Powered by Deep Web Technologies
Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

Not Available

2008-10-01T23:59:59.000Z

2

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

Not Available

2008-10-01T23:59:59.000Z

3

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

Lantz, E.; Tegen, S.

2008-05-01T23:59:59.000Z

4

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

Not Available

2008-10-01T23:59:59.000Z

5

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

Not Available

2008-10-01T23:59:59.000Z

6

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

7

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

Not Available

2008-10-01T23:59:59.000Z

8

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

Not Available

2009-03-01T23:59:59.000Z

9

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

Not Available

2008-10-01T23:59:59.000Z

10

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

Lantz, E.; Tegen, S.

2009-03-01T23:59:59.000Z

11

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

Not Available

2008-10-01T23:59:59.000Z

12

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

Not Available

2008-10-01T23:59:59.000Z

13

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

Not Available

2008-10-01T23:59:59.000Z

14

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

Not Available

2008-10-01T23:59:59.000Z

15

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

Not Available

2008-10-01T23:59:59.000Z

16

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

Not Available

2008-06-01T23:59:59.000Z

17

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

Not Available

2008-06-01T23:59:59.000Z

18

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

Not Available

2008-06-01T23:59:59.000Z

19

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

Not Available

2008-06-01T23:59:59.000Z

20

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

Not Available

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

Not Available

2008-06-01T23:59:59.000Z

22

Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

Not Available

2008-06-01T23:59:59.000Z

23

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

Not Available

2008-06-01T23:59:59.000Z

24

Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

Not Available

2008-06-01T23:59:59.000Z

25

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

ind power is one of the fastest-growing forms of ind power is one of the fastest-growing forms of new power generation in the United States. Industry growth in 2007 was an astounding 45%. New wind power installations constituted 35% of all new electric power installations. This growth is the result of many drivers, includ- ing increased economic competitiveness and favorable state policies such as Renewable Portfolio Standards. However, new wind power installations provide more than cost-competitive electricity. Wind power brings economic development to rural regions, reduces greenhouse gas production by displacing fossil fuels, and reduces water consumption in the electric power sector. The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers

26

NREL: Wind Research - Five Megawatt Dynamometer Test Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's National Wind Technology Center. We're here today in the new 5 megawatt drive train testing facility that has been developed over the last few years. This terrific new...

27

Economic Development Impacts of Colorado's First 1,000 Megawatts of Wind Energy  

DOE Green Energy (OSTI)

This fact sheet summarizes the findings of a report authored by Sandra Reategui and Suzanne Tegen of the National Renewable Energy Laboratory (NREL). A confluence of events ignited soaring growth in the number of Colorado?s wind power installations in recent years, from 291 megawatts (MW) of nameplate capacity in 2006 to 1,067 MW (nameplate capacity) in 2007. Analyzing the economic impact of Colorado?s first 1,000 MW of wind energy development not only provides a summary of benefits now enjoyed by the state?s population, but it also provides a sense of the economic development opportunities associated with other new wind project scenarios, including the U.S. Department of Energy?s 20% Wind Energy by 2030 scenario. The analysis can be used by interested parties in other states as an example of the potential economic impacts if they were to adopt 1,000 MW of wind power development.

Not Available

2009-01-01T23:59:59.000Z

28

Mass Megawatts Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Megawatts Wind Power Inc Megawatts Wind Power Inc Jump to: navigation, search Name Mass Megawatts Wind Power Inc Address 95 Prescott Street Place Worcester, Massachusetts Zip 01605 Sector Wind energy Product Development of low-cost, wind energy production systems Website http://www.massmegawatts.com/ Coordinates 42.2776492°, -71.7996281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2776492,"lon":-71.7996281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

to the support platform is the NREL offshore 5- MW baselineOffshore wind turbine classification [3]. .. 3 Figure 1.2: Alternative platform

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

30

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

31

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

32

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

Science Conference Proceedings (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

33

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

34

Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy  

SciTech Connect

This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

Reategui, S.; Tegen, S.

2008-08-01T23:59:59.000Z

35

Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy  

DOE Green Energy (OSTI)

This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

Reategui, S.; Tegen, S.

2008-08-01T23:59:59.000Z

36

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofMary, and Laura Parsons. Offshore Wind Energy. Washingto,Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

37

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc.of European Wind Energy Conference 2009, Marseille, France.and S. E. Sowby. Standardized Wind and Wave Environments for

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

38

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

39

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

of European Wind Energy Conference 2009, Marseille, France.Enabling New Markets for Offshore Wind Energy." Proc.Parsons. Offshore Wind Energy. Washingto, DC: Environmental

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

40

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

of wind turbine. Rating Control Rotor Radius Rated Windturbines is a major design consideration due to cyclic loading induced by the rotating rotors [the turbine. The base was assumed to be fixed and the rotor

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

42

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

NLE Websites -- All DOE Office Websites (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

43

Analysis of wind power ancillary services characteristics with German 250-MW wind data  

DOE Green Energy (OSTI)

With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

Ernst, B.

1999-12-09T23:59:59.000Z

44

3D Simulation of a 5MW Wind Turbine.  

E-Print Network (OSTI)

??In the present work, the influence of turbulence and gravity forces on the tower and the rotor of a 5MW onshore wind turbine has been (more)

Namiranian, Abtin

2011-01-01T23:59:59.000Z

45

Optimal power capturing of multi-MW wind generation system  

Science Conference Proceedings (OSTI)

Recently, an increasing number of multi-MW (1MW and up) wind generation systems are being developed and variable speed-variable pitch (VS-VP) control technology is usually adopted to improve the fast response speed and obtain the optimal energy, which ... Keywords: adaptive fuzzy proportional integral derivative, doubly-fed induction generator, hydraulic variable pitch mechanism, optimal, variable speed-variable pitch, wind turbine

Kong Yigang; Wang Zhixin

2008-03-01T23:59:59.000Z

46

Aero-Structural Optimization of a 5 MW Wind Turbine Rotor.  

E-Print Network (OSTI)

??A 5 MW wind turbine rotor blade based on the NREL 5 MW Reference Turbine is optimized for maximum efficiency and minimum flapwise hub bending (more)

Vesel, Richard W., Jr.

2012-01-01T23:59:59.000Z

47

Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005  

DOE Green Energy (OSTI)

Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

Erdman, W.; Behnke, M.

2005-11-01T23:59:59.000Z

48

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

49

Model Validation at the 204-MW New Mexico Wind Energy Center  

DOE Green Energy (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

50

Wind industry installs almost 5,300 MW of capacity in December ...  

U.S. Energy Information Administration (EIA)

Approximately 40% of the total 2012 wind capacity additions (12,620 MW) came online in December, just before the scheduled expiration of the wind production tax ...

51

Low Wind Speed Technology Phase I: Prototype Multi-Megawatt Low Wind Speed Turbine; General Electric Wind Energy, LLC  

SciTech Connect

This fact sheet describes a subcontract with GE Wind Energy to develop an advanced prototype turbine to significantly reduce energy costs (COE) in low wind speed environments.

2006-03-01T23:59:59.000Z

52

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

53

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

54

Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)  

DOE Green Energy (OSTI)

The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

Not Available

2011-09-01T23:59:59.000Z

55

High-megawatt Electric Drive Motors  

Science Conference Proceedings (OSTI)

... Page 2. ABB BU Machines April 10, 2009 | Slide 2 High-megawatt Electric Drive Motors ... motor concept ... A selection of compressor motors >30MW. ...

2012-10-21T23:59:59.000Z

56

EK 131/132 module: Introduction to Wind Energy MW 3-5  

E-Print Network (OSTI)

EK 131/132 module: Introduction to Wind Energy MW 3-5 Course. This course provides an overview of wind turbine technology and energy concepts. The question of whether wind. Students will measure personal energy use and analyze wind turbine data from the Museum of Science's wind

57

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

58

Grid Simulator for Testing MW-Scale Wind Turbines at NREL (Poster)  

DOE Green Energy (OSTI)

As described, an initiative by NREL to design and construct a 9-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

Gevorgian, V.; McDade, M.; Wallen, R.; Mendoza, I.; Shirazi, M.

2011-05-01T23:59:59.000Z

59

NREL: Wind Research - NWTC to Debut a Dynamic 5-Megawatt Dynamometer  

NLE Websites -- All DOE Office Websites (Extended Search)

can have their wind turbine drivetrains tested in a controlled environment-saving time, money, and risk. Jim Green, project manager, states, "The new dynamometer more...

60

Economic Development Impact of 1,000 MW of Wind Energy in Texas  

DOE Green Energy (OSTI)

Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

Reategui, S.; Hendrickson, S.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine  

DOE Green Energy (OSTI)

Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.

Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.

2010-10-01T23:59:59.000Z

62

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

DOE Green Energy (OSTI)

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

63

Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint  

SciTech Connect

In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

2006-06-01T23:59:59.000Z

64

NREL: Transmission Grid Integration - Oahu Wind Integration and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreement. The agreement includes a commitment to integrate up to 400 megawatts (MW) of offshore wind energy from Molokai or Lanai and transmit it to Oahu via undersea cable...

65

Wind Energy: Issues to Consider Brian J. Frosch  

E-Print Network (OSTI)

Wind Energy: Issues to Consider Brian J. Frosch Joe L. Outlaw AFPCAgricultural and Food Policy Center The Texas A&M University System #12;Wind Energy: Issues to Consider Brian J. Frosch Joe L. Outlaw, such as wind. According to the World Wind Energy Association (WWEA), 14,900 megawatts (MW) of wind generation

66

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

DOE Green Energy (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

67

Model Validation at the 204-MW New Mexico Wind Energy Center (Poster)  

Science Conference Proceedings (OSTI)

The objectives of this report are: (1) to investigate the impact of aggregation on a large wind farm; and (2) to explore the dynamic behaviors of the power system and the wind turbine. The methods used are: (1) use equivalencing method previously developed to simplify Taiban Mesa wind power plant; (2) use PSLF dynamic analysis to simulate the wind power plant with AWEA-proposed low voltage ride through (LVRT) used to test the systems; and (3) represent a 204-MW wind plant two ways, treat the entire wind farm feeding a large power system network as a single generator and treat each wind turbine within the wind farm as an individual generator (136 generators) feeding the large power system network.

Muljadi, E.; Butterfield, C. P.; Miller, N.; Delmerico, R.; Ellis, A.; Mechenbier, J.; Zavadil, R.; Smith, J. C.; Hochheimer, J.; Young, R.

2006-01-01T23:59:59.000Z

68

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

69

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

SciTech Connect

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

2012-03-01T23:59:59.000Z

70

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

DOE Green Energy (OSTI)

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

Not Available

2012-03-01T23:59:59.000Z

71

NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster)  

DOE Green Energy (OSTI)

In order to understand the behavior of wind turbines experiencing grid disturbances, it is necessary to perform a series of tests and accurate transient simulation studies. The latest edition of the IEC 61400-21 standard describes methods for such tests that include low voltage ride-through (LVRT), active power set-point control, ramp rate limitations, and reactive power capability tests. The IEC methods are being widely adopted on both national and international levels by wind turbine manufacturers, certification authorities, and utilities. On-site testing of wind turbines might be expensive and time consuming since it requires both test equipment transportation and personnel presence in sometimes remote locations for significant periods of time because such tests need to be conducted at certain wind speed and grid conditions. Changes in turbine control software or design modifications may require redoing of all tests. Significant cost and test-time reduction can be achieved if these tests are conducted in controlled laboratory environments that replicate grid disturbances and simulation of wind turbine interactions with power systems. Such testing capability does not exist in the United States today. An initiative by NREL to design and construct a 7-MVA grid simulator to operate with the existing 2.5 MW and new upcoming 5-MW dynamometer facilities will fulfill this role and bring many potential benefits to the U.S. wind industry with the ultimate goal of reducing wind energy integration costs.

McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W.

2013-04-01T23:59:59.000Z

72

Evaluation of the New B-REX Fatigue Testing System for Multi-Megawatt Wind Turbine Blades: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently developed a new hybrid fatigue testing system called the Blade Resonance Excitation (B-REX) test system. The new system uses 65% less energy to test large wind turbine blades in half the time of NREL's dual-axis forced-displacement test method with lower equipment and operating costs. The B-REX is a dual-axis test system that combines resonance excitation with forced hydraulic loading to reduce the total test time required while representing the operating strains on the critical inboard blade stations more accurately than a single-axis test system. The analysis and testing required to fully implement the B-REX was significant. To control unanticipated blade motion and vibrations caused by dynamic coupling between the flap, lead-lag, and torsional directions, we needed to incorporate additional test hardware and control software. We evaluated the B-REX test system under stable operating conditions using a combination of various sensors. We then compared our results with results from the same blade, tested previously using NREL's dual-axis forced-displacement test method. Experimental results indicate that strain levels produced by the B-REX system accurately replicated the forced-displacement method. This paper describes the challenges we encountered while developing the new blade fatigue test system and the experimental results that validate its accuracy.

White, D.; Musial, W.; Engberg, S.

2004-12-01T23:59:59.000Z

73

NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)  

SciTech Connect

How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

2010-10-01T23:59:59.000Z

74

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

75

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

76

Megawatt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Megawatt Energy Systems Megawatt Energy Systems Jump to: navigation, search Name Megawatt Energy Systems Place Zionsville, Indiana Sector Renewable Energy, Services, Solar, Wind energy Phone number 317.797.3381 Website http://www.mwenergysystems.com Coordinates 39.9508733°, -86.261937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

78

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance wind turbine performance and reliability. February 3, 2009 U.S. Wind Industry Takes Global Lead The U.S. wind energy industry broke another global record in 2008 by installing 8,358 megawatts (MW) of new capacity, bringing our nation's total wind energy capacity to 25,170 MW. The United States now claims the largest wind energy capacity in the world, taking the lead from Germany.

79

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

80

The study of multimode power control system for MW variable-speed wind turbine  

Science Conference Proceedings (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the past constant-speed wind turbine is used for the limitation of the control technology and manufacturing technology. But this kind wind turbine has low efficiency ... Keywords: feed-forward compensator, loop-shaping, multimode power control system, pitch controller, speed controller, the shaft system model, wind turbine

Dingguo Wu; Zhixin Wang

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California Regional Wind Energy Forecasting System Development, Volume 1: Executive Summary  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts (MW) in place at the end of 2005. The main drivers are the state's 20 Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasti...

2006-11-14T23:59:59.000Z

82

Research on 2MW Wind Turbine in the Three Conditions of Modal Analysis Based on ANSYS  

Science Conference Proceedings (OSTI)

In order to prevent a phenomenon of the working wind tower turbine's dumping and fracture, we had done the modal analysis for wind power tower in this paper. by introducing FEA(Finite Element Analysis) methods, the finite element model, simulating actual ... Keywords: Wind turbine towers, Tower model, FEA, Displacement, Equivalent stress

Zhang Penglin; Cao Li

2012-10-01T23:59:59.000Z

83

Wake Turbulence of Two NREL 5-MW Wind Turbines Immersed in a Neutral Atmospheric Boundary-Layer Flow  

E-Print Network (OSTI)

The fluid dynamics video considers an array of two NREL 5-MW turbines separated by seven rotor diameters in a neutral atmospheric boundary layer (ABL). The neutral atmospheric boundary-layer flow data were obtained from a precursor ABL simulation using a Large-Eddy Simulation (LES) framework within OpenFOAM. The mean wind speed at hub height is 8m/s, and the surface roughness is 0.2m. The actuator line method (ALM) is used to model the wind turbine blades by means of body forces added to the momentum equation. The fluid dynamics video shows the root and tip vortices emanating from the blades from various viewpoints. The vortices become unstable and break down into large-scale turbulent structures. As the wakes of the wind turbines advect further downstream, smaller-scale turbulence is generated. It is apparent that vortices generated by the blades of the downstream wind turbine break down faster due to increased turbulence levels generated by the wake of the upstream wind turbine.

Bashioum, Jessica L; Schmitz, Sven; Duque, Earl P N

2013-01-01T23:59:59.000Z

84

Wind industry installs almost 5,300 MW of capacity in ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual ... Search EIA.gov. ... Wind plant developers reported throughout 2012 increasing amounts of new capacity scheduled ...

85

Wake Measurements of a Multi-MW Wind Turbine with Coherent Long-Range Pulsed Doppler Wind Lidar  

Science Conference Proceedings (OSTI)

Long-range Doppler wind light detection and ranging (lidar) measurements at a wind turbine were carried out for the first time. The turbine was of the type Areva M5000 and is located at a site near the coastline in Bremerhaven, in the northern ...

Yvonne Ksler; Stephan Rahm; Rudolf Simmet; Martin Khn

2010-09-01T23:59:59.000Z

86

Commercial Scale Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

87

approximately 200 megawatts (MWs) of power from TCEP, making  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 200 megawatts (MWs) of power from TCEP, making approximately 200 megawatts (MWs) of power from TCEP, making it the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture. The 400-MW TCEP plant is a first-of-its-kind integrated gasification combined cycle (IGCC) poly-generation facility capable of capturing 90 percent of the carbon dioxide (CO 2 ) it produces. The $2.4-billion plant was a third round selection under DOE's Clean Coal Power Initiative

88

Desktop megawatt superradiant free-electron laser at terahertz frequencies  

SciTech Connect

I present a theoretical and simulation study of a desktop, megawatt (MW), terahertz (THz) superradiance free-electron laser (FEL) driven by a THz-pulse-train photoinjector. With nominal electron parameters from a THz-pulse-train photoinjector, this superradiant FEL is capable of generating more than 5 MW power at THz frequencies from a half-meter, single-pass undulator. Tapering the undulator to a length of 1.5 m can further increase the FEL output power to nearly 15 MW.

Huang, Y.-C. [Department of Electrical Engineering, National Tsinghua University, Hsinchu 30013, Taiwan (China)

2010-06-07T23:59:59.000Z

89

Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas  

E-Print Network (OSTI)

industry has installed a total of 46,919 megawatts (MW) of capac- ity, making it second in the world behind, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA e energy is among the world's fastest growing sources of energy. Through the end of 2011, the US wind

Zhou, Liming

90

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

91

Wind Powering America  

DOE Green Energy (OSTI)

At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

Flowers, L. (NREL); Dougherty, P. J. (DOE)

2001-07-07T23:59:59.000Z

92

Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Wind Farm Wind Farm The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal building in Greensburg. Technical assistance provided by the U.S. Department of Energy and the National Renewable Energy Laboratory was influential in helping Greensburg and its partners build the wind farm. The town uses only about 1/4 to 1/3 of the power generated to reach its "100% renewable energy, 100% of the time" goal. Excess power is placed back on the grid and offered as renewable energy credits for other Kansas Power Pool and Native Energy customers. The Greenburg Wind Farm continues to have an impact, inspiring Sunflower

93

HI-MW Roadmap SCE DER  

Science Conference Proceedings (OSTI)

... 4,000 MW Wind 1,000 MW Solar Energy Storage with Advanced PCS, A Solution? ... Reliable, Cost Competitive, Innovation Incentive Rate ...

2012-07-07T23:59:59.000Z

94

Short-Term Power Fluctuation of Wind Turbines: Analyzing Data from the German 250-MW Measurement Program from the Ancillary Services Viewpoint  

SciTech Connect

Short-term power fluctuations from wind farms may affect interconnected-grid operating costs and stability. With the increasing availability of wind power worldwide, this has become a concern for some utilities. Under electric industry restructuring in the United States, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. However, the magnitude of the impact and the effect of aggregation of multiple turbines are not well quantified due to a lack of actual wind farm power data. This paper analyzes individual turbine and aggregate power output data from the German ''250-MW Wind'' data project. Electric system load following and regulation impacts are examined as a function of the number of turbines and turbine spacing in order to quantify the impacts of aggregation. The results show a significant decrease in the relative system regulation burden with increasing number of turbines, even if the turbines are in close proximity.

Ernst, B. (Institut fur Solare Energieversorgungstechnik); Wan, Y.-H. (National Renewable Energy Laboratory); Kirby, B. (Oak Ridge National Laboratory)

1999-07-26T23:59:59.000Z

95

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

96

Analyses of Wind Energy Impact on WFEC System Operations  

SciTech Connect

Western Farmers Electric Cooperative (WFEC) is a generation and transmission Cooperative in Oklahoma. At the end of 2003 it added 74 megawatts (MW) of wind energy to its energy portfolio by purchasing the output of the Blue Canyon Wind Power Project located north of Lawton, Oklahoma. The wind energy has the potential to provide about 6% of WFEC's peak summer energy demand. During periods of high winds and low loads, wind energy may represent 14% of the control area load. Conversely during periods of calm wind, wind energy cannot be counted upon to provide any energy to WFEC's system. This report analyzes system and wind energy data recorded by the WFEC control area energy management system (EMS) and evaluates the effects of wind energy on system operations.

Wan, Y.; Liao, J. R.

2005-08-01T23:59:59.000Z

97

Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offers $117 Million Conditional Commitment for Hawaii Offers $117 Million Conditional Commitment for Hawaii Wind Power Project Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind Power Project March 5, 2010 - 12:00am Addthis Washington DC --- U.S. Secretary of Energy Steven Chu today announced that the Department of Energy has offered a conditional commitment on a $117 million loan guarantee to finance the construction and start-up of an innovative 30 megawatt (MW) wind energy project in Kahuku, Hawaii. Kahuku Wind Power, LLC will install twelve 2.5 MW wind turbine generators along with a battery energy storage system for electricity load stability. The loan guarantee is being supported by funds made available from the American Recovery and Reinvestment Act. "This investment will create jobs and cut our dependence on oil, while

98

Negawatts vs. Megawatts: Recovering California's Secret Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

construction of ten 500-megawatt power plants. These plants, once built, will require transmission lines and substations to deliver the power. 1. California has billions of...

99

MegaWatt Solar | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name MegaWatt Solar Place North Carolina Sector Renewable Energy, Solar Product North Carolina-based, technology-centric renewable energy company...

100

Wind Power for Municipal Utilities. Office of Energy Efficiency and Renewable Energy (EERE) Brochure.  

Wind Powering America (EERE)

Clean energy has a bright future. Today a growing number Clean energy has a bright future. Today a growing number of public utilities are harvesting a new source of homegrown energy. From Massachusetts to California, more than two dozen municipal utilities have wind power in their energy mix. Wind energy is attractive for many reasons: * Wind energy is clean and renewable. * Wind energy is economically competitive. * Wind energy reduces energy price risks. Unlike coal, natural gas, or oil, the "fuel" for a wind turbine will always be free. * Wind energy is popular with the public. A RECORD YEAR - Wind power is booming. Worldwide, a record 3,800 megawatts (MW) were installed in 2001. These sleek, impressive wind turbines have closed the cost gap with conventional power plants. Depending on size and location, wind farms produce electricity for 3-6

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

for off- shore wind turbines in Europe and North America,of wind power and wind turbine characteristics, Renewablea multi?megawatt wind turbine, Renewable Energy, Matthews,

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

102

Maiden Wind Farm Draft Environmental Impact Statement  

SciTech Connect

In February 2001, Washington Winds Inc. (the project developer) submitted a proposal to Bonneville Power Administration (BPA) for a site north of the cities of Sunnyside and Prosser in Washington where wind power facilities could be developed. After considering preliminary information, BPA decided to examine the proposed project and consider purchasing and transmitting power from the project. The project developer also submitted Conditional use Permit (CUP) applications to Benton and Yakima Counties. Benton County, serving as the lead agency for the State Environmental Policy Act (SEPA), issued a Determination of Significance on June 11, 2001. The action proposed by BPA is to: (1) execute a 20-year power purchase agreement with the project developer for up to 50 average megawatts (aMW) (up to about 200 megawatts [MW]) of electrical energy from the proposed Maiden Wind Farm; and (2) execute construction and generation interconnection agreements with the project developer to integrate the power generated by the proposed Maiden Wind Farm into BPA's transmission system. The need for the proposed action arises primarily from BPA's statutory obligations and planning directives. BPA will consider the information in this Environmental Impact Statement (EIS), public comments, and other factors when deciding whether to purchase power from the proposed wind project and transmit it over BPA transmission lines. Benton and Yakima County Planning Departments will consider information in this EIS when deciding whether to grant a CUP and allow the proposed project to be developed.

N /A

2002-03-29T23:59:59.000Z

103

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

104

NRELs Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Powering NREL's Wind Powering America Team Helps Indiana Develop Wind Resources How does a state advance, in just five years, from having no wind power to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi. Since 1999, WPA has helped advance technology acceptance and wind energy deployment across the United States through the formation of state wind working groups (WWGs). The WWGs facilitate workshops, manage anemometer loan programs, conduct outreach, and

105

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is todays most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

106

Wind Energy Center Edgeley/Kulm Project, North Dakota  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Energy Center Edgeley/Kulm Project North Dakota North Dakota Wind, LLC FPL Energy DOE/EA-1465 April 2003 Summary S - 1 Final EA SUMMARY The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a

107

Final Environmental Assessment, Burleigh County Wind Energy Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1542 August 2005 Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN ELECTRIC POWER COOPERATIVE Central Power Electric Cooperative, Inc. Introduction 1-1 Burleigh County Wind Energy Center Environmental Assessment CHAPTER 1 INTRODUCTION The Burleigh County Wind Energy Center is a wind generation project proposed by FPL Energy Burleigh County Wind, LLC (Burleigh County Wind). The proposed project would produce up to 50 megawatts (MW) of electricity, averaged annually. The proposed project is located in Burleigh County, North Dakota, approximately 3 miles south and 2 miles east of the town of Wilton, North Dakota (Figures 1-1

108

Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)  

SciTech Connect

Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

Clifton, A.

2012-12-01T23:59:59.000Z

109

U.S. Wind Industry Continues to Expand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Industry Continues to Expand Wind Industry Continues to Expand U.S. Wind Industry Continues to Expand October 23, 2012 - 1:35am Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? In August 2012, for the first time ever, the U.S. wind industry surpassed 50,000 megawatts of generation capacity. So far in 2012, U.S. wind power installations are up 40% compared to the same time period in 2011. The U.S. wind industry is experiencing its strongest year in history -- so finds a new report from the American Wind Energy Association (AWEA). According to AWEA's Third Quarter 2012 Market Report, U.S. wind power capacity increased significantly in 2012 -- up 40 percent compared to 2011. Overall, wind capacity installations increased to 51,630 MW -- enough to

110

Xcel Energy Wind and Biomass Generation Mandate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Xcel Energy Wind and Biomass Generation Mandate Xcel Energy Wind and Biomass Generation Mandate < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Wind Buying & Making Electricity Program Info State Minnesota Program Type Renewables Portfolio Standard Provider Minnesota Department of Commerce Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or contract for an additional 200 MW of installed capacity by December 31, 2002. The same statute also directed the Minnesota Public Utilities Commission (PUC) to require Xcel Energy to construct and operate, purchase or contract to purchase an

111

Integrating wind turbines into the Orcas Island distribution system  

DOE Green Energy (OSTI)

This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

Zaininger, H.W. [Zaininger Engineering Co., Roseville, CA (United States)

1998-09-01T23:59:59.000Z

112

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

DOE Green Energy (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

113

DOE/EIS-0183: Record of Decision for the Electrical Interconnection of the Shepherds Flat Wind Energy Project (07/18/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shepherds Flat Wind Energy Project Shepherds Flat Wind Energy Project July 2008 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 846 megawatts (MW) of power to be generated by the proposed Shepherds Flat Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Caithness Shepherds Flat, LLC (CSF) proposes to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's existing Slatt Substation in Gilliam County, Oregon. To provide the interconnection, BPA will expand BPA's existing Slatt Substation to accommodate a 230-kilovolt (kV) yard and will provide transmission access for up to 846 MW from the Wind

114

EIS-0470 - Cape Wind Energy Project - 2010 - Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Project Wind Energy Project Environmental Assessment April 28, 2010 4 OCS EIS/EA MMS 2010-011 FINDING OF NO NEW SI GNIFICANT IMPACT (FO:NNSJ) Issuance of Lease for Offshore Wind Power Facility in Nantucket Sound, Offshore Massachusetts In January 2009, the U.S. Department of the Interior, Minerals Management Service (MMS) prepared and filed with the U.S. Environmental Protection Agency (USEP A) a Final Environmental Impact Statement (FEIS) covering the construction, operation, and decommissioning of the proposed Cape Wind Energy Project, an offshore wind power facility consisting of 130, 3.6± megawatt (MW) wind turbine generators (WTGs), each with a maximum blade height of 440 feet, to be arranged in a grid pattern on the Outer Continental Shelf (OCS) in

115

Maiden Wind Farm, Final NEPA/SEPA Environmental Impact Statement  

DOE Green Energy (OSTI)

BPA's proposed action is the execution of power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 aMW (up to about 200 MW) of output from the proposed Maiden Wind Farm, which would be developed to generate up to 494 MW. Benton and Yakima Counties' proposed action is to grant Conditional Use Permits (CUPs) and other required permits for full build-out of the project, which would require construction of up to 549 wind turbines for a 494-MW project. The EIS evaluates two alternatives--the Proposed Action (which means that part or all of the proposed project would be built) and No Action. BPA would not purchase or transmit power from the project under the No Action Alternative and it is therefore likely that the project would not be constructed. Washington Winds Inc. proposes to construct and operate up to 494 megawatts (MW) of wind generation on privately- and publicly-owned property in Benton and Yakima Counties, Washington. This EIS evaluates the environmental effects of BPA's Proposed Action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer's proposed Maiden Wind Farm. The project developer has requested a CUP for up to 494 MW. Although the full 494 MW of power may or may not be constructed, this EIS evaluates impacts from full buildout of the project. The project would be located about 10 miles northeast of Sunnyside in the Rattlesnake Hills and would occupy approximately 251 acres of land. Approximately 1,063 acres would be temporarily occupied during construction by facilities such as staging areas, equipment laydown areas, and rock quarries. Except for portions of two sections of land owned by the Washington Department of Natural Resources (DNR), the project would be constructed on privately-owned farm and ranch land in Benton and Yakima Counties. The major facilities of the project include up to 549 wind turbines with small transformers at the base of each turbine tower, underground and overhead collector cables, access roads, up to two substations, up to three operation and maintenance buildings, a potential 4-mile 230-kilovolt (kV) transmission line, and up to four meteorological towers (see Figure 2.1-2 in the Draft EIS). Construction of the project could begin in early 2003, with at least partial power generation expected as early as December 2003. Construction of the full project would take about nine months.

N /A

2003-01-03T23:59:59.000Z

116

WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost  

SciTech Connect

DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW.

Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

2001-07-24T23:59:59.000Z

117

U.S. State Wind Resource Potential

Open Energy Info (EERE)

from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be...

118

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

119

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters October 23, 2013 - 10:52am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects representing over 3,800 megawatts (MW) of capacity reaching an advanced stage of development. Further, the report highlights global trends toward building offshore turbines in deeper waters and using larger, more efficient turbines in offshore wind farms, increasing the amount of electricity delivered to consumers.

120

U.S. Continues to Lead the World in Wind Power Growth | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2007 - 1:25pm 31, 2007 - 1:25pm Addthis DOE Report Shows Growing U.S. Wind Power Market WASHINGTON, DC - The U.S. Department of Energy (DOE) today released its first Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006, which provides a detailed and comprehensive overview of development and trends in the U.S. wind power market. Most notably, the Report concludes that U.S. wind power capacity increased by 27 percent in 2006; and that the U.S. had the fastest growing wind power capacity in the world in 2005 and 2006. More than 61 percent of the U.S.'s total wind capacity - over 7,300 Megawatts (MW) - has been installed since President Bush took office in 2001. "As we work to implement President Bush's Advanced Energy Initiative by increasing the use of home-grown, clean, affordable and renewable energy,

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

United States. Bonneville Power Administration.

2006-11-01T23:59:59.000Z

122

2008 High-Megawatt Power Converter Technology R&D ...  

Science Conference Proceedings (OSTI)

... 2008 High-Megawatt Power Converter Technology R&D Roadmap Workshop. NIST, Gaithersburg, MD. April 8, 2008. On ...

2013-05-30T23:59:59.000Z

123

Offshore Wind Energy Update  

Wind Powering America (EERE)

wind farms are already operating in 10 countries. Almost 1,700 turbines are in the water. We're probably beyond 5,000 megawatts in nameplate right now and that's just going to...

124

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project (DOE/EIS-0183) (11/29/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windy Point Wind Energy Project Windy Point Wind Energy Project November 2006 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. 1 The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line.

125

Final Environmental Impact Report: North Brawley Ten Megawatt...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal...

126

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006  

Wind Powering America (EERE)

2 - December 2006 2 - December 2006 Converging Factors Drive Flurry of Regional Wind Development New England is currently experiencing a flurry of wind power development activity: more than 2,500 megawatts (MW) from nearly 100 installations, ranging from the drawing board to projects under construction. A convergence of local and global factors drives this increased interest in the Northeast and across the country. A variety of stresses on global energy markets were felt throughout the region in the form of higher and more volatile electricity and fuel prices. Policymakers throughout New England (which imports nearly all of its fuel) are focused on increased supply diversity and energy independence as a tool to reduce the region's exposure to further economic and potential supply

127

STATEMENT OF CONSIDERATIONS REQUEST BY GE WIND ENERGY, LLC FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIND ENERGY, LLC FOR AN ADVANCE WAIVER OF WIND ENERGY, LLC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZAM-3-31235-05 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-03-033; CH-1159 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, GE Wind Energy, LLC (GEWE) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified subcontract by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of GEWE's waiver petition, the purpose of this agreement encompasses the design, development, and testing of a 5.0 megawatt (MW) low wind speed

128

Greene County 100 MW Biomass Conceptual Engineering Study  

Science Conference Proceedings (OSTI)

Southern Company Services, Incorporated, (SCS) is interested in constructing a 100-megawatt (MW) (net) biomass-fueled facility at an existing facility to increase its share of renewable energy generation and to support future load growth. The site of interest is the Greene County Electric Generating Plant in Demopolis, Alabama. This report represents the formal compilation of key engineering deliverables that collectively provide a better understanding of the conceptual-level parameters associated with t...

2010-12-10T23:59:59.000Z

129

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract N/A Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Citation County of Imperial Planning Department. 1979. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility. (!) : WESTEC SERVICES, INC.. Report No.: N/A. Retrieved from

130

NREL: News Feature - Giant Wind Turbine Test Takes a Heavyweight  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Wind Turbine Test Takes a Heavyweight Giant Wind Turbine Test Takes a Heavyweight May 17, 2010 Photo of Samsung's 90-ton drive train connected to NREL's 2.5-megawatt dynamometer in a high-ceiling metal building. The drive train is a cylindrical shape, but several attachments give it the look of a giant Lego contraption. Enlarge image A coupling of giants: Samsung's 2.5-megawatt wind turbine drive train meets the National Wind Technology Center's 2.5-megawatt dynamometer. Samsung's drive train weighs 90 tons and is the brains behind its 2.5-megawatt wind turbine that can supply electricity to 1,800 homes. Credit: Rob Wallen In a coupling of giants recently, the 2.5-megawatt dynamometer at the U.S. Department of Energy's National Renewable Energy Laboratory blasted 12.6 million inch pounds of torque at Samsung's 185,000-pound wind turbine drive

131

DOE/EIS-0183 Record of Decision for the Electrical Interconnection of the Kittitas Valley Wind Project (09/04/09)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kittitas Valley Wind Project Kittitas Valley Wind Project September 2009 B o n n e v i l l e P o w e r A d m i n i s t r a t i o n 1 INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 108 megawatts (MW) of power to be generated by the proposed Kittitas Valley Wind Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Sagebrush Power Partners, LLC (Sagebrush) has received authorization from the Washington Energy Facility Site Evaluation Council (EFSEC) to construct and operate the proposed Wind Project in Kittitas County, Washington, and has requested interconnection to the FCRTS on BPA's Columbia-Covington 230-kV transmission line in the vicinity of Ellensburg, Washington. BPA will construct a new substation to accommodate this additional power into the

132

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network (OSTI)

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity wind turbine were studied using a variety of design load, and soil conditions scenarios. Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S Department of Energys National Renewable Energy Laboratory (NREL). Hydrodynamic loads were estimated using Morisons equation and the more recent Faltinsen Newman Vinje (FNV) theory. This research study addressed two of the important design constraints, specifically, the angle of the support structure at seafloor and the horizontal displacement at the hub elevation during dynamic loading. The simulation results show that the modified cone model is stiffer than the apparent fixity level and Randolph elastic continuum models. The effect of the blade pitch failure on the offshore wind turbine structure decreases with increasing water depth, but increases with increasing hub height of the offshore wind turbine structure.

Aljeeran, Fares

2011-05-01T23:59:59.000Z

133

DOE/EA-1611: Mitigation Action Plan for the Colorado Highlands Wind Project, Logan County, Colorado (01/19/09)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 19, 2009 January 19, 2009 Mitigation Action Plan Colorado Highlands Wind Project Logan County, Colorado Project Overview. Western Area Power Administration (Western) a power marketing agency of the U.S. Department of Energy (DOE) proposes to approve interconnection of the Project with Western's transmission system and the connected action of the Project. Colorado Highlands Wind LLC (CHWP) applied (via predecessor project owner Wind Energy Prototypes) to Western to interconnect a 90-megawatt (MW) wind power facility with Western's existing Sterling-Frenchman Creek 115-kV transmission line. Approval of the Interconnection Agreement would allow the Project to interconnect with Western's proposed Wildhorse Creek Switchyard. In accordance with the DOE NEPA

134

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

DOE Green Energy (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

135

Crossroads (3 MW) | Open Energy Information  

Open Energy Info (EERE)

MW) MW) Jump to: navigation, search Name Crossroads (3 MW) Facility Crossroads (3 MW) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oklahoma Gas & Electric Developer Renewable Energy Systems Ltd Energy Purchaser Oklahoma Gas & Electric Location Near Canton OK Coordinates 36.019889°, -98.669894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.019889,"lon":-98.669894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Norfolk Offshore Wind NOW | Open Energy Information  

Open Energy Info (EERE)

Norfolk Offshore Wind NOW Jump to: navigation, search Name Norfolk Offshore Wind (NOW) Place United Kingdom Sector Wind energy Product Formed to develop the 100MW Cromer offshore...

137

Megatons to Megawatts Final Shipment | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Megawatts Program, with this week's off-loading of the final shipment of low enriched uranium (LEU) at the Port of Baltimore in Baltimore, Maryland, from Russia. Facebook Twitter...

138

Environmental Energy Technologies Division Energy Analysis Department Community Wind Power  

E-Print Network (OSTI)

Environmental Energy Technologies Division · Energy Analysis Department Community Wind Power projects * standard US commercial wind development #12;Environmental Energy Technologies Division · Energy % Community- Owned Community- Owned Wind Capacity (MW) Total Wind Capacity (MW) #12;Environmental Energy

139

Economic Impacts of Wind Turbine Development in U.S. Counties  

DOE Green Energy (OSTI)

The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percent are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.

J., Brown; B., Hoen; E., Lantz; J., Pender; R., Wiser

2011-07-25T23:59:59.000Z

140

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

DOE Green Energy (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

142

Executive Committee for the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems of the International Energy Agency  

E-Print Network (OSTI)

South Australias first wind farm. Starfish Hill Wind Farm provides enough energy to meet the needs of about 18,000 households, representing 2 % of South Australias residential customers. Photo Courtesy: Roaring 40s. Back cover: Multi-megawatt wind turbine gearboxes (ranging in size from 1.5 MW to 3 MW) undergo runin and qualification tests at this test station at the Hansen Transmissions Lommel factory. The IEA Wind Executive Committee members posed during a technical tour. Photo credit: Rick Hinrichs. 2 2006 Annual ReportForeword The twenty-ninth IEA Wind Energy Annual Report reviews the progress during 2006 of the activities in the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems under the auspices of the International Energy Agency (IEA)*. The IEA was founded in 1974 within the framework of the Organization for Economic Co-operation and Development (OECD) to collaborate on international energy programs and carry out a comprehensive program about energy among Member Countries. In 2006, 26 countries participated in more than 40 implementing agreements of the IEA. OECD Member countries, non-Member countries, and international organisations may participate. The IEA Wind implementing agreement and its program of work is a collaborative venture among 24 contracting parties from 20 Member Countries, the European Commission, and the European Wind Energy Association. This IEA Wind Energy Annual Report for 2006 is published by PWT Communications

Patricia Weis-taylor

2006-01-01T23:59:59.000Z

143

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Wind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma,Oklahoma all with more than 2,000 MW. Twenty-nine states had more than 100 MW of windWind Power Rankings: The Top 20 States Capacity (MW) Percentage of In-State Generation Annual (2011) California Illinois Iowa Minnesota Oklahoma

Bolinger, Mark

2013-01-01T23:59:59.000Z

144

Narrow linewidth picosecond pulsed laser with mega-watt peak power at UV wavelength  

Science Conference Proceedings (OSTI)

We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system to generate 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser is based on a direct electro-optic modulation of a fiber laser output. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of macropulses with tunable pulse duration. The light output form the amplifier is converted to 355 nm and over 1 MW UV peak power is obtained when the laser is operating in a 5- s/10-Hz macropulse mode. The laser output has a transform limited spectrum bandwidth with a very narrow linewidth of individual laser mode. The immediate application of the laser system is the laser assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

Liu, Yun [ORNL; Huang, Chunning [ORNL; Deibele, Craig Edmond [ORNL

2013-01-01T23:59:59.000Z

145

Project X - a new multi-megawatt proton source at Fermilab  

SciTech Connect

Project X is a multi-megawatt proton facility being developed to support intensity frontier research in elementary particle physics, with possible applications to nuclear physics and nuclear energy research, at Fermilab. The centerpiece of this program is a superconducting H-linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a future facility at the energy frontier.

Nagaitsev, S.; /Fermilab

2011-03-01T23:59:59.000Z

146

Wind power today  

DOE Green Energy (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

147

Condon Wind Project Draft Environmental Impact Statement  

DOE Green Energy (OSTI)

BPA needs to acquire resources to meet its customers' load growth. In meeting that need for power, BPA will consider the following purposes: protecting BPA and its customers against risk by diversifying its resource portfolio; assuring consistency with its responsibilities under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable resources; meeting customer demand for renewable resources; assuring consistency with its resource acquisition strategy; and meeting the objectives of its Power Business Line's Strategic Plan. The Draft Environmental Impact Statement (DEIS) evaluates the environmental impacts of the Proposed Action (to execute one or more power purchase and transmission services agreements to acquire and transmit up to the full electric output of the proposed Condon Wind Project) and the No Action Alternative. BPA's preferred alternative is the Proposed Action. BPA has also identified the Proposed Action as the environmentally-preferred alternative. The proposed wind project is located on private agricultural land in Gilliam County, Oregon. The 38-acre project site is located within a 4,200-acre study area located on both sides of Oregon Highway 206, approximately 5 miles northwest of the town of Condon. The project would use modern, efficient 600-kilowatt (kW) wind turbines to convert energy in the winds to electricity that would be transmitted over the existing BPA transmission system. The project would consist of one or two phases: the first phase would use 41 wind turbines to yield a capacity of approximately 24.6 megawatts (MW). A second phase (if built) would use 42 wind turbines to yield a capacity of approximately 25.2 MW. For purposes of this DEIS, the size of the project is assumed to be 49.8 MW, built in two phases. Major components of the wind project include wind turbines and foundations, small pad-mounted transformers, an operation and maintenance building, power collection and communication cables, project access roads, meteorological towers on foundations, and a substation. During construction there would also be temporary equipment storage and construction staging areas. The first phase is proposed for construction in late 2001; the second phase could be constructed during spring/summer 2002 or later.

N /A

2001-06-01T23:59:59.000Z

148

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Northern Power Systems WindPACT Drive Train Alternative Design Study Report; Period of Performance: April 12, 2001 to January 31, 2005  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) Wind Partnerships for Advanced Component Technologies (WindPACT) project seeks to advance wind turbine technology by exploring innovative concepts in drivetrain design. A team led by Northern Power Systems (Northern) of Waitsfield, Vermont, was chosen to perform this work. Conducted under subcontract YCX-1-30209-02, project objectives are to identify, design, and test a megawatt (MW)-scale drivetrain with the lowest overall life cycle cost. The project entails three phases: preliminary study of alternative drivetrain designs (Phase I), detailed design development (Phase II), and proof of concept fabrication and test (Phase III). This report summarizes the results of the preliminary design study (Phase I).

Bywaters, G.; John, V.; Lynch, J.; Mattila, P.; Norton, G.; Stowell, J.; Salata, M.; Labath, O.; Chertok, A.; Hablanian, D.

2004-10-01T23:59:59.000Z

150

A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor  

Science Conference Proceedings (OSTI)

Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

Jonathan A. Webb; Brian Gross

2011-02-01T23:59:59.000Z

151

PJM Interconnection Interview on Wind  

Wind Powering America (EERE)

Vol. 9, No. 5 - December 5, 2007 Vol. 9, No. 5 - December 5, 2007 PJM on wind Wind power is growing rapidly in the United States and in Pennsylvania where 8 wind farms that total 259 megawatts now operate. Those wind farms already generate enough power for about 80,000 homes. Another 4,714 megawatts are in various stages of development within Pennsylvania, which would create enough power for an additional 1.4 mil- lion homes. Just in the Keystone state, wind power is creating thousands of jobs. Across the nation, wind power provides hundreds of millions of dollars of tax payments and rental fees to land- owners, and displaces more and more electricity that would otherwise be made by burning coal, oil, or natural gas. Wind farms create zero air pollution; require no destructive

152

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Pool. David, A. 2011. U.S. Wind Turbine Trade in a Changing3-MW Alstom ECO 100 wind turbine installed at the National2011 U.S. Small Wind Turbine Market Report. Washington,

Bolinger, Mark

2013-01-01T23:59:59.000Z

153

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

market for new wind power additions in 2011. India, Germany,wind-powered generating sets were: Denmark (42%), Spain (16%), Japan (13%), India (Wind Power Capacity Annual Capacity (2011, MW) China U.S. India

Bolinger, Mark

2013-01-01T23:59:59.000Z

154

Land Use Requirements of Modern Wind Power Plants in the United States  

DOE Green Energy (OSTI)

This report provides data and analysis of the land use associated with modern, large wind power plants (defined as greater than 20 megawatts (MW) and constructed after 2000). The analysis discusses standard land-use metrics as established in the life-cycle assessment literature, and then discusses their applicability to wind power plants. The report identifies two major 'classes' of wind plant land use: 1) direct impact (i.e., disturbed land due to physical infrastructure development), and 2) total area (i.e., land associated with the complete wind plant project). The analysis also provides data for each of these classes, derived from project applications, environmental impact statements, and other sources. It attempts to identify relationships among land use, wind plant configuration, and geography. The analysts evaluated 172 existing or proposed projects, which represents more than 26 GW of capacity. In addition to providing land-use data and summary statistics, they identify several limitations to the existing wind project area data sets, and suggest additional analysis that could aid in evaluating actual land use and impacts associated with deployment of wind energy.

Denholm, P.; Hand, M.; Jackson, M.; Ong, S.

2009-08-01T23:59:59.000Z

155

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

Science Conference Proceedings (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

156

Port Clair Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Port Clair Wind Energy Jump to: navigation, search Name Port Clair Wind Energy Place United Kingdom Sector Wind energy Product Company setup to develop the 35MW Port Clair wind...

157

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Chile - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

... (SIC). Wind capacity had grown to an estimated 160 megawatts (MW) as of 2010, and is poised to grow further with the construction of the 115-MW El ...

159

Megawatts vs. Negawatts: how a little can do a lot  

Science Conference Proceedings (OSTI)

In some quarters there is increased emphasis on overall reduction of energy usage from customers. One indication of the growing significance of negawatts is apparent at PJM Interconnection, where customers are encouraged to bid negative load into the wholesale market in direct competition with megawatts. This negative load, while not large in absolute terms relative to the 164 GW size of the PJM market, is nevertheless critical in introducing an element of price elasticity into what would otherwise be a virtually inelastic demand.

NONE

2008-11-15T23:59:59.000Z

160

NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

SWAY hopes these data will validate its design for a 10-megawatt floating offshore wind turbine. The SWAY one-fifth scale prototype has a 13-meter (m) downwind rotor on a 29-m...

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

162

Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report  

E-Print Network (OSTI)

The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also requires PUC to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires TCEQ to develop methodology for computing emissions reductions from renewable energy initiatives and the associated credits. In this Legislation the Laboratory is to assist TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the states SIP. The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its second annual report, Statewide Air Emissions Calculations from Wind and Other Renewables, to the Texas Commission on Environmental Quality. The report is organized in several deliverables: A Summary Report, which details the key areas of work; Supporting Documentation; Supporting data files, including weather data, and wind production data, which have been assembled as part of the first years effort. This executive summary provides summaries of the key areas of accomplishment this year, including: continuation of stakeholders meetings; review of electricity savings reported by ERCOT; analysis of wind farms using 2005 data; preliminary reporting of NOx emissions savings in the 2006 Integrated Savings report to TCEQ; prediction of on-site wind speeds using Artificial Neural Networks (ANN); improvements to the daily modeling using ANN-derived wind speeds; development of a degradation analysis; development of a curtailment analysis; analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; estimation of hourly solar radiation from limited data sets;

Turner, W. D.; Haberl, J. S.; Yazdani, B.; Gilman, D.; Subbarao, K.; Baltazar-Cervantes, J. C.; Liu, Z.; Culp, C.

2007-10-30T23:59:59.000Z

163

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

164

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

States, where a single wind farm might stretch on for mileslarge California wind farms, Danish turbine manufacturersbased 100 MW Trimont wind farm as the successful bidder;

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

165

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

to build a 350 MW offshore wind farm, and shortly after thisfarms, schools, businesses, and industrial facilities; distributed windwind turbines used to power the needs of residences, farms,

Bolinger, Mark

2010-01-01T23:59:59.000Z

166

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

basis. Text Box 1. Offshore Wind Development Activities Inis some interest in offshore wind in several parts of theGeorgia TOTAL Proposed Offshore Wind Capacity 735 MW 650 MW

2008-01-01T23:59:59.000Z

167

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

168

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

169

PNE UK Wind | Open Energy Information  

Open Energy Info (EERE)

UK Wind Place United Kingdom Sector Wind energy Product UK-based joint venture looking to develop a 300MW portfolio of wind farm projects across England, Scotland and Wales....

170

PNE WIND UK | Open Energy Information  

Open Energy Info (EERE)

venture between PNE Wind and New Energy Development Ltd for the development of 300MW of wind farms in the UK and Ireland. References PNE WIND UK1 LinkedIn Connections...

171

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

kW) Orders from 100-300 MW Orders >300 MW Vestas orders (worldwide) Polynomial trend line Recent wind turbinekW) Orders from 100-300 MW Orders >300 MW Vestas orders (worldwide) Polynomial trend line Recent wind turbine

Bolinger, Mark

2012-01-01T23:59:59.000Z

172

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

173

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

wind-powered generating sets were: Denmark (41%), Spain (17%), Japan (14%), India (Wind Power Capacity Annual Capacity (2010, MW) China U.S. Indiawind capacity additions in 2010 would have shrunk considerably relative to 2009. India,

Wiser, Ryan

2012-01-01T23:59:59.000Z

174

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

Wind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany Indiaand India (Table 3). With major development now occurring on several continents, wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

175

CECIC HKC Wind Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

Place China Sector Wind energy Product HKC are in a joint venture with China Energy Conservation Investment Corporation (CECIC) on developing a 200MW wind farm. References CECIC...

176

California Regional Wind Energy Forecasting System Development, Volume 4: California Wind Generation Research Dataset (CARD)  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forec...

2006-11-13T23:59:59.000Z

177

The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Wind energy has become an increasingly important  

E-Print Network (OSTI)

existing wind energy facili- ties in the US include turbines with installed capacity rang- ing from 600 kW 000 MW, or the equivalent 48 000 1.5 MW wind turbines. This is enough, according REVIEWS REVIEWS to 2 MW per turbine. Wind turbines up to about 3 MW of installed capacity for onshore applications

Wilmers, Chris

178

ERCOT Wind Development  

Science Conference Proceedings (OSTI)

At present, Texas leads the nation in wind development. Capacity reached 8005 MW in 2008, an addition of over 5000 MW in two years. Further, the state is committed to expanding the transmission system to tap as much as 18,456 MW of wind power. Focusing on the period 2008-2012, this study examines the market response to wind capacity, particularly in the time leading up to the expansion of the Texas transmission system. The study is introductory in nature, providing a foundation for more extensive analysi...

2009-03-30T23:59:59.000Z

179

Avista 2003 Wind RFP Final  

NLE Websites -- All DOE Office Websites (Extended Search)

7 2003 WIND RFP 7 2003 WIND RFP REQUEST FOR PROPOSALS Wind Power Up To 50 MW Avista Corporation August 2003 Introduction Avista's 2003 Integrated Resource Plan ("IRP") includes wind within its acquisition strategy beginning in the 2008-10 timeframe. Based on this result, the IRP includes an action item for Avista to investigate wind integration issues. In support of an integration issues study, Avista is interested in purchasing up to 50 MW of nameplate wind capability over a term of between two and five years to gain operational experience with this innovative resource. Because the Company has identified a wind resource preference beginning in 2008, options for project

180

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network (OSTI)

kW) Orders from 100-300 MW Orders >300 MW Vestas orders (worldwide) Polynomial trend line Recent wind turbine

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

tion to Conflict over Wind Farms in the Kansas Flint Hills,1,471 MW of offshore wind farms were in operation aroundFurther Offshore and Larger Wind Farm Developments, BRrrIS

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

182

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

of almost 1,471 MW of offshore wind farms were in operationFuture Prospects for Offshore Wind in Europe, TilE EUROPIEANof the many advantaged of offshore wind installations, see

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

183

Smoothing Renewable Wind Energy in Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smoothing Renewable Wind Energy in Texas Smoothing Renewable Wind Energy in Texas Smoothing Renewable Wind Energy in Texas April 9, 2013 - 10:57am Addthis The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is blowing and making it available later to the electric grid to meet customer demand. The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is

184

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY  

Energy.gov (U.S. Department of Energy (DOE))

This EIS will evaluate the environmental impacts of interconnecting the proposed 300-megawatt Hermosa West Wind Farm Project, in Albany County, Wyoming, with DOEs Western Area Power Administrations existing Craig-Ault 345-kilovolt transmission line.

185

Wind Electrolysis: Hydrogen Cost Optimization  

DOE Green Energy (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

186

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

187

Wind Taking Flight in Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Taking Flight in Oregon Wind Taking Flight in Oregon Wind Taking Flight in Oregon February 12, 2013 - 6:49pm Addthis The Deputy Secretary tours Oregon’s Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). The Deputy Secretary tours Oregon's Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy As clean energy technologies become increasingly important for the global economy, it's more important than ever that the U.S. continue playing to win. Deputy Secretary Poneman Last week I had the privilege of visiting one of the largest wind farms in

188

Wind Taking Flight in Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Taking Flight in Oregon Wind Taking Flight in Oregon Wind Taking Flight in Oregon February 12, 2013 - 6:49pm Addthis The Deputy Secretary tours Oregon’s Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). The Deputy Secretary tours Oregon's Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power nearly 260,000 homes). Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy As clean energy technologies become increasingly important for the global economy, it's more important than ever that the U.S. continue playing to win. Deputy Secretary Poneman Last week I had the privilege of visiting one of the largest wind farms in

189

Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)  

DOE Green Energy (OSTI)

The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

Maples, B.; Campbell, J.; Arora, D.

2014-10-01T23:59:59.000Z

190

Northern Cheyenne Tribe Wind Energy Development Report  

DOE Green Energy (OSTI)

Specific development objectives focused on the completion of all actions required to qualify a specfic project for financing and construction of a 30MW wind facility.

Belvin Pete; Distributed Generation Systems Inc; WEST, Inc; Michael S. Burney; Chris Bergen; Electrical Consultants, Inc; Terracon

2007-06-27T23:59:59.000Z

191

Modelling and control of large wind turbine.  

E-Print Network (OSTI)

?? In order to make the wind energy an economical alternative for energy production, upscaling of turbine to 10 - 15MW may be necessary to (more)

zafar, syed hammad

2013-01-01T23:59:59.000Z

192

The Application of Diode-Clamped Cascaded Inverter in the Direct-Driven Wind Power System  

Science Conference Proceedings (OSTI)

Power inverter is widely used in direct-driven variable speed constant frequency (VSVF) wind power system. With the level of wind power jumping from the kilowatt to megawatt, topologies and control of inverter have a corresponding change. Considering ... Keywords: direct-driven wind power, multi-level inverter, diode-clamped cascaded inverter, PD-SPWM and CPS-SPWM

Xianglian Xu; Pingting Xu; Zilin Tang; Gang Tang; Xiaole Ye

2012-04-01T23:59:59.000Z

193

Proposed Columbia Wind Farm No. 1 : Draft Environmental Impact Statement, Joint NEPA/SEPA.  

DOE Green Energy (OSTI)

This Draft Environmental Impact Statement (DEIS) addresses the Columbia Wind Farm {number_sign}1 (Project) proposal for construction and operation of a 25 megawatt (MW) wind power project in the Columbia Hills area southeast of Goldendale in Klickitat County, Washington. The Project would be constructed on private land by Conservation and Renewable Energy System (CARES) (the Applicant). An Environmental Impact Statement is required under both NEPA and SEPA guidelines and is issued under Section 102 (2) (C) of the National Environmental Policy Act (NEPA) at 42 U.S.C. 4321 et seq and under the Washington State Environmental Policy Act (SEPA) as provided by RCW 43.21C.030 (2) (c). Bonneville Power Administration is the NEPA lead agency; Klickitat County is the nominal SEPA lead agency and CARES is the SEPA co-lead agency for this DEIS. The Project site is approximately 395 hectares (975 acres) in size. The Proposed Action would include approximately 91 model AWT-26 wind turbines. Under the No Action Alternative, the Project would not be constructed and existing grazing and agricultural activities on the site would continue.

United States. Bonneville Power Administration; Klickitat County (Wash.)

1995-03-01T23:59:59.000Z

194

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

We estimate the cost of wind energy and compare it withMW installed worldwide. 6 Wind energy costs in India areof levelized cost were estimated (See Figure 7: Wind Energy

Phadke, Amol

2012-01-01T23:59:59.000Z

195

Sacramento Municipal Utility District 100 MW Photovoltaic Power Plant: Final environmental impact report  

Science Conference Proceedings (OSTI)

The Sacramento Municipal Utility District (SMUD) proposes constructing a 100 megawatt (MW) solar photovoltaic electric generation facility adjacent to its Rancho Seco nuclear plant. The project, to be built in increments over the next 12 years, is the largest facility of its kind proposed by any utility in the country. The initial 1 MW photovoltaic field will consist of four 250 kW subfields, each with its own power conditioning unit. Photovoltaic cell modules will be mounted on flat-plate arrays attached to centrally located torque tubes which allow the arrays to rotate on their long axis to )openreverse arrowquotes)track)closereverse arrowquotes) the sun. This Final Environmental Impact Report (FEIR) addresses environmental aspects of the proposed project according to the guidelines for implementing the California Environmental Quality Act and the National Enviornmental Policy Act (NEPA).

Not Available

1982-04-01T23:59:59.000Z

196

Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008  

E-Print Network (OSTI)

The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015 and 500 MW from non-wind renewables. This legislation also requires the Public Utilities Commission of Texas (PUCT) to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires the Texas Commission on Environmental Quality (TCEQ) to develop methodology for computing emissions reductions from renewable energy initiatives and the associated credits. In this Legislation the Energy Systems Laboratory (ESL or Laboratory) is to assist the TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the State Implementation Plan (SIP). The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its third annual report, Statewide Air Emissions Calculations from Wind and Other Renewables, to the Texas Commission on Environmental Quality. The report is organized in several deliverables: A Summary Report, which details the key areas of work; Supporting Documentation; and Supporting data files, including weather data, and wind production data, which have been assembled as part of the third years effort. This executive summary provides summaries of the key areas of accomplishment this year, including: Continuation of stakeholders meetings; Analysis of power generation from wind farms using improved method and 2006 data; Analysis of emissions reduction from wind farms; Updates on degradation analysis; Analysis of other renewables, including: PV, solar thermal, hydroelectric, geothermal and landfill gas; Review of electricity generation by renewable sources and transmission planning study reported by ERCOT; Review of combined heat and power projects in Texas; and Preliminary reporting of NOx emissions savings in the 2007 Integrated Savings report to the TCEQ.

Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

2008-08-01T23:59:59.000Z

197

An Update on the National Offshore Wind Strategy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Jose Zayas Jose Zayas Program Manager, Wind and Water Power Program Get the Details on Offshore Wind Take a look at our National Offshore Wind Strategy for information

198

Texas Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

This report describes initial results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2003-12-31T23:59:59.000Z

199

How to Build a Small Wind Energy Business: Lessons from California; Preprint  

DOE Green Energy (OSTI)

This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

Sinclair, K.

2007-07-01T23:59:59.000Z

200

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

over the proposed 420 MW offshore Cape Wind project, and theoffshore from their borders, and are turning to community-scale wind

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

and India. The technology has matured and, in good windWind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany India

Wiser, Ryan H

2009-01-01T23:59:59.000Z

202

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

203

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Rankings: The Top 20 States Cumulative Capacity (end of 2006, MW) Texas California Iowa Minnesota Washington Oklahoma

2008-01-01T23:59:59.000Z

204

Secretary Chu Announces $45 Million to Support Next Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capable of performing highly accelerated life testing of land-based and offshore wind turbine drive systems rated at 5-15 megawatts (MW). These dynamometer tests of...

205

EIS-0183: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kittitas Valley Wind Project The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 108 megawatts (MW) of power to be generated...

206

EIS-0183: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaning Juniper II Wind Project The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of up to 200 megawatts (MW) of power to be...

207

Survey of Wind Power Integration Studies  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25% and reached almost 60,000 MW worldwide and 9150 MW in the United States during 2005, and the high growth rate is forecast to continue for several years. Wind generation is an intermittent resource and can't be dispatched. Therefore, large blocks of wind generation concentrated in a region can affect the operation of the electricity grid with regard to ancillary service requirements and cost. Because the numerous wind power integration stud...

2006-03-31T23:59:59.000Z

208

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Testing Facilities Wind Testing Facilities America's Wind Testing Facilities Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston 3 of 7 Wind Technology Testing Center - Boston

209

Haxtun Wind Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Haxtun Wind Project Haxtun Wind Project Haxtun Wind Project November 13, 2013 - 10:45am Addthis The Haxtun Wind project in Phillips County, Colorado, is a community-owned 30 megawatt wind farm. The U.S. Department of Energy provided more than $2.5 million in funding for this Community Renewable Energy Deployment (CommRE) project. Wind Farm Phillips County is located in northeastern Colorado. The Haxtun Wind CommRE project will consist of up to 20 turbines located on more than 9,200 acres just south of the town of Haxtun, Colorado, and will tie into the grid at the existing Haxtun substation with few additional improvements needed. To ensure success, the Haxtun Wind project needs to be located on a site with a good wind resource, accessible transmission, a supportive community,

210

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

211

INL Wind Farm Project Description Document  

DOE Green Energy (OSTI)

The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

Gary Siefert

2009-07-01T23:59:59.000Z

212

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

213

CHALLENGES OF INTEGRATING LARGE AMOUNTS OF WIND Jonathan D. Rose  

E-Print Network (OSTI)

-300 MW, with the largest coal and nuclear power plants rated at 2,000 to 3,000 MW. Although wind energy are meshed networks of transmission lines connecting together cities, towns, and power plants

Hiskens, Ian A.

214

Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems.  

E-Print Network (OSTI)

??This thesis presents the development of a 1/50th scale 5 MW wind turbine intended for wind and wave basin model testing of commercially viable floating (more)

Martin, Heather Rae

2011-01-01T23:59:59.000Z

215

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

216

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

Price (2007 $/MWh) 1998-99 COD 14 projects 624 MW Source:2007 Wind Power Price, by COD Individual Project 2007Wind Power Price, by COD 2000-01 COD 22 projects 901 MW

Bolinger, Mark A

2009-01-01T23:59:59.000Z

217

Ormat's North Brawley plant with 17MW short of its 50MW potential | Open  

Open Energy Info (EERE)

Ormat's North Brawley plant with 17MW short of its 50MW potential Ormat's North Brawley plant with 17MW short of its 50MW potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat's North Brawley plant with 17MW short of its 50MW potential Author Think Geoenergy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat's North Brawley plant with 17MW short of its 50MW potential Citation Think Geoenergy. Ormat's North Brawley plant with 17MW short of its 50MW potential [Internet]. [updated 40219;cited 2010]. Available from: http://thinkgeoenergy.com/archives/3654 Retrieved from "http://en.openei.org/w/index.php?title=Ormat%27s_North_Brawley_plant_with_17MW_short_of_its_50MW_potential&oldid=682479"

218

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

219

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

220

Survey of Wind Integration Study Results  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25% during 2006 and reached almost 74,000 MW worldwide by the end of the year. This rapid growth is forecasted to continue for several years and result in large regional concentrations of wind generation capacity. An increasing amount of this wind energy is expected to come from offshore wind plants, especially in Europe. Because wind generation is an intermittent resource, and can not be dispatched, wind energy will affect the operation of th...

2007-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

thebuildingofwindfarms with turbines manufacturedtender for a 100 MW wind farm located in Huilai,wind turbines in its wind farm projects. Policy

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

222

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

223

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

224

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

225

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

226

5-Megawatt solar-thermal test facility: facility construction-cost analysis  

SciTech Connect

The appropriation analysis, cash flow analysis, monthly cash flow analysis and construction cost estimate are tabulated for the 1 MW And 5 MW test facilities based upon limited initial appropriations, including work sheets for the construction cost estimates. (LEW)

1975-12-08T23:59:59.000Z

227

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network (OSTI)

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia with juvenile bypass systems to keep the smolts out of the turbines. But given the gravity of the [salmon 1956 12 MW Chief Joseph Columbia, WA 1958 2,458 MW Cougar McKenzie, OR 1963 25 MW Detroit Santiam

228

EA-1955: Campbell County Wind Project, Pollock, South Dakota  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Westerns existing transmission line at that location.

229

NREL: Wind Research - NREL Analysis Enables BOEM to Hold Its First  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Enables BOEM to Hold Its First Commercial Offshore Lease Sale Analysis Enables BOEM to Hold Its First Commercial Offshore Lease Sale in the United States December 2, 2013 Photo showing three 5-megawatt wind turbines installed above the water at the Alpha Ventus Offshore Wind Farm in Germany. A boat is moving forward to the left of the turbines. REpower 5-megawatt wind turbines at the Alpha Ventus Offshore Wind Farm in Germany demonstrate the possibilities for offshore wind on a grand scale-and now new offshore wind opportunities are coming to the United States. Photo by Gary Norton, NREL 27363 When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEAs) into auctionable leasing areas, the agency turned to the National Renewable Energy Laboratory (NREL). Under an

230

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

231

Analysis of Wind Power and Load Data at Multiple Time Scales  

E-Print Network (OSTI)

by a set of integrated wind farms increases, the behavior ofto the spatial distribution of wind farms and the total MW.line dates for the various wind farms were not provided, so

Coughlin, Katie

2011-01-01T23:59:59.000Z

232

Community wind power ownership schemes in Europe and their relevance to the United States  

E-Print Network (OSTI)

an overview of commercial wind farm financing in the Unitedthe United States, where wind farms tend to be quite largeworlds largest offshore wind farm to date a 40 MW project

Bolinger, Mark

2001-01-01T23:59:59.000Z

233

A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS  

E-Print Network (OSTI)

conventional power and wind power make transmission more300 MW or more of new wind power and focus on the deeperthe trend toward wind powers inclusion in regional

Mills, Andrew; Wiser, Ryan; Porter, Kevin

2007-01-01T23:59:59.000Z

234

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

235

Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

2012-01-03T23:59:59.000Z

236

Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems  

Science Conference Proceedings (OSTI)

This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm{sup 2}. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year). DISCLAIMER

Scott Swartz; Lora Thrun; Gene Arkenberg; Kellie Chenault

2011-09-30T23:59:59.000Z

237

Wind Energy Forecasting Technology Update: 2006  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation.

2006-12-05T23:59:59.000Z

238

Wind Energy Forecasting Technology Update: 2005  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation. The project objective is to summarize the results o...

2006-03-31T23:59:59.000Z

239

ELECTRIC VEHICLE BASED BATTERY STORAGES FOR LARGE SCALE WIND POWER INTEGRATION  

E-Print Network (OSTI)

Coherent Energy and Environment System Analysis CHP Combined Heat and Power CPP Condensing Power Plant DPL system and the thermal based power systems of Europe through Germany. The Western part of Denmark includes 6500MW of wind power plants (4000MW from distributed onshore wind farms and 2500MW from offshore

Pillai, Jayakrishnan Radhakrishna

240

KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP  

SciTech Connect

The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, the Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.

HAMMARLUND, RAY

2010-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fourth Annual Progress Report on the Electrofluid Dynamic Wind Generator: Final Report for the Period 1 April 1979 - 31 August 1980  

SciTech Connect

Conventional wind energy systems are limited in wind turbine diameter by allowable rotor stresses at power levels of several megawatts. In contrast, the Electrofluid Dynamic (EFD) wind driven generator has no fundamental limits on cross sectional area. It is a direct energy conversion device which employs unipolar charged particles transported by the wind against a retarding voltage gradient to a high potential. As no moving parts are exposed to the wind, extremely large power units may be feasible.

Minardi, J. E.; Lawson, M. O.; Wattendorf, F. L.

1981-08-01T23:59:59.000Z

242

Wind Course in Utah Takes Off | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Course in Utah Takes Off Wind Course in Utah Takes Off Wind Course in Utah Takes Off April 15, 2010 - 6:19pm Addthis Two women inspired by a school assignment that blossomed into a 200-megawatt wind farm in Milford, Utah, have developed a training program to help people launch wind projects. After hearing how shop teacher Andy Swapp and his eighth-grade students attracted the attention of a wind energy company with the wind potential data they collected from Andy's farm, Sara Baldwin and Bonnie Christiansen started to wonder. If everyday people like Andy and his students can facilitate the development of a wind park with 97 turbines, maybe other people in Utah could too. "We realized that we have great folks working on wind energy," says Sara, a senior policy and regulatory associate of Utah Clean Energy, a

243

NREL: News Feature - NREL Thinks Big at Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Thinks Big at Wind Technology Center Thinks Big at Wind Technology Center March 22, 2012 An aerial photograph of the National Wind Technology Center site shows three large wind turbines with other smaller wind turbines in the background. Mountains are in the background of the photo behind the site. Enlarge image The most noticeable change at the NWTC in recent years is the addition of multi-megawatt wind turbines used for a wide variety of R&D activities in collaboration with industry partners. Credit: Dennis Schroeder The Front Range environment at the National Wind Technology Center (NWTC) is harsh. The winds - the very reason the NWTC is there - have little mercy. The frigid cold of winter gives way to the baking sun of summer. Yet in the midst of this difficult landscape, the future of wind energy grows

244

Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota  

SciTech Connect

The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

N /A

2003-04-15T23:59:59.000Z

245

Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota  

SciTech Connect

The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

N /A

2003-04-15T23:59:59.000Z

246

Field Measurements of Wind Turbine Wakes with Lidars  

Science Conference Proceedings (OSTI)

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, ...

Giacomo Valerio Iungo; Yu-Ting Wu; Fernando Port-Agel

2013-02-01T23:59:59.000Z

247

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

248

SLIDESHOW: America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Wind Testing Facilities America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-22 12:06 Wind Technology Testing Center - Boston

249

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

Wind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany IndiaWind Generation as % of Electricity Consumption Austria Germany Denmark Australia Canada Norway Indiaand India (BTM Consult, 2008). With major development now occurring on several continents, wind

Bolinger, Mark A

2009-01-01T23:59:59.000Z

250

Alaskan Cooperative Wins Wind Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaskan Cooperative Wins Wind Award Alaskan Cooperative Wins Wind Award Alaskan Cooperative Wins Wind Award April 2, 2010 - 2:30pm Addthis A rural Alaskan electric cooperative was honored for breaking new ground with Alaska's first wind megawatt class turbine project. The Kodiak Electric Association received the Wind Cooperative of the Year Award for its Pillar Mountain Wind Project. The award, sponsored by the Energy Department and the National Rural Electric Cooperative Association, recognizes KEA for leadership in advancing wind power. Boosters of Pillar Mountain see the project as the first step toward wind power at other Alaskan utilities, freeing them from the state's dependence on diesel power generation. The association is on Kodiak Island and serves just less than 6,000 electric meters on the island of about 12,000 people. This puts Kodiak well

251

National Wind Technology Center (Fact Sheet)  

SciTech Connect

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

2011-12-01T23:59:59.000Z

252

National Wind Technology Center (Fact Sheet)  

DOE Green Energy (OSTI)

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

Not Available

2011-12-01T23:59:59.000Z

253

Searchlight Wind Energy Project FEIS Appendix A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Public Hearing Materials 3: Public Hearing Materials Draft Environmental Impact Statement Public Meetings February 21 - 23, 2012 * An approximately 200 megawatt wind energy facility and associated infrastructure proposed by Searchlight Wind Energy, LLC * Project will produce electricity to power approximately 50,000 homes. * An interconnection switching station proposed by Western Area Power Administration 2 3 The proposed project area is adjacent to Searchlight, approximately 60 miles southeast of Las Vegas in Clark County, Nevada Right-of-way application area (shown in red) is the same as the area of mineral segregation at approximately 18,000 acres If approved, the permanent

254

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

255

Evaluating GHGs in the Seattle City Light IRP  

E-Print Network (OSTI)

Megawatts - Solar PV - Wind 2 - Wind - Waste Wood Biomass - Geothermal - Hydro Efficiency - Landfill GasMegawatts - RECs (aMW) - Solar PV - Wind - Waste Wood Biomass - Geothermal - Hydro Efficiency - Landfill Gas1 Evaluating GHGs in the Seattle City Light IRP Greenhouse Gas & the Regional Power System

256

Management of the ten-megawatt solar-thermal central-receiver pilot-plant project  

DOE Green Energy (OSTI)

This report deals with inspection (between April and May 1979) of the Ten-Megawatt Solar-Thermal Central-Receiver Pilot-Plant Project being constructed in Barstow, California by the Department of Energy (DOE) and a utility consortium. At the time of inspection the project was behind schedule and over its projected cost. The project was subsequently rescheduled for initial operation by June 1982 at an estimated cost of $139.5 million. Recommendations are included relative to: better utilization of DOE resources; modified date for initial operation; and initiation of independent management audits. Comments to the draft report are appended. (PSB)

Not Available

1980-06-20T23:59:59.000Z

257

New England Wind Forum: Historic Wind Development in New England:  

Wind Powering America (EERE)

Transition to Modern Wind Turbines Transition to Modern Wind Turbines Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. PIX05593. Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. Green Mountain Power also installed New England's seventh wind farm, with eleven 550-kW turbines manufactured by Zond Corporation (now owned by GE Wind), in Searsburg, VT, in 1996. Although installation was completed late in 1996, the turbines produced no power during their first winter due to mechanical failures with blade bolts and gearboxes. After mud season in 1997, all gearboxes were replaced, and the Searsburg wind farm went on line in June 1997. It is a local attraction that has received a significant amount of positive attention from visitors and the media. Green Mountain Power reports that the wind farm continues to perform reasonably well, with availability in the 85% to 95% range.

258

Evaluation of Wind Shear Patterns at Midwest Wind Energy Facilities: Preprint  

DOE Green Energy (OSTI)

The U.S. Department of Energy-Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP) has included several wind energy facilities in the Midwestern United States. At several of these projects, a strong diurnal shear pattern has been observed. During the day, low and sometimes negative shear has been measured. During night hours, very high positive shear is frequently observed. These high nighttime shear values are of concern due to the potential for high stresses across the rotor. The resulting loads on turbine components could result in failures. Conversely, the effects of high nighttime wind shear could benefit wind generated energy production in the Midwest by providing a source of greater hub-height wind speeds, particularly for multi-megawatt turbines that utilize tall towers. This paper presents an overview of the observed wind shear at each of the Midwest TVP projects, focusing on diurnal patterns and the frequency of very high nighttime shear at the sites. Turbine fault incidence is examined to determine the presence or absence of a correlation to periods of high shear. Implications of shear-related failures are discussed for other Midwest projects that use megawatt-scale turbines. In addition, this paper discusses the importance of accurate shear estimates for project development.

Smith, K.; Randall, G.; Malcolm, D.; Kelley, N.; Smith, B.

2002-05-01T23:59:59.000Z

259

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

260

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

Wind Power Rankings: The Top 20 States Incremental Capacity (2007, MW) Texas Colorado Illinois Oregon Minnesota Washington Iowa North Dakota Oklahoma

Bolinger, Mark A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Arkansas Preparing for Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Preparing for Wind Power Arkansas Preparing for Wind Power Arkansas Preparing for Wind Power April 15, 2010 - 5:25pm Addthis Joshua DeLung Renowned science fiction author Isaac Asimov once said, "No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be." In Arkansas, state energy leaders are taking that advice and gathering the best possible data by which future developers can make decisions about the potential of wind energy in the state. While there are zero megawatts of wind power currently installed in Arkansas, gathering such data is crucial in showcasing the state's abilities to harvest wind. "Because no publicly available wind data are available at commercial hub heights in Arkansas ... you can't really have an informed debate

262

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

263

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine performance as well as detailed turbine- turbine and turbine-atmosphere interactions. Scientists

264

Microsoft Word - G0418 Mariah Wind CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kevlyn Mathews Kevlyn Mathews Project Manager - TPCV-TPP-4 Proposed Action: Mariah Wind, LLC Small Generator Integration Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 Electronic equipment Location: Boardman, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to integrate Mariah Wind, LLC's 20 megawatt wind project into BPA's balancing authority in response to Mariah Wind LLC's small generator interconnection request. The proposed point of interconnection is at Columbia Basin Electric Cooperative's (CBEC) 69-kilovolt (kV) Sand Hollow Tap line, which is connected to BPA's Boardman-Ione 69-kV line. Metering equipment and telemetry gear will be provided by BPA and will be installed at the applicant's collector substation and at BPA's

265

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

266

Wind Development on the Rosebud  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rosebud Sioux Rosebud Sioux Indian Reservation Wind Development on the Rosebud Akicita Cikala 750 Kw turbine Owl Feather War Bonnet Wind Farm, 30Mw North Antelope Highlands Wind Farm, 190Mw Met towers installed in 2003 Met tower installed in 2001 Met tower installed in 1999 Met towers installed in 2009 Akicita Cikala Turbine Neg Micon 750kw Commissioned March 2003 Owl Feather War Bonnet Wind Farm 2003 Dept. of Energy Grant DOE Funding $448,551.00 DISGEN Cost share/in-kind $78,750.00 RST/TUC Cost share/in-kind $27,272.00 Participants in Development RST Resource Development Office, Ken Haukaas, Coordinator RST Tribal Utilities Commission, Tony Rogers, Director RST Natural Resource Office, Stephanie Middlebrooks, Wildlife Biologist Distribute Generation Inc., Dale Osborn, President, Belvin Pete, Project

267

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

E-Print Network (OSTI)

States, where a single wind farm might stretch on for milesalready home to several large wind farms states are simplybased 100 MW Trimont wind farm as the successful bidder;

Bolinger, Mark

2004-01-01T23:59:59.000Z

268

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

for large, multi-MW wind farms where dispersed geographicProject The Michigan Farm Wind Pumping Project The MichiganProject The Minnesota Farm Wind Electricity Project The New

Kay, J.

2009-01-01T23:59:59.000Z

269

A Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector  

E-Print Network (OSTI)

A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the '80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.

L. Calabretta; M. Maggiore; L. A. C. Piazza; D. Rifuggiato; A. Calanna

2010-10-07T23:59:59.000Z

270

Characterizing the Effects of High Wind Penetration on a Small Isolated Grid in Arctic Alaska  

DOE Green Energy (OSTI)

This paper examines the operating characteristics of the wind-diesel system in Kotzebue, Alaska, operated by Kotzebue Electric Association (KEA). KEA began incorporating wind power into its 100% diesel generating system in 1997 with three 66 kW wind turbines. In 1999, KEA added another seven 66 kW turbines, resulting in the current wind capacity of 660 kW. KEA is in the process of expanding its wind project again and ultimately expects to operate 2-3 MW of wind capacity. With a peak load of approximately 4 MW and a minimum load of approximately 1.6 MW, the wind penetration is significant. KEA is currently experiencing greater than 35% wind penetration, sometimes for several consecutive hours. This paper discusses the observed wind penetration at KEA and evaluates the effects of wind penetration on power quality on the KEA grid.

Randall, G; Vilhauer, R. (Global Energy Concepts, LLC); Thompson, C. (Thompson Engineering Company)

2001-07-18T23:59:59.000Z

271

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network (OSTI)

capacity of 33.09 MW distributed on 49 Gamesa G47-660 wind turbines and one Lagerwey LW750 turbine. The RIX (digital terrain maps with elevation and roughness, wind farm layout, wind turbine power and thrust curves of the Baltic Sea. The wind farm consists of 2 Nordtank NTK500/41 turbines with a total rated capacity of 1.0 MW

Paris-Sud XI, Université de

272

PCFB Repowering Project 80 MW plant description  

Science Conference Proceedings (OSTI)

This report documents the design of a 80 MW Pressurized Circulating Fluidized Bed (PCFB) boiler for the repowering of Unit 1 at the Des Moines Energy Center. Objective is to demonstrate that PCFB combined-cycle technology is cost effective and environmentally superior compared to traditional pulverized coal burning facilities.

Not Available

1994-05-01T23:59:59.000Z

273

Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

2012-01-01T23:59:59.000Z

274

AN 80 MEGAWATT AQUEOUS HOMOGENEOUS BURNER REACTOR. Reactor Design and Feasibility Problem  

SciTech Connect

An 80 Mw aqueous homogeneous burner reactor suitable for producing 20 Mw of electricity at a remote location is described. The reactor fuel consists of a light water uranyl sulfate solution which acts as its own moderator and coolant. The uranium is highly enriched (93% U/sup 235/). The primary considerstions for the design were simplicity and reliability of the components, automatic demand control and safe for any load change, full xenon override not required, possibility of construction within the immediate future, and economic operation not the cortrolling factor. Reasonably complete studies are presented for the reactor physics, safety, stability, chemistry, hent transfer, and operation of the system. (auth)

Chapman, R.H.; Collins, H.L.; Dollard, W.J.; Fieno, D.; Hernandez- Fragoso, J.; Miller, J.W.; von Hollen, H.; Wheeler, C.V.

1957-08-01T23:59:59.000Z

275

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

276

Winds Shift for Wisconsin Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company Winds Shift for Wisconsin Company July 14, 2010 - 3:53pm Addthis Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Wind turbine generator nacelle enclosures and nosecones manufactured by Wausaukee Composites, Inc., at a wind farm in northern Illinois | Photo courtesy of Wausaukee Composites. Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Wausaukee Composites to reopen wind turbine parts facility in 2010. 150 jobs expected to be created. Plant will make nacelles for 1.5 MW to 3 MW turbines. A wind turbine parts facility in Cuba City, Wis., is getting another chance

277

2009 WIND TURBINE IMPACT STUDY APPRAISAL GROUP ONE 9/9/2009 WIND TURBINE IMPACT STUDY  

E-Print Network (OSTI)

This is a study of the impact that wind turbines have on residential property value. The wind turbines that are the focus of this study are the larger turbines being approximately 389ft tall and producing 1.0+ megawatts each, similar to the one pictured to the right. The study has been broken into three component parts, each looking at the value impact of the wind turbines from a different perspective. The three parts are: (1) a literature study, which reviews and summarizes what has been published on this matter found in the general media; (2) an opinion survey, which was given to area Realtors to learn their opinions on the impact of wind turbines in

Fond Du; Lac Counties Wisconsin

2009-01-01T23:59:59.000Z

278

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

279

Application of Nd-Fe-B Magnets to the Megawatt Scale Generator for ...  

Science Conference Proceedings (OSTI)

Various technologies for wind power generators such as interior permanent magnet (IPM) motors and surface permanent magnet (SPM) motors have been...

280

Abstract--The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce  

E-Print Network (OSTI)

the best HVAC transmission line for long distance applications. Compared to HVDC systems, the benefits

Bak-Jensen, Birgitte

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

DOE Green Energy (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

282

Wind Farm Feasibility Study  

Science Conference Proceedings (OSTI)

Saint Francis University has assessed the Swallow Farm property located in Shade Township, Somerset County, Pennsylvania as a potential wind power development site. Saint Francis worked with McLean Energy Partners to have a 50-meter meteorological tower installed on the property in April 2004 and continues to conduct a meteorological assessment of the site. Results suggest a mean average wind speed at 80 meters of 17 mph with a net capacity factor of 31 - 33%. Approximate electricity generation capacity of the project is 10 megawatts. Also, the University used matching funds provided by the federal government to contract with ABR, Inc. to conduct radar studies of nocturnal migration of birds and bats during the migrations seasons in the Spring and Fall of 2005 with a mean nocturnal flight altitude of 402 meters with less than 5% of targets at altitudes of less than 125 meters. The mean nocturnal passage rate was 166 targets/km/h in the fall and 145 targets/km/h in the spring. Lastly, University faculty and students conducted a nesting bird study May - July 2006. Seventy-three (73) species of birds were observed with 65 determined to be breeding or potentially breeding species; this figure represents approximately 30% of the 214 breeding bird species in Pennsylvania. No officially protected avian species were determined to be nesting at Swallow Farm.

Richard Curry; Erik Foley; DOE Project Officer - Keith Bennett

2007-07-11T23:59:59.000Z

283

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

284

Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations  

E-Print Network (OSTI)

Power Forecasting in Five U.S. Electricity Markets MISO NYISO PJM ERCOT CAISO Peak load 109,157 MW (7 ........................................................................................... 18 4 WIND POWER FORECASTING AND ELECTRICITY MARKET OPERATIONS............................................................ 18 4-1 Market Operation and Wind Power Forecasting in Five U.S. Electricity Markets .......... 21 #12

Kemner, Ken

285

Raft River 5MW Geothermal Pilot Plant  

SciTech Connect

Elements of design of the 5 MW(e) binary cycle plant to be built in the Raft River Valley in Idaho are discussed. Advantages of the dual boiling cycle for use with moderate temperature (250 to 350/sup 0/F) resources are discussed. A breakdown of the heat loads and power requirements is presented. Various components, including pumps, heat exchangers, cooling tower, turbine-generators, and production and injection systems, are described. (JGB)

Whitbeck, J.F.; Piscitella, R.R.

1978-01-01T23:59:59.000Z

286

Texas Wind Energy Forecasting System Development and Testing: Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting systems are expected to support system operation in cases where wind generation contributes more than a few percent of total generating capacity. This report presents final results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2004-09-30T23:59:59.000Z

287

NREL: Wind Research - NREL Study Finds Barotrauma Not Guilty  

NLE Websites -- All DOE Office Websites (Extended Search)

International The contour plot shows the pressure field around a 1.5-MW wind turbine blade profile and the path lines show possible bat flight paths. Enlarge image...

288

Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

Bir, G.; Jonkman, J.

2007-08-01T23:59:59.000Z

289

ESS 2012 Peer Review - Wind Firming EnergyFarm - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Firming EnergyFarm DOE Peer Review September 26, 2012 2 Primus Power is on track to deliver EnergyPods TM to California's Modesto Irrigation District starting 2014 EnergyPod TM 250 kW  1 MWh PowerBox Supports 8 EnergyPods TM 3 How will storage integrate into Modesto's system? Modesto's daily load ? Storage Hydro Coal & Gas Wind Solar 4 Modesto's 25 MW McHenry solar farm 5 Modesto will use EnergyPods to integrate renewable wind and solar energy 25 MW McHenry Solar Farm 6 Modesto will use EnergyPods to integrate renewable wind and solar energy 25 MW McHenry Solar Farm 8.7 MW up in 15 min 15 MW down in 15 min 4-Aug-12 7 Modesto will use EnergyPods to integrate renewable wind and

290

Wind Speed Technology Phase II: Semisubmersible Platform and Anchor Foundation Systems for Wind Turbine Support; Concept Marine Associates, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Concept Marine Associates, Inc. to evaluate and optimize a semisubmersible platform and anchor foundation system that can support a 5-MW wind turbine.

2006-03-01T23:59:59.000Z

291

Mid-Size Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Mid-Size Wind Turbines Jump to: navigation, search A Vergnet GEV MP C 275-kW turbine at the Sandywoods Community, Rhode island. Photo from Stefan Dominioni/Vergnet S.A., NREL 26490. The U.S. Department of Energy defines mid-size wind turbines as 101 kilowatts to 1 megawatt.[1] Resources Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A. (2008). An Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind. National Renewable Energy Laboratory. Accessed September 27, 2013. National Renewable Energy Laboratory. Midsize Wind Turbine Research. Accessed September 27, 2013. This webpage discusses efforts to develop and commercialize mid-size wind turbines in the United States. References

292

Wind Energy Potential in SE New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

click to return to the Renewable Energy page click to return to the Renewable Energy page Return to Renewable Energy Page Wind Energy in Southeast New Mexico Several Ongoing and New Wind Power Projects are Contributing to Making Renewable Energy Sources an Important Economic and Environmental Mainstay of the Region As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW station.

293

LIDAR Wind Speed Measurements of Evolving Wind Fields  

Science Conference Proceedings (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

294

Duke Energy Notrees Wind Storage Demonstration Project: 2013 Interim Report  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple value-added utility applications. ...

2013-12-19T23:59:59.000Z

295

Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW  

DOE Green Energy (OSTI)

This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

Not Available

1979-06-01T23:59:59.000Z

296

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

297

Robust Controller Design for Simultaneous Control of Throttle Pressure and Megawatt Output in a Power Plant Unit  

Science Conference Proceedings (OSTI)

Recently proposed (( and (-synthesis controller design methodologies permit the design of high-performance control systems for plants that are difficult to model accurately. The work summarized in this report assesses the benefits of the (( and (-synthesis controllers for the simultaneous control of throttle pressure and megawatt output in a power plant unit, while also serving to clarify the (( and (-synthesis design methods by an example.

1999-02-25T23:59:59.000Z

298

California Regional Wind Energy Forecasting System Development, Vol. 3  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasting ...

2006-11-15T23:59:59.000Z

299

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

300

Dynamometer Testing of Samsung 2.5MW Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-08-311  

DOE Green Energy (OSTI)

SHI's prototype 2.5 MW wind turbine drivetrain was tested at the NWTC 2.5 MW dynamometer test facility over the course of 4 months between December 2009 and March 2010. This successful testing campaign allowed SHI to validate performance, safety, control tuning, and reliability in a controlled environment before moving to full-scale testing and subsequent introduction of a commercial product into the American market.

Wallen, R.

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Power for America: Rural Electric Utilities Harvest a New Crop  

Wind Powering America (EERE)

Independent Power Independent Power Producer Financing Co-op Financing Cost of Energy (cents /kWh) 8.0 7.0 6.0 5.0 4.0 3.0 Installed Wind Turbine Capacity 2 MW 10 MW 50 MW 50 MW Without Federal incentives (current $) With Federal incentives (current $) WIND ECONOMICS AT A GLANCE Wind power is one of mankind's oldest energy sources. In 1700, the most powerful machines in Europe were Dutch windmills. During the 1930s, half a million windmills pumped water on the Great Plains. Today's wind turbine is a far cry from the old water pumpers. By using state-of-the-art engineering, wind turbine manufacturers have produced sleek, highly efficient machines that produce inexpensive electricity, and lots of it. Depending on their size and location, wind farms can produce electricity for 4-6 cents per kilowatt-hour (kWh).

302

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative Wind Energy Co Ltd) Place Shenyang, Liaoning Province, China Sector Wind energy Product A company engaged in 1.5MW wind turbine manufacturing. It is also known as China Creative Wind Energy Co Ltd. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Microsoft PowerPoint - anderson_epri.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turbine compensation current limiting reactors. 4. Megawatt output limited to 15MW on single ended feed. 24 hrs Condon Wind 101506 VQ sensitivity from FSU model -5 0 5 10 15...

304

NREL: Energy Analysis - Eric Lantz  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana. 2 pp.; NREL Report No. FS-500-42786; DOEGO-102008-2562. Lantz, E.;...

305

Factors driving wind power development in the United States  

SciTech Connect

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-05-15T23:59:59.000Z

306

Big Spring Wind Power Project Third- Through Fifth-Year Operating Experience: 2001-2004: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-, fourth-, and fifth-year operating experience at the 34-MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-m (213-ft) towers and four Vestas V66 wind turbines installed on 80-m (262-ft) towers. Lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2004-10-25T23:59:59.000Z

307

Big Spring Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine Verificatio n Program  

Science Conference Proceedings (OSTI)

This report describes second-year operating experience at the 34 MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-meter (213-foot) towers and 4 Vestas V66 wind turbines installed on 80-meter (262-foot) towers. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2001-12-06T23:59:59.000Z

308

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

309

EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84: Invenergy Interconnection for the Wray Wind Energy 84: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO Summary DOE's Western Area Power Administration prepared this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western's existing Wray Substation in Yuma County, Colorado. Public Comment Opportunities None available at this time. Documents Available for Download December 27, 2012 EA-1884: Finding of No Significant Impact Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO December 27, 2012 EA-1884: Final Environmental Assessment Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray,

310

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

311

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

312

Green Mountain Power Wind Power Project Third-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Veri fication Program  

Science Conference Proceedings (OSTI)

The 6.05-MW Green Mountain Power (GMP) wind power project is located on top of a wooded ridge in the Green Mountains of southern Vermont near the town of Searsburg. This report describes the third-year operating experience at the GMP wind project. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2000-12-07T23:59:59.000Z

313

A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION  

SciTech Connect

This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

W.A. REASS; J.D. DOSS; R.F. GRIBBLE

2001-06-01T23:59:59.000Z

314

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

315

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

316

Jilin Taihe Wind Power Limited | Open Energy Information  

Open Energy Info (EERE)

Taihe Wind Power Limited Taihe Wind Power Limited Jump to: navigation, search Name Jilin Taihe Wind Power Limited Place Zhenlai, Jilin Province, China Sector Wind energy Product Top Well and Tianjin DH entered into a contract to establish a joint venture in Zhenlai, in Chinaâ€(tm)s Jilin province to develop a 50MW wind farm in the area under the name Jilin Taihe Wind Power Limited. References Jilin Taihe Wind Power Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Taihe Wind Power Limited is a company located in Zhenlai, Jilin Province, China . References ↑ "Jilin Taihe Wind Power Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Taihe_Wind_Power_Limited&oldid=347531

317

AT GUANTANAMO BAY: A HYBRID WIND-DIESEL SYSTEM  

E-Print Network (OSTI)

Laboratory and are actively developing what will be the world's largest wind-diesel hybrid electric plant. The pending installation of four 950-kW wind turbines to supplement the 22.8 MW diesel electricity plant diesel fuel usage in the base, while not adversely affecting the power grid or the diesels. The reduced

Massachusetts at Amherst, University of

318

California Regional Wind Energy Forecasting System Development, Volume 2:  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources.

2006-11-15T23:59:59.000Z

319

The coal-wind connection  

Science Conference Proceedings (OSTI)

The USA now has more than 10,000 MW of wind capacity and more wind farms are expected to be built. However transmissions constraints are great, especially in the Northwest and upper Midwest, where abundant wind resources span sparsely populated regions. These areas also hold major deposits of coal. Partnerships are being developed to share transmission to accommodate both new wind and new coal-fired capacity. Wyoming may well be the epicentre of the issue. Another idea, in wind-prone Texas, is to further integrate wind with baseload fossil power resources by creation of competitive renewable energy zones (CREZs). New transmission corridors will be set up linking the renewable energy zones to power markets in ERCOT, the Electric Reliability Council of Texas. There are problems of co-developing coal and wind capacity with common transmission. If coal gasification technology emerges on a commercial scale there would be a good opportunity for integrated gasification combined cycle which can cycle to firm up variable wind generation. Several coal companies in Wyoming are considering gasifying coal and putting it into the pipeline. 2 photos.

Blankinship, S.

2007-01-15T23:59:59.000Z

320

Novel sensorless generator control and grid fault ride-through strategies for variable-speed wind turbines and implementation on a new real-time simulation platform.  

E-Print Network (OSTI)

??The usage of MW-size variable-speed wind turbines as sources of energy has increased significantly during the last decade. Advantages over fixed-speed wind turbines include more (more)

Yang, Sheng

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:Technology Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Technology Nameplate Capacity (MW) Property Type String Pages using the property "Technology Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 100kW built and tested with 45kW 200kW and 1 4MW designs in development + MHK Technologies/AirWEC + 5kW + MHK Technologies/Aquantis + Proprietary + MHK Technologies/Atlantis AN 150 + 0 15 + MHK Technologies/Atlantis AR 1000 + 1 + MHK Technologies/Atlantis AS 400 + 0 4 + MHK Technologies/Bluetec + 1 + MHK Technologies/Current Power + from 10 kW and up + MHK Technologies/CurrentStar + 1 + MHK Technologies/Deep Green + 500 kW + MHK Technologies/Deep water capable hydrokinetic turbine + 30MW +

322

Map of Wind Farms/Data | Open Energy Information  

Open Energy Info (EERE)

Farms/Data Farms/Data < Map of Wind Farms Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus 3-D Metals Small Scale Wind Valley City OH 0.1 MW100 kW 100,000 W 100,000,000 mW 1.0e-4 GW 1.0e-7 TW 1 2009 Northern Power Systems In Service AB Tehachapi Wind Farm Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA 6.97 MW6,970 kW 6,970,000 W 6,970,000,000 mW 0.00697 GW 6.97e-6 TW 31 1992 Vestas In Service AFCEE MMR Turbines Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation - net metered Camp Edwards Sandwich MA 3 MW3,000 kW

323

Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System  

DOE Green Energy (OSTI)

This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

BALL,GREG J.; NORRIS,BENJAMIN L.

1999-10-01T23:59:59.000Z

324

Economic Development Benefits from Wind Energy in Nebraska: A Report for the Nebraska Energy Office (Revised)  

DOE Green Energy (OSTI)

This report focuses on the economic development impacts estimated from building and operating 7,800 MW of new wind power in Nebraska. This level of development is on the scale envisioned in the Department of Energy (DOE) report 20% Wind Energy by 2030. A practical first step to building 7,800 of wind is completing 1,000 MW. We also include the estimated economic impacts to Nebraska from building 1,000 MW of wind power. Our primary analysis indicates that the development and construction of approximately 7,800 MW of wind energy in Nebraska by 2030 will support 20,600 to 36,500 annual full-time equivalents (AFTE). In addition, operating the full 7,800 MW of wind energy could support roughly 2,000 to 4,000 full-time workers throughout the operating life of the wind facilities (LFTE). Nebraska's economy is estimated to see an average annual boost in economic activity ranging from $140 million to $260 million solely from construction and development related activities between 2011 and 2030. An additional boost of $250 - $442 million annually is estimated from operating 7,800 MW of wind capacity.

Lantz, E.

2009-06-01T23:59:59.000Z

325

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network (OSTI)

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective wind year is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the wind year in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rckversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the Scientific Measurement and Evaluation Programme (WMEP), which accompanies the 250 MW Wind project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

326

New England Wind Forum: A Wind Powering America Project; Volume 1, Issue 2 -- December 2006  

SciTech Connect

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 2 features an interview with John MacLeod of Hull Municipal Light Plant. Hull 2, a 1.8-MW Vestas turbine installed in the Town of Hull in Massachusetts in 2006, is the largest wind turbine in New England and the first U.S. installation on a capped landfill.

Grace, R. C.; Gifford, J.

2006-12-01T23:59:59.000Z

327

New England Wind Forum: A Wind Powering America Project; Volume 1, Issue 2 -- December 2006  

DOE Green Energy (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 2 features an interview with John MacLeod of Hull Municipal Light Plant. Hull 2, a 1.8-MW Vestas turbine installed in the Town of Hull in Massachusetts in 2006, is the largest wind turbine in New England and the first U.S. installation on a capped landfill.

Grace, R. C.; Gifford, J.

2006-12-01T23:59:59.000Z

328

A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.  

E-Print Network (OSTI)

projects are supplying energy at costs of about 7.5 cents/ kWh. There are plans to install 40 MW of wind enable the harvesting of wind energy resources from areas far from shore and close to shore in regions on these assumptions, the Department of Energy estimates that wind power could provide 33,000 GWh of energy per year

Massachusetts at Amherst, University of

329

Caithness Shephards Flat: The Largest Wind Farm Project in the World |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Caithness Shephards Flat: The Largest Wind Farm Project in the Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes. It will directly avoid 1,215,991 tons of carbon dioxide per year, roughly equivalent to the annual greenhouse gas emissions from 212,141 passenger vehicles. "One step at a time" This is a mantra that has been used in countless situations - trying to express the scale of a great challenge that may lie ahead, but emphasizing

330

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

331

Photos of One of the World's Largest Wind Farms | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms Photos of One of the World's Largest Wind Farms February 6, 2013 - 4:20pm Addthis 1 of 5 Image: Caithness Energy 2 of 5 Image: Caithness Energy 3 of 5 Image: Caithness Energy 4 of 5 Image: Caithness Energy 5 of 5 Image: Caithness Energy Arlington, OR Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Panoramic View See a landscape shot of the Shepherds Flat Wind Farm here America's clean energy industry continues to build momentum as Deputy Energy Secretary Daniel Poneman heads to Arlington, Oregon, to visit Shepherds Flat -- the world's largest financed wind farm. Located about 135 miles from Portland, Shepherds Flat generates up to 845 megawatts of wind power everyday -- enough clean electricity to power

332

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Haxtun Wind Energy Project, Logan and Phillips County, 12: Haxtun Wind Energy Project, Logan and Phillips County, Colorado EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado Summary This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun. Public Comment Opportunities No public comment opportunities available at this time.

333

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

334

EA-1909: South Table Wind Project, Kimball County, NE | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09: South Table Wind Project, Kimball County, NE 09: South Table Wind Project, Kimball County, NE EA-1909: South Table Wind Project, Kimball County, NE Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western's existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska. Public Comment Opportunities None available at this time. Documents Available for Download August 28, 2012 EA-1909: Finding of No Significant Impact South Table Wind Project, Kimball County, NE July 16, 2012 EA-1909: Final Environmental Assessment South Table Wind Project, Kimball County, NE February 29, 2012 EA-1909: Draft Environmental Assessment

335

A Review of NSPI's Solicitation for Renewable Energy  

E-Print Network (OSTI)

A Review of NSPI's Solicitation for Renewable Energy 100KW to 2 MW on Distribution Larry Hughes1 Solicitation for Renewable Energy ­ 100 kW to 2 MW on Distribution, a call for up to 20 megawatts as being 1.2 percent (the expected generation from NSPI's two wind turbines and the 30 MW windfarm

Hughes, Larry

336

New England Wind Forum: Cost Trends  

Wind Powering America (EERE)

Cost Trends Cost Trends Figure 1: Cost of Energy and Cumulative Domestic Capacity This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. Click on the image to view a larger version. This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. View a larger version of the graph. Overall, the wind industry is experiencing long-term decreases in the cost to produce wind-generated electricity (Figure 1), despite recent short-term increases in upfront equipment costs. Even in the short term, however, the effect of increases in up-front capital costs on the cost of energy from wind power projects has been dampened by improvements in energy capture from the wind and decreases in operating and maintenance costs.

337

Inox Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Inox Wind Ltd Inox Wind Ltd Jump to: navigation, search Name Inox Wind Ltd Place Noida, Uttar Pradesh, India Sector Wind energy Product Uttar Pradesh-based wind power project developer. Inox also holds the right to manufacture and sell AMSC Windtec 2MW wind turbines in India. Coordinates 28.56737°, 77.36779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.56737,"lon":77.36779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

339

Wind Project Permitting | Open Energy Information  

Open Energy Info (EERE)

Project Permitting Project Permitting Jump to: navigation, search Invenergy is the developer of the 129-MW Forward Wind Energy Center project near Fond du Lac, Wisconsin, that came online in 2008. Photo by Ruth Baranowski, NREL 16412 As with other energy facility permitting processes, the goal of the wind project permitting process is to reach decisions that are timely, minimize challenges, and ensure compliance with laws and regulations that provide for necessary environmental protection.[1] Resources National Wind Coordinating Committee. (2002). Permitting of Wind Energy Facilities. Accessed August 28, 2013. This handbook is written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public.

340

Jilin Sanyuan Wind Energy Co | Open Energy Information  

Open Energy Info (EERE)

Sanyuan Wind Energy Co Sanyuan Wind Energy Co Jump to: navigation, search Name Jilin Sanyuan Wind Energy Co. Place Jilin Province, China Sector Wind energy Product A joint-venture established for the development of a 100MW wind farm in Jilin Province totalling USD 97.44 References Jilin Sanyuan Wind Energy Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Sanyuan Wind Energy Co. is a company located in Jilin Province, China . References ↑ "Jilin Sanyuan Wind Energy Co." Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Sanyuan_Wind_Energy_Co&oldid=347528" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

342

Hangtian Longyuan Benxi Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hangtian Longyuan Benxi Wind Power Co Ltd Hangtian Longyuan Benxi Wind Power Co Ltd Jump to: navigation, search Name Hangtian Longyuan (Benxi) Wind Power Co Ltd Place Liaoning Province, China Sector Wind energy Product A joint venture established for a 24.65MW wind farm in Benxi, Liaoning Province. References Hangtian Longyuan (Benxi) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hangtian Longyuan (Benxi) Wind Power Co Ltd is a company located in Liaoning Province, China . References ↑ "[ Hangtian Longyuan (Benxi) Wind Power Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hangtian_Longyuan_Benxi_Wind_Power_Co_Ltd&oldid=346369" Categories: Clean Energy Organizations

343

Highland New Wind Development LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Development LLC Wind Development LLC Jump to: navigation, search Name Highland New Wind Development LLC Place Virginia Sector Wind energy Product Developer of the 39MW Allegheny Mountain wind project in western Virginia. References Highland New Wind Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Highland New Wind Development LLC is a company located in Virginia . References ↑ "Highland New Wind Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Highland_New_Wind_Development_LLC&oldid=346536" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

344

Rock River LLC Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River LLC Wind Farm River LLC Wind Farm Jump to: navigation, search The Rock River LLC Wind Farm is in Carbon County, Wyoming. It consists of 50 turbines and has a total capacity of 50 MW. It is owned by Shell Wind Energy.[1] Based on assertions that the site is near Arlington, its approximate coordinates are 41.5946899°, -106.2083459°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.thefreelibrary.com/Shell+WindEnergy+Acquires+Second+Wind+Farm+in+the+U.S.,+in+an...-a082345438 Retrieved from "http://en.openei.org/w/index.php?title=Rock_River_LLC_Wind_Farm&oldid=132230" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

345

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT  

E-Print Network (OSTI)

INDIAN INSTITUTE TECHNOLOGY BOMBAY 1 MW SOLAR THEMAL POWER PROJECT PIPING MTO FOR 1 MW SOLAR THERMAL POWER PROJECT #12;PIPING MTO 1089-202-108 1 2 1 BE,7.1Thk.,Welded To ANSI B-36.10 12" 165 M

Narayanan, H.

346

Iowa / Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001: U.S. Department of Energ y - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The Wind Turbine Verification Program (TVP) is a collaborative effort of the U.S. Department of Energy (DOE), EPRI, and host utilities to develop, construct, and operate wind power plants. This report describes the first- and second-year operating experience at the 2.25-MW Iowa Distributed Wind Generation Project (IDWGP) in Algona, Iowa, and the 1.5-MW Nebraska Distributed Wind Generation Project (NDWGP) in Springview, Nebraska. The lessons learned in both projects will be valuable to other utilities pla...

2001-12-03T23:59:59.000Z

347

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

348

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

349

Property:Permit/License Buildout (MW) | Open Energy Information  

Open Energy Info (EERE)

Permit/License Buildout (MW) Permit/License Buildout (MW) Jump to: navigation, search Property Name Permit/License Buildout (MW) Property Type String Pages using the property "Permit/License Buildout (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 40 + MHK Projects/Algiers Light Project + 20 + MHK Projects/Anconia Point Project + 15 + MHK Projects/Ashley Point Project + 148 + MHK Projects/Avalon Tidal + 30 + MHK Projects/Avondale Bend Project + 18 + MHK Projects/BW2 Tidal + 3 + MHK Projects/Bar Field Bend + 94 + MHK Projects/Barfield Point + 114 + MHK Projects/Bayou Latenache + 50 + MHK Projects/Bondurant Chute + 152 + MHK Projects/Breeze Point + 198 + MHK Projects/Brilliant Point Project + 56 + MHK Projects/Brough Head Wave Farm + 200 +

350

Impact of Wind Energy on Hourly Load Following Requirements: An Hourly and Seasonal Analysis; Preprint  

Science Conference Proceedings (OSTI)

The impacts of wind energy on the power system grid can be decomposed into several time scales that include regulation, load following, and unit commitment. Techniques for evaluating the impacts on these time scales are still evolving, and as wind energy becomes a larger part of the electricity supply, valuable experience will be gained that will help refine these methods. Studies that estimated the impact of wind in the load following time scale found differing results and costs, ranging from near zero to approximately $2.50/megawatt-hour (MWh). Part of the reason for these differences is the different interpretation of the impacts that would be allocated to this ancillary service. Because of the low correlation between changes in load and wind, long-term analyses of the load following impact of wind may find low impacts. During the daily load cycle, there is a tremendous variability in load following requirements in systems without wind. When significant levels of wind generation are added to the resource mix, relatively small changes in wind output can complicate the task of balancing the system during periods of large load swings. This paper analyzes the load following impacts of wind by segregating these critical time periods of the day and separating the analysis by season. The analysis compares wind generation at geographically dispersed sites to wind generation based primarily at a single site, and for a large penetration of wind (more than 20% wind capacity to peak load).

Krich, A.; Milligan, M.

2005-05-01T23:59:59.000Z

351

Future for Offshore Wind Energy in the United States: Preprint  

DOE Green Energy (OSTI)

Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

Musial, W.; Butterfield, S.

2004-06-01T23:59:59.000Z

352

Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures  

SciTech Connect

We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

2013-11-01T23:59:59.000Z

353

Kotzebue Electric Association Wind Power Project First-Year Operating Experience: 1999-2000: U.S. Department of Energy - EPRI Wind T urbine Verification Program  

Science Conference Proceedings (OSTI)

Although much of western Alaska has abundant wind resources, wind energy technology has not been widely deployed in the state, and utilities rely primarily on diesel fuel for energy generation. Kotzebue Electric Association is pioneering the application of wind energy technology in combination with the existing diesel generation in the remote communities in Northwest Alaska. This report describes the first-year operating experience at the 0.66-MW Kotzebue Electric Association (KEA) wind power project nea...

2000-12-13T23:59:59.000Z

354

Wisconsin Low Wind Speed Turbine Project First- and Second-Year Operating Experience: 1998-2000: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The 1.2 MW Low Wind Speed Turbine Project (LWSTP) -- installed in Glenmore, Wisconsin, in early 1998 -- was the first commercial-scale wind project in Wisconsin. This report describes the first- and second-year operating experience at the LWSTP. The lessons learned in the project will be valuable to other utilities planning similar wind power projects, particularly in cold-weather, moderate wind resource areas.

2000-12-15T23:59:59.000Z

355

Big Spring Wind Power Project First-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Verification P rogram  

Science Conference Proceedings (OSTI)

The 34-MW Big Spring wind power plant is sited on elevated tabletop mesas near Big Spring, Texas. Under a power purchase agreement between the project owner and operator, York Research Corporation (York), and TXU Electric and Gas (TXU), York will supply wind energy to TXU for 15 years. This report describes Big Spring's first-year operating experience. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects, especially those lo...

2000-12-18T23:59:59.000Z

356

Large-Eddy Simulation of Wind-Plant Aerodynamics: Preprint  

DOE Green Energy (OSTI)

In this work, we present results of a large-eddy simulation of the 48 multi-megawatt turbines composing the Lillgrund wind plant. Turbulent inflow wind is created by performing an atmospheric boundary layer precursor simulation and turbines are modeled using a rotating, variable-speed actuator line representation. The motivation for this work is that few others have done wind plant large-eddy simulations with a substantial number of turbines, and the methods for carrying out the simulations are varied. We wish to draw upon the strengths of the existing simulations and our growing atmospheric large-eddy simulation capability to create a sound methodology for performing this type of simulation. We have used the OpenFOAM CFD toolbox to create our solver.

Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G.

2012-01-01T23:59:59.000Z

357

Microsoft Word - EchoPointCommunityWind_CX_2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

James Hall James Hall Project Manager - TPC-TPP-4 Proposed Action: Integration of the Echo Point Community Wind Generation Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 - Electronic equipment Location: Umatilla County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In response to Echo Point Community Wind's (Echo Point's) small generator interconnection request, BPA proposes to integrate Echo Point's 10-megawatt wind generation project into its balancing authority (BA). The proposed point of interconnection is the Buttercreek Substation owned by the Umatilla Electric Cooperative (UEC). In order to integrate the proposed generation, BPA will install bi-directional generation metering at the Echo Point generation site.

358

A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory  

SciTech Connect

Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory`s expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H{sup {minus}} particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R&D issues that need to be resolved before a next-generation spoliation source can be built.

Pynn, R.

1994-07-01T23:59:59.000Z

359

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Price Source: FERC 2006 and 2004 State of the12 projects 691 MW Source: FERC 2006 "State of the Market"the strong competi- Source: FERC 2006 "State of the Market"

2008-01-01T23:59:59.000Z

360

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

commercial operation date (COD). The general trend exhibitedstill. 2007 Wind Power Price (2007 $/MWh) 1998-99 COD 2000-01 COD 2002-03 COD 2004-05 COD 14 projects 624 MW 22

Bolinger, Mark A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint  

SciTech Connect

This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

Jonkman, J. M.; Buhl, M. L., Jr.

2007-06-01T23:59:59.000Z

362

Opportunities For Wind In The APX Green Power MarketTM  

E-Print Network (OSTI)

understand what value consumers place on renewable energy. This information is essential for wind developers than 30 MW) facilities. At this time we have further restricted the resources to those which meet

363

Impact of Wind Integration on Electricity Markets: A Chance-Constrained Nash Cournot  

E-Print Network (OSTI)

programming 1 Introduction Wind generation installation, as a renewable energy source, is growing at the rate of 30% annually, with a global installed capacity of 157,900 (MW) in 2009, and is widely used in Europe, Asia and the United states [1]. In some cases such as Alberta, Canada, interest for over 9000 MW of new

364

Santa Clara 2MW Fuel Cell Demonstration Power Plant: Interim Acceptance Test Report  

Science Conference Proceedings (OSTI)

Power generation testing of the world's largest carbonate fuel cell power system began in Spring 1996. Lessons learned will enable developers to advance the commercialization of megawatt- scale, carbonate fuel cell systems for distributed generation applications.

1997-02-01T23:59:59.000Z

365

Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power April 29, 2011 - 5:14pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs It's a big month for the National Wind Technology Center. Earlier this week, the Department of Energy's National Renewable Energy Laboratory (NREL) commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at the center. As part of a long-term collaboration between NREL and Alstom, engineers from the two institutions will perform a series of analyses and tests to evaluate Alstom's unique drive train configuration technology. After this initial testing is complete, the joint team will continue

366

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Interconnection of the Proposed Hermosa West Wind Farm 8: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY SUMMARY This EIS will evaluate the environmental impacts of interconnecting the proposed 300-megawatt Hermosa West Wind Farm Project, in Albany County, Wyoming, with DOE's Western Area Power Administration's existing Craig-Ault 345-kilovolt transmission line. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 5, 2012 EIS-0438: Draft Environmental Impact Statement Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY January 14, 2010 EIS-0438: Notice of Intent to Prepare an Environmental Impact Statement and Conduct Scoping Meetings

367

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

368

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility August 13, 2013 - 10:54am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally-owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to taking 7,200 cars off the road. The Pantex Plant is the primary site for the assembly, disassembly,

369

EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61: Hyde County Wind Energy Center Project, Hyde and Buffalo 61: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota Summary This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE's Western Area Power Administration's existing Fort Thompson Substation in Buffalo County, South Dakota. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download October 19, 2011 EIS-0461: Notice of Cancellation of the Environmental Impact Statement Hyde County Wind energy Center Project November 30, 2010 EIS-0461: Notice of Intent to Prepare an Environmental Impact Statement and

370

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

371

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2009  

Wind Powering America (EERE)

Campo Band to Develop 160-MW Wind Project Campo Band to Develop 160-MW Wind Project on Tribal Land A slumping casino. A high unemployment rate. Limited economic opportunities. Like most people in the United States, the Campo Band of Mission Indians of the Kumeyaay Nation feels the pain of today's economic difficulties. On June 11, 2009, the 340-member Southern California tribe took an initial step to help ease that pain by signing a Memorandum of Understanding for the development of

372

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

373

Wind Direct Ltd | Open Energy Information  

Open Energy Info (EERE)

Wind Direct Ltd Wind Direct Ltd Place Solihull, United Kingdom Zip B91 2PQ Sector Wind energy Product Develops small wind farms (1-5MW) particularly for industrial customers. HgCapital provides working capital to the company and holds majority ownership of the wind assets. Coordinates 52.415065°, -1.777849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.415065,"lon":-1.777849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2009  

Science Conference Proceedings (OSTI)

As part of its Native American outreach, DOE's Wind Powering America program has initiated a NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. It is our hope that this newsletter will both inform and elicit comments and input on wind development in Indian Country. This issue profiles the Campo Band Wind Project in California and a feature on the Cheyenne River Sioux Tribe's plans for a 100- to 125-MW project.

Not Available

2009-09-01T23:59:59.000Z

375

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Accessed May 2008 from www.sce.com 9. The California BiomassCollaborative, Biomass gasification / power generationECONOMIC ANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

376

Why Cogeneration? 24MW of local renewable energy  

E-Print Network (OSTI)

Why Cogeneration? · 24MW of local renewable energy · Reduced emissions and cleaner air · Retain 300 Wood Chips Sawdust Pulp Paper Emissions Production #12;Port Townsend Paper - Cogeneration Biomass

377

Update on the Southwest 1000 MW CSP Initiative  

Science Conference Proceedings (OSTI)

The 1000 MW CSP project was initiated in FY02 based on a Congressional request of the DOE to investigate the feasibility of 1000 MW of Concentrating Solar Power in the Southwest by 2006. The original charge has grown and involved a number of activities including: outreach to the SW states, support of state-level activities in NM, CA, and CO, and analysis in support of the Western Governors' Association (WGA) 30 GW Clean Energy Initiative.

Mancini, T.; Mehos, M.; Wilkins, F.; Morse, F.

2005-11-01T23:59:59.000Z

378

Market, Legislation Make Wind an Attractive Investment in Texas  

DOE Green Energy (OSTI)

This brochure, part of the SEP Stellar Projects series, covers development of wind energy in Texas due to favorable legislation and public policy and favorable market forces. Those odd shaped structures popping up out in West Texas aren't funny looking oil rigs and they're not genetically altered cotton plants. They're wind turbines, an old technology with a 21st century update. Once too expensive for commercial production, the addition of computers to wind turbines and the rise in fossil fuel prices has brought the cost of wind-generated electricity in line with other power sources. A push by the 1999 Legislature to restructure the retail electric power market put in place rules that encourage wind generation. One rule requires Texas utilities to get an additional 2,000 megawatts of their power from renewable resources such as wind and solar power by 2009. Rules easing the cost of transmitting electricity from remote areas also aid the development of wind farms in West Texas.

Not Available

2001-06-01T23:59:59.000Z

379

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

380

Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm  

DOE Green Energy (OSTI)

This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum ve

Wharton, S; Lundquist, J K; Marjanovic, N

2012-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluation of Optimal Distribution of Wind Power Facilities in Iowa for 2015  

DOE Green Energy (OSTI)

By the end of June 1999, about 250 megawatts of wind generation will have been dedicated in the state of Iowa. This represents the beginning of what is likely to be significant wind capacity development during the next 20 years in the state, as a result of possible public and governmental mandates and consumers' desire for sustainable sources of energy. As the utility industry in the United States moves towards a new structure, renewable energy sources continue to be an important part of new resource development. In this paper, we consider the predicted trends in load growth in Iowa. After accounting for the retirement of nuclear and older fossil fuel facilities over the next 15 years, we estimate Iowa's potential renewable generating capacity through the year 2015 and anticipate the contribution of wind energy to Iowa's portfolio. The Iowa Wind Energy Institute (IWEI) has been monitoring the wind resource in Iowa since June 1994 to obtain wind speed averages at 10, 33 and 50 meters above ground at fourteen geographically dispersed potential wind farm sites. Winds in the Midwest are primarily generated by fronts moving through the region. The Northwest Buffalo Ridge area of Iowa typically has wind speed averages of 7-8 m/s. Central Iowa may have typical winds slightly below this mean value. However, as a front passes through the state, there will be times when a wind farm in Central Iowa will produce more energy than one on Buffalo Ridge.

Factor, T. (Iowa Wind Energy Institute); Milligan, M. (National Renewable Energy Laboratory)

1999-08-05T23:59:59.000Z

382

Wind Development on Tribal Lands  

SciTech Connect

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

383

Kotzebue Electric Association Wind Power Project Third-Year Operating Experience: 2001-2002: U.S. Department of Energy - EPRI Wind T urbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience and expansion of the 0.76-MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2002-12-13T23:59:59.000Z

384

Kotzebue Electric Association Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy-EPRI Wind Tu rbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the second-year operating experience at the 0.66-MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. Lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-11-30T23:59:59.000Z

385

Wisconsin Low Wind Speed Turbine Project Third-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine V erification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience at the 1.2-MW Low Wind Speed Turbine Project (LWSTP) in Glenmore, Wisconsin. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-12-06T23:59:59.000Z

386

Kotzebue Electric Association Wind Power Project Fourth-Year Operating Experience: 2002-2003: U.S. Department of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the fourth-year operating experience and expansion of the 0.76 MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2003-12-15T23:59:59.000Z

387

Toward a 20% Wind Electricity Supply in the United States: Preprint  

DOE Green Energy (OSTI)

Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

Flowers, L.; Dougherty, P.

2007-05-01T23:59:59.000Z

388

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

389

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

390

DOE Wind Vision Community - Q & A | OpenEI Community  

Open Energy Info (EERE)

DOE Wind Vision Community - Q & A DOE Wind Vision Community - Q & A Home By term Q & A Question Post date Answers Total Cost Per MwH for all common large scale power generation sources 6 May 2013 - 17:52 0 If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? 6 May 2013 - 17:46 0 What should we name the wind vision? 1 May 2013 - 11:10 0 Recent content Wind technology roadmap Total Cost Per MwH for all common large scale power generation sources If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? What should we name the wind vision? Group members (3) Managers: Graham7781 Recent members: GrandpasKnob Jamespr 429 Throttled (bot load) Error 429 Throttled (bot load)

391

Photo of the Week: Wheat and Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wheat and Wind Wheat and Wind Photo of the Week: Wheat and Wind December 14, 2012 - 2:33pm Addthis From 262 feet in the air, 90 General Electric towers rise over Wheatland County, Montana, generating electricity for portions of the northwest United States. With an installed capacity of 135 MW, the Judith Gap Energy Center is one of the strongest wind farms in Montana. The blades begin spinning when winds reach just eight miles per hour, and at their highest point, tower almost 400 feet above the ground. In this photo, the wind turbines rotate while overlooking Wheatland County's main agricultural product: wheat. | Photo courtesy of Idaho National Laboratory Wind Energy Program. From 262 feet in the air, 90 General Electric towers rise over Wheatland County, Montana, generating electricity for portions of the northwest

392

Cape Verde Archipelago Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Archipelago Wind Farm Archipelago Wind Farm Jump to: navigation, search Name Cape Verde Archipelago Wind Farm Agency/Company /Organization African Development Bank Sector Energy Focus Area Renewable Energy, Wind Topics Finance, Market analysis, Background analysis Website http://www.europa-eu-un.org/ar Program Start 2010 Country Cape Verde UN Region Western Africa References Cape Verde Archipelago Wind Farm[1] Summary "The European Investment Bank (EIB) and African Development Bank (AfDB) agreed to provide EUR 45 million to design, build and operate onshore wind farms on four islands in the Cape Verde archipelago. This will be the first large scale wind project in Africa and the first renewable energy public private partnership in sub-Saharan Africa. The project will provide over 28MW of electricity generating capacity and help

393

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

394

Latest Results in SLAC 75-MW PPM Klystrons  

Science Conference Proceedings (OSTI)

75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

2006-03-06T23:59:59.000Z

395

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

396

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

397

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Edison (SCE) is positioned to demonstrate the effectiveness of California Edison (SCE) is positioned to demonstrate the effectiveness of lithium-ion battery and smart inverter technologies to improve grid performance and assist in the integration of variable energy resources. This project will be sited at the Tehachapi Wind Resource Area, one of the largest wind resource areas in the world, where as much as 4,500 MW of wind resources are expected to come online by 2015. An existing SCE substation located approximately 100 miles north of Los Angeles, California, will host the demonstration. Overview The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. SCE will test the BESS for 24 months to

398

Community Wind: Once Again Pushing the Envelope of Project Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind: Wind: Once Again Pushing the Envelope Once Again Pushing the Envelope of Project Finance ~ Report Summary ~ Download the full 28-page report from: Download the full 28 page report from: http://eetd.lbl.gov/EA/EMP/re-pubs.html M k B li Mark Bolinger Lawrence Berkeley National Laboratory 1 Environmental Energy Technologies Division * Energy Analysis Department January 2011 Report Overview 1) Community Wind as a "Test Bed" for Innovation 2) Policy Changes Have Facilitated Financial Innovation 3) Recent Community Wind Projects Across the US Exemplify the Breadth of Innovation * Case studies of five projects in five states * Projects range in size from 4.5 MW to 25.3 MW * All selling power on the wholesale market (report does not cover behind-the-meter projects) 4) Common Observations and Lessons Learned

399

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

DOE Green Energy (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

400

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery 3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Magic Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wind, LLC Wind, LLC Place Buhl, Idaho Zip 83316 Sector Wind energy Product A small Idaho-based limited liability company developing the proposed 20MW Magic Wind project. Coordinates 47.489797°, -92.772449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.489797,"lon":-92.772449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Clear Wind Renewable Power | Open Energy Information  

Open Energy Info (EERE)

Clear Wind Renewable Power Clear Wind Renewable Power Place Minneapolis, Minnesota Zip 55416 Sector Wind energy Product Clear Wind focuses its efforts on projects ranging in size from 5 to 50MW in the midwest US. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

IEA WIND 2012 Annual Report Executive Committee of the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems  

E-Print Network (OSTI)

of the cooperative research, development, and deployment (R,D&D) efforts of our member governments and organizations. IEA Wind helps advance wind energy in countries representing 85 % of the world's wind generating capacity. In 2012 record capacity additions (MW) were seen in nine member countries, and cooperative research produced five final technical reports as well as many journal articles and conference papers. The technical reports include:

unknown authors

2013-01-01T23:59:59.000Z

404

EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh County, North Dakota  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to one of DOEs Western Area Power Administrations existing substations and to operate NextEras existing wind projects in this area above 50 annual MW.

405

Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review  

E-Print Network (OSTI)

and it is expected to remain so for some time. At the end of 2003 the installed wind capacity stands at over 40000 MW the need for future research, this paper is intended as a tutorial overview based on a review of the state. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation in the world

Paris-Sud XI, Université de

406

Wind turbine aerodynamics using ALE---VMS: validation and the role of weakly enforced boundary conditions  

Science Conference Proceedings (OSTI)

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE---VMS formulation of aerodynamics, based on the Navier---Stokes equations of incompressible flows, is employed in conjunction ... Keywords: ALE---VMS, Finite elements, NREL 5MW offshore, NREL Phase VI, Weakly enforced essential boundary conditions, Wind turbine aerodynamics

Ming-Chen Hsu; Ido Akkerman; Yuri Bazilevs

2012-10-01T23:59:59.000Z

407

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

408

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

409

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

410

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Energy storage solutions for Renewable Integration and Transmission and Distribution (T&D) Grid Support often require systems of 10's of MWs in scale, and energy durations of longer than 4 hours. The goals of this study were to develop cost, performance and conceptual design information for several current and emerging alternative bulk storage systems in the scale of 50 MW / 250 MWh.

2011-12-28T23:59:59.000Z

411

Sacremento Municipal Utility District 100-MW sub e photovoltaic plant  

Science Conference Proceedings (OSTI)

A status report on plans for the Sacramento Municipal Utility District (SMUD) 1-MW photovoltaic power plant is presented. DOE, the California Energy Commission, and SMUD will fund the project cooperatively. Emphasis is placed on the details of the government contract/cooperation agreement.

Powell, R.V.

1982-04-01T23:59:59.000Z

412

Intense Atmospheric Vortices Associated with a 1000 MW Fire  

Science Conference Proceedings (OSTI)

Observations of vortices of various types produced in a large thermal plume are described. The apparatus used to generate the plume is the Mtotron, an array of 105 fuel oil burners with a total heat output of approximately 1000 MW. Three types ...

Christopher R. Church; John T. Snow; Jean Dessens

1980-07-01T23:59:59.000Z

413

Repowering the 250 MW Supercritical Power Plant at Lenenergo, Russia  

Science Conference Proceedings (OSTI)

This report describes the repowering of a supercritical 250 MW generating unit with an ABB 52.9 MN gas turbine at the Southern Plant of the Lenenergo system in Russia. It includes a review of the performance parameters of the repowered unit and an economic analysis of the repowering project.

1999-11-30T23:59:59.000Z

414

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

415

Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint  

DOE Green Energy (OSTI)

Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.

Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.

2013-01-01T23:59:59.000Z

416

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

417

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

418

NREL: Wind Research - Computer-Aided Engineering Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer-Aided Engineering Tools Computer-Aided Engineering Tools Illustration of an offshore wind turbine on a barge with an illustration of how the moorings would work. A simulation of a 5-MW wind turbine on an offshore semi-submersible with catenary moorings. The National Wind Technology Center (NWTC) at NREL develops advanced computer-aided engineering (CAE) tools to support the wind and water power industries with state-of-the-art design and analysis capabilities. We have developed many software tools that produce realistic models that simulate the behavior of wind and water power technologies in complex environments-storm winds, waves offshore, earthquake loading, and extreme turbulence-and model the effects of turbulent inflow, unsteady aerodynamic forces, structural dynamics, drivetrain response, control

419

DOE Wind Vision Community | OpenEI Community  

Open Energy Info (EERE)

DOE Wind Vision Community DOE Wind Vision Community Home > Groups > Groups > DOE Wind Vision Community Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (3) Managers: Graham7781 Recent members: GrandpasKnob Jamespr Recent content Wind technology roadmap Total Cost Per MwH for all common large scale power generation sources If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? What should we name the wind vision? Group members (3) Managers: Graham7781 Recent members: GrandpasKnob Jamespr 429 Throttled (bot load) Error 429 Throttled (bot load)

420

NREL: News Feature - New Test Facility to Improve Wind Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility to Improve Wind Turbines Test Facility to Improve Wind Turbines December 26, 2013 Two men stand in front of the test equipment in the dynamometer facility discussing work being done. Behind them are two large blue machines that make up the dynamometer test apparatus. A white wind turbine nacelle system is attached to these devices to their left. Enlarge image NREL engineer Scott Lambert (left) and Project Manager Mark McDade discuss calibrations being done on the new dynamometer at the 5-MW Dynamometer Test Facility at NREL's National Wind Technology Center (NWTC). Credit: Dennis Schroeder Premature failures of mechanical systems have a significant impact on the cost of wind turbine operations and thus the total cost of wind energy. Recently, the Energy Department's National Renewable Energy Laboratory

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2012 Market Report on U.S. Wind Technologies in Distributed Applications  

SciTech Connect

At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind projects location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agricultures Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

2013-08-06T23:59:59.000Z

422

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

423

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

424

Stabilized space---time computation of wind-turbine rotor aerodynamics  

Science Conference Proceedings (OSTI)

We show how we use the Deforming-Spatial-Domain/Stabilized Space---Time (DSD/SST) formulation for accurate 3D computation of the aerodynamics of a wind-turbine rotor. As the test case, we use the NREL 5MW offshore baseline wind-turbine rotor. This class ... Keywords: DSD/SST formulation, Rotating turbulent flow, Space---time variational multiscale method, Torque values, Wind-turbine aerodynamics

Kenji Takizawa; Bradley Henicke; Tayfun E. Tezduyar; Ming-Chen Hsu; Yuri Bazilevs

2011-09-01T23:59:59.000Z

425

Wind Energy Stakeholder Outreach and Education  

DOE Green Energy (OSTI)

Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorados 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&As efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

2006-07-27T23:59:59.000Z

426

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

427

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

Activation of 200 MW refusegenerated CHP upward regulation effect Activation of 200 MW refusegenerated CHP upward regulation effect Country Denmark Headquarters Location Sønderborg, Denmark Coordinates 54.913811°, 9.792178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.913811,"lon":9.792178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

MHK Projects/40MW Lewis project | Open Energy Information  

Open Energy Info (EERE)

40MW Lewis project 40MW Lewis project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.791595089019,"lon":-6.7286683246493,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

429

Operating and Maintaining a 465MW Cogeneration Plant  

E-Print Network (OSTI)

The on-line avilability of the five Frame-7E gas turbine generators installed at the 465MW Lyondell Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140MW steam turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs utilized before and continued after plant startup, (2) redundancies designed into the critical components of the plant, (3) the immediate actions taken on failures or near-failures, (4) a sound preventive maintenance program, and (5) improvements performed promptly on discovered design, operating, and maintenance weaknesses uncovered during the early months of operation.

Theisen, R. E.

1988-09-01T23:59:59.000Z

430

Cleaning Up Four Megawatts  

Science Conference Proceedings (OSTI)

A utility asked the Electric Power Research Institute (EPRI) to conduct an energy assessment of a manufacturer of cleaning products in their service area. Working with facility personnel and the utility, the EPRI energy audit team endeavored to understand energy usage in the facility and to identify areas where energy could be saved. The energy audit occurred in a facility located in the U.S. Midwest during the summer season. It was an older facility and was, for the most part, not air-conditioned. The a...

2012-04-09T23:59:59.000Z

431

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

432

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

433

Session: What can we learn from developed wind resource areas  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

434

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

435

SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

Galambos, John D [ORNL

2011-01-01T23:59:59.000Z

436

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

437

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

438

Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Huaren Wind Power Technology Development Co Ltd Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name Shenyang Huaren Wind Power Technology Development Co Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product China-based technology provider of 1MW, 1.5MW and 3MW wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power  

Open Energy Info (EERE)

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Co Ltd Jump to: navigation, search Name Yinhe Avantis Wind Power Co Ltd (formerly known as Avantis Yinhe Wind Power Co Ltd ) Place Beihai, Guangxi Autonomous Region, China Zip 536000 Sector Wind energy Product Large scale wind turbine manufacturer developing 2.5MW turbines. Coordinates 21.484501°, 109.105309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.484501,"lon":109.105309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

MHK Technologies/14 MW OTECPOWER | Open Energy Information  

Open Energy Info (EERE)

MW OTECPOWER MW OTECPOWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description MINIMIZE SURFACE ACTIVITIES TO REDUCE THE CAPITAL COST AND TO IMPROVE EFFICIENCY ALTERNATE WORKING FLUIDS ARE USED FOR ENHANCED POWER EFFICIENCY IN OPTEC POWER HYBRID CYCLES ARE USED TO IMPROVE POWER AND NEED WITH SUBSEA HEAT EXCHANGERS ADVANCED SUPPORTING VESSEL CONCEPT AND FREE STANDING RISER TECHNOLOGIES TO WITH STAND HARSH OCEAN ENVIRONMENT IN DEEPWATER HAD BEEN DEVELOPED FOR THIS OPTEC POWER IT IS THE ONLY RELIABLE AND PROFITABLE RENEWABLE ENERGY SOURCE FOR THE NEED OF WORLD ENERGY FOR THE NEXT DECADE DESALINATION AND HDROGEN PRODUCTION ARE LINKED TO THE POWER GENERATION OF THE OTEC POWER FOR SEVERAL BY PRODUCTS COST EFFECTIVE PRODUCTION CLEAN ENERGY AND CLEAN WATER IS THE GOAL OF OTECPOWER INC OUR 14 MW OTEC POWER COSTS 50 MILLION USD ALL EQUIPMENT HAD BEEN DESINGED AND A FEW OF THEM ARE TESTED FOR OIL AND GAS INDUSTRY APPLICATION WHICHA RE BEING USED FOR OTECPOWER A RELIABLE AND FEASIBLE OTECPOWER IS PROPOSED

Note: This page contains sample records for the topic "megawatt mw wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Beam Voltage, 10 MW, L-Band Cluster Klystron  

SciTech Connect

Conceptual design of a multi-beam klystron (MBK) for possible ILC and Project X applications is presented. The chief distinction between this MBK design and existing 10-MW MBK's is the low operating voltage of 60 kV. There are at least four compelling reasons that justify development at this time of a low-voltage MBK, namely (1) no pulse transformer; (2) no oil tank for high-voltage components and for the tube socket; (3) no high-voltage cables; and (4) modulator would be a compact 60-kV IGBT switching circuit. The proposed klystron consists of four clusters containing six beams each. The tube has common input and output cavities for all 24 beams, and individual gain cavities for each cluster. A closely related optional configuration, also for a 10 MW tube, would involve four totally independent cavity clusters with four independent input cavities and four 2.5 MW output ports, all within a common magnetic circuit. This option has appeal because the output waveguides would not require a controlled atmosphere, and because it would be easier to achieve phase and amplitude stability as required in individual SC accelerator cavities.

Teryaev, V.; /Novosibirsk, IYF; Yakovlev, V.P.; /Fermilab; Kazakov, S.; /KEK, Tsukuba; Hirshfield, J.L.; /Yale U. /Omega-P, New Haven

2009-05-01T23:59:59.000Z

442

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

443

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

444

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

445

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

446

Kenai Winds Response to Request for Grant Applications  

E-Print Network (OSTI)

Kenai Winds LLC is pleased to respond the Alaska Energy Authority solicitation to assist with the realization of Renewable Energy Projects to be located within the State of Alaska. Our 15-18 Megawatt wind farm will be a landmark project for the State, one that brings significant public benefit and reinforces an important Kenai area industry. Our wind farm has been under development for nearly two years and we are beginning our Phase 3 efforts with an eye towards operation in the Summer of 2010. Our project is ideally located in a heavily industrial area, ensuring that the project will enhance the overall efficiency of the Alaska energy grid. By producing electric power where electric power is actually needed, we reduce the need for new construction of power lines, and we also reduce the energy losses associated with long distance and underwater transmission. The Kenai Winds plant is ready to move forward in Phase 3 immediately. We have consulted with permit authorities and local officials. Due to the siting adjacent to an operational refinery and a recently closed chemical plant, we reduce the need to disturb the natural environment of the area with the construction of supporting infrastructure. As part of our demonstrated public benefit, we intend to sell electric power to the Tesoro Kenai refinery, which is the

Attn Mr; Butch White

2008-01-01T23:59:59.000Z

447

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

448

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

449

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

450

Enron Wind Corporation | Open Energy Information  

Open Energy Info (EERE)

Enron Wind Corporation Enron Wind Corporation Jump to: navigation, search Name Enron Wind Corporation Place Houston, Texas Zip 77251-1188 Sector Wind energy Product Former Enron Wind, which still owns, operates and manages 125 MW of wind capacity in California, Crete and India. All its other assets were bought by GE through GE Power Systems in October 2002. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Digital Book Showcases Washington Wind Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Digital Book Showcases Washington Wind Project Digital Book Showcases Washington Wind Project Digital Book Showcases Washington Wind Project June 24, 2010 - 12:09pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE In what looks and feels more like an e-book on the iPad than a website, a new digital book by Cannon Power Group, a San Diego-based developer of utility-scale wind, tells the story of the construction of a 400 MW wind farm along a 26-mile stretch in Goldendale, Washington, located on a ridgeline plateau about 125 miles east of Portland, Oregon. "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project in seven interactive chapters: from "Prospecting" (finding the right site) to "Planting" (installing 175, 300-foot turbines) to

452

EA-1966: Sunflower Wind Project, Hebron, North Dakota | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Sunflower Wind Project, Hebron, North Dakota 6: Sunflower Wind Project, Hebron, North Dakota EA-1966: Sunflower Wind Project, Hebron, North Dakota SUMMARY Western Area Power Administration (Western) is preparing an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines would encompass approximately 9,000 acres. Ancillary facilities would include an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

453

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Wind Energy Storage Project (October 2012) Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects Energy Storage Systems 2010 Update Conference Presentations - Day 2,

454

Foundation for Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Energy Offshore Wind Energy Jump to: navigation, search Name Foundation for Offshore Wind Energy Place Varel, Germany Zip D-26316 Sector Wind energy Product Foundation established to operate the 60MW Borkum West Offshore Wind Farm. Coordinates 53.393773°, 8.13759° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.393773,"lon":8.13759,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Huaneng Shantou Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Huaneng Shantou Wind Power Co Ltd Huaneng Shantou Wind Power Co Ltd Jump to: navigation, search Name Huaneng Shantou Wind Power Co Ltd Place Guangzhou, Guangdong Province, China Zip 510630 Sector Wind energy Product Investment in a wind power project of 45MW at Shantou in Guangdong. Coordinates 23.107389°, 113.267616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"