National Library of Energy BETA

Sample records for megawatt mwh megawatt-hour

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    per megawatt-hour (MWh) of electric generation. Electric suppliers must provide this information to customers twice annually in a standardized, uniform format. The Michigan Public...

  2. Targeting Net Zero Energy at Marine Corps Air Station Miramar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... vi MSW municipal solid waste MWh megawatt-hours MW ... the Federal Energy Management Program (FEMP), and the ... Despite the base's already low EUI and past energy ...

  3. Solar Renewable Energy Certificates Program (SRECs)

    Broader source: Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation... Eligibility: Commercial, Industrial, Local Government,...

  5. megatons to megawatts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    megatons to megawatts

  6. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technologies" ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"En...

  7. Property:Ind sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 +...

  8. Property:Res sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 +...

  9. Property:Tot sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 +...

  10. Property:Com sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 +...

  11. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler...

    Open Energy Info (EERE)

    eriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrOil-FiredB...

  12. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler ...

    Open Energy Info (EERE)

    rmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrOil-FiredBoil...

  13. Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open...

    Open Energy Info (EERE)

    dEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrNaturalGas"...

  14. Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open...

    Open Energy Info (EERE)

    gyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrNaturalGas"...

  15. Hydropower Generators Will Deliver New Energy from an Old Dam

    Broader source: Energy.gov [DOE]

    City of Tacoma expands hydroelectric dam to produce more than 23,000 megawatt hours of electricity annually.

  16. Mass Megawatts Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Megawatts Wind Power Inc Jump to: navigation, search Name: Mass Megawatts Wind Power Inc Address: 95 Prescott Street Place: Worcester, Massachusetts Zip: 01605 Region: Greater...

  17. Design of megawatt power level heat pipe reactors (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Design of megawatt power level heat pipe reactors Citation Details In-Document Search Title: Design of megawatt power level heat pipe reactors An important niche ...

  18. Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy...

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Property Edit with form History Property:BuildingSPPurchasedEngyNrmlYrMwhYrLogs Jump to: navigation, search This is a property of type...

  19. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    dEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003...

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating ...

    Open Energy Info (EERE)

    riodMwhYrDstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2067.0 + Sweden Building 05K0002 + 492.2 + Sweden Building 05K0003...

  1. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open...

    Open Energy Info (EERE)

    rPeriodMwhYrDstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 762.0 + Sweden Building 05K0002 + 322.0 + Sweden Building 05K0003 +...

  2. Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal ...

    Open Energy Info (EERE)

    riodMwhYrElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1399.0 + Sweden Building 05K0002 + 686.9 + Sweden Building 05K0003...

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  4. MegaWatt Solar | Open Energy Information

    Open Energy Info (EERE)

    energy company that delivers scalable solar power generation systems to the utility market. References: MegaWatt Solar1 This article is a stub. You can help OpenEI by...

  5. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric ...

  6. Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open...

    Open Energy Info (EERE)

    ForPeriodMwhYrPellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  7. Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open...

    Open Energy Info (EERE)

    yNrmlYrMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  8. Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrOther" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  9. Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open...

    Open Energy Info (EERE)

    rPeriodMwhYrWoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  10. Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy...

    Open Energy Info (EERE)

    ngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  11. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  12. Spallation Neutron Source reaches megawatt power

    SciTech Connect (OSTI)

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  13. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems alencon-logo.png -- This project is inactive -- Alencon Systems will develop and commercialize a new type of transformational power electronic technology to utility-scale PV systems based on novel, patent-pending ideas. A 99.1% efficient, centralized inverter with a capacity of up to 100 megawatts lies at the heart of the

  14. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors | Department of Energy Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm Addthis This Funding Opportunity Announcement (FOA) is focused on developing MV integrated drive systems that leverage the benefits of state of the art power electronics (i.e., wide band gap devices) with energy efficient, high speed, direct drive, megawatt (MW) class electric motors

  15. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  16. Final Environmental Impact Report: North Brawley Ten Megawatt...

    Open Energy Info (EERE)

    Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract NA Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979...

  17. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  18. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Cost Reductions with Multi-Megawatt Centralized Inverter Systems Alencon Systems, LLC *99.1% Efficient Inverter System *Power Factor Control +- 0.9 *2,500VDC *LowZero ...

  19. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  20. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar ...

  1. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  2. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  3. Design of megawatt power level heat pipe reactors

    SciTech Connect (OSTI)

    Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao; Reid, Robert Stowers

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  4. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. | Department of Energy Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. December 17, 2015 - 10:26am Addthis The U.S. General Services Administration (GSA) awarded a contract to WGL for the construction of rooftop photovoltaic arrays that will bring approximately 3 megawatts of solar energy across 18 federal buildings in Washington, D.C. The

  5. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to

  6. Solar Generation Has a Bright Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013.

  7. renewable energy certificates | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  8. REC | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  9. The Defense Logistics Agency (DLA) RFP - Deadline - July 31,...

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  10. rfp | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  11. OpenEI Community - rfp

    Open Energy Info (EERE)

    rel"nofollow">The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  12. Jleyshon's blog | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  13. Request for Proposals | OpenEI Community

    Open Energy Info (EERE)

    for Proposals rfp Deadline - July 31, 2014 The Defense Logistics Agency (DLA) RFP (Sol. SPE600-14-R-0415) seeking up to 830,843 megawatt-hours of renewable energy...

  14. GENESIS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLIMATE BENEFIT Genesis is expected to generate 605,000 megawatt-hours of clean energy and prevent 322,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: ...

  15. Development of a Multi Megawatt Circulator for X Band

    SciTech Connect (OSTI)

    Neilson, J.; Ives, L.; Tantawi, S.G.; /Calabazas Creek Res., Saratoga /SLAC

    2008-03-24

    Research is in progress on a TeV-scale linear collider that will operate at 5-10 times the energy of present-generation accelerators. This will require development of high power RF sources generating of 50-100 MW per source. Transmission of power at this level requires overmoded waveguide to avoid breakdown. In particular, the TE{sub 01} circular waveguide mode is currently the mode of choice for waveguide transmission at Stanford Linear Accelerator Center (SLAC) in the Multimode Delay Line Distribution System (MDLDS). A common device for protecting an RF source from reflected power is the waveguide circulator. A circulator is typically a three-port device that allows low loss power transmission from the source to the load, but diverts power coming from the load (reflected power) to a third terminated port. To achieve a low loss, matched, three port junction requires nonreciprocal behavior. This is achieved using ferrites in a static magnetic field which introduces a propagation constant dependent on RF field direction relative to the static magnetic field. Circulators are currently available at X-Band for power levels up to 1 MW in fundamental rectangular waveguide; however, the next generation of RF sources for TeV-level accelerators will require circulators in the 50-100 MW range. Clearly, conventional technology is not capable of reaching the power level required. In this paper, we discuss the development of an X-Band circulator operating at multi-megawatt power levels in overmoded waveguide. The circulator will employ an innovative coaxial geometry using the TE{sub 01} mode. Difficulties in maintaining mode purity in oversized rectangular guide preclude increasing guide area to allow increasing the power level to the desired 50-100 MW range. The TE{sub 01} mode in circular waveguide is very robust mode for transmission of high power in overmoded waveguide. The mode is ideal for transmission of high power microwaves because of its low-losses, zero tangential field on the guide (which minimizes arcing problems) and reduced propensity for mode conversion compared to non-asymmetric circular waveguide modes. Unfortunately, no current designs exist for circulators using the circular TE{sub 01} mode. The basic building block for all low-loss circulators and isolators is a nonreciprocal element with a phase shift dependent on the propagation direction in the guide. Such an element can be constructed by placement of a hollow ferrite rod in a cylindrical waveguide. An inner conductor placed inside the ferrite rod conducts a current pulse that induces an azimuthal magnetic field inside the ferrite. This configuration is depicted in Figure 1a. An alternate configuration using permanent magnets is shown in Figure 1b. Either of these configurations will create a different phase shift for waves propagating in opposite directions along the waveguide axis. This feature can be used to develop a high power circulator. We are currently testing a TE{sub 01} nonreciprocal phase shifter in a 50 MW test stand. This device is in the configuration shown in Figure 1a. The induced differential phase shift and loss will be measured and compared to calculations.

  16. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Debut a Dynamic 5-Megawatt Dynamometer DOE to Debut a Dynamic 5-Megawatt Dynamometer October 1, 2013 - 12:44pm Addthis Test Test A specially configured truck, delivers a GE 2.75-MW wind turbine nacelle weighing more than 96 tons to the new 5-MW dynamometer at the NWTC. Photo by Mark McDade/NREL Read more Test Test The nacelle/drivetrain installed on the 5-MW dynamometer test stand. Photo by Mark McDade/NREL Read more This is an excerpt from the Third Quarter 2013 edition of the Wind Program

  17. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Buildings in Washington, D.C. | Department of Energy Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to Federal Buildings in Washington, D.C. June 15, 2015 - 12:41pm Addthis On June 9, 2015, the U.S. General Services Administration (GSA) issued a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed

  18. FULLY INTEGRATED HIGH SPEED MEGAWATT CLASS MOTOR AND HIGH FREQUENCY VARIABLE SPEED DRIVE SYSTEM

    Broader source: Energy.gov [DOE]

    Clemson University – North Charleston, SC New motor power converter technologies will be used to develop a pre-commercial megawatt class variable speed drive. The fully integrated prototype system will be made by TECO Westinghouse Motor Company in its Round Rock, TX facility and be demonstrated at Clemson’s eGRID Center. Fact sheet coming soon.

  19. QER- Comment of MWH Global

    Broader source: Energy.gov [DOE]

    Hello, Was looking at the calendar and curious when the “Final Meeting” is in DC for the QER? http://energy.gov/epsa/initiatives/quadrennial-energy-review-qer Thanks,

  20. Brighter Future: A Study on Solar in U.S. Schools

    Broader source: Energy.gov [DOE]

    In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools with solar energy systems. These PV systems have a combined capacity of 490 megawatts (MW), and generate roughly 642,000 megawatt-hours (MWh) of electricity each year, equivalent to $77.8 million worth of utility bills and enough clean, renewable energy to offset 50 million gallons of gasoline. Solar potential on schools remains largely untapped. Of the 125,000 K-12 schools in the country, up to 72,000 schools (60%) can "go solar" cost-effectively. Approximately 450 individual schools districts have the potential to save more than $1 million over 30 years by installing a solar PV system.

  1. The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches

    SciTech Connect (OSTI)

    Tantawi, S.G. [Stanford Linear Accelerator Center, SLAC, 2575 Sand Hill Rd. Menlo Park, California 94025 (United States)

    1999-05-01

    We present design methodology and analysis for an SPDT switch that is capable of handling hundreds of megawatts of power at X-band. The switch is designed for application in high power rf systems in particular future Linear Colliders (1). In these systems switching need to be fast in one direction only. We use this to our advantage to reach a design for a super high power switch. In our analysis we treat the problem from an abstract point of view. We introduce a unified analysis for the microwave circuits irrespective of the switching elements. The analysis is, then, suitable for different kinds of switching elements such as photoconductrs. PIN diodes, and plasma discharge in low-pressure gases. {copyright} {ital 1999 American Institute of Physics.}

  2. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  3. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  4. Airborne megawatt class free-electron laser for defense and security

    SciTech Connect (OSTI)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  5. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect (OSTI)

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  6. Smart Meter Company Boosting Production, Workforce

    Broader source: Energy.gov [DOE]

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  7. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect (OSTI)

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  8. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  9. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  11. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune; Curtis, Amy

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  12. Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune

    2015-08-20

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  13. Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies Brian C. Owens ∗ and D. Todd Griffith † Sandia National Laboratories ‡ , Albuquerque, New Mexico, 87185, USA John E. Hurtado § Texas A&M University, College Station, Texas, 77843, USA The availability of offshore wind resources in coastal regions, along with a high concen- tration of load centers in these areas, makes offshore

  14. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in larger scale balance-of-plant * Product designsourcing for world-wide markets * Optimization of grid andor DC interface Page 7 DOE Electrolytic H 2 Production Workshop, ...

  15. Table 8.12a Electric Noncoincident Peak Load and Capacity Margin: Summer Peak Period, 1986-2011 (Megawatts, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Electric Noncoincident Peak Load and Capacity Margin: Summer Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11 MISO 12 MRO 13 PJM 14 RFC 8,15 SERC 16 SPP 17 Subtotal TRE 18 WECC 19 Total 20

  16. Table 8.12b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Electric Noncoincident Peak Load and Capacity Margin: Winter Peak Period, 1986-2011 (Megawatts, Except as Noted) Year Noncoincident Peak Load 1 by North American Electric Reliability Corporation (NERC) 2 Regional Assessment Area Capacity Margin 21 (percent) Eastern Interconnection ERCOT 4 Western Inter- connection All Inter- connections FRCC 5 NPCC 6 Balance of Eastern Region 3 ECAR 7,8 MAAC 8,9 MAIN 8,10 MAPP 11 MISO 12 MRO 13 PJM 14 RFC 8,15 SERC 16 SPP 17 Subtotal TRE 18 WECC 19 Total 20

  17. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    SciTech Connect (OSTI)

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  18. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  19. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 ArcelorMittal USA, Inc.'s Indiana Harbor steel mill in East Chicago, Indiana, installed an energy recovery boiler system that produces steam from previously wasted blast furnace gas that was flared into the atmosphere during iron making operations. The steam drives existing turbo-generators at the facility to generate 333,000 megawatt hours

  20. Monthly Nuclear Utility Generation by State and Reactor, 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    3" "January through December 2003" ,"Net" "State of Location","Capacity",,"JAN","FEB","MAR","APR","MAY","JUNE","JULY","AUG","SEP","OCT","NOV","DEC","Year-To-Date" "and Reactor Name","MW(e)",,"Megawatt hours"

  1. Monthly Nuclear Utility Generation by State and Reactor, 2004

    U.S. Energy Information Administration (EIA) Indexed Site

    4" "January through December 2004" ,"Net" "State of Location","Capacity",,"JAN","FEB","MAR","APR","MAY","JUNE","JULY","AUG","SEP","OCT","NOV","DEC","Year-To-Date" "and Reactor Name","MW(e)",,"Megawatt hours"

  2. Monthly Nuclear Utility Generation by State and Reactor, 2005

    U.S. Energy Information Administration (EIA) Indexed Site

    5" "January through December 2005" ,"Net" "State of Location","Capacity",,"JAN","FEB","MAR","APR","MAY","JUNE","JULY","AUG","SEP","OCT","NOV","DEC","Year-To-Date" "and Reactor Name","MW(e)",,"Megawatt hours"

  3. Monthly Nuclear Utility Generation by State and Reactor, 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    7" "January through December 2007" ,"Net" "State of Location","Capacity",,"JAN","FEB","MAR","APR","MAY","JUNE","JULY","AUG","SEP","OCT","NOV","DEC","Year-To-Date" "and Reactor Name","MW(e)",,"Megawatt hours"

  4. Monthly Nuclear Utility Generation by State and Reactor, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    8" "January through December 2008" ,"Net" "State of Location","Capacity",,"JAN","FEB","MAR","APR","MAY","JUNE","JULY","AUG","SEP","OCT","NOV","DEC","Year-To-Date" "and Reactor Name","MW(e)",,"Megawatt hours"

  5. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  6. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  7. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device

    SciTech Connect (OSTI)

    Ii, T. Kubo, S.; Shimozuma, T.; Kobayashi, S.; Okada, K.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Makino, R.; Kobayashi, K.; Goto, Y.

    2015-02-15

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φ{sub λ/8}, Φ{sub λ/4}) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  8. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  9. Property:Oth sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    2008 + 713 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - September 2008 + 886 + City of Detroit (Michigan) EIA Revenue and Sales - April 2008 + 400 + City of...

  10. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2015,1,"CO",27058,"High West Energy, Inc","Preliminary",".",".",".",".",0,"."... 2015,1,"FL",6455,"Duke Energy Florida, Inc","Preliminary",9.593,7.869,1...

  11. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2016,1,"CO",27058,"High West Energy, Inc","Preliminary",".",".",".",".",0,"."... 2016,1,"FL",6455,"Duke Energy Florida, Inc","Preliminary",14.747,10.098...

  12. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 2014,1,"CO",27058,"High West Energy, Inc","Final",".",".",".",".",0,".",".","... 2014,1,"FL",6455,"Duke Energy Florida, Inc","Final",6.619,6.641,0.284,0...

  13. Nellis Air Force Base solar array provides model for renewable projects

    Broader source: Energy.gov [DOE]

    A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north of Las Vegas, took a big step in 2007 when it installed a 14.2-megawatt, 70,000-panel photovoltaic solar array that reduced carbon dioxide emissions by 24,000 tons a year. Built partly on a landfill, the field of solar panels takes advantage of two resources plentiful in Nevada: sunshine and empty land. At its unveiling in December of 2007, the Nellis array was the largest solar panel installation in North America. The project was originally expected to produce about 30,000 megawatt-hours of electricity per year, but Steven Dumont, Air Combat Command Energy Manager, says it’s actually producing closer to 32,000 megawatt-hours, which is about 8 percent above expectations. Despite this success, Dumont said he nearly didn’t pursue the project.

  14. U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa 2014 EIA reports and publications 29% of Iowa's electricity generation came from wind in the first half of 2014. Wind provided about 27% of Iowa's electricity generation in 2013, providing 15.6 million megawatt hours of electricity. Iowa is the largest producer of ethanol in the United States, and it accounted for 28% of the nation's fuel ethanol production in 2014. Iowa energy hIghlIghts: Commercial-scale cellulosic ethanol plant opened in Emmetsburg, Iowa * On September 3, POET-DSM

  15. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  16. International Voluntary Renewable Energy Markets (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2012-06-01

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  17. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  18. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  19. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Zionsville, Indiana Sector: Renewable Energy, Services, Solar, Wind energy Phone Number: 317.797.3381 Website: www.mwenergysystems.com Coordinates:...

  20. Adaptive control system for pulsed megawatt klystrons

    DOE Patents [OSTI]

    Bolie, Victor W.

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  1. Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy...

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden...

  2. Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open...

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden...

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  4. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  5. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

  6. Status and Trends in the U.S. Voluntary Green Power Market (2013 Data)

    SciTech Connect (OSTI)

    Heeter, J.; Belyeu, K.; Kuskova-Burns, K.

    2014-11-01

    Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This report surveys utilities, competitive suppliers, renewable energy certificate (REC) marketers, and, for the first time, the community choice aggregation market. This report finds that the voluntary market totaled 62 million megawatt-hours in 2013. Approximately 5.4 million customers are purchasing green power. This report presents data and analysis on voluntary market sales and customer participation, products and premiums, green pricing marketing, and administrative expenses. The report also details trends in REC tracking systems, REC pricing in voluntary and compliance markets, community and crowd-funded solar, and interest in renewable energy by the information and communication technologies sector.

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Table 1. 2014 Summary statistics (Alabama) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 31,953 8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide (short tons) 152,225 8 Nitrogen oxide (short tons) 61,909 13 Carbon dioxide (thousand metric tons) 67,635 10 Sulfur dioxide (lbs/MWh) 2.0 19 Nitrogen oxide (lbs/MWh) 0.8 38

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2014 Table 1. 2014 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,325 38 Electric utilities 7,296 31 IPP & CHP 1,029 44 Net generation (megawatthours) 43,784,526 33 Electric utilities 40,741,425 28 IPP & CHP 3,043,101 44 Emissions Sulfur Dioxide (short tons) 23,646 31 Nitrogen Oxide (short tons) 57,944 16 Carbon Dioxide (thousand metric tons) 35,179 24 Sulfur Dioxide (lbs/MWh) 1.1 31 Nitrogen Oxide (lbs/MWh)

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  19. Plans for Future Megawatt Facilities (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    High beam power has applications in the production of high intensity secondary beams of ... Each of these applications has additional requirements on beam energy and duty cycle. This ...

  20. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  1. Coming: 12,600 megawatts at Itaipu Island

    SciTech Connect (OSTI)

    de Moraes, J.

    1983-08-01

    This paper describes the hydroelectric plant being constructed jointly by Brazil and Paraguay on Itaipu Island in the Parana River. The planned generating capacity of 12,600 MW will make the Itaipu plant the world's largest. It will employ the most powerful hydrogenerators and turbines yet built, the world's largest concentration of 500-kilovolt gas-insulated switchgear, the highest dc transmission voltages and power--600 kV and 6300 MW--ever used, about 1000 kilometers of 765-kV ac transmission, and an extensive computer-based digital supervisory system in which continuous diagnostic evaluation of equipment is emphasized. To maintain national standards, nine generators will operate at 60 hertz for Brazil and nine at 50 hertz for Paraguay. Initially, any excess electricity available from the Paraguay generators will be routed to Brazil, but Paraguay is ultimately expected to share in half the Itaipu generation. The paper discusses the plant from its original feasibility studies to the newly created technologies which its size necessitated. The environmental impact on forests, farmlands and wildlife resulting from the construction of the Itaipu dam and the loss of the 1400 square kilometers which it flooded--including the popular Seven Waterfalls--is addressed. References to other papers as well as a symposium on the Itaipu project are cited.

  2. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The research team intends to showcase the turbomachinery for a new cycle-the s-CO2 Brayton ... it to explore the behavior of s-CO2 turbomachinery and operationalcontrol ...

  3. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  4. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    SciTech Connect (OSTI)

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  5. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing concentrating solar power (CSP) systems ... CSP plants are typically located in hot, dry climates where water is scarce. ... CSP goal of 50% net thermal-to-electric ...

  6. Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 566,822 MWh Gas Power 3,571,101 MWh Petroleum Power 1,191,884 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 6,541,675 MWh Percent of Total...

  7. Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 34,200,892 MWh Gas Power 34,915,888 MWh Petroleum Power 19,609 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 75,245,559 MWh Percent of Total...

  8. Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    158,911 MWh Coal Power 0 MWh Gas Power 7,553,278 MWh Petroleum Power 16,262 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 7,728,451 MWh Percent of Total...

  9. North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4,239,993 MWh Coal Power 29,812,959 MWh Gas Power 757 MWh Petroleum Power 48,076 MWh Nuclear Power 0 MWh Other 838 MWh Total Energy Production 34,102,623 MWh Percent of Total...

  10. Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 7,507,244 MWh Gas Power 26,080,001 MWh Petroleum Power 17,727 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 37,819,763 MWh Percent of Total...

  11. Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    10,318,565 MWh Coal Power 72,994 MWh Gas Power 1,549,875 MWh Petroleum Power 124 MWh Nuclear Power 0 MWh Other 0 MWh Total Energy Production 11,941,557 MWh Percent of Total...

  12. Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 84,379,768 MWh Gas Power 843,725 MWh Petroleum Power 2,028,175 MWh Nuclear Power 0 MWh Other 12,629 MWh Total Energy Production 90,997,966 MWh Percent of...

  13. Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 3,196,902 MWh Gas Power 15,776,934 MWh Petroleum Power 5,657 MWh Nuclear Power 0 MWh Other 41,248 MWh Total Energy Production 55,861,820 MWh Percent of...

  14. Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 39,783,826 MWh Gas Power 34,852,150 MWh Petroleum Power 67,337 MWh Nuclear Power 30,661,851 MWh Other 534 MWh Total Energy Production 112,066,601 MWh Percent...

  15. Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 41,634,519 MWh Gas Power 410,411 MWh Petroleum Power 178,151 MWh Nuclear Power 26,962,001 MWh Other 788 MWh Total Energy Production 78,966,504 MWh Percent...

  16. Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 108,590,677 MWh Gas Power 5,390,611 MWh Petroleum Power 154,666 MWh Nuclear Power 0 MWh Other 344,927 MWh Total Energy Production 116,667,762 MWh Percent of...

  17. New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 29,084,699 MWh Gas Power 8,759,510 MWh Petroleum Power 43,480 MWh Nuclear Power 0 MWh Other 4,371 MWh Total Energy Production 39,754,081 MWh Percent of...

  18. Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 35,715,484 MWh Gas Power 6,424,511 MWh Petroleum Power 50,180 MWh Nuclear Power 0 MWh Other 186,748 MWh Total Energy Production 43,446,797 MWh Percent of...

  19. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2014 Table 1. 2014 Summary statistics (Alaska) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 2,464 48 Electric utilities 2,313 39 IPP & CHP 151 50 Net generation (megawatthours) 6,042,830 50 Electric utilities 5,509,991 40 IPP & CHP 532,839 50 Emissions Sulfur dioxide (short tons) 4,129 43 Nitrogen oxide (short tons) 19,281 38 Carbon dioxide (thousand metric tons) 3,558 44 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  3. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven Alan; Rochau, Gary Eugene; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  4. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect (OSTI)

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  5. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  6. GSA Issues New Request for Proposals to Bring 3 Megawatts of...

    Energy Savers [EERE]

    a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed by the selected bidder that will bring approximately 3...

  7. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    SciTech Connect (OSTI)

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  8. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  9. West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2,318,714 MWh Coal Power 68,135,764 MWh Gas Power 149,347 MWh Petroleum Power 170,674 MWh Nuclear Power 0 MWh Other 422 MWh Total Energy Production 70,774,921 MWh Percent of Total...

  10. Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    138,302 MWh Coal Power 2,910,909 MWh Gas Power 1,686,773 MWh Petroleum Power 268,773 MWh Nuclear Power 0 MWh Other 5,877 MWh Total Energy Production 5,010,634 MWh Percent of Total...

  11. Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 71,848,215 MWh Gas Power 3,400,527 MWh Petroleum Power 86,777 MWh Nuclear Power 10,247,116 MWh Other 27,422 MWh Total Energy Production 88,646,870 MWh...

  12. New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 13,152,552 MWh Gas Power 42,954,141 MWh Petroleum Power 2,717,386 MWh Nuclear Power 43,484,614 MWh Other 989,616 MWh Total Energy Production 135,475,849 MWh...

  13. Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 38,330,917 MWh Gas Power 5,601,116 MWh Petroleum Power 730,117 MWh Nuclear Power 12,683,151 MWh Other 72,992 MWh Total Energy Production 61,334,663 MWh...

  14. South Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 35,157,227 MWh Gas Power 9,402,119 MWh Petroleum Power 523,380 MWh Nuclear Power 52,149,734 MWh Other 105,354 MWh Total Energy Production 100,197,178 MWh...

  15. Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 69,524,670 MWh Gas Power 20,301,025 MWh Petroleum Power 644,996 MWh Nuclear Power 31,682,579 MWh Other 26,648 MWh Total Energy Production 128,438,721 MWh...

  16. Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 32,242,988 MWh Gas Power 2,611,084 MWh Petroleum Power 124,354 MWh Nuclear Power 8,768,548 MWh Other 0 MWh Total Energy Production 46,144,448 MWh Percent of...

  17. Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 113,824,221 MWh Gas Power 4,747,936 MWh Petroleum Power 1,311,952 MWh Nuclear Power 14,937,336 MWh Other 14,388 MWh Total Energy Production 135,949,118 MWh...

  18. North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 65,853,978 MWh Gas Power 4,926,167 MWh Petroleum Power 287,979 MWh Nuclear Power 40,847,711 MWh Other 90,997 MWh Total Energy Production 118,993,695 MWh...

  19. Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 25,075,250 MWh Gas Power 11,368,417 MWh Petroleum Power 87,674 MWh Nuclear Power 15,169,966 MWh Other 24,019 MWh Total Energy Production 57,499,169 MWh...

  20. New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 2,885,668 MWh Gas Power 5,352,728 MWh Petroleum Power 171,818 MWh Nuclear Power 8,816,673 MWh Other 59,854 MWh Total Energy Production 19,985,757 MWh...

  1. Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    10,053,139 MWh Coal Power 15,164,571 MWh Gas Power 81,800 MWh Petroleum Power 489,689 MWh Nuclear Power 0 MWh Other 110,308 MWh Total Energy Production 25,899,507 MWh Percent of...

  2. Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 54,052,312 MWh Gas Power 117,733,704 MWh Petroleum Power 8,962,843 MWh Nuclear Power 29,336,059 MWh Other 2,576,795 MWh Total Energy Production 217,154,227 MWh...

  3. Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 30,091,455 MWh Gas Power 2,559,675 MWh Petroleum Power 60,295 MWh Nuclear Power 12,393,425 MWh Other 340,463 MWh Total Energy Production 52,641,549 MWh...

  4. Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 12,970,797 MWh Gas Power 23,380,703 MWh Petroleum Power 17,028 MWh Nuclear Power 10,998,515 MWh Other 5,206 MWh Total Energy Production 48,769,367 MWh...

  5. Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 90,949,011 MWh Gas Power 4,364,445 MWh Petroleum Power 110,882 MWh Nuclear Power 94,050,482 MWh Other 64,293 MWh Total Energy Production 193,214,345 MWh...

  6. Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 67,822,266 MWh Gas Power 8,244,775 MWh Petroleum Power 379,469 MWh Nuclear Power 21,851,009 MWh Other 341,304 MWh Total Energy Production 101,641,950 MWh...

  7. Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    8,486,637 MWh Coal Power 72,386 MWh Gas Power 7,481,945 MWh Petroleum Power 480,670 MWh Nuclear Power 0 MWh Other 352,154 MWh Total Energy Production 16,873,792 MWh Percent of...

  8. Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 104,927,415 MWh Gas Power 29,623,748 MWh Petroleum Power 930,953 MWh Nuclear Power 76,727,686 MWh Other 842,542 MWh Total Energy Production 218,376,989 MWh...

  9. New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    973,234 MWh Coal Power 5,345,449 MWh Gas Power 21,037,564 MWh Petroleum Power 304,336 MWh Nuclear Power 34,327,954 MWh Other 513,761 MWh Total Energy Production 62,502,299 MWh...

  10. Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    768,368 MWh Coal Power 1,521,169 MWh Gas Power 40,378 MWh Petroleum Power 8,288,819 MWh Nuclear Power 0 MWh Other 166,284 MWh Total Energy Production 10,785,018 MWh Percent of...

  11. Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    750,278 MWh Coal Power 23,427,525 MWh Gas Power 332,467 MWh Petroleum Power 24,899 MWh Nuclear Power 9,435,142 MWh Other 0 MWh Total Energy Production 33,970,311 MWh Percent of...

  12. California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 1,948,279 MWh Gas Power 115,749,546 MWh Petroleum Power 1,638,019 MWh Nuclear Power 31,734,676 MWh Other 440,323 MWh Total Energy Production 204,824,249 MWh...

  13. Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 2,453,497 MWh Gas Power 9,678,195 MWh Petroleum Power 288,349 MWh Nuclear Power 16,657,387 MWh Other 712,522 MWh Total Energy Production 31,172,260 MWh...

  14. Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 9,896,296 MWh Gas Power 21,242,542 MWh Petroleum Power 864,489 MWh Nuclear Power 5,396,021 MWh Other 770,712 MWh Total Energy Production 40,175,901 MWh...

  15. Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 23,075,071 MWh Gas Power 45,313,617 MWh Petroleum Power 1,815,819 MWh Nuclear Power 16,782,077 MWh Other 390,454 MWh Total Energy Production 91,106,779 MWh...

  16. Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 7,477,773 MWh Gas Power 11,409,482 MWh Petroleum Power 47,275 MWh Nuclear Power 6,634,014 MWh Other 63,675 MWh Total Energy Production 104,593,404 MWh...

  17. Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 139,106,597 MWh Gas Power 191,652,532 MWh Petroleum Power 1,347,315 MWh Nuclear Power 41,497,617 MWh Other 621,766 MWh Total Energy Production 396,477,155 MWh...

  18. South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4,717,288 MWh Coal Power 3,190,913 MWh Gas Power 122,133 MWh Petroleum Power 10,089 MWh Nuclear Power 0 MWh Other 31,318 MWh Total Energy Production 8,071,741 MWh Percent of...

  19. Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Renewables 2,048,325 MWh Coal Power 0 MWh Gas Power 4,431 MWh Petroleum Power 3,577 MWh Nuclear Power 5,360,608 MWh Other 0 MWh Total Energy Production 7,416,941 MWh Percent of...

  20. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 55,659,872 MWh Gas Power 32,369,863 MWh Petroleum Power 163,054 MWh Nuclear Power 39,716,204 MWh Other 7,137 MWh Total Energy Production 142,960,819 MWh...

  1. Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 24,414,551 MWh Gas Power 2,070,846 MWh Petroleum Power 346,732 MWh Nuclear Power 14,550,119 MWh Other 255,891 MWh Total Energy Production 44,126,270 MWh...

  2. Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 26,539,392 MWh Gas Power 12,204,843 MWh Petroleum Power 1,110,821 MWh Nuclear Power 28,212,252 MWh Other 427,691 MWh Total Energy Production 71,159,684 MWh...

  3. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS ...

  4. Bellavista Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  5. SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II

    SciTech Connect (OSTI)

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

  6. Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Santos, Rick; van Dam, Jeroen

    2015-07-16

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL’s quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

  7. Orimulsion conversion boosts prospects of `fourth` fossil fuel

    SciTech Connect (OSTI)

    1995-04-01

    This article describes how, by retrofitting a 100-MW oil-fired and a 215-MW coal-fired unit, one utility turned a plant destined for peaking service into a base-load asset with a predictable fuel bill and manageable emissions-even in environmentally sensitive Atlantic Canada. Six years ago, New Brunswick Power Corp (NB Power) found itself on the horns of a dilemma. For years, the utility had been searching for a powerplant fuel with a more stable price than oil, which at the time was fueling one-third of its generating capacity. Buying and burning more domestic coal-even at twice the price of offshore supplies-was the preferred option, because that would also help keep New Brunswick`s coal mines open. But by 1989, federal and provincial legislation had begun to plan for stringent limits on SO{sub 2} emissions that would take the local-coal card out of NB Power`s hand. Containing up to 8% sulfur, New Brunswick coal would be too dirty to burn by itself; emissions from a 200-MW unit would alone use up nearly half of the utility`s system-wide annual quota for SO{sub 2} emissions schedules for imposition in 1994. Enter Bitor America Corp, the Boca Raton (Fla) marketing subsidiary of the world`s third-largest oil company, Petroleos de Venezuela SA (PdVSA). Looking to further the fortunes of Orimulsion, a liquid emulsion of bitumen and water from the Orinoco region of Venezuela, Bitor funded and provided technical support for the first large-scale test burn of the fuel in the 100-MW Unit 1 of NB Power`s Dalhousie station in northern New Brunswick. After making the required modifications, NB Power burned Orimulsion in Unit 1 for two years. By 1991, the utility had cleanly converted more than a million barrels of the fuel to nearly half a million megawatt-hours of electricity-in the process finding few reasons not to commit to permanently converting Dalhousie`s Unit 1, as well as coal fired 215-MW Unit 2, to burn Orimulsion.

  8. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) Generation Delivered to Grid (MWh) Plant Parasitic...

  9. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK ...

  10. A & N Electric Coop (Virginia) EIA Revenue and Sales - August...

    Open Energy Info (EERE)

    Sales (MWh) 31601.089 Residential Consumers 30021 Commercial Revenue(Thousand ) 2194.132 Commercial Sales (MWh) 18253.003 Commercial Consumers 4073 Industrial Revenue (Thousand...

  11. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  14. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    Spencer City of",554,1999,"Iowa State University","NF",3543,0,0,87758,87758 2,"Spencer City of",554,1999,"Alliant","NF",28,0,0,1443,1443 3,"Spencer City of",554,1999,"Mid-America Energy Co.","NF",13,0,0,593,593 999999,"Spencer City of",554,1999,,,3584,0,0,89794,89794 1,"Anaheim City of",590,1999,"CALIFORNIA POWER EXCHAN",,60260,0,0,1165682,1165682 2,"Anaheim City

  15. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    ABERDEEN_C",55,1999,"TVA",,230854554,37045,0,0,8998127 2,"ABERDEEN_C",55,1999,0,,0,0,0,0,0 999999,"ABERDEEN_C",55,1999,,,0,0,0,0,0 1,"Alameda City of",207,1999,"Northern California Pow","FP",379087,70,18896200,3635238,22531438 2,"Alameda City of",207,1999,"Western Area Power Admi","FP",6300,1,58800,1381522,1440322 3,"Alameda City of",207,1999,"Balancing Accounts &

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  17. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  1. YEAR","MONTH","STATE","UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Tho

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","RESIDENTIAL_GP REVENUES (Thousand $)","COMMERCIAL_GP REVENUES (Thousand $)","INDUSTRIAL_GP REVENUES (Thousand $)","TRANS_GP REVENUES (Thousand $)","TOTAL_GP REVENUES (Thousand $)","RESIDENTIAL_GP SALES (MWh)","COMMERCIAL_GP SALES (MWh)","INDUSTRIAL_GP SALES (MWh)","TRANS_GP SALES (MWh)","TOTAL_GP SALES (MWh)","RESIDENTIAL_GP

  2. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  3. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with capacity of 2,781 megawatts INVESTMENT 6.5 million HIGHLIGHTS Distribution microgrid Five-megawatt lithium-ion battery Intelligent distribution management ...

  4. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  5. EM News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project. July 31, 2013 Members of the Paducah Citizens Advisory Board helped create the book, The Story of the Paducah Gaseous Diffusion Plant, Megawatts to Megatons to Megawatts....

  6. State Electricity Profiles - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Name Average retail price (centskWh) Net summer capacity (MW) Net generation (MWh) Total retail sales (MWh) Alabama 9.27 31,953 149,340,447 90,493,727 Alaska 17.46 2,464 ...

  7. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",101093,13 " Nitrogen oxide (short tons)",23993,32 " Carbon dioxide (thousand metric tons)",24037,33 " Sulfur dioxide (lbsMWh)",3.7,5 " Nitrogen oxide (lbsMWh)",0.9,37 ...

  8. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",332396,3 " Nitrogen oxide (short tons)",133412,3 " Carbon dioxide (thousand metric tons)",103391,3 " Sulfur dioxide (lbsMWh)",5.8,1 " Nitrogen oxide (lbsMWh)",2.3,8 ...

  9. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",14426,34 " Nitrogen oxide (short tons)",20538,36 " Carbon dioxide (thousand metric tons)",17678,36 " Sulfur dioxide (lbsMWh)",1,34 " Nitrogen oxide (lbsMWh)",1.4,21 ...

  10. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",10990,38 " Nitrogen oxide (short tons)",8622,46 " Carbon dioxide (thousand metric tons)",3298,46 " Sulfur dioxide (lbsMWh)",1.7,25 " Nitrogen oxide (lbsMWh)",1.3,23 ...

  11. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",3842005 " Nitrogen oxide (short tons)",2400375 " Carbon dioxide (thousand metric tons)",2160342 " Sulfur dioxide (lbsMWh)",1.9 " Nitrogen oxide (lbsMWh)",1.2 " ...

  12. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",22597,32 " Nitrogen oxide (short tons)",56726,17 " Carbon dioxide (thousand metric tons)",53684,16 " Sulfur dioxide (lbsMWh)",0.4,41 " Nitrogen oxide (lbsMWh)",1,33 ...

  13. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",10229,40 " Nitrogen oxide (short tons)",18606,39 " Carbon dioxide (thousand metric tons)",16222,37 " Sulfur dioxide (lbsMWh)",0.6,38 " Nitrogen oxide (lbsMWh)",1,32 ...

  14. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",23646,31 " Nitrogen oxide (short tons)",57944,16 " Carbon dioxide (thousand metric tons)",35179,24 " Sulfur dioxide (lbsMWh)",1.1,31 " Nitrogen oxide (lbsMWh)",2.6,7 ...

  15. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",824,48 " Nitrogen oxide (short tons)",2836,48 " Carbon dioxide (thousand metric tons)",4276,43 " Sulfur dioxide (lbsMWh)",0.2,45 " Nitrogen oxide (lbsMWh)",0.7,40 ...

  16. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",173521,7 " Nitrogen oxide (short tons)",77950,9 " Carbon dioxide (thousand metric tons)",64062,11 " Sulfur dioxide (lbsMWh)",3.2,7 " Nitrogen oxide (lbsMWh)",1.5,19 ...

  17. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",5777,42 " Nitrogen oxide (short tons)",20301,37 " Carbon dioxide (thousand metric tons)",1492,49 " Sulfur dioxide (lbsMWh)",0.8,36 " Nitrogen oxide (lbsMWh)",2.7,5 ...

  18. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",204873,5 " Nitrogen oxide (short tons)",89253,7 " Carbon dioxide (thousand metric tons)",85795,7 " Sulfur dioxide (lbsMWh)",4.5,3 " Nitrogen oxide (lbsMWh)",2,10 " ...

  19. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",96240,14 " Nitrogen oxide (short tons)",83112,8 " Carbon dioxide (thousand metric tons)",57137,15 " Sulfur dioxide (lbsMWh)",1.8,21 " Nitrogen oxide (lbsMWh)",1.6,15 ...

  20. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",63994,22 " Nitrogen oxide (short tons)",27045,30 " Carbon dioxide (thousand metric tons)",26348,31 " Sulfur dioxide (lbsMWh)",3.2,8 " Nitrogen oxide (lbsMWh)",1.4,20 ...

  1. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",355108,1 " Nitrogen oxide (short tons)",105688,4 " Carbon dioxide (thousand metric tons)",98650,5 " Sulfur dioxide (lbsMWh)",5.3,2 " Nitrogen oxide (lbsMWh)",1.6,16 ...

  2. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",21670,33 " Nitrogen oxide (short tons)",26928,31 " Carbon dioxide (thousand metric tons)",7313,42 " Sulfur dioxide (lbsMWh)",4.2,4 " Nitrogen oxide (lbsMWh)",5.3,2 ...

  3. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",10595,39 " Nitrogen oxide (short tons)",14313,42 " Carbon dioxide (thousand metric tons)",8334,40 " Sulfur dioxide (lbsMWh)",0.4,42 " Nitrogen oxide (lbsMWh)",0.5,45 ...

  4. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",349245,2 " Nitrogen oxide (short tons)",229580,1 " Carbon dioxide (thousand metric tons)",254488,1 " Sulfur dioxide (lbsMWh)",1.6,26 " Nitrogen oxide (lbsMWh)",1,31 ...

  5. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",149842,9 " Nitrogen oxide (short tons)",77749,10 " Carbon dioxide (thousand metric tons)",75735,8 " Sulfur dioxide (lbsMWh)",3.4,6 " Nitrogen oxide (lbsMWh)",1.8,13 ...

  6. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",0,51 " Nitrogen oxide (short tons)",147,51 " Carbon dioxide (thousand metric tons)",48,50 " Sulfur dioxide (lbsMWh)",0,51 " Nitrogen oxide (lbsMWh)",4.3,3 " ...

  7. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",52716,23 " Nitrogen oxide (short tons)",48711,19 " Carbon dioxide (thousand metric tons)",30420,30 " Sulfur dioxide (lbsMWh)",2.9,10 " Nitrogen oxide (lbsMWh)",2.7,6 ...

  8. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",100,49 " Nitrogen oxide (short tons)",1224,49 " Carbon dioxide (thousand metric tons)",2566,48 " Sulfur dioxide (lbsMWh)",0,48 " Nitrogen oxide (lbsMWh)",0.4,49 ...

  9. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",64168,21 " Nitrogen oxide (short tons)",67534,12 " Carbon dioxide (thousand metric tons)",58578,13 " Sulfur dioxide (lbsMWh)",1,33 " Nitrogen oxide (lbsMWh)",1.1,30 ...

  10. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",126600,10 " Nitrogen oxide (short tons)",91356,6 " Carbon dioxide (thousand metric tons)",111549,2 " Sulfur dioxide (lbsMWh)",1.1,30 " Nitrogen oxide (lbsMWh)",0.8,39 ...

  11. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",3102,46 " Nitrogen oxide (short tons)",98348,5 " Carbon dioxide (thousand metric tons)",57223,14 " Sulfur dioxide (lbsMWh)",0,49 " Nitrogen oxide (lbsMWh)",1,34 " ...

  12. Microsoft Word - RNP answers.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    373,000 MWh of spill at Coulee and 234,000 MWh at Chief Joseph for a total of roughly 607,000 MWh of spill. Does all that sound close to being right? On the wind side, I see...

  13. YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL REVENUE ($1,000

    U.S. Energy Information Administration (EIA) Indexed Site

    REVENUE ($1,000)","COMMERCIAL REVENUE ($1,000)","INDUSTRIAL REVENUE ($1,000)","TRANSPORTATION REVENUE ($1,000)","TOTAL REVENUE ($1,000)","RESIDENTIAL SALES (MWh)","COMMERCIAL SALES (MWh)","INDUSTRIAL SALES (MWh)","TRANSPORTATION SALES (MWh)","TOTAL SALES SALES (MWh)","RESIDENTIAL CUSTOMERS","COMMERCIAL CUSTOMERS","INDUSTRIAL CUSTOMERS","TRANSPORTATION

  14. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  15. Steamboat III Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells (total) Avg. Well Depth (m) GeofluidGeosteam flow rate into plant Average...

  16. Steamboat Hills Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells (total) Avg. Well Depth (m) GeofluidGeosteam flow rate into plant Average...

  17. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    hour (32 MWh) lithium-ion battery and smart inverter system. ... * Defers transmission investment * Optimizes ... resiliency, and efficiency of next-generation power grids. ...

  18. BPA-2011-00834-FOIA Correspondence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following: 1. Data associated with hourly load, thermal generation, wind generation and hydro generation in the BPA region in MWh. 2. Data to span between 112007 and 12312010...

  19. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ...

  20. Summary of AEO2016 Electricity Working Group Meeting held on...

    U.S. Energy Information Administration (EIA) Indexed Site

    MWH Global Coleman, Leslie National Mining Association Roche, Madelyn NRECA Wood, Frances OnLocation Wright, Evelyn Sustainable Energy Economics Luckow, Patrick Synapse Energy ...

  1. Maibarara Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    1 Avg. Annual Gross Operating Capacity(MW) Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) 60 1...

  2. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  3. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  4. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  5. Tennessee Nuclear Profile - Sequoyah

    U.S. Energy Information Administration (EIA) Indexed Site

    Sequoyah" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" ...

  6. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  7. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. Hawaii Establishes Goal of Achieving 70% Clean Energy by 2030

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... new construction policiesbuilding codes * Identify non-building related energy efficiency measures Energy Efficiency Portfolio Standard: 4,300 MWh reduced Transportation * ...

  9. Microsoft Word - 122006 - Mirant Potomac River LLC - Monthly...

    Office of Environmental Management (EM)

    ... describe the operating profile for each unit, and unit ... Heat Rates Unit Operating Load Net Power Output (MWh) Net ... Founded in 1968, ENSR serves industrial companies and ...

  10. Case Study: Opportunities to Improve Energy Efficiency in Three...

    Energy Savers [EERE]

    ... Site Estimated Payback, Years Estimated Annual Energy Saving, MWh Estimated Annual GHG ... (LBNL) to provide measurements of energy usage, and total building energy consumption. ...

  11. Energy Efficiency Opportunities in Federal High Performance Computing...

    Energy Savers [EERE]

    ... Sites Payback years Annual Energy Saving MWh Annual Greenhouse Gas Reduction (GHG) Emission ... gear, UPS, PDU, etc.), and power usage estimation facilitated the calculation ...

  12. Solar Field Powers Historic Garden Holiday Display

    Broader source: Energy.gov [DOE]

    Popular holiday attraction Longwood Gardens in Pennsylvania has commissioned an American-made 1.2 megawatt, 10.7-acre solar field as part of a goal to generate three megawatts of renewable energy by 2018.

  13. BP-16-A-02-AP02, Appendix B - Power Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page iii COMMONLY USED ACRONYMS AND SHORT FORMS ACNR Accumulated Calibrated Net Revenue ACS Ancillary and Control Area Services AF Advance Funding aMW average megawatt(s)...

  14. Project Reports for Confederated Tribes of the Colville Reservation...

    Energy Savers [EERE]

    megawatts of renewable, biomass electric power using hog fuel from its own ... substation is at such a distance that one megawatt is lost in transmission due to thermal line losses. ...

  15. Department of Energy Offers Conditional Loan Guarantee Commitments to Support Nearly $4.5 Billion in Loans for Three California Photovoltaic Solar Power Plants

    Broader source: Energy.gov [DOE]

    Projects Expected to Create 1,400 Jobs and Generate Approximately 1330 Megawatts of Installed Solar Power

  16. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate a 1 megawatt Variable Phase Turbine and Variable Phase Cycle with low temperature brine.

  17. A Solar Win for Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solar Win for Arizona A Solar Win for Arizona January 9, 2013 - 5:11pm Addthis The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo

  18. Florida's SunSmart Program Helps Provide Power to Schools When Storms Strike

    Broader source: Energy.gov [DOE]

    Florida program installed more than a megawatt of solar power at schools designated as emergency shelters throughout the Sunshine State.

  19. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  20. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  1. East Central Energy (Wisconsin) | Open Energy Information

    Open Energy Info (EERE)

    (MWH) OTH CONS TOT REV (THOUSAND ) TOT SALES (MWH) TOT CONS 2009-03 497.322 5,074.657 4,666 49.223 506.276 262 546.545 5,580.933 4,928 2009-02 617.038 6,336.617 4,668 59.259...

  2. City Utilities of Springfield | Open Energy Information

    Open Energy Info (EERE)

    ) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND ) TOT SALES (MWH) TOT CONS 2009-03 5,574.607 75,387.438 94,458 7,723.39 113,122.676 13,958 2,145.435 34,204.077 318 15,443.432...

  3. City of Seattle, Washington (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    ) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND ) TOT SALES (MWH) TOT CONS 2009-03 23,601 373,913 353,104 24,986 456,778 39,325 4,440 92,495 220 3 47 3 53,030 923,233 392,652...

  4. City of Kansas City, Kansas (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    SALES (MWH) OTH CONS TOT REV (THOUSAND ) TOT SALES (MWH) TOT CONS 2009-03 3,262 40,087 56,891 5,911 77,724 7,095 3,466 64,803 94 12,639 182,614 64,080 2009-02 5,311 48,126 57,266...

  5. Empire District Electric Co (Kansas) | Open Energy Information

    Open Energy Info (EERE)

    OTH SALES (MWH) OTH CONS TOT REV (THOUSAND ) TOT SALES (MWH) TOT CONS 2009-03 766.958 8,132.05 8,688 437.806 4,470.832 1,413 386.225 5,336.492 51 1,590.989 17,939.374 10,152...

  6. Electricity transactions across international borders, 1985. [With Mexico, Canada

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report summarizes the electricity exchange between the United States and Mexico and Canada during Calendar Year 1985. The construction, opration and maintenance of any electric transmission facility which crosses an international border of the United States requires a Presidential permit which has been granted by DOE. During 1985, the US imported 45,900,563 MWh of electric energy at a cost of $1,041,908,785. Of this total, 45,659,944 MWh were imported from Canada and the remainder (240,619 MWh) were received from Mexico. During this same period, US exports of electric energy totaled 4,964,930 MWh with gross revenues of $25,215,549. Of this, 4,812,537 MWh representing $22,068,665 in revenues were delivered to Canada, and 152,393 MWh representing $3,146,884 in revenues were delivered to Mexico. On a net basis, the US was an importer of 40,935,633 MWh of electric energy. These 1985 values constitute an increase of 8.1% in gross imports and an increase of 94.1% in gross exports compared to 1984 levels.

  7. Electricity transactions across international borders, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    This report summarizes the electricity exchanges between the United States and Mexico and Canada during calendar year 1984. The construction, operation and maintenance of any electric transmission facility which crosses an international border of the United States requires a Presidential permit. These permits have been granted by DOE since its formation in 1977. During 1984, the US imported 42,219,259 MWh of electric energy at a cost of $1,070,046,345. Of this total, 42,034,392 MWh were imported from Canada and the remainder (184,867 MWh) were received from Mexico. During this same period, US exports of electric energy totaled 2,558,293 MWh with gross revenues of $21,795,733. Of this, 2,479,487 MWh representing $21,115,413 in revenues were delivered to Canada, and 78,806 MWh representing $680,320 in revenues were delivered to Mexico. On a net basis, the US was an importer of 39,660,966 MWh of electric energy. These 1984 values constitute an increase of 9.2% in gross imports and a decrease of 23.3% in gross exports compared to 1983 levels.

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Demand-Side Management Program Annual Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Potential Peak Load Reduction (MW) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) 2004 52,663 14,272 1,966 20,997 9,263 54,629 23,535 2005 59,000 15,394 930 21,259 10,341 59,930 25,735 2006 63,076 16,006 790

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Demand-Side Management Program Incremental Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Potential Peak Load Reduction (MW) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) 2004 4,532 1,727 36 3,064 1,163 4,569 2,890 2005 5,879 1,705 137 2,223 1,162 6,016 2,867 2006 5,394 1,268 99 2,817 1,690

  10. Microsoft PowerPoint - 09 Tulsa RD Willis Update June.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used for the Lake constructed in the 1950 ' ' s. In 1989 the s. In 1989 the dam was modified for the installation of Robert D. Willis dam was modified for the installation of Robert D. Willis Power Plant. The plant has two S Power Plant. The plant has two S - - Tube type turbines Tube type turbines which operate generators nominally rated at 4Mwh each. which operate generators nominally rated at 4Mwh each. Actual power production has rarely exceeded 3.6Mwh Actual power production has rarely

  11. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  12. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  13. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  14. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  15. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  16. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  17. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  18. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  19. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  20. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  1. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  2. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  3. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  4. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  5. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  6. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  7. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  8. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  9. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  10. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  11. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  12. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  13. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  14. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  15. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  16. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  17. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  18. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  19. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, ...

  20. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  1. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  2. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  3. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  4. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  5. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  6. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  7. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  8. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  9. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  10. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  11. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  12. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  13. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  14. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  15. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  16. Department of Energy Offers $2.1 Billion Conditional Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trust of America, LLC. The concentrating solar thermal power plant includes two units comprising a combined 484 megawatt (MW) generating capacity, an eight-mile transmission line ...

  17. Department of Energy Offers Conditional Commitment for Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced the offer of a conditional commitment for a 737 million loan guarantee to support a 110 megawatt molten salt concentrating solar power (CSP) tower generating facility. ...

  18. Department of Energy Offers Conditional Commitment for $1.187...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project, which is being built in San Luis Obispo County, CA, includes the construction of a 250 megawatt alternating current photovoltaic (PV) solar generating facility and ...

  19. Energy Department Finalizes $1.2 Billion Loan Guarantee to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project, which is being built in San Luis Obispo County, CA, includes the construction of a 250 megawatt alternating current photovoltaic (PV) solar generating facility and ...

  20. NREL Incubator Alliance Helps Entrepreneurs Build Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., Feb. 23, 2001 - The U.S. Department of Energy's National Renewable Energy ... Texas has an electric utility restructuring law that mandates 2000 megawatts of new ...

  1. Clean Energy Technology Incubator Initiative Launched in Texas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have formed a ... Texas electric utility restructuring law passed last year mandating 2000 megawatts ...

  2. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It...

  3. U.S. Geothermal Energy Capacity Grew 6% in 2009

    Broader source: Energy.gov [DOE]

    Geothermal energy capacity expanded 6% in the United States in 2009, due to six new geothermal plants which came online, adding 176.68 megawatts (MW).

  4. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    ... Office of Operational Safety REVISED ARCHIVAL ... and was operated at a power of 5 megawatts from June ... Because the pipe ends have been *Nuclear Regulatory ...

  5. EIS-0447: Record of Decision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE announced its decision to grant a Presidential permit to Champlain Hudson Power Express, Inc., to construct, operate, maintain, and connect a new 1000-megawatt electric ...

  6. Construction Underway on First Geothermal Power Plant in New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the 10-megawatt (MW) Lightning Dock geothermal power plant will produce power using modular "PureCycle" power units from UTC Power, a subsidiary of United Technologies Corporation. ...

  7. Wisconsin Tribal Leaders Work Towards a Clean Energy Future ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Nations A 2-megawatt anaerobic digester and biogas generation facility converts food waste into electricity to power 1,500 homes. Photo from Forest County Potawatomi...

  8. Department of Energy Offers $245 Million Conditional Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Inc., a manufacturer of cylindrical solar photovoltaic panels. Two other conditional commitments have been made to Nordic Windpower, USA, a maker of two-blade, one megawatt wind ...

  9. President Obama Announces Loan Guarantees to Construct New Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... projects include Solyndra, Inc., a manufacturer of cylindrical solar photovoltaic panels; Nordic Windpower, USA, a maker of two-blade, one megawatt wind turbines; Beacon Power, ...

  10. Alternative Energy Development Incentive (Corporate)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  11. A Design-Builder's Perspective: Anaerobic Digestion, Forest County...

    Energy Savers [EERE]

    Virginia, MN 55792 FCPC Renewable Generation Facility * 2.0 megawatt biodigestion and biogas facility currently being constructed in Menomonee Valley of Milwaukee * Will operate...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar...

  13. NREL: Transmission Grid Integration - NREL Study Indicates Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyoming wind power to the California marketplace via a 3,000 megawatt high-voltage direct current transmission line. ... energy and energy efficiency research and development. ...

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric ...

  15. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for ... The new hydroelectric resource, Los Alamos County's low-flow three-megawatt turbine at ...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Resource Standard Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new...

  17. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  18. EIS-0503: New England Clean Power Link, Vermont | Department...

    Broader source: Energy.gov (indexed) [DOE]

    impacts of a DOE proposal to grant a Presidential permit to Transmission Developers, Inc.-New England, to construct, operate, maintain, and connect a new 1000-megawatt electric...

  19. National Security Science - April 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Megawatts of power, millions of gallons of water, a football-field-size floor Turning Big Data into fast data Solving the roadblock for tomorrow's exascale supercomputing...

  20. Secretary Chu Announces First Awards from $1.4 Billion for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of scale for carbon capture systems at a petcoke-based 683-megawatt integrated ... Mississippi Gasification LLC, a Leucadia affiliate, is building a petcoke-to-substitute ...

  1. NREL's Clean Energy Forum Attracts National Investment Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Devices, MegaWatt Storage Farms, Inc., Tellurian Biodiesel, Inc., Optony, Inc., LiquidPiston, Inc., Solar Red, Photon Synergy, QM Power, Inc., Ahura Energy, Inc., Deeya Energy, ...

  2. Worcester, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Worcester, Massachusetts BiOctane Biomass Combustion Systems Inc Mass Megawatts Wind Power Inc ThermoEnergy Corporation References US...

  3. Geothermal Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... to produce and disseminate both the exploration gap analysis and Enhanced Geothermal ... 1 megawatt) power generation geothermal projects; sources of useful information including ...

  4. EIS-0447: DOE Notice of Availability of Draft Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new 1000-megawatt (MW) electric transmission system from the Canadian Province of Quebec to New York City. This DOE notice of availability incorrectly identifies the close of...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,... Eligibility: State Government Savings Category: Geothermal...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838... Eligibility: Residential, Multifamily Residential, Low...

  7. EERE Success Story-New Wind Test Facilities Open in Colorado...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for testing the larger multi-megawatt wind turbines that both the United States and ... engineers with a better understanding of how wind turbines react to grid disturbances. ...

  8. Alternative Energy Development Incentive (Personal)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  9. Utility Savings & Refund, LLC | Open Energy Information

    Open Energy Info (EERE)

    large capacity - in the megawatts, and rapid response. Potential applications include renewable integration - solar and wind, peak shaving - load shifting, uninterruptible...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric ...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in conjunction with recycling. ... Eligibility:...

  13. DOE Office of Indian Energy Foundational Course on Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Course Renewable Energy Technologies: Geothermal Webinar (text version) Below ... This can be compared with the 3,000 megawatts that are currently in production. The third ...

  14. OE Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, 2013 The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in...

  15. Seneca Nation- 2014 Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians (SNI) will install one 1.8-megawatt (MW) wind turbine on tribal common lands near Lake Erie in New York.

  16. Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    600 average megawatts of generation could be available to the region from concentrated solar power plants in Nevada, but facilities to transmit this power are unavailable until...

  17. EIS-0416: EPA Notice of Availability of the Final Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California DOE...

  18. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam...

    U.S. Energy Information Administration (EIA) Indexed Site

    With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petrol...ers)",,"Collectors","Towers","(Scrubbers)" 1985,302056,120591,56955,304706,36054,28895,65,...

  19. Buzzard Power Co | Open Energy Information

    Open Energy Info (EERE)

    Buzzard Power Co Jump to: navigation, search Name: Buzzard Power Co Place: Pennsylvania Product: Buzzard Power owns a leasehold interest in the 83 megawatt Scrubgrass generating...

  20. Energy Policy: National Assessments and Tribal Actions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011) * Milwaukee Biodigester and Biogas Facility (completed 2014) * Community- ... Milwaukee Biodigester and Biogas Facility 2014 13 * 2.0 megawatt anaerobic biodigester and ...

  1. NREL/PG&E Condensation System Increases Geothermal Power Plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Geysers complex generates 750 megawatts of electrical power, supplying 5 percent of ... According to the Electric Power Research Institute, condenser cleaning outages cost ...

  2. FORM EIA-861 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    ... in customer energy usage due to higher prices); ... processes that exceed current standards. An energy efficiency resource ... 1 megawatt (1000 kilowatts) installed at or near ...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of...

  4. Department of Energy Offers Support for Arizona Solar Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The loan guarantee will support the construction of a 290-megawatt photovoltaic solar ... The project sponsor, NRG Solar, estimates the project will be the largest photovoltaic ...

  5. Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy to support a 20 megawatt AC photovoltaic (PV) solar generating facility. ... tracker technology that will capture more energy than fixed-tilt photovoltaic systems. ...

  6. Department of Energy Offers Support for an Oregon Solar Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When completed and at full capacity, the facility is expected to produce over 400 megawatts of flexible photovoltaic (PV) panels annually. According to SoloPower estimates, the ...

  7. Energy Department Invests $13 Million to Drive Innovative U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of efficient, affordable photovoltaic and concentrating solar power technologies. ... In Q3 2013, the United States installed 930 megawatts of photovoltaic, up 20 percent over ...

  8. Department of Energy Finalizes $90.6 Million Loan Guarantee to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 30 megawatt (MW) High Concentration Photovoltaic (HCPV) power generation facility that ... utility-scale, high concentration photovoltaic energy generation facilities in the ...

  9. Department of Energy Finalizes a $967 Million Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caliente Solar project, a 290-megawatt photovoltaic solar generating facility in Yuma ... The project sponsor, NRG Solar LLC, estimates the photovoltaic generation facility will ...

  10. Federal Energy Management Program FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    term ends. The U.S. Navy Commander Fleet Activities Yokosuka features a 39 megawatt cogeneration plant financed through an ESPC. Photo Courtesy of the Federal Energy Management...

  11. Indiana's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Indianapolis Power Light Megawatt Energy Systems Simon Property Group Solarvest BioEnergy Utility Companies in Indiana's 4th congressional district Indianapolis Power & Light...

  12. NREL: Wind Research - NREL and Clemson University Put Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test...

  13. NREL: Workforce Development and Education Programs - NREL and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test facility...

  14. Net Metering | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers who own or operate systems up to one megawatt (1 MW) in capacity that generate electricity using solar, wind, geothermal, hydro, tidal, wave, biomass, landfill gas,...

  15. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  16. EIS-0499: Great Northern Transmission Line Project, Minnesota...

    Broader source: Energy.gov (indexed) [DOE]

    and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau,...

  17. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    Statement Public Meetings February 21 - 23, 2012 * An approximately 200 megawatt wind energy facility and associated infrastructure proposed by Searchlight Wind Energy, LLC * ...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Assessment Solar photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes....

  19. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatts" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, ...

  20. EA-1884: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This EA evaluates the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western's...

  1. SCALING OF COMPOSITE WIND TURBINE BLADES FOR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMPOSITE MATERIALS FOR MEGAWATT-SCALE WIND TURBINE BLADES: DESIGN CONSIDERATIONS AND ... Both VARTM and prepreg materials have particular design challenges for manufacturing ...

  2. Obama Administration Offers $59 Million in Conditional Loan Guarantees...

    Energy Savers [EERE]

    of its assembly plant in Pocatello, Idaho, to produce its one megawatt wind turbine. ... Energy's Loan Programs Beacon Power - Challenges and Opportunities for an Innovative ...

  3. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northwest Smart Grid Demonstration Project, which will use the center's 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo...

  4. Template:GeothermalRegion | Open Energy Information

    Open Energy Info (EERE)

    area is located, in km. IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate....

  5. EIS-0419: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Whistling Ridge Energy Project, Construction and Operation of a 75-megawatt Wind Turbine Facility, City of White Salmon, Skamania County, WA

  6. EA-1858: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boiler and a 20-megawatt steam turbine at its existing paper mill in Port Angeles, Washington. PDF icon Mitigation Action Plan for the Environmental Assessment for the...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ... Eligibility: Commercial, Industrial Savings Category: Geothermal Electric,...

  8. Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project

    Broader source: Energy.gov [DOE]

    845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually

  9. EIS-0354: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gasfired electric...

  10. EIS-0354: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Center, L.P., a Diamond Generating Corporation Company, a subsidiary of Mitsubishi Corporation proposes to construct and operate a 500 Megawatt (MW) gas-fired electric...

  11. LANL: AOT & LANSCE The Pulse October 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE accelerator restoration project. A 3-megawatt prototype of the Diacrode amplifer system is undergoing testing ... The amplifer now has higher effciency and power gain, ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligible facilities include those up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in conjunction with recycling. ... Eligibility:...

  14. National Wind Technology Center | Open Energy Information

    Open Energy Info (EERE)

    ratings of a few hundred kilowatts to several megawatts. Specific capabilities include: Design Review & Analysis Software Development, Modeling, & Analysis Systems & Controls...

  15. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Energy Savers [EERE]

    Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino ...

  16. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of U.S. ...

  17. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Per...

  18. Leveraging Untapped U.S. Hydropower Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... existing federal, university, or industry hydro-mechanical test facilities for full-scale ... Young's Creek Hydro Project in Washington State, 2011 (7.5 megawatts) Photo credit: ...

  19. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State ...

  20. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  1. EIS-0469: Notice of Intent To Prepare an Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    Resources (NextEra) applied to interconnect its proposed 99-megawatt (MW) Wilton IV Wind Energy Center Project (Project) with Western Area Power Administration's (Western)...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rebate Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Property Tax Assessment Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes....

  4. Agua Caliente Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Agua Caliente Solar Project Facility 290-megawatt photovoltaic solar generating facility Sector Solar Facility Type Utility scale solar Owner...

  5. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  6. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  7. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and...

  8. COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    review some of Spitzer's pioneering contributions in fusion, including a pictorial history from his founding of PPPL to TFTR's achievement of 10 megawatts of fusion power. Prof. ...

  9. EA-1611: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LLC applied to Western Area Power Administration to interconnect a 90-megawatt wind power facility with Western's existing Sterling-Frenchman Creek 115-kV transmission line....

  10. EA-1782: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to aid its decision whether to provide funding for the University of Delaware's construction and operation of a 2-megawatt wind turbine adjacent to the University's...

  11. EA-1782: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grant of Congressionally Directed Federal Funding to assist in the financing of the construction and operation of a 2 megawatt wind turbine adjacent to the University's...

  12. Project Reports for Seneca Nation- 2014 Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians (SNI) will install one 1.8-megawatt (MW) wind turbine on tribal common lands near Lake Erie in New York.

  13. Community Wind Toolkit | Open Energy Information

    Open Energy Info (EERE)

    American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. Community wind projects may be a single turbine or multi-megawatt...

  14. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic installations throughout 2014. The performance of utility-scale solar installations, those with a nameplate capacity of one megawatt (MW) or greater, is a...

  15. Energy Tomorrow | Department of Energy

    Energy Savers [EERE]

    Tomorrow Energy Tomorrow RSS July 16, 2015 Indian Energy Blog Read Office of Indian Energy blogs. March 29, 2016 Touring First Solar's 250-megawatt Moapa Southern Paiute Solar ...

  16. DOE Announces 1st Projects to Meet President's Clean Coal Commitment...

    Office of Environmental Management (EM)

    LG&E Energy Corporation, Louisville, KY (Withdrawn), which proposes to install an advanced air pollution control system on a 524-megawatt unit of the Ghent Generating Station, ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Green Power Purchasing Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric...

  18. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  19. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm...

  20. Property:Incentive/EligSysSize | Open Energy Information

    Open Energy Info (EERE)

    minimum
    Recycled Energy: 15 Megawatt maximum Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Maximum size is 1 MW or 110% of customer's...