National Library of Energy BETA

Sample records for megawatt mwh megawatt-hour

  1. Subcontract Report NREL/SR-7A2-48318

    E-Print Network [OSTI]

    Wh kilowatt-hour LED light emitting diode MECO Maui Electric Company MWh megawatt-hour NAECA National

  2. exhibit A of framework for memorandum of understanding for direct...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    38MWh that escalates at 2.5 percent each year for the term of the Block Contract. The Price Caps were set based on this expected cost divided by the megawatt-hours sold to...

  3. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm...

  4. Property:Ind sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs JumpResCode JumpInd sales (mwh)

  5. 2010 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    certified campus space, 60 megawatt-hours of renewable energy (including three solar collectors), and a net-zero-energy building goal with one of four buildings transformed....

  6. Massachusetts Takes On Climate Change

    E-Print Network [OSTI]

    Kimmell, Ken; Laurie, Burt

    2009-01-01

    promote a clean and green energy economy. Massachusetts'megawatt-hours of green energy supplied to its customers.job creation in the green energy sector, promote workforce

  7. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  8. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinarwill discuss standard procedures regarding the EERE Office and FOA process.

  9. Final Environmental Impact Report: North Brawley Ten Megawatt...

    Open Energy Info (EERE)

    Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final...

  10. Multi Megawatt Power System Analysis Report

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

    2001-11-01

    Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

  11. Property:Building/SPPurchasedEngyForPeriodMwhYrWoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation,

  12. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump to: navigation,Energy

  13. Property:Building/SPPurchasedEngyNrmlYrMwhYrLogs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump to:

  14. Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump to:Information

  15. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips Jump

  16. Property:Building/SPPurchasedEngyNrmlYrMwhYrPellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips JumpInformation

  17. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChips

  18. Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation SPPurchasedEngyForPeriodMwhYrWoodChipsInformation

  19. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

  20. Megawatt-klystron amplifiers in L-band

    SciTech Connect (OSTI)

    Schaffer, G.

    1989-01-01

    The purpose of this note is to serve as a short guide for the SSC-Linac Injector Workshop. It contains a general overview of historical development and of modern design of L-band klystron amplifiers in the range of about 1 to 30 Megawatt output (CW or pulse). Absolute power limits, efficiency, modulation characteristics, protection devices and typical application examples are briefly considered. It should be mentioned that this overview is not restricted to specific needs of the SSC-Injector Linac. 14 refs., 12 figs., 2 tabs.

  1. Solar Generation Has a Bright Future

    Broader source: Energy.gov [DOE]

    The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013.

  2. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  3. EM Wins Five Sustainability Awards at Three Sites: Second Story...

    Office of Environmental Management (EM)

    of electric-use intensity by 41 percent; procurement of 12,500 megawatt hours of green power from biomass, a plant-based material that serves as a renewable energy source;...

  4. National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements

    E-Print Network [OSTI]

    Schiller, Steven R.

    2011-01-01

    electric energy and capacity from renewable energy and distributed generationelectric energy sold by the retail electric supplier, expressed in megawatt hours, to electric customers for purposes excluding [certain generation

  5. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  6. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  7. MARS15 study of the Energy Production Demonstrator Model for Megawatt

    E-Print Network [OSTI]

    McDonald, Kirk

    MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

  8. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications;5 Where's the value for Industrial Heat Pumps ?Where's the value for Industrial Heat Pumps ? Equipment

  9. Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 3: Electricity Demand Forecast Summary.............................................................................................. 11 Demand From Plug-in Hybrid Electric Vehicles (PHEV megawatt-hours of electricity in 2007. That demand is expected to grow to 25,000 average megawatts by 2030

  10. ACKNOWDGEMENT The study and demonstration is funded in part by the South Coast Air Quality

    E-Print Network [OSTI]

    California at Riverside, University of

    support of: Winston Chung Global Energy Center (WCGEC), Southern California Research Initiative for Solar Energy (SC-RISE), Riverside Public Utilities (RPU), the City of Riverside, UCR Physical Plant, UCR: Four Megawatts (MW) of UCR integrated solar photovoltaics (PV); Two Megawatt-hours of battery energy

  11. Brighter Future: A Study on Solar in U.S. Schools

    Broader source: Energy.gov [DOE]

    In a first-of-its-kind report tracking the use of solar energy at K-12 schools in the United States, The Solar Foundation has developed the most comprehensive understanding to date of how schools are using and financing solar energy and the potential for still more schools to benefit from the technology. According to the report, there are currently 3,752 K-12 schools with solar installations, meaning nearly 2.7 million students attend schools with solar energy systems. These PV systems have a combined capacity of 490 megawatts (MW), and generate roughly 642,000 megawatt-hours (MWh) of electricity each year, equivalent to $77.8 million worth of utility bills and enough clean, renewable energy to offset 50 million gallons of gasoline. Solar potential on schools remains largely untapped. Of the 125,000 K-12 schools in the country, up to 72,000 schools (60%) can "go solar" cost-effectively. Approximately 450 individual schools districts have the potential to save more than $1 million over 30 years by installing a solar PV system.

  12. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    kilowatt LCOE levelized cost of energy MECO Maui Electric Company MSW municipal solid waste MW megawatt MWh

  13. The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches

    SciTech Connect (OSTI)

    Tantawi, S.G. [Stanford Linear Accelerator Center, SLAC, 2575 Sand Hill Rd. Menlo Park, California 94025 (United States)

    1999-05-01

    We present design methodology and analysis for an SPDT switch that is capable of handling hundreds of megawatts of power at X-band. The switch is designed for application in high power rf systems in particular future Linear Colliders (1). In these systems switching need to be fast in one direction only. We use this to our advantage to reach a design for a super high power switch. In our analysis we treat the problem from an abstract point of view. We introduce a unified analysis for the microwave circuits irrespective of the switching elements. The analysis is, then, suitable for different kinds of switching elements such as photoconductrs. PIN diodes, and plasma discharge in low-pressure gases. {copyright} {ital 1999 American Institute of Physics.}

  14. QER- Comment of MWH Global

    Broader source: Energy.gov [DOE]

    Hello, Was looking at the calendar and curious when the Final Meeting is in DC for the QER? http://energy.gov/epsa/initiatives/quadrennial-energy-review-qer Thanks,

  15. Smart Meter Company Boosting Production, Workforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    A manufacturing facility in South Carolina is producing enough smart meters to reduce annual electricity use by approximately 1.7 million megawatt hours -- and through advanced manufacturing tax credits, just increased the facility's production capability by 20 percent and created 420 jobs.

  16. Developing "MOU/CO-OP ENERGY EFFICIENCY PROGRAMS REPORTING FORM" to Satisfy Senate Bill 924 (82nd R) Reporting Requirements

    E-Print Network [OSTI]

    Parker, P.; Baltazar, J.; Haberl, J.; Yazdani, B.; Zilbershtein, G.

    2012-01-01

    As mandated by the 82nd R Legislature (2011), Senate Bill 924, Utilities Code, Sections 39.9051 and 39.9052, beginning April 1, 2012, all electric cooperatives that had retail sales of more than 500,000 megawatt hours in 2005 and all municipally...

  17. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    findings for costs: In aggregate, regional utility investments in energy efficiency in 2013 were $375 cost to utilities of 2013 savings was just over $17 per megawatt hour (2006$). Regional utility investments in energy efficiency averaged just over $28 per capita in 2013 compared to the national average

  18. AES Southland, Inc. and Williams Energy Marketing & Trading Company, 94 FERC 61,248 (2001).

    E-Print Network [OSTI]

    Laughlin, Robert B.

    2001-01-01

    is a wholesale seller of electric energy in California with authority to charge market based rates. Williams has was the bid price that Williams had submitted for that unit. The bid price was at or very near the then- maximum bid price of $750 per megawatt hour. In addition, the ISO was unable to dispatch Huntington Beach

  19. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  20. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    SciTech Connect (OSTI)

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  1. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  2. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect (OSTI)

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  3. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  4. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  5. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect (OSTI)

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  6. PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,

    E-Print Network [OSTI]

    PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui of distributed dish, central generation solar thermal power systems using either direct steam generation-dish, steam-based, solar thermal power station in White Cliffs (Kaneff 1991). A parallel line

  7. Amine Scrubbing for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Rochelle, G.T. [University of Texas at Austin, Austin, TX (United States). Dept. of Chemical Engineering

    2009-09-15

    Amine scrubbing has been used to separate carbon dioxide (CO{sub 2}) from natural gas and hydrogen since 1930. It is a robust technology and is ready to be tested and used on a larger scale for CO{sub 2} capture from coal-fired power plants. The minimum work requirement to separate CO{sub 2} from coal-fired flue gas and compress CO{sub 2} to 150 bar is 0.11 megawatt-hours per metric ton of CO{sub 2}. Process and solvent improvements should reduce the energy consumption to 0.2 megawatt-hour per ton of CO{sub 2}. Other advanced technologies will not provide energy-efficient or timely solutions to CO{sub 2} emission from conventional coal-fired power plants.

  8. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  9. 100%Baseline is conventional

    E-Print Network [OSTI]

    Pennycook, Steve

    installation of the PureComfortTM 240 took place during July 2004 at a new 57,000-square-foot A&P supermarket% 100% CHP Efficiency Fuel Energy CO2 NOx Each PureComfortTM system produces about 40% less carbon dioxide and 85% less NOx per megawatt-hour than the average fossil-fuel-fired utility power plant. U

  10. Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and

    E-Print Network [OSTI]

    feet (~26.2'x26.2'x26.2') 5 CO2 Content by Fuel Type (lbs of CO2 per Million Btu of Fuel) Coal Type (lbs of CO2 per Megawatt-hour of Power) Coal-fired generation Coal-fired generation Existing PNW Sectors, by Fuel Type Annual 2012Annual 2012 Millions of Metric Tons Fuel Type Coal 1,657 Natural Gas 1

  11. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  12. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    SciTech Connect (OSTI)

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  13. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial ReportProposal to changeNovember 5-6, 2001Final ReportA A M M AMW

  14. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  15. Nellis Air Force Base solar array provides model for renewable projects

    Broader source: Energy.gov [DOE]

    A public-private partnership has helped one Air Force base reduce its energy costs and convert to 25 percent renewable energy. Nellis Air Force Base, just north of Las Vegas, took a big step in 2007 when it installed a 14.2-megawatt, 70,000-panel photovoltaic solar array that reduced carbon dioxide emissions by 24,000 tons a year. Built partly on a landfill, the field of solar panels takes advantage of two resources plentiful in Nevada: sunshine and empty land. At its unveiling in December of 2007, the Nellis array was the largest solar panel installation in North America. The project was originally expected to produce about 30,000 megawatt-hours of electricity per year, but Steven Dumont, Air Combat Command Energy Manager, says its actually producing closer to 32,000 megawatt-hours, which is about 8 percent above expectations. Despite this success, Dumont said he nearly didnt pursue the project.

  16. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  17. International Voluntary Renewable Energy Markets (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2012-06-01

    This presentation provides an overview of international voluntary renewable energy markets, with a focus on the United States and Europe. The voluntary renewable energy market is the market in which consumers and institutions purchase renewable energy to match their electricity needs on a voluntary basis. In 2010, the U.S. voluntary market was estimated at 35 terawatt-hours (TWh) compared to 300 TWh in the European market, though key differences exist. On a customer basis, Australia has historically had the largest number of customers, pricing for voluntary certificates remains low, at less than $1 megawatt-hour, though prices depend on technology.

  18. Saving Megawatts with Voltage Optimization

    E-Print Network [OSTI]

    Wilson, T.; Bell, D.

    2010-01-01

    In September 2008, PCS UtiliData commissioned an Industrial Voltage Optimization system at the Plum Creek Timber Medium Density Fiberboard facility in Columbia Falls, Montana. The system was based upon the AdaptiVolt(TM) Volt/VAR Optimization system...

  19. Property:Com sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)EnergyFloorAreaOfficesCollaborators Jump to:

  20. Property:Res sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuelEnergyrev

  1. Property:Tot sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to:SpatialResolution Jump to:ResourceToolComplexitysales

  2. Property:Oth sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to: navigation,News/LinkUtility Jump to:rev

  3. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  4. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  5. Developing Mt. Hope: The megawatt line

    SciTech Connect (OSTI)

    Rodzianko, P.; Fisher, F.S.

    1992-12-01

    After facing numerous obstacles, including opposition and competition, the Mt. Hope pumped-storage project in New Jersey has been licensed by FERC. That license will allow a former iron ore mine site to be used in producing a new resource-hydroelectricity. In early August 1992, after more than seven years of effort, the 2,000-MW Mt. Hope Waterpower Project was licensed by the Federal Energy Regulatory Commission (FERC). Getting the $1.8 billion pumped-storage project licensed was not an easy task. It involved 54 submittals to FERC, six public meetings, and costs of more than $12 million. Along the way, the project has withstood competing applications, community opposition, and legal battles. Getting a project of this magnitude off the ground is a challenge for even the most experienced developer. The effort was especially challenging for the Halecrest Company, a local family-owned and operated firm with no previous experience in hydroelectric development. When financing became tight, creative ways were found to raise seed capital for the project. When hydroelectric experience was needed, the company developed a world-class corporate team that carried Mt. Hope through the complexities of the licensing process and beyond. With license now in hand, the project developers are ready to move forward with negotiating power sales contracts and securing construction financing. The resulting project will be the second largest pumped-storage facility in the country-second only to the 2,100-MW Bath County project in Virginia. Mt. Hope will take six years to construct and is scheduled to be phased into operation beginning in 1999.

  6. megatons to megawatts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  7. Adaptive control system for pulsed megawatt klystrons

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1992-01-01

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  8. Multi-Megawatt Power System Trade Study

    SciTech Connect (OSTI)

    Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

    2001-11-01

    As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but do not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.

  9. MegaWatt Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop,Smw importMeeme,Meetsolar Jump

  10. Megawatt Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop,Smw importMeeme,Meetsolar

  11. Water watch

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    The Hydropower Generation Report provides generation figures for the largest hydropower producers in each of six regions in the US. The report compares, for each month, the amount of hydroelectricity generated (in thousands of megawatt-hours) by each producers in the last two years to the ten-year average for that month. This database is used to figure long-term generation averages and percent of averages. The producers regularly provide current generation data to update the database. This issue of [open quotes]Water Watch[close quotes] focuses on winter snow conditions across the US as of mid-January. In addition, the department provides an outlook of spring flood potential. The information presented is based on data from the US Geological Survey, the National Weather Service, and the Soil Conservation Service.

  12. Status and Trends in the U.S. Voluntary Green Power Market (2013 Data)

    SciTech Connect (OSTI)

    Heeter, J.; Belyeu, K.; Kuskova-Burns, K.

    2014-11-01

    Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This report surveys utilities, competitive suppliers, renewable energy certificate (REC) marketers, and, for the first time, the community choice aggregation market. This report finds that the voluntary market totaled 62 million megawatt-hours in 2013. Approximately 5.4 million customers are purchasing green power. This report presents data and analysis on voluntary market sales and customer participation, products and premiums, green pricing marketing, and administrative expenses. The report also details trends in REC tracking systems, REC pricing in voluntary and compliance markets, community and crowd-funded solar, and interest in renewable energy by the information and communication technologies sector.

  13. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    , wholesale power prices at the Mid-Columbia trading hub are projected to increase from $45 per megawatt per MWh in 2008 (in real 2006 dollars). The Council's wholesale power price forecasts are projections-term trend forecasts. The long-term price projections are also used by the Council, regional utilities

  14. Total Cost Per MwH for all common large scale power generation...

    Open Energy Info (EERE)

    out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs...

  15. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;"

  16. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table

  17. ,,,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Customers",,,,,"Energy Sold Back MWh"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for

  18. Total Cost Per MwH for all common large scale power generation sources |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinna GroupToppan Printing Co LtdChinaOpenEI

  19. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump to: navigation,

  20. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtColg | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump to:

  1. Property:Building/SPPurchasedEngyForPeriodMwhYrDstrtHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump to:Information

  2. Property:Building/SPPurchasedEngyForPeriodMwhYrElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal Jump

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal JumpInformation

  4. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal JumpInformationEnergy

  5. Property:Building/SPPurchasedEngyForPeriodMwhYrOther | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotal

  6. Property:Building/SPPurchasedEngyForPeriodMwhYrPellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotalInformation

  7. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformationSPElectrtyUsePercTotalInformationInformation

  8. Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII

  9. Property:Building/SPPurchasedEngyNrmlYrMwhYrWoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformation

  10. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

  11. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    ed. Golden, CO: National Renewable Energy Laboratory, AugustGolden, CO: National Renewable Energy Laboratory, SeptemberGolden, CO: National Renewable Energy Laboratory, June 2010.

  12. Transmission of Megawatt Relativistic Electron Beams through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R.

    High-power, relativistic electron beams from energy-recovering linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration ...

  13. 10-Megawatt Supercritical Carbon Dioxide Turbine- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this National Renewable Energy Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  14. Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures

    E-Print Network [OSTI]

    R. Alarcon; S. Balascuta; S. V. Benson; W. Bertozzi; J. R. Boyce; R. Cowan; D. Douglas; P. Evtushenko; P. Fisher; E. Ihloff; N. Kalantarians; A. Kelleher; R. Legg; R. G. Milner; G. R. Neil; L. Ou; B. Schmookler; C. Tennant; C. Tschalaer; G. P. Williams; S. Zhang

    2013-05-01

    High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.

  15. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

  16. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

  17. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alencon Systems will develop and commercialize a new type of transformational power electronic technology to utility-scale PV systems based on novel, patent-pending ideas. A 99.1% efficient,...

  18. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    cable coefficients for the spar buoy design. The wave-bodyof the structure. The spar buoy has a hydrostatic pitching8 2.1 Spar buoy

  19. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Test Test A specially configured truck, delivers a GE 2.75-MW wind turbine nacelle weighing more than 96 tons to the new 5-MW dynamometer at the NWTC. Photo by Mark McDadeNREL...

  20. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    Enabling New Markets for Offshore Wind Energy." Proc. ofMary, and Laura Parsons. Offshore Wind Energy. Washingto,Challenges for Floating Offshore Wind Turbines. Tech. no.

  1. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    Modeling the Dynamics of a Spar-type Floating Offshore Windcable coefficients for the spar buoy design. The wave-bodygeometry of the structure. The spar buoy has a hydrostatic

  2. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    TU Delft and Siemens Wind Power, 2009. 7. Crossett, KristenRan. Large-Scale Offshore Wind Power in the United States:In fact, each GW of clean wind power eliminates 1.8 million

  3. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    s First Full-scale Floating Wind Turbine." Statoil, 14 Oct.Modeling of a Floating Wind Turbine." International Journalof an Offshore Floating Wind Turbine. Tech. no. NREL/TP-500-

  4. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    to reduce the cost of all future floating wind turbines andwind turbine is an important factor in the design of these structures, reducing the cost

  5. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.wind is a valuable source of renewable energy, as it is typically strong and steady. Turbines

  6. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    User's Guide. Tech. no. NREL/EL-500-38230. 6th ed. Golden,Wind Turbines. Tech. no. NREL/CP-500-38776. Golden, CO:the United States. Tech. no. NREL/TP- 500-45889. Golden, CO:

  7. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    New Markets for Offshore Wind Energy." Proc. of Europeanand Laura Parsons. Offshore Wind Energy. Washingto, DC:Musial. Assessment of Offshore Wind Energy Resources for the

  8. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    String-wise MPPT * 300 to 1,000V DC Input Voltage * 2,500V DC Bi-polar Output Voltage * "Plug and Play" Topology * Wireless Communication and Data Collection Distributed Harvesting...

  9. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    of European Wind Energy Conference 2009, Marseille, France.Enabling New Markets for Offshore Wind Energy." Proc.Parsons. Offshore Wind Energy. Washingto, DC: Environmental

  10. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    Enabling New Markets for Offshore Wind Energy." Proc.of European Wind Energy Conference 2009, Marseille, France.Parsons. Offshore Wind Energy. Washingto, DC: Environmental

  11. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilot andNewsDioxide Turbine

  12. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdf JumpBy Type

  13. Mass Megawatts Wind Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt Geothermal Area Jump to:Institute of Science

  14. Design of megawatt power level heat pipe reactors (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystal Spectrometer

  15. Design of megawatt power level heat pipe reactors (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystal SpectrometerSciTech Connect

  16. Funding Opportunity: Next Generation Electric Machines: Megawatt Class

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathyEnergydetails toDepartment ofMotors |

  17. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  18. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    lead acid absorption solar photo- storage batteries chillerMWh) adopted solar thermal (MW) adopted heat storage (MWh)MWh) adopted solar thermal (MW) adopted heat storage (MWh)

  19. SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II

    SciTech Connect (OSTI)

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

  20. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has signed a 27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately...

  1. reduced demand for power by nearly 1,500 megawatts through investments in energy

    E-Print Network [OSTI]

    are in energy-efficient water heaters, lighting, windows and equipment for heating, ventilation and air energy efficiency standards for manufactured housing and major appliances Amendments to the Fish in homes and buildings, indus- trial facilities and irrigated agriculture. The savings primarily

  2. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven Alan; Rochau, Gary Eugene; Fuller, Robert Lynn

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  3. GSA Issues New Request for Proposals to Bring 3 Megawatts of...

    Energy Savers [EERE]

    a request for proposal (RFP) for the procurement of electricity produced by solar photovoltaic arrays to be constructed by the selected bidder that will bring approximately 3...

  4. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  5. MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena

    E-Print Network [OSTI]

    McDonald, Kirk

    such as corrosion. Additionally, the fast flowing liquid metal can cause erosion of the construction materials such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems such as temperature, pressure, liquid metal flow, redox potential and proton dose. These micro

  6. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect (OSTI)

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  7. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  8. 1 KILOWATT = 1,000 WATTS 1 MEGAWATT = 1,000,000 WATTS

    E-Print Network [OSTI]

    Hochberg, Michael

    microwave for 1 hour uses 1.2 kW-h of energy. That's 4.3 megajoules or 4,300,000 joules. Power is how fast production of 150 hp. human body base metabolism 80 watts 1 kilowatt microwave 26 cu ft. refrigerator (annual solar panel array (peak production) 1.5 kilowatt ~10 m2 space shuttle lifto hand-cranked generator 10

  9. UPDATE ON THE DEVELOPMENT OF 120-keV MULTI-MEGAWATT NEUTRAL BEAM SOURCE

    E-Print Network [OSTI]

    Haughian, J.M.

    2010-01-01

    hydrogen atmo- sphere using a broad melting range (950C liquidus - 900C solidus) filler composed of 25% palladium,

  10. Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility

    E-Print Network [OSTI]

    Good, R.

    1988-01-01

    "In December of 1987, Union Carbide successfully brought on line a 110,000 KVA combined cycle cogeneration facility. The construction, commissioning and start up of this complex facility was accomplished in a remarkably short twelve months...

  11. Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine

    SciTech Connect (OSTI)

    Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.

    2010-10-01

    Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.

  12. GSA Awards Contract to Bring 3 Megawatts of Solar to Federal Buildings in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of Energy FormerGE-Prolec CCE MeetingDepartment

  13. GSA Issues New Request for Proposals to Bring 3 Megawatts of Solar to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcoming eventsFleetFranklinofFind7, 2011,

  14. DOE to Debut a Dynamic 5-Megawatt Dynamometer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zeroof Energy DOE site facilityTest

  15. DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zeroof Energy DOE siteDepartment of

  16. Bellavista Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  17. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01

    15 : 28-82 /MWh; Wind Offshore 16 : 30-130 /MWhHydro 17 :84.6 /MWh (islands); Wind offshore: 90 /MWh (mainland andothers) Sewage gas Onshore wind Offshore Hydro wind < 20 MW

  18. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG,

  19. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","NUMBER OF RESIDENTIAL AMR METERS","NUMBER OF COMMERCIAL AMR METERS","NUMBER OF INDUSTRIAL AMR METERS","NUMBER OF TRANSPORTATION AMR METERS","TOTAL NUMBER OF AMR METERS","NUMBER OF RESIDENTIAL AMI METERS","NUMBER OF COMMERCIAL AMI METERS","NUMBER OF INDUSTRIAL AMI METERS","NUMBER OF TRANSPORTATION AMI METERS","TOTAL NUMBER OF AMI METERS","RESIDENTIAL ENERGY SERVED THRU AMI METERS (MWh)","COMMERCIAL ENERGY SERVED THRU AMI METERS (MWh)","INDUSTRIAL ENERGY SERVED THRU AMI METERS (MWh)","TRANSPORTATION ENERGY SERVED THRU AMI METERS (MWh)","TOTAL ENERGY SERVED THRU AMI METERS (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG,2,1,"AK",213,"Alaska

  20. Economic and Emissions Implications of Load-Based, Source-based and First-seller Emissions Trading Programs under California AB32

    E-Print Network [OSTI]

    Chen, Yihsu; Liu, Andrew L.; Hobbs, Benjamin F.

    2008-01-01

    Rate [kgs/MWh] COST CO2 Cost[$/MWh] ZoneA ZoneC CumulativeCapacity [MW] Emissions Rate [kgs/MWh] COST CO2 COSTCO2 Emissions Rate [kgs/MWh] Cost[$/MWh] Cost[$/MWh

  1. Progress on the 140 KV, 10 Megawatt Peak, 1 Megawatt Average Polyphase Quasi-Resonant Bridge, Boost Converter/Modulator for the Spallation Neutron Source (SNS) Klystron Power System

    E-Print Network [OSTI]

    Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.

    2000-01-01

    This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...

  2. Five megawatt pilot-scale demonstration of the NOXSO Process at Ohio Edison`s Toronto Power Plant

    SciTech Connect (OSTI)

    Haslbeck, J.L.; Woods, M.C.; Ma, W.T.; Harkins, S.M.; Black, J.B.; Browning, J.P.; Leonard, C.A.; Friedrich, J.J. [NOXSO Corp., Bethel Park, PA (United States)

    1995-12-31

    The NOXSO Process is a dry, regenerable flue gas treatment system that simultaneously removes sulfur oxides (SO{sub 2}, SO{sub 3}) and nitrogen oxides (NO{sub x}) from flue gas. Removal efficiencies of 95+% SO{sub 2}, 99% SO{sub 3}, and 80--90% NO{sub x} have been achieved. The process generates no waste. Sulfur oxides are converted to a marketable byproduct, either sulfuric acid, liquid SO{sub 2}, or elemental sulfur. Nitrogen oxides are converted to nitrogen and oxygen which are released to the atmosphere. The process is easily retrofit and is particularly applicable to high sulfur coals. Most importantly, the NOXSO Process capital and operating costs are less than conventional technology, i.e., a selective catalytic reduction unit followed by a wet scrubber. This paper covers the results of a 5 MW pilot test of the NOXSO Process at Ohio Edison`s Toronto Power Plant. The paper focuses on process design improvements that were verified in pilot plant testing. These improvements are in the area of increased pollutant removal efficiency and decreased capital and operating costs. The paper concludes with an analysis of the cost and performance of a NOXSO plant treating all of the flue gas from a 500 MW power plant burning 2.8% sulfur coal.

  3. Presented at Solar World Congress, Beijing, September 18 22 2007 PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT

    E-Print Network [OSTI]

    success story over the last two decades, with growth rates in installed capacity in the range of 20 30% per annum. Worldwide installed capacity is now in excess of 35GWe and annual turnover in excess of US$15billion. Photovoltaics have experienced similar rates of growth but installed capacity is an order

  4. Analysis of the socioeconomic impacts of the development of two 525 megawatt power generating stations at Calaveras Lake, Texas

    E-Print Network [OSTI]

    Arneson, Lynn A

    1988-01-01

    modification to a National Pollutant Discharge Elimination System (NPDES) permit. In performance of the Environmental Assessment, baseline and impact scenario studies were performed on air quality, hydrogeology, soils, aquatic ecology, vegetation, wildlife... (i. e. economic, demographic, housing, etc. ) plus additional information, some of which was unique to this investigation. This information was used to make make projections of two sets of conditions baseline conditions without the project...

  5. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6. Total1.6.6.9.USEnergy

  6. Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2011-01-01

    in terms of 20-year levelized LCOE) for both the StrategicITC Loss Loss Results: Strategic Flip LCOE Delta ($/MWh) ($/Results: Cooperative LLC LCOE Delta ($/MWh) ($/MWh) Total

  7. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); analyze the potential within the district to utilize farm wastes to produce biofuels; enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; identify the policy, regulatory, and financial barriers impeding development of a new energy system; and improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the Colleges yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  8. Technical Report NREL/TP-6A2-48258

    E-Print Network [OSTI]

    Emissions Trading Scheme (European Union) EU European Union GHG greenhouse gas ITC investment tax credit MWh

  9. Call for Nominations to the WTERT/SUR 2010 Awards -February 22, 2010

    E-Print Network [OSTI]

    Columbia University

    electricity from LFG: MWh of district/other heating from LFG: Additional information: The definition of "city of MSW composted: Tons MSW to Waste-to-Energy (WTE or EfW): MWh electricity from WTE/EfW: MWh of district/other heating from WTE/EfW: Tons of MSW landfilled: Tons of MSW landfilled with Landfill Gas Recovery: MWh

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  12. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  3. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jan

  4. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheastThousand4,767 13,140per Thousand05,136

  5. LINE","COMPNAME","COMPID","YEAR","PURCNAME","SALETYPE","MEGAWATT","ANNMXDEM","DE

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheastThousand4,767 13,140per

  6. Modal Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission Mission Missionof EnergyJennings= a n

  7. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  8. Membrane Development for Vanadium Redox Flow Batteries

    SciTech Connect (OSTI)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become a main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range, and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion{reg_sign} as the preferred membrane material is responsible for {approx}11% of the overall cost of a 1 MW/8 MWh system. Therefore in recent years two main membrane-related research threads have emerged: (a) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and (b) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic science issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  9. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01

    Damage Costs of Carbon Dioxide Emissions: An Assessment ofper Megawatt Hrs) Carbon Dioxide Emissions Cost ($ per Year)Megawatt Hrs) Carbon Dioxide Emissions Cost MSA Emissions

  10. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development

    E-Print Network [OSTI]

    Glaeser, Edward L.; Kahn, Matthew E.

    2008-01-01

    of CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost ($of CO2 per Megawatt Hrs) Carbon Dioxide Emissions Cost MSA

  11. Outfalls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steam for process needs and to produce electricity in one 10-megawatt and two 5-megawatt steam turbinesgenerators. Permitted Discharge Cooling towers, boiler blow-down drains,...

  12. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6.

  13. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading",,,,,"Number AMI- Advanced Metering Infrastructure",,,,,"Non AMR/AMI Meters",,,,,"Total Numbers of Meters",,,,,"Energy Served - AMI (MWh)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate6.5,1,213,"Alaska

  14. EPRI Site Selection Report

    Energy Savers [EERE]

    than 2,000,000 MWh of electricity. By FY 2020, based on the sustainability plan, this electricity consumption is projected to grow to approximately 3,250,000 MWh. The current...

  15. A Green Prison: Santa Rita Jail Creeps Towards Zero Net Energy (ZNE)

    E-Print Network [OSTI]

    Marnay, Chris

    2011-01-01

    is electric storage, in the form of a 12 MWh battery bankstorage is installed, LBNL intends to deliver week-ahead optimized batteryStorage Previously, a 2 MW 12 MWh NGK sodium-sulfur (NaS) battery

  16. Application of the Software as a Service Model to the Control of Complex Building Systems

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    is electric storage, in the form of a 12 MWh battery bankstorage is installed, LBNL intends to deliver week-ahead optimized batteryStorage Previously, a 2 MW 12 MWh NGK sodium-sulfur (NaS) battery

  17. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01

    1.9.2 Natural Gas Units by Heat-Rate . . . 1.9.3 RenewableDistribution of Hourly Heat Rates for Natural Gas UnitsCapacity (MWh) Average Heat Rate (MMBtu/MWh) Average CO 2

  18. Three Essays on Environmental and Development Economics

    E-Print Network [OSTI]

    Chong, Howard G.

    2011-01-01

    hydro or nuclear intensive firms Fortum, British Energy, andCarbon per MWh per Equity Fortum Verbundgesellschaft British

  19. New Limited Submissions 3-25-2015 Agency for International Development

    E-Print Network [OSTI]

    Azevedo, Ricardo

    deadline: April 12, 2015 Department of Energy Next Generation Electric Machines: Megawatt Class Motors URL

  20. Supplemental Report of the Oversupply Technical Oversight November 15, 2012

    E-Print Network [OSTI]

    the average cost of displacing wind in 2012 to be approximately $12 million, solutions must be very low cost Management Protocol totaled around 49,600 MWh vs 97,500 MWh in 2011. The cost to wind project owners, with 300,000 MWh of wind displacement. The OTOC took note of the fact that actual Oversupply costs in 2012

  1. Carnegie Mellon University CARNEGIE INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    CO2 emissions. The costs of variability are dependent on technology type. Variability cost for solar PV is $8-11/MWh, for solar thermal it is $5/MWh, and for wind it is around $4/MWh. Variability adds ~$15/tonne CO2 to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV

  2. Emissions Reduction Impact of Renewables

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs... of NOx/MWh Unit: lbs of NOx/MWh p. 26 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 OSD eGrid for NOx Emissions Unit: Tons of NOx/OSD p. 27 Energy Systems Laboratory ? 2012 p. 28 Energy Systems Laboratory ? 2012 p...

  3. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPCs tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  4. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    about 250 megawatts of small hydro and hydro upgrades and a 380 megawatt utility acquisition requirements, which further limit the hydro system's peaking capability. Other expected new generation includes

  5. Sustainable Energy in Remote Indonesian Grids: Accelerating Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of return kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy LED light-emitting diode MW megawatt MWe megawatt electric NAL Nirmala Agro Lestari NGOs...

  6. Evaluation Framework and Tools for Distributed Energy Resources

    E-Print Network [OSTI]

    Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

    2003-01-01

    prices megawatt (10 watts) natural gas combined cycle not in my backyard nitrogen oxides particulate matter photovoltaic

  7. The Green Spiral: Policy-Industry Feedback and the Success of International Environmental Negotiation

    E-Print Network [OSTI]

    Kelsey, Sarah Manina

    2014-01-01

    capacity like residential systems, but does not include solar thermal, finds almost 200 megawatts of cumulative PV capacity installed

  8. Regional GHG Emissions O tlook Greenhouse Gas and the Regional

    E-Print Network [OSTI]

    demand The model can also track CO2 emissions heat rates, emission rates, hydro shapes... Fuel prices Emission Rate Load Heat Rate 10 mmbtu/MWh Fuel 80,000 mmbtu Combined Cycle Plant 212 lb/mmbtu Emission Rate 4 8,000 MWh Load Heat Rate 7 mmbtu/MWh Fuel 56,000 mmbtu 3,276 tons CO2 Emission Rate 117 lb

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    The energy savings were estimated at 58% per year (Hydraulicmonths by energy savings of 36 MWh (2%) per year (Hydraulicenergy. Proper maintenance includes the following (Hydraulic

  10. The Potential for Avoided Emissions from Photovoltaic Electricity in the United States

    E-Print Network [OSTI]

    Zhai, Pei

    2014-01-01

    factor is defined as hourly generation (Watt) divided bygeothermal, and (3) hourly generation from solar and windoutput including hourly generation (MWh) from coal, natural

  11. Council's Regional Hydropower Potential Scoping

    E-Print Network [OSTI]

    Hydroelectric Association Lisa Larson, HDR Rick Miller, HDR Discussion of analysis Reaction? 2 #12;Objective Northwest Hydroelectric Association HDR, Inc. MWH Global Black & Veatch Bonneville Environmental

  12. 0 5 10 15 20 Radial build

    E-Print Network [OSTI]

    .500e+08 Pa Costs: Cost of electricity = 212.85 $/MWh Constructed cost = 7476.00 M$ Total capex = 8597

  13. Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana

    E-Print Network [OSTI]

    Kotchen, Matthew J; Grant, Laura E.

    2008-01-01

    small changes in electricity consumption. Table 8: Thethe DST change in electricity consumption of 166,217 MWh/DST effects on electricity consumption in the United States

  14. PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I

    E-Print Network [OSTI]

    Case, C.W.

    2011-01-01

    hydroelectric devices, geothermal systems, and integratedscale application of a geothermal system for domestic hotsavings from this geothermal system should be about 780 MWh

  15. Aggieland Orchestra - 5

    E-Print Network [OSTI]

    Unknown

    2006-01-01

    (wind); and 336,046 MWh/year (2.5%) from residential SEER 13 air conditioner retrofits. In 2011, the total integrated OSD electricity savings from all programs is calculated to be 36,076 MWh/day, which would be a 1,503 MW average hourly load... from all programs is calculated to be 8,336,472 MWh/year. The integrated annual electricity savings from all the different programs is: 1,026,244 MWh/year (5.6% of the total electricity savings) from code-compliant residential and commercial...

  16. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01

    follows: EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) HRDCost:maximum fraction of electricity demand to be met by demand

  17. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    in additional PV and battery storage. Keywords: Distributedelectrical stationary battery storage with the main goal ofof 1.3MWh of stationary battery storage 7 . This highly

  18. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Colorado Boulder Anaerobic MBR: Challenges and Opportunities, Art Umble, MWH Americas Microbial Fuel Cell Technologies-MxCs: Can They Scale? Bruce Logan, Penn State University...

  19. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. South Carolina Nuclear Profile - H B Robinson

    U.S. Energy Information Administration (EIA) Indexed Site

    H B Robinson" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  1. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Ohio Nuclear Profile - Perry

    U.S. Energy Information Administration (EIA) Indexed Site

    Perry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. South Carolina Nuclear Profile - V C Summer

    U.S. Energy Information Administration (EIA) Indexed Site

    V C Summer" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Virginia Nuclear Profile - Surry

    U.S. Energy Information Administration (EIA) Indexed Site

    Surry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  9. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  10. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  11. Michigan Nuclear Profile - Palisades

    U.S. Energy Information Administration (EIA) Indexed Site

    Palisades" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Iowa Nuclear Profile - Duane Arnold Energy Center

    U.S. Energy Information Administration (EIA) Indexed Site

    Duane Arnold Energy Center" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  13. Ohio Nuclear Profile - Davis Besse

    U.S. Energy Information Administration (EIA) Indexed Site

    Davis Besse" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  14. Pennsylvania Nuclear Profile - Peach Bottom

    U.S. Energy Information Administration (EIA) Indexed Site

    Peach Bottom" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  17. Pennsylvania Nuclear Profile - Limerick

    U.S. Energy Information Administration (EIA) Indexed Site

    Limerick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  18. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  19. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Tennessee Nuclear Profile - Sequoyah

    U.S. Energy Information Administration (EIA) Indexed Site

    Sequoyah" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  1. Louisiana Nuclear Profile - Waterford 3

    U.S. Energy Information Administration (EIA) Indexed Site

    Waterford 3" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  2. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  3. New York Nuclear Profile - James A Fitzpatrick

    U.S. Energy Information Administration (EIA) Indexed Site

    James A Fitzpatrick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  5. Virginia Nuclear Profile - North Anna

    U.S. Energy Information Administration (EIA) Indexed Site

    North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  7. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  8. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. North Carolina Nuclear Profile - Harris

    U.S. Energy Information Administration (EIA) Indexed Site

    Harris" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Connecticut Nuclear Profile - Millstone

    U.S. Energy Information Administration (EIA) Indexed Site

    Millstone" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  13. New York Nuclear Profile - Indian Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  15. Minnesota Nuclear Profile - Prairie Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. South Carolina Nuclear Profile - Oconee

    U.S. Energy Information Administration (EIA) Indexed Site

    Oconee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  17. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  18. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  2. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  3. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Florida Nuclear Profile - St Lucie

    U.S. Energy Information Administration (EIA) Indexed Site

    St Lucie" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. California Nuclear Profile - Diablo Canyon

    U.S. Energy Information Administration (EIA) Indexed Site

    Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  9. Nebraska Nuclear Profile - Cooper

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooper" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  10. Michigan Nuclear Profile - Fermi

    U.S. Energy Information Administration (EIA) Indexed Site

    Fermi" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. South Carolina Nuclear Profile - Catawba

    U.S. Energy Information Administration (EIA) Indexed Site

    Catawba" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  14. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  18. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Arizona Nuclear Profile - Palo Verde

    U.S. Energy Information Administration (EIA) Indexed Site

    Palo Verde" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. Georgia Nuclear Profile - Edwin I Hatch

    U.S. Energy Information Administration (EIA) Indexed Site

    Edwin I Hatch" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. North Carolina Nuclear Profile - McGuire

    U.S. Energy Information Administration (EIA) Indexed Site

    McGuire" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  6. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. New Jersey Nuclear Profile - Oyster Creek

    U.S. Energy Information Administration (EIA) Indexed Site

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  9. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Pennsylvania Nuclear Profile - Three Mile Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Wisconsin Nuclear Profile - Kewaunee

    U.S. Energy Information Administration (EIA) Indexed Site

    Kewaunee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Georgia Nuclear Profile - Vogtle

    U.S. Energy Information Administration (EIA) Indexed Site

    Vogtle" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  14. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  15. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  16. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  17. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  18. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Missouri Nuclear Profile - Callaway

    U.S. Energy Information Administration (EIA) Indexed Site

    Callaway" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Minnesota Nuclear Profile - Monticello

    U.S. Energy Information Administration (EIA) Indexed Site

    Monticello" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. Arkansas Nuclear Profile - Arkansas Nuclear One

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  4. New Hampshire Nuclear Profile - Seabrook

    U.S. Energy Information Administration (EIA) Indexed Site

    Seabrook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Michigan Nuclear Profile - Donald C Cook

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald C Cook" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. Vermont Nuclear Profile - Vermont Yankee

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Yankee" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  8. Pennsylvania Nuclear Profile - PPL Susquehanna

    U.S. Energy Information Administration (EIA) Indexed Site

    PPL Susquehanna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. North Carolina Nuclear Profile - Brunswick

    U.S. Energy Information Administration (EIA) Indexed Site

    Brunswick" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  11. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Nebraska Nuclear Profile - Fort Calhoun

    U.S. Energy Information Administration (EIA) Indexed Site

    Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

  13. Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    cost of electricity (LCOE) generated by the turbine, basedEnergy (right scale) COD: LCOE (2010 $/MWh) Capacity Factorcase, the benefit (lower LCOE) outweighs the incremental

  14. Net Requirements Transparency Process for Slice/Block Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocation Extension Agreement (CEAEA) amounts for Priest Rapids and Wanapum. Tacoma Power's FY2013 Dedicated Resource amounts were reduced by 2 MWh due to updating FY2013...

  15. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    40 Figure E1. NOx Emissions (lb/MWh) for ICEs, Californa Air53 Figure E2. NOx Emission Histogram for SimulatedNOx emissions.

  16. "YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL...

    U.S. Energy Information Administration (EIA) Indexed Site

    METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK...

  17. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01

    in electricity sector generation costs. In addition, the5/MWh change in levelized generation costs. We find that thethe cost and potential of renewable generation technologies

  18. Californias Water Footprint: recent trends and framework for a sustainable transition

    E-Print Network [OSTI]

    Fulton, Julian

    2015-01-01

    oil resources using hydraulic fracturing and other wellapplication of hydraulic fracturing techniques around theextraction, including hydraulic fracturing: 5.2 gal/MWh e (

  19. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    State Electricity Profiles Corrections for State Electricity Profiles June 19, 2014 Tables revised: Table 1. 2012 Summary Statistics - CO2 lbsMwh data updated Table 7. Electric...

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)", "Sulfur dioxide (short tons)",3978753 "Nitrogen oxide (short tons)",2411564 "Carbon dioxide (thousand metric tons)",2172355 "Sulfur dioxide (lbsMWh)",2 "Nitrogen oxide...

  1. Abstract--Market based contracting introduces increased competition in the power industry, and creates a need for

    E-Print Network [OSTI]

    Berleant, Daniel

    cost for generation company i of generating unit j, in $/MWh. XD Total demand in MWh for a given one-hour) of a bid, generation companies (GENCOs) must use good models. Such models should account for factors. Fij Operating cost for generation company i for generating unit j. Sij Monetary value of operating

  2. Green Technology: Hi-Temperature Microwave Sintering Reduces Ener... http://www.webwire.com/ViewPressRel.asp?aId=58548 1 of 2 3/28/2008 9:51 AM

    E-Print Network [OSTI]

    Agrawal, Dinesh

    units marketed in the U.S. Many sintering applications fall under a family of microwave technology use consumption from 12MWh to 1.2MWh. Canada's Ontario Energy Agency projects that if the Province's ceramics coal fired power plant. The Penn State Materials Research Center cut sintering cycle time

  3. CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A

    E-Print Network [OSTI]

    Columbia University

    energy from waste Waste-to-Energy A cost effective and reliable sustainable energy source Waste waste represent a relatively low cost source of sustainable energy. The EU 27's renewable energy gap demand per capita equals 1.62 MWh/capita/yr and heat demand per capita equals 5.03 MWh/capita/yr. #12

  4. Assessment of Natural Gas Single Cycle Turbine,

    E-Print Network [OSTI]

    capital cost ($/kW) O&M costs fixed ($/kW-yr) and variable ($/MWh) Levelized cost fixed ($/kW-yr) and full ($/MWh) annualized cost of capital and operation across thea ua ed cost o cap ta a d ope at o ac capital cost estimates, but the levelized cost over 20 year planning horizon is uncertain depends

  5. Implications of near-term coal power plant retirement for SO2 and NOX, and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

  6. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological

    E-Print Network [OSTI]

    David, Mark B.

    prices of electricity production Plant type Unit Price Nuclear ($/MWh) 16.51 Wind ($/MWh) 201 Hydro Top SO2 100 430 95 440 100 430 Top NOX 105 350 100 380 105 345 Small, inefficient 125 410 125 405 125) Manitoba Hydro Manitoba Hydro Undertaking # 57 http://www.pub.gov.mb.ca/exhibits/mh-83.pdf. (5) Sotkiewicz

  7. Integrated Power Management of Data Centers and Electric Vehicles for Energy and Regulation Market

    E-Print Network [OSTI]

    Zhang, Wei

    centers and Plug-in Electric Vehi- cles (PEVs) both play an important role in balancing power grid and capacity (regulation up/down) values over a multi-hour operating period to minimize energy cost(m) Baseload of UPSs in the mth period(MWh) C(m) Overall capacity for servers, UPSs and PEVs (MW/h) CA Squared

  8. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    ;Emissions by Generation Type (lbs CO2 per MWh of Power) Coal-fired generation Conventional (existing PNW Committee October 9, 2012 Whitefish, MT #12;CO2 Content by Fuel (lbs CO2 per MMBtu of Fuel) Coal (subbituminous) 212.7 Natural gas 117.1 #12;Fuel Conversion Efficiencies (MMBtu of Fuel per MWh of Power) Coal

  9. Reprinted with permission from the June 2004 issue Copyright 2004 Zackin Publications Inc. All Rights Reserved.

    E-Print Network [OSTI]

    Power Market Development Group bought more than 250,000 MWh per year of RECs from wind and other power (i.e., purchasing RECs "bundled" together with commodity electricity from a retail power provider MWh that a retail electric supplier charges for green power. This is because the unbundled nature

  10. RESQ: Rank-Energy Selective Query Forwarding for Distributed Search Systems

    E-Print Network [OSTI]

    decisions. Using a large-scale query log and publicly-available energy price time series, we demonstrate ranking query results and savings in temporally- and spatially-varying energy prices. Categories Deviation = $52.78/mWh Average = $111.87/mWh Figure 1: Energy price temporal and spatial varia- tion: (top

  11. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  12. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  13. www.keppelseghers.com info@keppelseghers.com p. 1 / 4 MStore_3R_en_002_E Copyright, Keppel Seghers, 2007

    E-Print Network [OSTI]

    Columbia University

    ) Annual Electrical Power Production (MWh/a) Flue Gas Cleaning Start-up Rheinberg (Germany) Keppel Seghers-cooled 11,800 1 x 300 41 6,5 (+25 MWth) 52,000 Not in Scope 2003 Mannheim (Germany) Energie- und Wasserwerke Power Production MWh/a Flue Gas Cleaning Start-up Shenzhen - Baoan, Guangdong (China) Shenzhen Energy

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    new hydroelectric projects (up to 15 megawatts... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar...

  15. Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional...

    Office of Environmental Management (EM)

    loan guarantee by the Department of Energy to support a 20 megawatt AC photovoltaic (PV) solar generating facility. The project, sponsored by Fotowatio Renewable Ventures, Inc.,...

  16. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary and Water Commission, as well as a number of private entities. These plants combined have an installed capacity of 10,395 megawatts. Western is divided into...

  17. A Design-Builder's Perspective: Anaerobic Digestion, Forest County...

    Energy Savers [EERE]

    Virginia, MN 55792 FCPC Renewable Generation Facility * 2.0 megawatt biodigestion and biogas facility currently being constructed in Menomonee Valley of Milwaukee * Will operate...

  18. Department of Energy Finalizes $102 Million Loan Guarantee to...

    Energy Savers [EERE]

    Endowment, will support the Record Hill wind project, which consists of a 50.6 megawatt wind power plant, an eight mile transmission line and associated interconnection equipment...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in conjunction with recycling. ... Eligibility:...

  20. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a capacity of at least 10 megawatts (MW). Facilities...

  1. Department of Energy Offers Conditional Commitment for Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commitment for a 737 million loan guarantee to support a 110 megawatt molten salt concentrating solar power (CSP) tower generating facility. The Crescent Dunes Solar...

  2. Obama Administration Offers $59 Million in Conditional Loan Guarantees...

    Energy Savers [EERE]

    assembly plant in Pocatello, Idaho, to produce its one megawatt wind turbine. Beacon Power, an energy storage company, has been offered 43 million to support the construction...

  3. EIS-0503: EPA Notice of Availability of Final Environmental Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc.-New England, to construct, operate, maintain, and connect a new 1000-megawatt electric transmission system across the U.S.-Canada border near Alburgh, VT. The...

  4. EIS-0499: EPA Notice of Availability of Final Environmental Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    permit to Minnesota Power to construct, operate, maintain, and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220-mile...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rebate Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts...

  6. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    kW and 300 kW Molten Carbonate Fuel Cells (MCFC), four 200kilovolt kilowatt molten carbonate fuel cell megawatt

  7. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  8. Seneca Nation- 2014 Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians (SNI) will install one 1.8-megawatt (MW) wind turbine on tribal common lands near Lake Erie in New York.

  9. Secretary Chu Announces $45 Million to Support Next Generation...

    Energy Savers [EERE]

    equipment capable of performing highly accelerated life testing of land-based and offshore wind turbine drive systems rated at 5-15 megawatts (MW). These dynamometer tests...

  10. EIS-0435: EPA Notice of Availability of the Draft Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    for the (GGS) to Eliminate 50-Megawatts (MW) Annual Average Operating Limit, Brown County, South Dakota. Notice of Availability for the Draft Environmental Impact...

  11. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stehly, Walt Musial Floating Substructure Sensitivities Global Market Trends * The global offshore wind industry is set to reach a deployment record with 4,000 megawatts (MW)...

  12. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01

    megawatts of installed renewable energy capacity in thePortfolio Standards, Renewable Energy Law Blog (Apr. 30,as well as small renewable energy power facilities (no

  13. Energy Storage Systems Program at Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PE Reliability FY10 SNL ESS Program Molecules to Megawatts * Testing - 1 MW Energy Storage Test Facility (ESTF) initiated - Lead Carbon, Li Ion Battery Testing to Several...

  14. Smoothing Renewable Wind Energy in Texas | Department of Energy

    Office of Environmental Management (EM)

    - 10:57am Addthis The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational...

  15. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Light's second largest customer. Even so, the campus also has its own five megawatt steam turbine generator. The power is distributed through a network of underground utility...

  16. Secretary Chu to Visit Houston to Highlight Obama's State of...

    Office of Environmental Management (EM)

    federal funding, last year Thermal Energy Corporation completed a 48 megawatt combined heat and power plant that is expected to save approximately 11 million in energy costs per...

  17. Energy Department Announces Up to $7 Million to Expand Clean...

    Office of Environmental Management (EM)

    energy resources. With more than 9 million megawatts of potential installed renewable energy capacity on tribal lands, these communities are well positioned to capitalize on...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in conjunction with recycling. ... Eligibility:...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,... Eligibility: State Government Savings Category: Geothermal...

  20. Essays in Applied Microeconomics

    E-Print Network [OSTI]

    Severnini, Edson Roberto

    2013-01-01

    but with similar hydropower potential. Until mid-century,Each megawatt of hydropower potential that is not developeddetermined the hydropower potential across the nation at the

  1. Two Facilities, One Goal: Advancing America's Wind Industry ...

    Broader source: Energy.gov (indexed) [DOE]

    the large, commercial scale turbines being developed by manufacturers for offshore wind farms. This facility, which opened last week, is equipped with 7.5-megawatt (MW) and...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of...

  3. EIS-0416: EPA Notice of Availability of the Final Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California DOE Adoption Notice of Availability, Department of...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ... Eligibility: Commercial, Industrial Savings Category: Geothermal Electric,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligible facilities include those up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in...

  6. ATTACHMENT FLOODPLAIN STATEMENT OF FINDINGS FOR DEPARTMENT OF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmental impacts associated with the nominal 400 megawatt (MW) photovoltaic solar power project and associated interconnection transmission line proposed by Sempra...

  7. Large-Scale Federal Renewable Energy Projects | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy projects larger than 10 megawatts (MW), also known as utility-scale projects, are complex and typically require private-sector financing. The Federal Energy...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Green Power Purchasing Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric...

  9. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics and Stability of Large Multi-megawatt Deepwater Offshore Vertical-axis Wind Turbines: Initial Support Structure and Rotor Design Impact StudiesTara...

  10. Ocean Power: Science Projects in Renewable Energy and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to provide 2 to 3 million megawatts of power from our world's coastlines. National Science Education Standards by the National Academy of Sciences Science Content Standards:...

  11. DOE Announces Webinars on Next Generation Electric Machines,...

    Broader source: Energy.gov (indexed) [DOE]

    April 1: Live Webinar on Next Generation Electric Machines: Megawatt Class Motors FOA Webinar Sponsor: Advanced Manufacturing Office The Energy Department will present a live...

  12. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01

    megawatts of installed renewable energy capacity in theCatlin, Commerce Clause Challenge to Renewable PortfolioStandards, Renewable Energy Law Blog (Apr. 30, 2010),

  13. Table 4. Electric power industry capability by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991,...

  14. Hydropower Upgrades to Yield Added Generation at Average Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures...

  15. Notices

    Office of Environmental Management (EM)

    current operating limits on the generating station. The LGIA currently limits the output of the Groton Generating Station to 50 average megawatts (MW). The Groton Generation...

  16. Project Reports for Seneca Nation- 2014 Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians (SNI) will install one 1.8-megawatt (MW) wind turbine on tribal common lands near Lake Erie in New York.

  17. Final EIS for Champlain Hudson Power Express Transmission Project...

    Broader source: Energy.gov (indexed) [DOE]

    operation, maintenance, and connection of a 336-mile, 1,000 megawatt, high-voltage direct current, electric transmission system that would cross the international border...

  18. DOE Environmental Impact Statement Public Scoping Meeting on...

    Broader source: Energy.gov (indexed) [DOE]

    Champlain Hudson is proposing to install and operate two 1,000-megawatt (MW) High Voltage Direct Current (HVDC) bipole submarine transmission cables extending from Quebec, Canada,...

  19. Energy Department Offers Conditional Commitment to Support Nevada...

    Office of Environmental Management (EM)

    a 49.5 megawatt geothermal project in Humboldt County in northwestern Nevada. The NGP Blue Mountain ("Blue Mountain") project consists of a geothermal well field, fluid...

  20. EIS-0284: EPA Notice of Availability of the Draft Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA Notice of Availability of the Draft Environmental Impact Statement Low Emission Boiler System Proof-of-Concept Project, Construction and Operation of a 91-Megawatt Electric...

  1. EA-1839: Final Environmental Assessment and Finding of No Significant...

    Energy Savers [EERE]

    LLC (Cogentrix) to support construction of a 30-megawatt high-concentrating photovoltaic energy facility in Alamosa, Colorado. Based on the Final EA, DOE has determined...

  2. EIS-0469: Notice of Intent To Prepare an Environmental Impact...

    Office of Environmental Management (EM)

    99-megawatt (MW) Wilton IV Wind Energy Center Project (Project) with Western Area Power Administration's (Western) existing Hilken Switching Station in Burleigh County,...

  3. 4-16-13_Christopher_Turner FT HNR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States, Southwestern markets approximately 2,174 megawatts (MW) of hydroelectric power from 24 U.S. Army Corps of Engineers (Corps) multipurpose dams. We operate and...

  4. Microsoft Word - 3-20-12 Final Testimony _McDonald_ _SWPA_.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States, Southwestern markets approximately 2,174 megawatts (MW) of hydroelectric power from 24 U.S. Army Corps of Engineers (Corps) multipurpose dams. We operate and...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Energy Development Incentive (Corporate) Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include those up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in conjunction with...

  7. Improving the Operating Efficiency of Microturbine-Based Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    microturbines can be packaged into multi-megawatt systems for larger project sizes. Both dual fuel capability and uninterruptible power supply (UPS) functionality can be added in...

  8. Notices

    Office of Environmental Management (EM)

    following facilities: * Two LNG liquefaction trains; * Additional power generation (two gas turbine generators capable of generating approximately 30 megawatts of power); * Other...

  9. Notices

    Office of Environmental Management (EM)

    following facilities: * Two LNG liquefaction trains; * additional power generation (two gas turbine generators capable of generating approximately 30 megawatts of power); * other...

  10. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

  11. Wisconsin Tribal Leaders Work Towards a Clean Energy Future ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Nations A 2-megawatt anaerobic digester and biogas generation facility converts food waste into electricity to power 1,500 homes. Photo from Forest County Potawatomi...

  12. Alternative Energy Development Incentive (Personal)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  13. Alternative Energy Development Incentive (Corporate)

    Broader source: Energy.gov [DOE]

    Eligible projects include the construction of electricity generation facilities of 2 megawatts or greater that utilize hydroelectric, solar, biomass, geothermal, wind, or waste heat from an indus...

  14. BPA, Transmission, presentation on I-5 Corridor Reinforcement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Meeting growth Building transmission lines is not the only solution to growing demand. The region conserved 200 megawatts in 2007, equal to about half of our annual...

  15. Cliff J. Lissenden Penn State University Bernhard R. Tittmann

    Broader source: Energy.gov (indexed) [DOE]

    megawatt for advanced small modular reactors (AdvSMRs). A reliable supervisory control system for AdvSMRs would increase plant automation to reduce operator workload. For plants...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standard Eligible facilities include those up to 100 megawatts (MW) in capacity that use fuel cells, tidal, solar, wind, geothermal, hydro, biomass or municipal solid waste in...

  17. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)

    E-Print Network [OSTI]

    Degelman, Larry; Mukhopadhyay, Jaya; McKelvey, Kathy; Montgomery, Cynthia; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Gilman, Don; Yazdani, Bahman; Culp, Charles; Haberl, Jeff

    2009-01-01

    specially prepared for this purpose. In 2008, the cumulative total annual electricity savings from all programs is 20,380,240 MWh/year (12, 727 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 48,602 MWh/day, which... would be a 2,025 MW average hourly load reduction during the OSD period (31.38 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 32,736,151 MWh/year (20,395 tons-NOx/year). The total cumulative OSD electricity...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Production Tax Credit (Corporate) Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting...

  19. Microsoft Word - letter announcing draft contract_attachment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    section 3 of Exhibit B to the draft contract. When combined with the lower IP rate, the unit cost cap is reduced to 58.51MWh. There is potential to increase to 330 million...

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    to a few hours; and unit commitment out to the next day oron load-following and unit commitment are typically found toare $4.33/MWh. ++ The unit commitment costs listed in EWITS

  1. Diagnosing Unilateral Market Power in Electricity Reserves Market

    E-Print Network [OSTI]

    Knittel, Christopher R; Metaxoglou, Konstantinos

    2008-01-01

    costs below (above) the energy price, the opportunity See,For example, for an energy price of $30/MWh, a spinning unitbelow (above) the energy price face only an opportunity

  2. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    TOD energy value, and integration cost calculations. Theenergy value)are subtracted from the delivered cost. Figure 2 illustrates this calculationcalculations, however, this does Marginal Production Cost ($/MWh) The median, 10 th , and 90 th percentile of the TOD energy

  3. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  4. Fact Sheet: Wind Firming EnergyFarm (August 2013) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Firming EnergyFarm (August 2013) Fact Sheet: Wind Firming EnergyFarm (August 2013) Primus Power is deploying a 25 MW75 MWh EnergyFarm(TM) in California's Central Valley,...

  5. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    on U.S. Wind Power Installation, Cost, and PerformanceTransmission ($/kW-wind) Unit Cost (Capacity-weighted) Windof Transmission ($/MWh- wind) Unit Cost (Capacity-weighted)

  6. date 04/2009 Waste Management

    E-Print Network [OSTI]

    Columbia University

    fibres #12;date 04/2009 Waste Incineration Plant at Munich North Using Combined Heat and Power production of electrical power 792,351 MWh production of heat for district heating 238,000 t reduction

  7. Utility-Scale Solar 2012: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    Topaz (B) Genesis Solar Star Operating Costs (2012 $/MWh) (primarily to the declining cost of solar modules (and, to anot report operating costs for their solar projects on Form

  8. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew D

    2011-01-01

    Low Cost Fixed PV Low Cost Wind High Wind Integration Cost$5/MWh. Integration costs for PV and solar thermal withoutNo Fed. ITC or PTC Low Cost Fxd PV High Utilization Sol Thrm

  9. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    REC Short Line Fixed PV 30K Cost Relative to Base Case ($/REC Short Line Fixed PV 30K Cost Relative to Base Case ($/$5/MWh. Integration costs for PV and solar thermal without

  10. Microgrid Dispatch for Macrogrid Peak-Demand Mitigation

    E-Print Network [OSTI]

    DeForest, Nicholas

    2013-01-01

    The installed battery has an energy capacity of 4 MWh and aof 6.5%. It is the energy capacity of the electric storage (and Lost Savings by Energy Capacity The technical parameters

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant. less Full Text Available December 2008 Low no subx heavy fuel combustor...

  12. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  13. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01

    Hourly Net Generation by Fuel (MWh) Fossil Fuel Unit SummaryThe combustion of fossil fuels in the electricity sector isand SO 2 emitted by fossil fuel generators in the region.

  14. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-03-01 End Date 2008-04-01 Residential Revenue(Thousand ) 2106 Residential Sales (MWh) 13060 Residential Consumers...

  15. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    8-09 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand ) 785 Residential Sales (MWh) 8439...

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Utility Company Anchorage Municipal Light and Power (Alaska) Place Alaska Start Date 2008-08-01 End Date 2008-09-01 Residential Revenue(Thousand ) 1183.136 Residential Sales (MWh)...

  17. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Light&Power Co (Alaska) Place Alaska Start Date 2009-03-01 End Date 2009-04-01 Residential Revenue(Thousand ) 1358.728 Residential Sales (MWh) 12800.802 Residential Consumers...

  18. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2009-01-01 End Date 2009-02-01 Residential Revenue(Thousand ) 3587 Residential Sales (MWh) 16219...

  19. EECBG Success Story: Historic Virginia Market Powered by Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Solar panels at the Community Market Building in Danville, Va., have generated 36.4 MWh of energy since March. | Photo Courtesy of Danville Solar panels at the Community Market...

  20. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01

    efficiency measure descriptions include expected savings insavings in energy and energy-related costs are provided for many energy efficiency measures,savings of about $4,000 and 114 MWh, respectively [31]. EXAMPLES OF PROCESS-SPECIFIC EFFICIENCY MEASURES

  1. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    greenhouse gas GWh HERS HVAC IPMVP kW kWh MW MWh NASEOand Verification Protocol (IPMVP) for quantifying emissionsand Verification Protocol (IPMVP) was listed as one of the

  2. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01

    in Brazil, China, and India, Energy-efficiency case studiesin a textile plant in India, energy savings of 2.43 MWh/A textile plant in India has reported energy savings of 936

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",87718,17 "Nitrogen oxide (short tons)",24490,32 "Carbon dioxide (thousand metric tons)",22633,33 "Sulfur dioxide (lbsMWh)",3.3,9 "Nitrogen...

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",47671,25 "Nitrogen oxide (short tons)",19035,36 "Carbon dioxide (thousand metric tons)",28809,30 "Sulfur dioxide (lbsMWh)",1,35 "Nitrogen...

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",13259,39 "Nitrogen oxide (short tons)",17975,38 "Carbon dioxide (thousand metric tons)",12543,39 "Sulfur dioxide (lbsMWh)",0.2,46 "Nitrogen...

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",123735,10 "Nitrogen oxide (short tons)",55462,20 "Carbon dioxide (thousand metric tons)",56812,15 "Sulfur dioxide (lbsMWh)",2,20 "Nitrogen...

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",203951,6 "Nitrogen oxide (short tons)",63358,11 "Carbon dioxide (thousand metric tons)",97812,6 "Sulfur dioxide (lbsMWh)",2,21 "Nitrogen...

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",30027,30 "Nitrogen oxide (short tons)",30860,30 "Carbon dioxide (thousand metric tons)",33125,27 "Sulfur dioxide (lbsMWh)",1.2,30 "Nitrogen...

  9. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",4202,43 "Nitrogen oxide (short tons)",18043,37 "Carbon dioxide (thousand metric tons)",3768,44 "Sulfur dioxide (lbsMWh)",1.3,29 "Nitrogen...

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",86204,18 "Nitrogen oxide (short tons)",23189,33 "Carbon dioxide (thousand metric tons)",38118,22 "Sulfur dioxide (lbsMWh)",2.2,19 "Nitrogen...

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",12339,40 "Nitrogen oxide (short tons)",15150,41 "Carbon dioxide (thousand metric tons)",14735,38 "Sulfur dioxide (lbsMWh)",0.8,38 "Nitrogen...

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",6565,42 "Nitrogen oxide (short tons)",7627,46 "Carbon dioxide (thousand metric tons)",1942,49 "Sulfur dioxide (lbsMWh)",0.9,37 "Nitrogen...

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",68077,21 "Nitrogen oxide (short tons)",39706,27 "Carbon dioxide (thousand metric tons)",34686,25 "Sulfur dioxide (lbsMWh)",1.8,26 "Nitrogen...

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",17511,35 "Nitrogen oxide (short tons)",13803,42 "Carbon dioxide (thousand metric tons)",9500,40 "Sulfur dioxide (lbsMWh)",0.6,39 "Nitrogen...

  15. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",41539,26 "Nitrogen oxide (short tons)",21995,34 "Carbon dioxide (thousand metric tons)",18950,34 "Sulfur dioxide (lbsMWh)",2.3,17 "Nitrogen...

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",17735,34 "Nitrogen oxide (short tons)",59055,16 "Carbon dioxide (thousand metric tons)",28535,31 "Sulfur dioxide (lbsMWh)",1,36 "Nitrogen...

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",346873,2 "Nitrogen oxide (short tons)",102526,4 "Carbon dioxide (thousand metric tons)",102466,4 "Sulfur dioxide (lbsMWh)",5.1,1 "Nitrogen...

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",157488,8 "Nitrogen oxide (short tons)",78033,10 "Carbon dioxide (thousand metric tons)",78344,8 "Sulfur dioxide (lbsMWh)",3.4,8 "Nitrogen...

  19. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",2241,47 "Nitrogen oxide (short tons)",2585,48 "Carbon dioxide (thousand metric tons)",4722,43 "Sulfur dioxide (lbsMWh)",0.6,40 "Nitrogen...

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",106879,14 "Nitrogen oxide (short tons)",44657,25 "Carbon dioxide (thousand metric tons)",39175,21 "Sulfur dioxide (lbsMWh)",3.8,6 "Nitrogen...

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",80418,19 "Nitrogen oxide (short tons)",57024,17 "Carbon dioxide (thousand metric tons)",46268,19 "Sulfur dioxide (lbsMWh)",2.2,18 "Nitrogen...

  2. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",2109,48 "Nitrogen oxide (short tons)",96842,5 "Carbon dioxide (thousand metric tons)",57323,13 "Sulfur dioxide (lbsMWh)",0,49 "Nitrogen...

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",71,50 "Nitrogen oxide (short tons)",792,50 "Carbon dioxide (thousand metric tons)",15,51 "Sulfur dioxide (lbsMWh)",0,50 "Nitrogen oxide...

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",30947,29 "Nitrogen oxide (short tons)",44824,24 "Carbon dioxide (thousand metric tons)",33456,26 "Sulfur dioxide (lbsMWh)",0.5,41 "Nitrogen...

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",122578,11 "Nitrogen oxide (short tons)",82286,9 "Carbon dioxide (thousand metric tons)",58274,12 "Sulfur dioxide (lbsMWh)",2.4,16 "Nitrogen...

  6. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",40012,27 "Nitrogen oxide (short tons)",49623,21 "Carbon dioxide (thousand metric tons)",39387,20 "Sulfur dioxide (lbsMWh)",1.5,27 "Nitrogen...

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",7436,41 "Nitrogen oxide (short tons)",16438,39 "Carbon dioxide (thousand metric tons)",15690,37 "Sulfur dioxide (lbsMWh)",0.4,43 "Nitrogen...

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",66884,22 "Nitrogen oxide (short tons)",31505,29 "Carbon dioxide (thousand metric tons)",28043,32 "Sulfur dioxide (lbsMWh)",3.6,7 "Nitrogen...

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",93888,15 "Nitrogen oxide (short tons)",60229,14 "Carbon dioxide (thousand metric tons)",68862,9 "Sulfur dioxide (lbsMWh)",2.5,14 "Nitrogen...

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",49587,24 "Nitrogen oxide (short tons)",55615,19 "Carbon dioxide (thousand metric tons)",50687,17 "Sulfur dioxide (lbsMWh)",1.9,24 "Nitrogen...

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3196,46 "Nitrogen oxide (short tons)",15299,40 "Carbon dioxide (thousand metric tons)",15789,36 "Sulfur dioxide (lbsMWh)",0.1,48 "Nitrogen...

  12. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",23716,31 "Nitrogen oxide (short tons)",59416,15 "Carbon dioxide (thousand metric tons)",55342,16 "Sulfur dioxide (lbsMWh)",0.4,42 "Nitrogen...

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",273718,4 "Nitrogen oxide (short tons)",121681,3 "Carbon dioxide (thousand metric tons)",98895,5 "Sulfur dioxide (lbsMWh)",5,2 "Nitrogen oxide...

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",20710,33 "Nitrogen oxide (short tons)",25416,31 "Carbon dioxide (thousand metric tons)",7428,42 "Sulfur dioxide (lbsMWh)",4,5 "Nitrogen oxide...

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",16865,36 "Nitrogen oxide (short tons)",21789,35 "Carbon dioxide (thousand metric tons)",16951,35 "Sulfur dioxide (lbsMWh)",1.2,31 "Nitrogen...

  16. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3512,45 "Nitrogen oxide (short tons)",9372,45 "Carbon dioxide (thousand metric tons)",8726,41 "Sulfur dioxide (lbsMWh)",0.2,47 "Nitrogen...

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",1271,49 "Nitrogen oxide (short tons)",1161,49 "Carbon dioxide (thousand metric tons)",2838,48 "Sulfur dioxide (lbsMWh)",0.4,44 "Nitrogen...

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",3733,44 "Nitrogen oxide (short tons)",5057,47 "Carbon dioxide (thousand metric tons)",3447,46 "Sulfur dioxide (lbsMWh)",0.4,45 "Nitrogen...

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",383728,1 "Nitrogen oxide (short tons)",228695,1 "Carbon dioxide (thousand metric tons)",257465,1 "Sulfur dioxide (lbsMWh)",1.8,25 "Nitrogen...

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",13365,38 "Nitrogen oxide (short tons)",9607,44 "Carbon dioxide (thousand metric tons)",3675,45 "Sulfur dioxide (lbsMWh)",1.9,23 "Nitrogen...

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",237091,5 "Nitrogen oxide (short tons)",86058,8 "Carbon dioxide (thousand metric tons)",67193,10 "Sulfur dioxide (lbsMWh)",4.5,3 "Nitrogen...

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",23670,32 "Nitrogen oxide (short tons)",62296,13 "Carbon dioxide (thousand metric tons)",35699,24 "Sulfur dioxide (lbsMWh)",1.1,33 "Nitrogen...

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",71293,20 "Nitrogen oxide (short tons)",62397,12 "Carbon dioxide (thousand metric tons)",56940,14 "Sulfur dioxide (lbsMWh)",1.1,32 "Nitrogen...

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",56854,23 "Nitrogen oxide (short tons)",48454,22 "Carbon dioxide (thousand metric tons)",30274,28 "Sulfur dioxide (lbsMWh)",3.2,11 "Nitrogen...

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",117797,12 "Nitrogen oxide (short tons)",88345,6 "Carbon dioxide (thousand metric tons)",108431,3 "Sulfur dioxide (lbsMWh)",1.1,34 "Nitrogen...

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",15347,37 "Nitrogen oxide (short tons)",11430,43 "Carbon dioxide (thousand metric tons)",3228,47 "Sulfur dioxide (lbsMWh)",3,12 "Nitrogen...

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",190782,7 "Nitrogen oxide (short tons)",87201,7 "Carbon dioxide (thousand metric tons)",85304,7 "Sulfur dioxide (lbsMWh)",4.3,4 "Nitrogen...

  8. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",, "Sulfur dioxide (short tons)",0,51 "Nitrogen oxide (short tons)",148,51 "Carbon dioxide (thousand metric tons)",49,50 "Sulfur dioxide (lbsMWh)",0,51 "Nitrogen oxide...

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",108306,13 "Nitrogen oxide (short tons)",44114,26 "Carbon dioxide (thousand metric tons)",47686,18 "Sulfur dioxide (lbsMWh)",3.3,10 "Nitrogen...

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",276851,3 "Nitrogen oxide (short tons)",151148,2 "Carbon dioxide (thousand metric tons)",108729,2 "Sulfur dioxide (lbsMWh)",2.4,15 "Nitrogen...

  11. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    "Sulfur dioxide (short tons)",35625,28 "Nitrogen oxide (short tons)",36972,28 "Carbon dioxide (thousand metric tons)",29255,29 "Sulfur dioxide (lbsMWh)",1.4,28 "Nitrogen...

  12. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew D

    2011-01-01

    33% RE Renewable Energy (TWh/yr) Wind Solar Hydro Biomass$/MWh) Energy- Weighted Median (10th; 90th Percentile) Hydroenergy. Load-sited CCGT (Sacramento) Geothermal Biomass Hydro

  13. Pollution and the price of power

    SciTech Connect (OSTI)

    Dewees, D.N. [University of Toronto, Toronto, ON (Canada). Dept. of Economics

    2008-07-01

    This study analyses the un-priced environmental harm caused by generating electricity from fossil fuels in the ECAR control region south of the Great Lakes in 2004 and again in 2015 when the recent Clean Air Interstate Rule will have its full effect. Using existing damage values, we estimate wholesale electricity under-pricing for coal-fired plants at about $40 per MWh in 2004, almost as much again as the $45/MWh actual price. Averaging across all fuels, the price of electricity was more than $30/MWh too low. The under-pricing will still be $18/MWh for coal plants and $15 for all generation sources in 2015, a decade after CAIR was adopted. Recognizing this environmental price now could reduce pollution levels, increase energy conservation and lead to wiser choices of new generation technology.

  14. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    MWh electricity, 12% IRR Coal Price, $/metric ton BreakevenCERT-3B 42 $/metric ton coal price Electricity Sale Price,electricity, 42 $/metric ton coal price IRR, percent Figure

  15. Energy Generation by State and Technology (2009) - Datasets ...

    Open Energy Info (EERE)

    2009, reported in MWh. Also includes facility-level data (directly from EIA Form 923). Data and Resources Energy Generation by Fuel Source and State, 2009XLS Energy Generation by...

  16. Current State of the Voluntary Renewable Energy Market (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2013-09-01

    This presentation highlights the status of the voluntary green power market in 2012. The voluntary green power market totaled more than 48 million MWh in 2012, with about 1.9 million customers participating. The supply continues to be dominated by wind, though solar is increasing its share of utility green pricing programs. Prices for voluntary renewable energy certificates (RECs) increased to above $1/MWh.

  17. FPL's solar stars shine at new 500-acre array By SUSAN SALISBURY

    E-Print Network [OSTI]

    Fernandez, Eduardo

    , it is the world's largest and oldest. Building solar in a hurricane zone is different. "We had to temper the glass legislation allowed the company to build its 110 megawatts of solar. Since solar plants are more expensive like to build an additional 300 to 500 megawatts of solar. "We believe that solar is a great addition

  18. Characterizing, predicting and

    E-Print Network [OSTI]

    can increase. Offshore wind farms. Increase of power : Horns RevI : 190MW , Horns RevII : 210MW production from a single multi-megawatt wind farm. Variability of wind power depends on the time and spatial-megawatt wind farm. Variability of wind power depends on the time and spatial scale. R. Girard (Mines

  19. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    SciTech Connect (OSTI)

    Patton, Bruce; Sorensen, Kirk [Propulsion Research Center, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2002-07-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

  20. Presented July 16, 2015 10:15 AM Wind Breakout Session

    E-Print Network [OSTI]

    Branoff, Theodore J.

    , Illinois and all the power exerted by all the men, and beasts, and runningwater, and steam, over" #12;1. Mendota Hills (Lee Co) 63 Turbines/51.66 megawatts 2. Crescent Ridge (Bureau Co) 33 Turbines/54.45 megawatts 3. GSG (Lee

  1. his report summarizes the results of an analysis of CO2 production from the Pacific Northwest

    E-Print Network [OSTI]

    -megawatt coal-fired power plant is about 3 million tons, and the CO2 output of a typical 400-megawatt gas-fired com- bined-cycle power plant is about 1.2 million tons.2 Factors contributing to the increase from

  2. Energy Efficiency in the Future The Sixth Northwest Power Plan, 2010

    E-Print Network [OSTI]

    Resource Portfolio CumulativeResources (AverageMegawatts) Energy efficiency is at the heart of the SixthEnergy Efficiency in the Future The Sixth Northwest Power Plan, 2010 The plan,the sixth five megawatts). This efficiency,combined with new renewable energy,could delay investments in new fossil

  3. A one-group parametric sensitivity analysis for the graphite isotope ratio method and other related techniques using ORIGEN 2.2

    E-Print Network [OSTI]

    Chesson, Kristin Elaine

    2009-06-02

    Magnesium oxide MCNP Monte Carlo N-Particle Transport Code MONTEBURNS Automated, Multi-Step Monte Carlo Burnup Code System MT Metric Ton (1000 kg) MTU Metric Ton of Uranium MWe Megawatts Electric MWt Megawatts Thermal NJOY Code System for Producing....................................................................................................................75 APPENDIX A MONTEBURNS PIN CELL INPUT DECKS ........................................78 MCNP Input File................................................................................78 Monteburns Input File...

  4. Pacific Northwest Power Supply Adequacy Assessment

    E-Print Network [OSTI]

    of capacity from an independent power producer, which shifts this in-region generation from the market supply 2015 and 2017, regional electricity demands, net of planned energy efficiency savings, are expected to grow by about 300 average megawatts. Since the last assessment, 114 megawatts of new thermal capacity

  5. There are no comprehensive energy studies of distributed scientific systems and workloads.

    E-Print Network [OSTI]

    Feng, Xizhou

    innovation future HEC systems will be too expensive and unreliable to operate High-performance, power to intolerable operating costs and failure rates. Operating Cost Projections Small, conventional power plant light bulbs. 100 Megawatts costs $10,000 per hour; $85 million per year. 20 Megawatts (20% peak) costs

  6. California's Transition To Local Renewable Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California's Transition To Local Renewable Energy: 12,000 Megawatts By 2020 A Report on the Governor's Conference on Local Renewable Energy June 7, 2012 #12;This report was made possible. #12;California's Transition To Local Renewable Energy: 12,000 Megawatts By 2020 A Report

  7. Streamlining the Certification Process for New Power Plants in Texas

    E-Print Network [OSTI]

    Treadway, N.

    1992-01-01

    provides insight into why the NOI rule was adopted in May 1991 and why the Commission's deliberations continue on this topic. Docket No. s.i2Q Texas-New Mexico Power Company (TNP) filed an NOI to construct 1,200 megawatts of base-load capacity... the examiner's report with little discussion and without modification. Docket No. 6397 TNP revisited the NOr procedure with the ftling of an application for 600 megawatts of base-load power to replace existing purchased power. The four 150 megawatt units...

  8. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    14] 4C Offshore, Offshore Wind Turbine: S7.0-171, Sam- sungblade for a 7-MW offshore wind turbine [8], and blades arefor a 6-megawatt offshore wind turbine [79, 80]. Blades are

  9. CX-001054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquantis 2.5 Megawatt Ocean Current Generation DeviceCX(s) Applied: A9, B3.6Date: 03/05/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. The Clean Energy Economy is Creating Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    just outside Indianapolis, a 200 megawatt wind farm is being built. Besides generating electricity for up to 60,000 homes, more than 300 workers have been hired to help build...

  11. Roseville Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric has implemented solar rebate programs in order to meet the three statewide goals in Senate Bill 1: to install 3,000 megawatts (MW) of distributed solar PV by the end of 2016, to...

  12. Demand Response Aggregated Demand Response Pilot

    E-Print Network [OSTI]

    Owns and operates over 1,300 megawatts of nuclear, hydroelectric, solar, and wind generation assets Increasingly less capacity and flexibility of its hydroelectric resources EN's Pilot provides BPA 35 MW

  13. Bill Bradbury Jennifer Anders

    E-Print Network [OSTI]

    of the 250 megawatt Big Hanaford plant (an independent power producer). Also, hydroelectric system was enhanced to better represent hourly hydroelectric dispatch and purchase-ahead imports. The resulting LOLP

  14. * This paper is declared work of the U.S. Government and is not subject to copyright protection in the United States. Sandia National Laboratories Wind Energy Technology Department, MS 1124

    E-Print Network [OSTI]

    of Energy under contract DE-AC04-94AL85000 Increased Strength in Wind Turbine Blades through Innovative of the blade span. Rather than go the expense of new molds for multi- megawatt scale blades, approximately 9m

  15. San Antonio City Public Service (CPS Energy)- Renewable Portfolio Goal

    Broader source: Energy.gov [DOE]

    CPS Energy focuses on wind, solar, and landfill gas as renewable energy alternatives and is planning to reach a generation capacity of 1,500 Megawatts of renewable energy by 2020. Current capacit...

  16. Energy Department Finalizes $737 Million Loan Guarantee to Tonopah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC, is a 110 megawatt concentrating solar power tower generating facility with molten salt as the primary heat transfer and storage medium. It will be the first of its kind in...

  17. United Press International: U.S. to join international fusion project Friday, January 31, 2003

    E-Print Network [OSTI]

    Princeton's now-disassembled "tokamak" reactor. Despite fusion's long research history and unresolved fate will produce about 500 megawatts of fusion power for 500 seconds or longer during each experiment, DOE

  18. President Obama Announces $1.45 Billion Conditional Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    add 250 megawatts (MW) of capacity to the electrical grid using parabolic trough solar collectors and an innovative six-hour thermal energy storage system-the first of its kind...

  19. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  20. Answers to Even Numbered Problems from textbook Homework 1(a ...

    E-Print Network [OSTI]

    Bailey, Charlotte M

    2014-02-26

    3. 90) (a) It is a function because the graph passes the vertical line test. (b) Domain. (c) 8 AM estimate 1100 megawatts. (d) most electricity used at 17 hours.

  1. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  2. Sandia Energy - Sandia Vertical-Axis Wind-Turbine Research Presented...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of aeroelastic stability of very large VAWTs that used an enhanced version of the Offshore Wind Energy Simu-lation Toolkit for VAWTs. Multiple-megawatt VAWT design...

  3. Offshore Wind Balance-of-System Cost Modeling (Poster), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters, can yield a rise in BOS cost, such as the spike near 500 megawatts. Figure 4. Offshore wind fixed substructure BOS costs decrease as turbine rating increases, which is...

  4. NEBRASKA PUBLIC POWER DISTRICT CUSTOMER MEETING ON ENERGY ALTERNATIVES

    E-Print Network [OSTI]

    customers value solar power? ..................................................................20 CumulativeNEBRASKA PUBLIC POWER DISTRICT CUSTOMER MEETING ON ENERGY ALTERNATIVES SUMMARY OF RESULTS August 19 megawatts of wind power would you like to see NPPD build by the year 2010

  5. Superconducting laser photocathode RF gun at BNL | U.S. DOE Office...

    Office of Science (SC) Website

    megawatt) into the gun. This device will push ahead the performance of high-current CW guns by orders of magnitude and open the way for various applications, such as electron...

  6. Combined Heat and Power Loan Program

    Broader source: Energy.gov [DOE]

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment up to five megawatts at ...

  7. Combined Heat and Power Grant Program

    Broader source: Energy.gov [DOE]

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment up to five megawatts at ...

  8. Performance based incentive for Combined Heat and Power Program

    Broader source: Energy.gov [DOE]

    CHP technologies are eligible for either a grant, loan or power purchase incentive under the initial round of solicitations for new renewable energy generating equipment up to five megawatts at ...

  9. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  10. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  11. Department of Energy Recognizes Cummins for Deep Energy Retrofit...

    Energy Savers [EERE]

    and a new thermal insulated roof with solar panels, while also upgrading the heating and cooling system and the energy control system. The new 2-megawatt solar installation is...

  12. U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND...

    Office of Environmental Management (EM)

    December and supplemented in March of -- today, is comprised of about 1250 megawatts of wind generation from -- it's constructed inside Mexico and either a 230,000-volt or...

  13. Denver International Airport Photovoltaic System

    Broader source: Energy.gov [DOE]

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  14. New Hampshire Electric Co-Op- Solar Photovoltaic Incentive Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    New Hampshire Electric Co-op (NHEC) is offering rebates for residential and commercial, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to $0.25 per DC...

  15. Photo of the Week: Up in the Air | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In this August 2013 photo, Pete Johnson of Gemini Rope Access Solutions rappels down a 3 megawatt Alstom wind turbine, just having finished inspecting the blades above him. The...

  16. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  17. The Journey to Commercializing Cellulosic Biofuels in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    radius of the plant. The state-of-the-art facility will feature an electricity cogeneration component that will generate up to 21 megawatts of electricity -- enough to power...

  18. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    fuel light-duty vehicles. The state-of-the-art facility will feature an electricity cogeneration component that will generate up to 21 megawatts of electricity - enough to power...

  19. Property Tax Exemption for Residential Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    For Colorado property taxation purposes, solar energy facilities property used to produce two (2) megawatts or less of AC electricity and wind energy facilities property used to produce two (2) m...

  20. Analysis and design of power conditioning systems

    E-Print Network [OSTI]

    Harfman Todorovic, Maja

    2009-05-15

    -power portable sources for small electronics and laptop computers to megawatt-power applications for fuel cell power plants. The design and analysis for each power conditioner is presented in detail and the performance is verified using simulations and prototypes...