

456

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

457

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

458

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

459

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

460

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

462

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

463

Property:PotentialRooftopPVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVCapacity PotentialRooftopPVCapacity Jump to: navigation, search Property Name PotentialRooftopPVCapacity Property Type Quantity Description The nameplate capacity technical potential from Rooftop PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

464

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

465

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

about 250 megawatts of small hydro and hydro upgrades and a 380 megawatt utility acquisition requirements, which further limit the hydro system's peaking capability. Other expected new generation includes

466

US ITER | Media Corner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test bed ring will load ITER transmission lines with up to 6 megawatts New test bed ring will load ITER transmission lines with up to 6 megawatts -Agatha Bardoel Published April...

467

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

468

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

469

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

470

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

471

Modelling locational price spreads in competitive electricity markets; applications for transmission rights valuation and replication  

Science Journals Connector (OSTI)

......historical data to calibrate...training data can make...capacity of the transmission line, in megawatts...transmission outages or expansion...training data can make...capacity of the transmission line, in megawatts...transmission outages or expansion......

Petter Skantze; Marija Ilic; Andrej Gubina

2004-10-01T23:59:59.000Z

472

Gasification Plant Databases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal gasification projects throughout the world. These databases track proposed gasification projects with approximate outputs greater than 100 megawatts electricity...

473

Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy  

Broader source: Energy.gov [DOE]

Americas First Geothermally Heated University Campus Adds 3.5 Megawatts of Clean Electricity Generation

474

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Project objectives: Demonstrate a 1 megawatt Variable Phase Turbine and Variable Phase Cycle with low temperature brine.

475

Florida's SunSmart Program Helps Provide Power to Schools When Storms Strike  

Broader source: Energy.gov [DOE]

Florida program installed more than a megawatt of solar power at schools designated as emergency shelters throughout the Sunshine State.

476

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

investments on regional revenue requirements ignoredon regional revenue requirements ignored cost savings from avoided market purchasescost savings from avoided market purchases NearNear--term potential for savings--20142014 ­­ Conservation Avoids Market Purchases @Conservation Avoids Market Purchases @ $60/MWH$60/MWH ­­ Utility Share

477

Regional variations in the health, environmental, and climate benefits of wind and solar generation  

Science Journals Connector (OSTI)

...11/MWh and $17/MWh. In California and the Southwest, natural gas is the dominant marginal fuel and, as a result, solar panels...of renewable energy, which have not been considered here. Capital and labor costs, availability of transmission, and the...

Kyle Siler-Evans; Ins Lima Azevedo; M. Granger Morgan; Jay Apt

2013-01-01T23:59:59.000Z

478

Information Gathering Session Gillian Charles & Ken Dragoon  

E-Print Network [OSTI]

and associated technologies. ­ Hydropower upgrades, new hydropower projects 3 Purpose Develop a hydro supply curve to determine the hydropower development potential in the NW region ­ Council's Seventh Power Plan-effectiveness Quantity-MWh Price - $/MWh 4 #12;3/27/2012 3 Hydro Assessment: 1980's National Hydropower Survey Hydro Site

479

Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

Jaramillo, Paulina

480

Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological  

E-Print Network [OSTI]

prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

David, Mark B.

Note: This page contains sample records for the topic "megawatt mwh megawatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is  

E-Print Network [OSTI]

: hydrogen efficiency of electrolyzer (kg/MWh) d : hydrogen efficiency of fuel cell (kg/MWh) O : oxygen hydrogen production (kg) dischargeV : fuel cells hydrogen consumption (kg) hsellV : hydrogen exchange capacity (MW) STG Vmax : maximum storage level (kg) STGDISCH Pmax : maximum fuel cell power (MW) STGDISCH

Cañizares, Claudio A.

482

Transmission planning for Indian power grid: a mixed integer programming approachp  

E-Print Network [OSTI]

) time-block (peak, intermediate, base) l index for transmission line voltage level (400, 220 and 132 kV transmission line, Rs/km LCAP power carrying capacity of an inter-state tie line for a particular voltage class, MW LF transmission loss factor per unit power transfer per km line length, MWh/MWh- km LGTH length

Dragoti-?ela, Eranda

483

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network [OSTI]

China Energy Databook 7.0 Import Total Coal Export Import Total PetroleumImports Exports Petroleum Jelly;Waxes Imports Exports (t) Imports Liquid Natural Gas Exports (t) Imports Electricity Exports (MWh) Imports ChinaExports Imports Other Petroleum Products & Byproducts [3] (t) Exports Imports Electricity (MWh) Exports Imports (continued) Chapter 7, Imports and Exports China

Fridley, Ed., David

2008-01-01T23:59:59.000Z

484

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for April 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-04 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-04-01 End Date 2008-05-01 Residential Revenue(Thousand $) 24400 Residential Sales (MWh) 247343 Residential Consumers 331573 Commercial Revenue(Thousand $) 14383 Commercial Sales (MWh) 152042 Commercial Consumers 52280 Industrial Revenue (Thousand $) 1241 Industrial Sales (MWh) 13081 Industrial Consumers 524 Other Revenue (Thousand $) 92 Other Sales (MWh) 1113 Other Consumers 1 Total Revenue (Thousand $) 40116 Total Sales (MWh) 413579 Total Consumers 384378 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

485

NorthWestern Corporation (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name NorthWestern Corporation Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0975/kWh Commercial: $0.1380/kWh The following table contains monthly sales and revenue data for NorthWestern Corporation (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14.42 146.703 173 99.874 849.906 170 114.294 996.609 343

486

Interstate Power and Light Co (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Interstate Power and Light Co (Minnesota) Interstate Power and Light Co (Minnesota) Jump to: navigation, search Name Interstate Power and Light Co Place Minnesota Utility Id 9417 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1060/kWh Commercial: $0.0969/kWh Industrial: $0.0757/kWh The following table contains monthly sales and revenue data for Interstate Power and Light Co (Minnesota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

487

Kootenai Electric Cooperative (Washington) | Open Energy Information  

Open Energy Info (EERE)

Cooperative (Washington) Cooperative (Washington) Jump to: navigation, search Name Kootenai Electric Cooperative Place Washington Utility Id 10454 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Kootenai Electric Cooperative (Washington). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

488

Empire District Electric Co (Oklahoma) | Open Energy Information  

Open Energy Info (EERE)

Oklahoma) Oklahoma) Jump to: navigation, search Name Empire District Electric Co Place Oklahoma Utility Id 5860 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0841/kWh Commercial: $0.0804/kWh Industrial: $0.0696/kWh The following table contains monthly sales and revenue data for Empire District Electric Co (Oklahoma). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

489

Navajo Tribal Utility Authority (Utah) | Open Energy Information  

Open Energy Info (EERE)

Authority (Utah) Authority (Utah) Jump to: navigation, search Name Navajo Tribal Utility Authority Place Utah Utility Id 13314 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0967/kWh Commercial: $0.1150/kWh The following table contains monthly sales and revenue data for Navajo Tribal Utility Authority (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

490

Surprise Valley Electrification Corp. (Nevada) | Open Energy Information  

Open Energy Info (EERE)

Surprise Valley Electrification Corp. Surprise Valley Electrification Corp. Place Nevada Utility Id 18260 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1050/kWh Commercial: $0.0706/kWh The following table contains monthly sales and revenue data for Surprise Valley Electrification Corp. (Nevada). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 0.075 0.851 2 0.424 5.992 6 0.499 6.843 8

491

Mt Wheeler Power, Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 13073 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0786/kWh Commercial: $0.0810/kWh Industrial: $0.0610/kWh The following table contains monthly sales and revenue data for Mt Wheeler Power, Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 11.289 138.131 203 9.256 101.356 114 1.61 12.38 14 22.155 251.867 331

492

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December  

Open Energy Info (EERE)

Central Illinois Central Illinois Pub Serv Co for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company Central Illinois Pub Serv Co (Illinois) Place Illinois Start Date 2008-12-01 End Date 2009-01-01 Residential Revenue(Thousand $) 35185 Residential Sales (MWh) 410509 Residential Consumers 327240 Commercial Revenue(Thousand $) 19393 Commercial Sales (MWh) 208884 Commercial Consumers 48125 Industrial Revenue (Thousand $) 1172 Industrial Sales (MWh) 15357 Industrial Consumers 466 Other Revenue (Thousand $) 78 Other Sales (MWh) 1202 Other Consumers 1 Total Revenue (Thousand $) 55828 Total Sales (MWh) 635952 Total Consumers 375832 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data [1]

493

Raft Rural Elec Coop Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Utah Utah Utility Id 22814 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Raft Rural Elec Coop Inc (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 26 442 337 7 139 40 101 5 254 134 586 631 2009-02 26 447 337 7 148 43 15 5 254 48 600 634

494

Electric Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Inc Energy Inc Jump to: navigation, search Name Electric Energy Inc Place Illinois Utility Id 5748 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Electric Energy Inc (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

495

McKenzie Electric Coop Inc (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

2087 2087 Utility Location Yes Ownership C NERC Location MRO Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0706/kWh Commercial: $0.0876/kWh Industrial: $0.0524/kWh The following table contains monthly sales and revenue data for McKenzie Electric Coop Inc (North Dakota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

496

Empire District Electric Co | Open Energy Information  

Open Energy Info (EERE)

Electric Co Electric Co Jump to: navigation, search Name Empire District Electric Co Place Arkansas Utility Id 5860 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Schedule RG Residential RS Schedule RG Residential Average Rates Residential: $0.0938/kWh Commercial: $0.0860/kWh Industrial: $0.0670/kWh The following table contains monthly sales and revenue data for Empire District Electric Co (Arkansas). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

497

Idaho Power Co (Oregon) | Open Energy Information  

Open Energy Info (EERE)

Oregon) Oregon) Jump to: navigation, search Name Idaho Power Co Place Oregon Utility Id 9191 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 (Residential Service) Residential 19 (Large Power Service Secondary Service) Commercial 7 (Small General Service Three Phase) Commercial 9 (Large General Service Secondary Three Phase Service) Commercial Average Rates Residential: $0.0776/kWh Commercial: $0.0672/kWh Industrial: $0.0533/kWh The following table contains monthly sales and revenue data for Idaho Power Co (Oregon). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

498

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

499

Southwestern Public Service Co | Open Energy Information  

Open Energy Info (EERE)

Place New Mexico Place New Mexico Utility Id 17718 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service Secondary) Commercial RS (Residential Service) Residential SGS (Small General Service) Commercial Average Rates Residential: $0.0783/kWh Commercial: $0.0705/kWh Industrial: $0.0468/kWh The following table contains monthly sales and revenue data for Southwestern Public Service Co (New Mexico). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

500

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS