Powered by Deep Web Technologies
Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

2

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

3

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

September 2007. 5. "Hywind – the World’s First Full-scaleOffshore/Hywind/Pages/HywindPuttingWindPowerToTheTest. aspx4 Figure 1.3: Hywind concept floating wind turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

4

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

for floating turbines [4]. ..15 Figure 3.1: Floating turbine degrees of freedom [the motion of a 5 MW floating turbine subjected to ocean

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

5

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

6

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Broader source: Energy.gov (indexed) [DOE]

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

7

NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Analyzes Floating Offshore Wind Technology for Statoil November 6, 2014 NREL engineers traveled to Oslo, Norway, to meet with Statoil representatives regarding NREL's analysis...

8

NREL: Technology Transfer - NREL Analyzes Floating Offshore Wind...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Analyzes Floating Offshore Wind Technology for Statoil November 6, 2014 NREL engineers traveled to Oslo, Norway, to meet with Statoil representatives regarding NREL's analysis...

9

Floating Offshore Wind Technology Generating Resources Advisory Committee  

E-Print Network [OSTI]

Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

10

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

11

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

12

EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon  

Broader source: Energy.gov [DOE]

Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

13

Dynamically installed anchors for floating offshore structures.  

E-Print Network [OSTI]

??The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors… (more)

Richardson, Mark Damian

2008-01-01T23:59:59.000Z

14

Engineering Challenges for Floating Offshore Wind Turbines  

SciTech Connect (OSTI)

The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

2007-09-01T23:59:59.000Z

15

Coupled dynamic analysis of floating offshore wind farms  

E-Print Network [OSTI]

it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

Shim, Sangyun

2009-05-15T23:59:59.000Z

16

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines  

E-Print Network [OSTI]

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair was coupled to the floating wind turbine simulator FAST. The results of the comparison study indicate the need

Victoria, University of

17

The Aerodynamics and Near Wake of an Offshore Floating Horizontal Axis Wind Turbine.  

E-Print Network [OSTI]

??Offshore floating wind turbines represent the future of wind energy. However, significant challenges must be overcome before these systems can be widely used. Because of… (more)

Sebastian, Thomas

2012-01-01T23:59:59.000Z

18

Floating offshore wind farms : demand planning & logistical challenges of electricity generation  

E-Print Network [OSTI]

Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

19

Life-cycle cost analysis of floating offshore wind farms  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to put forward a methodology in order to evaluate the Cost Breakdown Structure (CBS) of a Floating Offshore Wind Farm (FOWF). In this paper CBS is evaluated linked to Life-Cycle Cost System (LCS) and taking into account each of the phases of the FOWF life cycle. In this sense, six phases will be defined: definition, design, manufacturing, installation, exploitation and dismantling. Each and every one of these costs can be subdivided into different sub-costs in order to obtain the key variables that run the life-cycle cost. In addition, three different floating platforms will be considered: semisubmersible, Tensioned Leg Platform (TLP) and spar. Several types of results will be analysed according to each type of floating platform considered: the percentage of the costs, the value of the cost of each phase of the life-cycle and the value of the total cost in each point of the coast. The results obtained allow us to become conscious of what the most important costs are and minimize them, which is one of the most important contributions nowadays. It will be useful to improve the competitiveness of floating wind farms in the future.

Castro-Santos Laura; Diaz-Casas Vicente

2014-01-01T23:59:59.000Z

20

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network [OSTI]

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A floating platform of concrete for offshore wind turbine  

Science Journals Connector (OSTI)

A floating platform concept is introduced in this paper for offshore wind turbine. A vertical cylinder on the top of an elliptical sphere forms the principal configuration of the platform. The analysis of the dynamic performance of an example platform with 5 MW wind turbine by means of the well-established linear theory for the dynamics of marine constructions in waves shows that the platform is able to secure the normal function of the wind turbine in waves up to rough sea state and has the required dynamic performance for survival in extreme waves by adopting a survival ballast condition. An important feature of this concept is that reinforced concrete can be used as cost-efficient construction material so that the service life several times longer than similar steel constructions can be obtained despite of the marine corrosive and erosive environment. Thus this kind of platform can become competitive in the economical sustainable and environment-friendly aspect.

Jianbo Hua

2011-01-01T23:59:59.000Z

22

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

92-S1: University of Maine's Deepwater Offshore Floating Wind 92-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site SUMMARY This Supplemental EA in a evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine, Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792). PUBLIC COMMENT OPPORTUNITIES No public comment opportunities at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

23

Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint  

SciTech Connect (OSTI)

This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

Jonkman, J. M.; Buhl, M. L., Jr.

2007-06-01T23:59:59.000Z

24

Multibody Dynamics Using Conservation of Momentum with Application to Compliant Offshore Floating Wind Turbines  

E-Print Network [OSTI]

Environmental, aesthetic and political pressures continue to push for siting off-shore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures is likely to be considered. Savings could potentially...

Wang, Lei

2012-10-19T23:59:59.000Z

25

A nonlinear wave load model for extreme and fatigue responses of offshore floating wind turbines  

E-Print Network [OSTI]

Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear ...

Lee, Sungho, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

26

ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN  

E-Print Network [OSTI]

A-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN Hundreds of wind turbines have been installed in the oceans surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

Sweetman, Bert

27

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

Not Available

2011-02-01T23:59:59.000Z

28

Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines  

SciTech Connect (OSTI)

Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

2014-04-01T23:59:59.000Z

29

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine  

Science Journals Connector (OSTI)

The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

I Bayati; J Jonkman; A Robertson; A Platt

2014-01-01T23:59:59.000Z

30

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network [OSTI]

MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can...

Bae, Yoon Hyeok

2013-04-23T23:59:59.000Z

31

Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine  

SciTech Connect (OSTI)

The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

Roald, L.; Jonkman, J.; Robertson, A.

2014-05-01T23:59:59.000Z

32

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint  

SciTech Connect (OSTI)

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

33

Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics  

Science Journals Connector (OSTI)

Abstract The need to further exploit offshore wind resources has pushed offshore wind farms into deeper waters, requiring the use of floating support structures to be economically sustainable. The use of conventional wind turbines may not continue to be the optimal design for floating applications. Therefore it is important to assess other alternative concepts in this context. Vertical axis wind turbines (VAWTs) are one promising concept, and it is important to first understand the coupled and relatively complex dynamics of floating \\{VAWTs\\} to assess their technical feasibility. A comprehensive review detailing the areas of engineering expertise utilised in developing an understanding of the coupled dynamics of floating \\{VAWTs\\} has been developed through a series of articles. This first article details the aerodynamic modelling of VAWTs, providing a review of available models, discussing their applicability to floating \\{VAWTs\\} and current implementations by researchers in this field. A concise comparison between conventional horizontal axis wind turbines and \\{VAWTs\\} is also presented, outlining the advantages and disadvantages of these technologies for the floating wind industry. This article has been written both for researchers new to this research area, outlining underlying theory whilst providing a comprehensive review of the latest work, and for experts in this area, providing a comprehensive list of the relevant references where the details of modelling approaches may be found.

Michael Borg; Andrew Shires; Maurizio Collu

2014-01-01T23:59:59.000Z

34

An Update on the National Offshore Wind Strategy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy An Update on the National Offshore Wind Strategy December 17, 2012 - 11:27am Addthis Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Principle Power's wind float prototype in Portugal. The company was recently awarded an Energy Department grant to support a 30 megawatt floating offshore wind farm near Oregon's Port of Coos Bay. | Photo courtesy of Principle Power. Jose Zayas Jose Zayas Program Manager, Wind and Water Power Program Get the Details on Offshore Wind Take a look at our National Offshore Wind Strategy for information

35

Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint  

SciTech Connect (OSTI)

The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

2014-07-01T23:59:59.000Z

36

Induction arrows from offshore floating magnetometers using land reference data  

Science Journals Connector (OSTI)

......general location is the Murray Basin, in the vicinity of Mildura...seawater in the Great Australian Bight and Southern Ocean. In fact...open ocean, Great Australian Bight As a further trial of this technique...from land (such as the Murray Basin sites) to a magnetometer floating......

A. P. Hitchman; F. E. M. Lilley; P. R. Milligan

2000-02-01T23:59:59.000Z

37

Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform  

SciTech Connect (OSTI)

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

2010-02-01T23:59:59.000Z

38

Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjrn Skaare*, Tor David Hanson*, Finn Gunnar Nielsen*, Rune Yttervik*, Anders Melchior Hansen**,  

E-Print Network [OSTI]

Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjørn Skaare*, Tor David Hanson of floating wind turbines exposed to forces from wind, waves and current has been developed for Hydro Oil & Energy's floating wind turbine concept, HYWIND. Two existing, independent, computer program systems

39

Development of a free vortex wake method code for offshore floating wind turbines  

Science Journals Connector (OSTI)

Offshore floating wind turbines (OFWTs) present unique aerodynamic analysis challenges. Motion–derived velocity perturbations in the wake necessitate higher–fidelity aerodynamic analysis methods than the ubiquitous momentum balance techniques currently in use. A more physically–sound approach is to model the wake generated by a wind turbine rotor as a freely convecting lattice, using the resultant inflow to estimate rotor loads, as it done with a free vortex wake method (FVM). The FVM code Wake Induced Dynamics Simulator (WInDS) was developed at the University of Massachusetts at Amherst to predict the aerodynamic loading and wake evolution of an OFWT to a higher degree of accuracy than is possible via momentum balance methods. A series of validation cases were conducted to provide some basis for applying \\{WInDS\\} to floating wind turbine cases, for which no aerodynamic experimental data is currently available. The results from these tests show that \\{WInDS\\} is able to accurately predict the aerodynamically–derived loads and wake structures generated by various fixed and rotary–wing cases, and may therefore be applied to more complex cases, like OFWTs, with a degree of confidence.

T. Sebastian; M.A. Lackner

2012-01-01T23:59:59.000Z

40

Effects of second-order difference-frequency wave forces on a new floating platform for an offshore wind turbine  

Science Journals Connector (OSTI)

This paper presents a study on an innovative floating platform for an offshore wind turbine operating at water depth of 50-80?m. The main focus is on hydrodynamic modelling of the floating platform with emphasis on the computation of second-order difference-frequency wave forces and their effects on the global rigid-body motion response. The time-domain analysis is conducted by coupling the wave analysis software WADAM of Det Norske Veritas and the aerodynamic code FAST of the National Renewable Energy Laboratory USA to consider the interaction between the wind turbine and floating platform. The numerical model accounts for aerodynamics control system of the wind turbine hydrodynamics and the mooring dynamics of the platform. Case studies with irregular waves and dynamic wind load are performed. A comparison of the results of different case studies is made to assess the influence of second-order wave forces on the motions of the floating platform.

A. Jiawen Li; B. Yougang Tang; C. Ronald W. Yeung

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches  

Science Journals Connector (OSTI)

Abstract The need to further exploit offshore wind resources has pushed offshore wind farms into deeper waters, requiring the use of floating support structures to be economically sustainable. The use of conventional wind turbines may not continue to be the optimal design for floating applications. Therefore it is important to assess other alternative configurations in this context. Vertical axis wind turbines (VAWTs) are one promising configuration, and it is important to first understand the coupled and relatively complex dynamics of floating \\{VAWTs\\} to assess the technical feasibility. As part of this task, a series of articles have been developed to present a comprehensive literature review covering the various areas of engineering expertise required to understand the coupled dynamics involved in floating VAWTs. This third article focuses on approaches to develop an efficient coupled model of dynamics (considering aerodynamics, hydrodynamics, structural and mooring line dynamics, and control dynamics) for floating VAWTs, as well as suitable ‘semi-analytical’ hydrodynamic models for this type of coupled dynamics models. Emphasis is also placed on utilising computationally efficient models and programming strategies. A comparison of the various forces acting on a floating VAWT with the three main floating support structure (spar, semi-submersible and tension-leg-platform) is also presented to highlight the relative dominant forces and hence importance of model accuracy representing these forces. Lastly a concise summary covering this series of articles is presented to give the reader an overview of this interdisciplinary research area. This article has been written both for researchers new to this research area, outlining underlying theory whilst providing a comprehensive review of the latest work, and for experts in this area, providing a comprehensive list of the relevant references where the details of modelling approaches may be found.

Michael Borg; Maurizio Collu

2014-01-01T23:59:59.000Z

42

Model test and simulation of modified spar type floating offshore wind turbine with three catenary mooring lines  

Science Journals Connector (OSTI)

Korea is a peninsula which is surrounded by the Yellow Sea (shallow sea) the southern sea and the East Sea (deep sea). These circumstances always make us consider that a platform could have good motion performances in both shallow and deep seas. In this paper the typical spar type platform of the Offshore Code Comparison Collaboration Hywind Floating Offshore Wind Turbine (FOWT) has been modified and a new concept FOWT platform is suggested for both seas. Its motion performances are evaluated by both 1:80 scale model tests and full scale numerical simulations.

2014-01-01T23:59:59.000Z

43

Ultimate and accidental limit state design for mooring systems of floating offshore wind turbines  

Science Journals Connector (OSTI)

Abstract The paper deals with the catenary mooring system design for tri-floater floating offshore wind turbines. Both ultimate (ULS) and accidental (ALS) limit states are examined, under 50 and 1 year return period environmental loads. Both power production and parked wind turbine conditions are analysed; for the former the ULS is applied, for the latter both ULS and ALS are considered. The platform static demand is assessed in terms of turbine thrust, wind, current and wave steady drift forces. The dynamic offset is determined considering both wave and low-frequency motions. Mooring patterns with 6, 9 and 12 chain cable and steel wire rope lines are considered. Water depth incidence is examined in the range between 50 and 300 m and the mooring system is dimensioned so that the relevant weight is determined. The Dutch tri-floater is assumed as reference structure and three candidate sites in the Southern Mediterranean Sea are considered. It is found that platform admissible offset and line pattern significantly influence the mooring system weight; obtained results show that 9 and 12 line configurations are the necessary choice and the mooring line weight is independent of water depth between 100 and 200 m, while increases out of this range.

G. Benassai; A. Campanile; V. Piscopo; A. Scamardella

2014-01-01T23:59:59.000Z

44

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

45

Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

2014-03-01T23:59:59.000Z

46

Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics  

Science Journals Connector (OSTI)

Abstract The need to exploit enhanced wind resources far offshore as well as in deep waters requires the use of floating support structures to become economically viable. The conventional three-bladed horizontal axis wind turbine may not continue to be the optimal design for floating applications. Therefore it is important to assess alternative concepts in this context that may be more suitable. Vertical axis wind turbines (VAWTs) are a promising concept, and it is important to first understand the coupled and relatively complex dynamics of floating \\{VAWTs\\} to assess their technical feasibility. As part of this task, a series of articles have been developed to present a comprehensive literature review covering the various areas of engineering expertise required to understand the coupled dynamics involved in floating VAWTs. This second article focuses on the modelling of mooring systems and structural behaviour of floating VAWTs, discussing various mathematical models and their suitability within the context of developing a model of coupled dynamics. Emphasis is placed on computational aspects of model selection and development as computational efficiency is an important aspect during preliminary design stages. This paper has been written both for researchers new to this research area, outlining underlying theory whilst providing a comprehensive review of the latest work, and for experts in this area, providing a comprehensive list of the relevant references where the details of modelling approaches may be found.

Michael Borg; Maurizio Collu; Athanasios Kolios

2014-01-01T23:59:59.000Z

47

The wind-wave tunnel test of a tension-leg platform type floating offshore wind turbine  

Science Journals Connector (OSTI)

In this work a tension-leg platform (TLP) type floating offshore wind turbine (FOWT) system was proposed which was based on the National Renewable Energy Laboratory 5?MW offshore wind turbinemodel. Taking the coupled effect of dynamic response of the top wind turbine support tower structure and lower mooring system into consideration the 1/60 scale model test for investigating the coupled wind-wave effect on performance of the floating wind turbine system was done in Harbin Institute of Technology's wind tunnel and wave flume joint laboratory. In addition numerical simulations corresponding to the scale model tests have been performed by advanced numerical tools. The results of model tests and numerical simulations have a good agreement so the availability of the numerical model has been verified. Furthermore to improve the performance of the TLP system one tentative strategy adding mooring lines to the TLP system was proposed and the model test results of the two TLP systems were compared with each other. As a result the motion responses of the floating platform and the force levels of tension legs were effectively reduced by the additional mooring chains. The new TLP FOWT system might play an active and instructive role in the development of future FOWT system.

Nianxin Ren; Yugang Li; Jinping Ou

2012-01-01T23:59:59.000Z

48

Dynamic Analysis of an Offshore Wind Turbine Drivetrain on a Floating Support  

Science Journals Connector (OSTI)

This paper presents a multi-body model for the study of the non stationary dynamic behaviour of an off-shore wind turbine power train. The problem studied is an off-shore implementation with seafloor depths ar...

Fernando Viadero…

2012-01-01T23:59:59.000Z

49

A Comparison of Platform Options for Deep-water Floating Offshore...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar-buoy and Principal Power's WindFloat semi-submersible. These designs are scaled...

50

Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling  

Science Journals Connector (OSTI)

A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

T Sant; D Buhagiar; R N Farrugia

2014-01-01T23:59:59.000Z

51

Floating axis wind turbines for offshore power generation—a conceptual study  

Science Journals Connector (OSTI)

The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

Hiromichi Akimoto; Kenji Tanaka; Kiyoshi Uzawa

2011-01-01T23:59:59.000Z

52

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

53

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calibration and Validation of a Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool Preprint J.R. Browning University of Colorado-Boulder J. Jonkman and A. Robertson National Renewable Energy Laboratory A.J. Goupee University of Maine Presented at the Science of Making Torque from Wind Oldenburg, Germany October 9-11, 2012 Conference Paper NREL/CP-5000-56138 November 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

54

Computation of Wave Loads under Multidirectional Sea States for Floating Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

This paper focuses on the analysis of a floating wind turbine under multidirectional wave loading. Special attention is given to the different methods used to synthesize the multidirectional sea state. This analysis includes the double-sum and single-sum methods, as well as an equal-energy discretization of the directional spectrum. These three methods are compared in detail, including the ergodicity of the solution obtained. From the analysis, the equal-energy method proved to be the most computationally efficient while still retaining the ergodicity of the solution. This method was chosen to be implemented in the numerical code FAST. Preliminary results on the influence of these wave loads on a floating wind turbine showed significant additional roll and sway motion of the platform.

Duarte, T.; Gueydon, S.; Jonkman, J.; Sarmento, A.

2014-03-01T23:59:59.000Z

55

Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan  

Science Journals Connector (OSTI)

Wave tank testing of scaled models is standard practice during the development of floating wind turbine platforms for the validation of the dynamics of conceptual designs. Reliable recreation of the dynamics of a full scale floating wind turbine by a scaled model in a basin requires the precise scaling of the masses and inertias and also the relevant forces and its frequencies acting on the system. The scaling of floating wind turbines based on the Froude number is customary for basin experiments. This method preserves the hydrodynamic similitude, but the resulting Reynolds number is much lower than in full scale. The aerodynamic loads on the rotor are therefore out of scale. Several approaches have been taken to deal with this issue, like using a tuned drag disk or redesigning the scaled rotor. This paper describes the implementation of an alternative method based on the use of a ducted fan located at the model tower top in the place of the rotor. The fan can introduce a variable force that represents the total wind thrust by the rotor. A system controls this force by varying the rpm, and a computer simulation of the full scale rotor provides the desired thrust to be introduced by the fan. This simulation considers the wind turbine control, gusts, turbulent wind, etc. The simulation is performed in synchronicity with the test and it is fed in real time by the displacements and velocities of the platform captured by the acquisition system. Thus, the simulation considers the displacements of the rotor within the wind field and the calculated thrust models the effect of the aerodynamic damping. The system is not able currently to match the effect of gyroscopic momentum. The method has been applied during a test campaign of a semisubmersible platform with full catenary mooring lines for a 6MW wind turbine in scale 1/40 at Ecole Centrale de Nantes. Several tests including pitch free decay under constant wind and combined wave and wind cases have been performed. Data from the experiments are compared with aero-servo-hydro-elastic computations with good agreement showing the validity of the method for the representation of the scaled aerodynamics. The new method for the aerodynamic thrust scaling in basin tests is very promising considering its performance, versatility and lower cost in comparison with other methods.

José Azcona; Faisal Bouchotrouch; Marta González; Joseba Garciandía; Xabier Munduate; Felix Kelberlau; Tor A Nygaard

2014-01-01T23:59:59.000Z

56

Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint  

SciTech Connect (OSTI)

To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

2011-10-01T23:59:59.000Z

57

Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009  

SciTech Connect (OSTI)

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

Matha, D.

2010-02-01T23:59:59.000Z

58

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

59

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

60

Sandia National Laboratories: Study Compares Floating-Platform...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyStudy Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.  

SciTech Connect (OSTI)

This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

Bull, Diana L; Fowler, Matthew; Goupee, Andrew

2014-08-01T23:59:59.000Z

62

Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach  

Science Journals Connector (OSTI)

We develop a computational framework for simulating the coupled interaction of complex floating structures with large-scale ocean waves and atmospheric turbulent winds. The near-field approach features a partitioned fluid-structure interaction model (FSI) combining the curvilinear immersed boundary (CURVIB) method of Borazjani and Sotiropoulos (J. Comput. Phys. 2008) and the two-phase flow level set formulation of Kang and Sotiropoulos (Adv. in Water Res. 2012) and is capable of solving complex free-surface flows interacting non-linearly with complex real life floating structures. The near-field solver is coupled with a large-scale wave and wind model based on the two-fluid approach of Yang and Shen (J. Comput. Phys. 2011) which integrates a viscous Navier-Stokes solver with undulatory boundaries for the motion of the air and an efficient potential-flow based wave solver. The large-scale turbulent wind is incorporated from the far-field solver to the near-field solver by feeding into the latter inlet boundary conditions. The wave field is incorporated to the near-field solver by using the pressure-forcing method of Guo and Shen (J. Comput. Phys. 2009) which has been appropriately adapted to the level set method. The algorithm for coupling the two codes has been validated for a variety of wave cases including a broadband spectrum showing excellent agreement when compared to theoretical results. Finally, the capabilities of the numerical framework are demonstrated by carrying out large eddy simulation (LES) of a floating wind turbine interacting with realistic ocean wind and wave conditions.

Antoni Calderer; Xin Guo; Lian Shen; Fotis Sotiropoulos

2014-01-01T23:59:59.000Z

63

Flexible dynamics of floating wind turbines  

E-Print Network [OSTI]

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

64

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

65

Effect analysis of Reliability, Availability, Maintainability and Safety (RAMS ) Parameters in design and operation of Dynamic Positioning (DP) systems in floating offshore structures.  

E-Print Network [OSTI]

?? The objective of this thesis is to identify, which hazards and failures in operation process will affect Reliability, Availability, Maintainability and Safety of floating… (more)

Ebrahimi, Ali

2010-01-01T23:59:59.000Z

66

Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion  

E-Print Network [OSTI]

of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating importance. The first full-scale offshore floating wind turbine in the world, Hywind, has been installed

Sweetman, Bert

67

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect (OSTI)

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

68

Floating Breakwaters  

Science Journals Connector (OSTI)

The engineering and subsequent construction of the “Bombardon” floating break-waters was an important episode in the historical development of floating break-water technology. These floating structures were el...

J. R. Headland

1995-01-01T23:59:59.000Z

69

The 5-megawatt power plant with 126 metre rotor diameter  

E-Print Network [OSTI]

The 5-megawatt power plant with 126 metre rotor diameter #12;Design data Rated power 5,000kW Cut-in speed 3.5m/s Rated wind speed 13.0m/s Cut-out speed 25.0m/s onshore 30.0m/s offshore Wind zone up to DIBt 3 Type class up to IEC Ib / GL offshore type class I Rotor Diameter 126.0m Rotor area 12,469m2

Firestone, Jeremy

70

MagLab Audio Dictionary: Megawatt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt? Now Playing: What's a Megawatt? Enable Javascript and Flash to stream the Magnet Minute Bryon Dalton Associated Links How We Keep the World's Most Powerful Magnets in...

71

NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

consumer waste. NWTC researchers gain valuable data from one of the first floating offshore wind prototypes. The National Renewable Energy Laboratory (NREL) is collaborating...

72

megatons to megawatts | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Working at NNSA Blog Home megatons to megawatts megatons to megawatts Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads...

73

EA-1992: Funding for Principle Power, Inc., for the WindFloat...  

Energy Savers [EERE]

2: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon EA-1992: Funding for Principle Power, Inc., for...

74

Experiment study on FLOATING JACKET: a new concept for deep water platform design  

E-Print Network [OSTI]

As more oil and gas are discovered in deeper water than ever before, the offshore industry has become increasingly interested in the design of advanced offshore production platforms. A new design concept called FLOATING JACKET (FJ) is studied...

Xu, Yufeng

2012-06-07T23:59:59.000Z

75

LNG-FPSO: Offshore LNG solution  

Science Journals Connector (OSTI)

The floating production, storage and offloading system for liquefied natural gas (LNG-FPSO), is a new conceptual unit ... offshore associated-gas resources. However, a real LNG-FPSO unit cannot be built unless so...

Yan Gu; Yonglin Ju

2008-09-01T23:59:59.000Z

76

New Reports Highlight Major Potential in Offshore Wind Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced a new report showing steady progress for the U.S. offshore wind energy industry over the past year. The report highlights 14 projects in advanced stages of development, together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States.

77

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

78

Offshore Wind Research (Fact Sheet)  

SciTech Connect (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

79

Definition of the Semisubmersible Floating System for Phase II of OC4  

SciTech Connect (OSTI)

Phase II of the Offshore Code Comparison Collaboration Continuation (OC4) project involved modeling of a semisubmersible floating offshore wind system as shown below. This report documents the specifications of the floating system, which were needed by the OC4 participants for building aero-hydro-servo-elastic models.

Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C.

2014-09-01T23:59:59.000Z

80

Definition of the Floating System for Phase IV of OC3  

SciTech Connect (OSTI)

Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

Jonkman, J.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Offshore Renewable Energy R&D (Fact Sheet), NREL (National Renewable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze...

82

MagLab - MagLab Dictionary: Megawatt (Transcript)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Megawatt As explained by Bryon Dalton, Magnet Operations director. Substation This substation furnishes the MagLab with its 56 megawatts of electricity. Our magnets here at the...

83

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

84

United States Launches First Grid-Connected Offshore Wind Turbine...  

Energy Savers [EERE]

partners conducted extensive design, engineering, and testing of floating offshore wind turbines, then constructed and deployed its 65-foot-tall VolturnUS prototype. At a scale of...

85

New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development  

Broader source: Energy.gov [DOE]

The Energy Department today released a new report showing progress for the United States offshore wind energy market over the past year, including two projects that have moved into the initial stages of construction, and 14 projects that are in the advanced stages of development– together representing nearly 4,900 megawatts of potential offshore wind energy capacity for the U.S.

86

float.h  

E-Print Network [OSTI]

/* float.h Defines implementation specific macros for dealing with floating point. Copyright (c) Borland International 1987 All Rights Reserved. */ #if __STDC__ ...

87

Megawatt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Megawatt Energy Systems Megawatt Energy Systems Jump to: navigation, search Name Megawatt Energy Systems Place Zionsville, Indiana Sector Renewable Energy, Services, Solar, Wind energy Phone number 317.797.3381 Website http://www.mwenergysystems.com Coordinates 39.9508733°, -86.261937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9508733,"lon":-86.261937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

EERE Leadership Celebrates Offshore Wind in Maine  

Office of Energy Efficiency and Renewable Energy (EERE)

The University of Maine utilized $12 million in funding from EERE to deploy the VolturnUS, a one-eighth scale prototype of a commercial scale offshore floating turbine. This is the first step toward developing an offshore wind industry in Maine. The University is setting a great example for the rest of the country for just how far we can go when we dedicate ourselves to clean energy innovation.

89

Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)  

SciTech Connect (OSTI)

The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

Maples, B.; Campbell, J.; Arora, D.

2014-10-01T23:59:59.000Z

90

SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10-Megawatt Supercritical Carbon 10-Megawatt Supercritical Carbon Dioxide Turbine to someone by E-mail Share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Facebook Tweet about SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Twitter Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Google Bookmark SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Delicious Rank SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on Digg Find More places to share SunShot Initiative: 10-Megawatt Supercritical Carbon Dioxide Turbine on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

91

Tribology offshore  

SciTech Connect (OSTI)

The papers presented in this book deal with the performance and reliability of plant and materials in offshore engineering operations. The rigours of the North Sea environment have proved to be particularly strenuous for offshore equipment. The lessons learned in the last few years of exploration are relevant to offshore sites throughout the world. The topics covered include lifting gear, compressors, pumps, valves and seals, lubricants and lubrication, underwater equipment, friction and wear associated with the anchorage of rigs and platforms, sliding contract and condition monitoring offshore.

Not Available

1985-01-01T23:59:59.000Z

92

St h ti d i l i fStochastic dynamic analysis of offshore wind turbines  

E-Print Network [OSTI]

1 St h ti d i l i fStochastic dynamic analysis of offshore wind turbines ­ with emphasis on fatigue analysis of offshore bottom-fixed wind turbines · Modelling and dynamic analysis of floating wind turbines ­ Stochastic dynamic analysis of offshore wind turbines; mooring system for wave energy converters · 2010 8

Nørvåg, Kjetil

93

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

94

13.022 Surface Waves and their Interaction With Floating Bodies, Spring 2002  

E-Print Network [OSTI]

Introduces the physics and mathematical modeling of linear and nonlinear surface wave interactions with floating bodies, e.g., ships and offshore platforms. Surface wave theory, including linear and nonlinear effects in a ...

Sclavounos, Paul D.

95

Hydrodynamics and drive-train dynamics of a direct-drive floating wind turbine   

E-Print Network [OSTI]

Floating wind turbines (FWTs) are considered a new lease of opportunity for sustaining growth from offshore wind energy. In recent years, several new concepts have emerged, with only a few making it to demonstration or ...

Sethuraman, Latha

2014-06-30T23:59:59.000Z

96

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

SciTech Connect (OSTI)

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

Not Available

2011-07-01T23:59:59.000Z

97

Floating Windfarms Corporation | Open Energy Information  

Open Energy Info (EERE)

Windfarms Corporation Windfarms Corporation Jump to: navigation, search Name Floating Windfarms Corporation Place Houston, Texas Zip 77060 Sector Wind energy Product Texas-based offshore wind power developer that uses floating and non-floating vertical axis wind turbines to generate power. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Simulation of large-amplitude motion of floating wind turbines using conservation of momentum  

E-Print Network [OSTI]

Environmental, aesthetic and political pressures continue to push for siting offshore wind turbines beyond sightSimulation of large-amplitude motion of floating wind turbines using conservation of momentum Lei equations of motion (EOMs) of a floating wind turbine system using the theorem of conservation of angular

Sweetman, Bert

99

AN ARTICULATED LIMNOLOGICAL FLOAT  

Science Journals Connector (OSTI)

Sot. 1964). However, there re- main as primary problems the cost of fabri- cating a float and placing it and reduction of the motion imparted to the float and itr.

2000-01-08T23:59:59.000Z

100

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spallation Neutron Source reaches megawatt power  

ScienceCinema (OSTI)

The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

Dr. William F. Brinkman

2010-01-08T23:59:59.000Z

102

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

103

First U.S. Grid-Connected Offshore Wind Turbine Installed Off...  

Office of Environmental Management (EM)

deepwater offshore floating wind turbine near Bangor. When the turbine was turned on and electricity began flowing through an undersea cable to Central Maine Power on June 13, the...

104

Development of High-Capacity Desalination Plant Driven by Offshore Wind Turbine  

Science Journals Connector (OSTI)

This paper presents a development of the desalination plant based on the concept of the Wind Energy Marine Unit (WEMU) which is the high-capacity offshore wind turbine with the floating rotor. The great potential...

Valery V. Cheboxarov; Victor V. Cheboxarov

2009-01-01T23:59:59.000Z

105

First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine  

Broader source: Energy.gov [DOE]

Castine, Maine - The University of Maine's Advanced Structures and Composites Center partnered with Maine Maritime Academy and Cianbro to launch a deepwater offshore floating wind turbine near Bangor. When the turbine was turned on and electricity began flowing through an undersea cable to Central Maine Power on June 13, the VolturnUS 1:8 became the first grid-connected floating offshore wind turbine in the Americas.

106

Offshore structures  

Science Journals Connector (OSTI)

... SIR,-We have had some experience with modelling offshore structures in the laboratory, and wish to call attention to the need for better ... have already occurred have been serious enough, but the failure of one of the giant rigs or platforms now being planned would be a catastrophe of unprecedented proportions.

CHESLEY J. POSEY; RICHARD SILVESTER

1975-11-20T23:59:59.000Z

107

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

108

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract N/A Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Citation County of Imperial Planning Department. 1979. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility. (!) : WESTEC SERVICES, INC.. Report No.: N/A. Retrieved from

109

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

110

Overview o floating point  

E-Print Network [OSTI]

condition codes and branches are same as for single-precision o absolute value and negation can Co-processor o Integer, BCD, and floating point representations o floating point have sign instructions) or even popped twice (FCOMPP) o tests set condition codes: - C0: less or unordered

Biagioni, Edoardo S.

111

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11  

Broader source: Energy.gov (indexed) [DOE]

Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters October 23, 2013 - 10:52am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects representing over 3,800 megawatts (MW) of capacity reaching an advanced stage of development. Further, the report highlights global trends toward building offshore turbines in deeper waters and using larger, more efficient turbines in offshore wind farms, increasing the amount of electricity delivered to consumers.

112

Multi-Megawatt Power System Trade Study  

SciTech Connect (OSTI)

A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics systems capable of operating at high temperatures. The gas-Brayton systems showed an apparent specific mass advantage (3.53 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used, but reconciling differences in conservatism in the design algorithms used would make results much more comparable. Brayton systems eliminate the need to deal with two-phase working fluid flows in the microgravity environment of space.

Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis

2002-02-01T23:59:59.000Z

113

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

114

Topsides equipment, operating flexibility key floating LNG design  

SciTech Connect (OSTI)

Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

Yost, K.; Lopez, R.; Mok, J. [Mobil E and P Technology Co., Dallas, TX (United States)

1998-03-09T23:59:59.000Z

115

Sandia National Laboratories: Offshore Wind RD&D: Large Offshore...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Offshore Rotor Development Offshore Wind RD&D: Large Offshore Rotor Development Overview Sandia National Laboratories Wind Energy Technologies Department, creates and...

116

Improving Floating Point Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

117

The floating water bridge The floating water bridge  

E-Print Network [OSTI]

The floating water bridge The floating water bridge Elmar C. Fuchs1 , Jakob Woisetschläger2 , Karl, a stable water connection forms spontaneously, giving the impression of a floating water bridge. A detailed this bridge. 1. Introduction Water undoubtedly is the most important chemical substance in the world. Many

Podgornik, Rudolf

118

Mass Megawatts Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Megawatts Wind Power Inc Megawatts Wind Power Inc Jump to: navigation, search Name Mass Megawatts Wind Power Inc Address 95 Prescott Street Place Worcester, Massachusetts Zip 01605 Sector Wind energy Product Development of low-cost, wind energy production systems Website http://www.massmegawatts.com/ Coordinates 42.2776492°, -71.7996281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2776492,"lon":-71.7996281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Chapter 6 - Offshore Structural Analysis  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the primary considerations that the design engineer should bear in mind during the initial design and subsequent structural analysis. The designer is faced with a large number of rules, codes, standards, and specifications describing the general policy for structural systems and the detailed design of structural components, which includes government requirements, certification/classification authorities, and other technical documents. The notation “Structures” refers to all types of marine units ranging from floating ship-shaped vessels to bottom founded platforms. Emphasis has been placed on ship-shaped structures. Consideration is also given to column-supported structures, e.g., semi-submersibles, tension leg platforms, spars, and mooring buoys, etc., and also to steel bottom founded offshore structures, such as fixed steel jackets. The main output of the planning process is a “Design Basis,” describing the criteria and a “Design Brief,” describing the procedure to be followed and software to be used. This chapter discusses the finite element method, which is a powerful computational tool that has been widely used in the design of complex marine structures over the decades. This chapter gives a general overview for the design of marine structures using a finite element modeling technique. It also addresses structural modeling defined by industry codes for fixed platforms and floating production installations. Throughout this chapter, emphasis is placed on the design process where the finite element analysis will be employed.

Yong Bai

2003-01-01T23:59:59.000Z

120

approximately 200 megawatts (MWs) of power from TCEP, making  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 200 megawatts (MWs) of power from TCEP, making approximately 200 megawatts (MWs) of power from TCEP, making it the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture. The 400-MW TCEP plant is a first-of-its-kind integrated gasification combined cycle (IGCC) poly-generation facility capable of capturing 90 percent of the carbon dioxide (CO 2 ) it produces. The $2.4-billion plant was a third round selection under DOE's Clean Coal Power Initiative

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Compound floating pivot micromechanisms  

DOE Patents [OSTI]

A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

Garcia, Ernest J. (Albuquerque, NM)

2001-04-24T23:59:59.000Z

122

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

123

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

124

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

125

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo Østgren; Trond Friisø

2014-10-01T23:59:59.000Z

126

Offshore Wind Development 2011  

Science Journals Connector (OSTI)

Growth in the European offshore market will depend principally on the ability ... manufacturing capacity, and the development of specialized offshore wind turbines with their own manufacturing supply chain are...

Mark J. Kaiser; Brian F. Snyder

2012-01-01T23:59:59.000Z

127

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

128

Offshore Wind Geoff Sharples  

E-Print Network [OSTI]

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

129

Hidden force floating ice  

E-Print Network [OSTI]

Because of the segmental specific-heat disparity of the hydrogen bond (O:H-O) and the Coulomb repulsion between oxygen ions, cooling elongates the O:H-O bond at freezing by stretching its containing angle and shortening the H-O bond with an association of larger O:H elongation, which makes ice less dense than water, allowing it to float.

Chang Q. Sun

2015-01-17T23:59:59.000Z

130

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the  

Broader source: Energy.gov (indexed) [DOE]

Maine Project Launches First Grid-Connected Offshore Wind Turbine Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating platform wind turbine to be deployed in the world - strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy sources. "Developing America's vast renewable energy resources is an important part of the Energy Department's all-of-the-above strategy to pave the way

131

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

132

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

133

Motion of floating wind turbines.  

E-Print Network [OSTI]

?? Motion of floating wind turbines has been studied. A literature study on different concepts and what tools are available for simulating them is presented.… (more)

Linde, Børge

2010-01-01T23:59:59.000Z

134

Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher power-cycle efficiency and cycle components that are more compact.

135

DOE to Debut a Dynamic 5-Megawatt Dynamometer  

Broader source: Energy.gov [DOE]

Boulder, Colorado -- As wind turbine capacity continues to grow, so does the need to test the electrical and mechanical power-producing components of those turbines. Currently, only a few test facilities worldwide have the capability to test wind turbine drivetrains with capacity ratings up to 5 megawatts--and DOE's National Wind Technology Center at the National Renewable Energy Laboratory is now one of them.

136

Strategies and technologies in offshore farming  

Science Journals Connector (OSTI)

A more restrictive attitude to inshore farming, in addition to positive biological findings among offshore farmed fish, have increased the demand for suitable offshore fish farming cages/systems. To develop such a cage/system, the requirements of the fish, the fish farmer, the insurance companies, the authorities and the moorings must be considered. The existing offshore concepts can be classified into: (1) simple flexible one-net bag cages; (2) integrated stiff semi-submersible one-net bag constructions; (3) simple stiff poly-net bag cages; (4) integrated stiff poly-net bag constructions; (5) submersible and submerged cages. An example from each group is described. The Bridgestone cage and the Farmocean system, the only offshore concepts that have been in commercial use for some years, are compared with respect to strength and management. The other concepts are evaluated in various parts. A suitable offshore concept should, in general, consist of a stable, strong and safe platform that should be easy and safe to tow, moor and board. It should allow a proper attachment of the net bag (preferably round, ?15 m deep and 5000 m3 in volume), and guarantee its strength and shape during all weather conditions. The fish should be fed by means of a computer-controlled automatic feeder. Faster growth, lowered mortality and reduced visceral fat content are reported among offshore farmed fish compared with those farmed inshore. A lower degree of self-pollution will also be a consequence of moving larger and deeper cages/systems offshore. The tentative rules for the type approval of floating fish farming units that have been presented by “Det norske Veritas” (DnV) in Norway will be positive for the fish farming business if it starts to be valid and cover the rest of the fish farming countries. Despite the higher investment required for the offshore cages/systems, it has been indicated that there is a better economic result and that the cost of producing 1 kg of fish is lower than in conventional fish farms. As the single-net bag concept represents a lower risk for the fish farmer, insurance company and veterinary authority, it will probably be the preferred concept.

Tore Sveälv

1991-01-01T23:59:59.000Z

137

Floating solar pool heater  

SciTech Connect (OSTI)

A floating solar heater for swimming pools is disclosed which includes a top cover, a vertical outer side wall with inclined inner side wall segments connected thereto, an outside rim and a bottom wall. The inner side wall segments are octagonal, coated with light reflective material, and aid in reflecting the sun's rays to heat the space inside the walls formed by the cover which dead air space also provides for floatation of the heater. The bottom wall is heated by direct sun inpingement and by the air in contact with it and is formed of a material having high heat conductivity.

McCluskey, J.E.

1981-08-18T23:59:59.000Z

138

Offshore Rankine Cycles.  

E-Print Network [OSTI]

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles… (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

139

Offshore Structure Design and Development  

Science Journals Connector (OSTI)

...installation and operation of offshore structures for oil and gas exploration and production...service. The importance of offshore oil and gas may be judged by the...exploration investments will go to offshore prospects in future years...

1982-01-01T23:59:59.000Z

140

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: Offshore Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Offshore Publications Jason Magalen, Craig Jones, and Jesse Roberts, Offshore Wind Guidance Document: Oceanography and Sediment Stability, Development of a Conceptual...

142

Offshore Sulfur Comes In  

Science Journals Connector (OSTI)

Offshore Sulfur Comes In ... "The deposit is a major new source of sulfur," say Hines H. Baker, president of Humble Oil, and Langbourne M. Williams, president of Freeport Sulphur. ... Humble's deposit, known as Grand Isle (Block 18), was discovered in the course of offshore oil exploration and it ranks among the most important sulfur discoveries of recent years. ...

1956-10-01T23:59:59.000Z

143

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

144

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

145

Chapter 3 - Safety Offshore  

Science Journals Connector (OSTI)

This chapter focuses on specific issues to do with managing safety in offshore oil and gas facilities. The distinctions between drilling, pipelines and production are described. Offshore special issues include congestion, the number of people onboard, hurricanes/cyclones and dropped objects.

Ian Sutton

2014-01-01T23:59:59.000Z

146

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

147

The right size matters: Investigating the offshore wind turbine market equilibrium  

Science Journals Connector (OSTI)

Abstract Although early experiences indicate that the maturity of deployed technology might not be sufficient for operating wind farms in large scale far away from shore, the rapid development of offshore wind energy is in full progress. Driven by the demand of customers and the pressure to keep pace with competitors, offshore wind turbine manufacturers continuously develop larger wind turbines instead of improving the present ones which would ensure reliability in harsh offshore environment. Pursuing the logic of larger turbines generating higher energy yield and therefore achieving higher efficiency, this trend is also supported by governmental subsidies under the expectation to bring down the cost of electricity from offshore wind. The aim of this article is to demonstrate that primarily due to the limited wind resource upscaling offshore wind turbines beyond the size of 10 MW (megawatt) is not reasonable. Applying the planning methodology of an offshore wind project developer to a case study wind farm in the German North Sea and assessing energy yield, lifetime project profitability and levelized cost of electricity substantiate this thesis. This is highly interesting for all stakeholders in the offshore wind industry and questions current subsidy policies supporting projects for developing turbines up to 20 MW.

Nikolaus Ederer

2014-01-01T23:59:59.000Z

148

Floating Silicon Method  

SciTech Connect (OSTI)

The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

Kellerman, Peter

2013-12-21T23:59:59.000Z

149

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

150

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Models Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines. Coupling wind turbines and floating platforms requires complex computer models. Land- based wind turbines are designed and analyzed using simulation tools, called computer-aided engineering (CAE) design tools, that are capable of predicting a design's dynamic response to

151

Electrically floating, near vertical incidence, skywave antenna  

DOE Patents [OSTI]

An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

2014-07-08T23:59:59.000Z

152

Verification of New Floating Capabilities in FAST v8: Preprint  

SciTech Connect (OSTI)

In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.

Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.

2015-01-01T23:59:59.000Z

153

offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

154

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

155

Chapter 3 - Offshore Platforms  

Science Journals Connector (OSTI)

Abstract Modern offshore crude oil and natural gas exploration—the search for likely environments where crude oil and natural gas may exist in the rock formations that are beneath the surface of the waterways of the world. In addition, offshore operations include transporting crude oil and natural gas from their point of production offshore to refineries and plants on land. Very little refining of the crude oil and natural gas is carried out on the production platform. This chapter focuses on exploration, drilling, and production of crude oil and natural gas and the wide range of technologies involved as well as the additional technologies that relate to a marine environment necessary for offshore activities.

James G. Speight

2015-01-01T23:59:59.000Z

156

Magnolia Goes Offshore  

Science Journals Connector (OSTI)

Magnolia Goes Offshore ... It will be put to use in early 1956, when the company launches an attempt to locate oil in the Gulf of Mexico near the mouth of the Mississippi River. ...

1955-12-12T23:59:59.000Z

157

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

158

Wind Offshore Port Readiness | Department of Energy  

Office of Environmental Management (EM)

Wind Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore...

159

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

160

Comparison of Second-Order Loads on a Semisubmersible Floating Wind Turbine: Preprint  

SciTech Connect (OSTI)

As offshore wind projects move to deeper waters, floating platforms become the most feasible solution for supporting the turbines. The oil and gas industry has gained experience with floating platforms that can be applied to offshore wind projects. This paper focuses on the analysis of second-order wave loading on semisubmersible platforms. Semisubmersibles, which are being chosen for different floating offshore wind concepts, are particularly prone to slow-drift motions. The slack catenary moorings usually result in large natural periods for surge and sway motions (more than 100 s), which are in the range of the second-order difference-frequency excitation force. Modeling these complex structures requires coupled design codes. Codes have been developed that include turbine aerodynamics, hydrodynamic forces on the platform, restoring forces from the mooring lines, flexibility of the turbine, and the influence of the turbine control system. In this paper two different codes are employed: FAST, which was developed by the National Renewable Energy Laboratory, and aNySIM, which was developed by the Maritime Research Institute Netherlands. The hydrodynamic loads are based on potential-flow theory, up to the second order. Hydrodynamic coefficients for wave excitation, radiation, and hydrostatic forces are obtained with two different panel codes, WAMIT (developed by the Massachusetts Institute of Technology) and DIFFRAC (developed by MARIN). The semisubmersible platform, developed for the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation project is used as a reference platform. Irregular waves are used to compare the behavior of this platform under slow-drift excitation loads. The results from this paper highlight the effects of these loads on semisubmersible-type platforms, which represent a promising solution for the commercial development of the offshore deepwater wind resource.

Gueydon, S.; Duarte, T.; Jonkman, J.; Bayati, I.; Sarmento, A.

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

ScienceCinema (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2014-06-10T23:59:59.000Z

162

NREL: Wind Research - Offshore Design Tools and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Tools and Methods Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations including shallow water, transitional depth, and floating systems. With DOE's support, NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. It has state-of-the-art capabilities for full dynamic system simulation over a

163

Offshore Wind Project Surges Ahead in South Carolina | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina October 13, 2010 - 11:21am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE In the parking lot of Coastal Carolina University's Center for Marine and Wetland Studies (CMWS) in Conway, South Carolina, sit six buoys just back from sea. For 14 months, they were floating miles off the coasts of Myrtle Beach and Winyah Bay, as part of the Palmetto Wind Research Project in South Carolina, taking wind speed measurements for a study that could lay the foundation for an offshore wind farm. "It's been cooking along under the radar," said Paul Gayes, director of the CMWS, which partnered with local utility Santee Cooper. "We've

164

Floating Robots Track Water Flow With Smartphones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Floating Robots Track Water Flow, Stream Data via Smartphones Floating Robots Track Water Flow, Stream Data via Smartphones May 9, 2012 | Tags: Carver Jon Bashor, Jbashor@lbl.gov,...

165

GAOH Offshore | Open Energy Information  

Open Energy Info (EERE)

GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

166

Applicability ranges for offshore oil and gas production facilities  

Science Journals Connector (OSTI)

In the early stages of the selection process for the hardware to exploit an offshore petroleum reservoir, it is important to be able to identify rapidly which production facility type(s) are likely to deliver the greatest value. This paper explores key features and constraints of the ten common fixed, floating and subsea facility options. Both shallow and deepwater are considered, along with regional variations. It is shown that facility applications may be categorised in a very simple matrix form, with the water depth and well count being particularly important drivers of facility choice.

Beverley F. Ronalds

2005-01-01T23:59:59.000Z

167

Baltic oil: Moving offshore  

Science Journals Connector (OSTI)

... the consortium of Soviet, Polish and East German oil interests, will sink its first offshore bore-hole in the Baltic. This move follows four years of intensive prospecting, which ... findings. For a time, plans were afort to buy or hire a Vexco drilling rig, but when these had to be abondoned for lack of hard currency, the shut ...

Vera Rich

1980-06-19T23:59:59.000Z

168

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

169

CONTENTS Japan Completes First Offshore  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Japan Completes First Offshore Japan Completes First Offshore Production Test .............................1 New Seismic Data Over Known Hydrate Occurrences in the Deepwater Gulf of Mexico .........3 Gas Hydrate Reservoirs in the Offshore Caribbean Region of Colombia ..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used to Characterize Hydrate- Bearing Sediments from The Nankai Trough ..............................19 Using Noble Gas Signatures to Fingerprint Gas Streams Derived from Dissociating Methane Hydrate .......................................... 23 Announcements ...................... 27 * North Slope Oil and Gas Lands Set Aside for Methane Hydrate Research * 2014 Offshore Technology Conference to Have Sessions on

170

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

171

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network [OSTI]

Press; 1968. [11] Offshore Staff. Deep sea drillingproject completes second leg. Offshore 1969:67–72. [12] Weeks LG. Offshore operations around the world. Offshore

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

172

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

173

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

174

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

175

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

176

Energy Solution for Floating LNG Production System.  

E-Print Network [OSTI]

?? This report considers different energy solutions for a floating LNG production vessel. The two alternatives analyzed are gas turbine and steam turbine. In addition… (more)

Andersen, Magnus Nordahl

2012-01-01T23:59:59.000Z

177

Dynamic Response of Floating Wind Turbines.  

E-Print Network [OSTI]

?? In this thesis the extreme values of tension in the mooring lines on Hywind Demo is investigated. Hywind Demo is a floating wind turbine… (more)

Neuenkirchen Godø, Sjur

2013-01-01T23:59:59.000Z

178

Recordkeeping for Offshore Course Offerings Guideline  

E-Print Network [OSTI]

Guideline Recordkeeping for Offshore Course Offerings Guideline Policy Supported: Recordkeeping and operation of Offshore Courses. Contact Officer: Manager, Records Management Phone: 9360 2162 Printed copies outlines responsibilities for managing records in all formats associated with Offshore Courses

179

44 MArch 2006 Can offshore aquaculture  

E-Print Network [OSTI]

44 MArch 2006 Can offshore aquaculture of carnivorous fish be sustainable? Case studies from opera- tions further offshore. The United States is paving the technological road to sustainable development of offshore aquaculture through university-industry-government partnerships. Emerging technology

Miami, University of

180

Offshore Aquaculture in the United States  

E-Print Network [OSTI]

Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities). 2008. Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities;Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities Prepared

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Japan Completes First Offshore Production Test .............................1  

E-Print Network [OSTI]

1 CONTENTS Japan Completes First Offshore Production Test .............................1 New Reservoirs in the Offshore Caribbean Region of Colombia..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used

182

MIT/Marine Industry Collegium Opportunity Brief: Advanced composites for offshore structures. Held in Cambridge, Massachusetts on October 30-31, 1991  

SciTech Connect (OSTI)

Synopses of Presentations: An Overview of Advanced Structural Composites for Offshore Structures; High-Performance Composites for Deepwater Risers; Failure and Damage Mechanisms in Composites; Environmental Degradation of Composites; Composites Manufacturing; Steel-Concrete-Steel Sandwich Composite Construction for Permanently Floating Platforms; High-Strength Cement Composites for Marine Applications; Minimum Weight Design of Foam Core Sandwich Panels; Design of Fiber Reinforced Brittle and Quasi-Brittle Matrix Composites for Marine Applications; Offshore Applications and Requirements for Use of Advanced Composites; Polymer Composites in Structures; Non-Conventional Profiles of Composites for Structural Applications; Composite in Construction Require a Structural Design System; Economic Evaluation of Composites for Offshore Use.

Moore, J.

1991-01-01T23:59:59.000Z

183

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

SciTech Connect (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

184

Electrification of offshore petroleum installations with offshore wind integration  

Science Journals Connector (OSTI)

Electric power supply to oil and gas platforms is conventionally provided by gas turbines located on the platforms. As these gas turbines emit considerable amounts of CO2 and NOx, it is desirable to find alternative solutions. One alternative is to feed the platforms from the onshore power system via subsea power cables, which already have been implemented on some platforms in the Norwegian part of the North Sea. The paper studies a cluster of petroleum installations in this geographic area, connected to the Norwegian onshore power system through an HVDC voltage link. In the study, an offshore wind farm is also connected to the offshore AC power system. The main focus is investigation of transient stability in the offshore power system, and several fault cases have been studied for different levels of wind power generation. Simulations show that faults on the offshore converter platform can be critical due to the dependency of the reactive power delivered by the HVDC link to the offshore AC system. However, it is shown that local wind power production matching the offshore power demand will improve both voltage- and frequency-stability. Further on, it is indicated that offshore reactive power injections or alternative wind farm control topologies could improve voltage stability offshore.

Jorun I. Marvik; Eirik V. Øyslebø; Magnus Korpås

2013-01-01T23:59:59.000Z

185

Offshore Wind Advanced Technology Demonstration Projects | Department...  

Office of Environmental Management (EM)

will help address key challenges associated with installing full-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

186

Energy Department Announces Offshore Wind Demonstration Awardees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

187

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint venture formed to exploit offshore wind...

188

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

189

Developing Integrated National Design Standards for Offshore...  

Broader source: Energy.gov (indexed) [DOE]

Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis...

190

Scira Offshore Energy | Open Energy Information  

Open Energy Info (EERE)

Scira Offshore Energy Jump to: navigation, search Name: Scira Offshore Energy Place: Lowestoft, Suffolk, United Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the...

191

Sandia National Laboratories: Quantifying Offshore Wind Scour...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyComputational Modeling & SimulationQuantifying Offshore Wind Scour with Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Quantifying Offshore Wind Scour with...

192

Hull/mooring/riser coupled dynamic analysis of a floating platform in time domain  

E-Print Network [OSTI]

this program is about ten times faster than its sibling based on the same FEM theory given by D. L. Garrett in 19g2. The Present Case Study In order to examine the benefits of non-linear coupled dynamic analysis of floating offshore structures with flexible... dynamic analysis, a finite-element-method (FEM) program WINPOST was used (e. g. Kim, 1997; Ran and Kim, 1997). The mooring dynamics program was based on a global-coordinate- based FEM (Garrett, 1982), which is expected to be more efficient than...

Zheng, Weizhong

2000-01-01T23:59:59.000Z

193

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

194

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

195

Brazoria Offshore | Open Energy Information  

Open Energy Info (EERE)

Brazoria Offshore Brazoria Offshore Jump to: navigation, search Name Brazoria Offshore Facility Brazoria Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 28.764°, -95.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.764,"lon":-95.33,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Vertical pump with free floating check valve  

DOE Patents [OSTI]

A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

Lindsay, Malcolm (O'Hara Township, Allegheny County, PA)

1980-01-01T23:59:59.000Z

197

Large Column-Supported Floating Platforms  

Science Journals Connector (OSTI)

As slightly larger stable platforms were required, particularly for offshore petroleum exploration, the semi-submersible concept was developed. By placing the major...

R. J. Seymour; F. N. Spiess

1985-01-01T23:59:59.000Z

198

CONMOW: Condition Monitoring for Offshore Wind Farms  

E-Print Network [OSTI]

practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

199

Offshore Wind Turbines and Their Installation  

Science Journals Connector (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

200

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena  

E-Print Network [OSTI]

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena. For the development of a purification procedure, knowledge about the chemical state of the different elements present-components are of different origin: Gaseous impurities include oxygen, nitrogen and water. The construction materials

McDonald, Kirk

202

MARS15 study of the Energy Production Demonstrator Model for Megawatt  

E-Print Network [OSTI]

MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

McDonald, Kirk

203

4C Offshore Limited | Open Energy Information  

Open Energy Info (EERE)

4C Offshore Limited 4C Offshore Limited Jump to: navigation, search Name 4C Offshore Limited Place Suffolk, United Kingdom Country United Kingdom Product Project planning, consulting for offshore industries (wind, oil, gas) Year founded 2009 Company Type For Profit Company Ownership Private Small Business No Affiliated Companies 4C Offshore Limited Technology Offshore Wind Phone number +44 (0)1502 509260 Website http://www.4coffshore.com/ References 4C Offshore website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 4C Offshore Limited is a company based in Suffolk, United Kingdom. 4C Offshore is an independent marine consulting firm, that provides advice and consulting services in offshore development, particularly renewables and

204

Proposed Evanston Offshore Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evanston Offshore Wind Farm Evanston Offshore Wind Farm August 1, 2011 Monday, August 1, 2011 Off Shore Wind Farm FAQ Document available from http://www.greenerevanston.org/ at the Renewable Energy Task Force tab Monday, August 1, 2011 City Manager Commits to City to sign onto Kyoto emissions reduction goals Wind Farm Timeline April 2006 Summer 2007 Fall 2008 February 2008 April 2010 March 2011 July 2011 Network for Evanston's Future proposes joint climate planning effort CGE Formed and Renewable Energy Task Force formed - Wind farm concept begun ECAP passed by City Council with 1st version of proposed Offshore Wind Farm included Offshore Wind Farm RFI unanimously passed by City Council Mayor Tisdahl appointments Committee on the Wind Farm City Council

205

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

207

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...effect temporary simple repairs underwater but the...for the submarine repair of offshore platforms...possibility exists that pipelines at this depth may require local repair. For such simple...connection of bolts for patch repairs etc. and...

1976-01-01T23:59:59.000Z

208

EA-1985: Virginia Offshore Wind Technology Advancement Project...  

Broader source: Energy.gov (indexed) [DOE]

5: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia EA-1985: Virginia Offshore Wind Technology Advancement...

209

2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More...

210

Assessment of Offshore Wind Energy Resources for the United States...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind...

211

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

212

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

213

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the Full Map Today the Energy Department announced investments in seven offshore wind demonstration projects. These projects are part of a broader effort to launch an offshore wind industry in the United States, and support innovative offshore installations for commercial deployment by 2017.

214

Floating Power Plant A S FPP | Open Energy Information  

Open Energy Info (EERE)

Power Plant A S FPP Power Plant A S FPP Jump to: navigation, search Name Floating Power Plant A/S (FPP) Address Stenholtsvej 27 Place Fredensborg, Denmark Zip DK-3480 Sector Wind energy Product Fredensborg-based company commercialising developments in the wave and wind energy sectors. Poseidon is the company's core development being tested at the site of an existing Dong offshore wind plant. Phone number 45 3391 9120 Website http://www.poseidonorgan.com Coordinates 55.978295°, 12.402055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.978295,"lon":12.402055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

New Report Characterizes Existing Offshore Wind Grid Interconnection...  

Office of Environmental Management (EM)

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

216

wind offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description This dataset presents summary information related to world wind energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU wind offshore Wind Power wind power capacity world Data application/vnd.ms-excel icon Excel spreadsheet, data on multiple tabs (xls, 114.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period through 2009 License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

217

offshore resource | OpenEI  

Open Energy Info (EERE)

resource resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

218

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

219

Definition: Offshore Wind | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Offshore Wind (Redirected from Offshore Wind) Jump to: navigation, search Dictionary.png Offshore Wind Wind turbine installations built near-shore or further offshore on coastlines for commercial electricity generation.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available Related Terms wind turbine, wind farm, near-shore, offshore References ↑ http://en.wikipedia.org/wiki/Offshore_wind_power Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Offshore_Wind&oldid=586583" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

220

AWEA Offshore Windpower Conference & Exhibition 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AWEA Offshore Windpower Conference & Exhibition 2014 AWEA Offshore Windpower Conference & Exhibition 2014 October 7, 2014 12:00PM EDT to October 8, 2014 9:00PM EDT Atlantic City,...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

American Wind Energy Association Offshore WINDPOWER Conference...  

Broader source: Energy.gov (indexed) [DOE]

Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

222

Mari Voldsund Exergy analysis of offshore  

E-Print Network [OSTI]

Mari Voldsund Exergy analysis of offshore oil and gas processing Doctoral thesis for the degree my contact persons, helping out both with administrative issues, and with matters concerning offshore

Kjelstrup, Signe

223

U.S. Offshore Wind Port Readiness  

Broader source: Energy.gov [DOE]

Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030.

224

Storage of Carbon Dioxide in Offshore Sediments  

Science Journals Connector (OSTI)

...Carbon Dioxide in Offshore Sediments 10...efforts to increase energy efficiency; efforts...sources, including renewable and nuclear energy; and investment...repositories. Offshore geological repositories...between Scotland and Norway and far out of...

Daniel P. Schrag

2009-09-25T23:59:59.000Z

225

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and  

E-Print Network [OSTI]

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and gas exploration, drilling and related maintenance tasks. Hercules Offshore operates in key oil producing sites at Hercules Offshore require precision control, global management and careful integration of both on

Fisher, Kathleen

226

Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes  

Science Journals Connector (OSTI)

Abstract Offshore wind is an important source of renewable energy and is steadier and stronger than onshore wind. Offshore areas not only have strong winds but also contain other potential renewable energy sources, such as ocean waves and tidal currents. Therefore, it is interesting to investigate the possibility to utilise these energy potentials simultaneously, particularly the combination of wind and ocean wave energy due to their natural correlation. For this reason, previous researchers have examined the use of a floating wind turbine (FWT) and a wave energy converter (WEC) on a single platform (Aubault et al., 2011; Peiffer et al., 2011; Soulard and Babarit, 2012). In this paper, a combined concept involving a spar-type FWT and an axi-symmetric two-body WEC is considered and denoted as STC. With respect to operational conditions, a previous study (Muliawan et al., 2013) indicates that the STC not only reduces the total capital cost but also increases the total power production compared to the use of segregated FWT and WEC concepts. As with other floating systems, the STC must be designed to ensure serviceability and survivability during its entire service life. One of the design criteria is the ultimate limit state (ULS), which ensures that the entire STC system will have adequate strength to withstand the load effects imposed by extreme environmental actions. Therefore, in the present study, coupled (wave- and wind-induced response mooring) analysis is performed using SIMO/TDHMILL in the time domain to investigate such responses of the STC system as mooring tension, spar-tower interface bending moment, end stop force, and contact force at the Spar-Torus interface under extreme conditions. Environmental conditions that pertain to the northern North Sea metocean data are selected and include operational, survival and 50-year conditions. Finally, the ULS level responses that are capital cost indicators for both FWT alone and for the STC system are estimated and compared.

Made Jaya Muliawan; Madjid Karimirad; Zhen Gao; Torgeir Moan

2013-01-01T23:59:59.000Z

227

OpenEI - offshore wind  

Open Energy Info (EERE)

/0 en Offshore Wind Resource /0 en Offshore Wind Resource http://en.openei.org/datasets/node/921 Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)

License
228

Scour around an offshore platform  

SciTech Connect (OSTI)

On the whole offshore scour has proved less of a problem than one might fear without being overly pessimistic, based on experience from other hydrotechnical works. The offshore setting, the environment as well as the structures, was simply beyond the reach to which conventional concepts and models could be safely extrapolated. The essentially empirical art of sediment engineering had to acquire a new empirical base. Today we know a lot more than we did a decade ago, however, our knowledge is still fragmentary, and we have no unifying theory yet.

Carstens, T.

1983-01-01T23:59:59.000Z

229

MFR PAPER 1179 Offshore Headboat Fishing in  

E-Print Network [OSTI]

MFR PAPER 1179 Offshore Headboat Fishing in North Carolina and South Carolina GENE R. HUNTSMAN. Bill Gulf Stream /I Mustang /I Comanche J. J. Operated in Fishing area t972 1973 OffShore X OUshore X X Ollshore X X Offshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X Inshore X X

230

Ankndigung Stellenausschreibung Forschungsprojekt Offshore-Solutions  

E-Print Network [OSTI]

Ankündigung Stellenausschreibung für das Forschungsprojekt Offshore-Solutions - Dienstleistungspotenziale von Werften und Reedereien als Lösungsanbieter während des Betriebs von Offshore Windparks und Reedereien in der Betriebsphase von Offshore-Windparks, ggf. bis zu einer Positionierung als

Berlin,Technische Universität

231

The Offshore Services Global Value Chain  

E-Print Network [OSTI]

The Offshore Services Global Value Chain ECONOMIC UPGRADING AND WORKFORCE DEVELOPMENT Karina & COMPETITIVENESS #12;The Offshore Services Global Value Chain: Economic Upgrading and Workforce Development "Skills & Competitiveness, Duke University Posted: November 17, 2011 #12;The Offshore Services Global Value Chain: Economic

Richardson, David

232

Offshore wind resource assessment through satellite images  

E-Print Network [OSTI]

1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

233

A Simple Model of Offshore Outsourcing,  

E-Print Network [OSTI]

A Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon JUNG THEMA Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon Jung and Jean Mercenier in the North as making explicit offshore outsourcing decisions to cheap-labor economies. Globalization results

Paris-Sud XI, Université de

234

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

235

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...conditions may occur more frequently in marine applications than on land. The handling...various reasons offshore platforms and other marine installations may be found to be in need...operating lives despite the rigours of wear and weather, and the maintenance of public...

1976-01-01T23:59:59.000Z

236

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network [OSTI]

. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking...

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

237

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

238

Effect of Forced Excitation on Wind Turbine with Dynamic Analysis in Deep Offshore Wind in Addition to Japanese Status of Offshore Projects  

Science Journals Connector (OSTI)

In this paper, we tried to estimate the effect of control method on floating offshore wind turbine. The experiment in the water basin revealed that traditional blade pitch control can amplify the platform pitch oscillation of floating wind turbine. In order to understand the physical phenomenon, we used aeroelastic simulation using GH Bladed. Turbine model is based on the turbine used in wind tunnel test. To simulate the pitching motion of floating platform, we used onshore wind turbine model with inflow with oscillating wind speed that simulates relative wind speed change from wind turbine's fore-aft pitching motion. Two types of control method are used; fixed pitch variable speed control which represents before rated state of large wind turbines and variable pitch variable speed control which represents over rated state of large wind turbines. Comparing the relation between wind speed change and rotor thrust force change of two control methods, we made it clear that traditional blade pitch control method make thrust force change almost the inverse of wind speed increase and decrease. From thrust force inverse to wind speed change, tower pitching motion can be amplified. That is, blade pitch control can induce negative damping on tower pitching motion. As a conclusion pitch control can increase larger blade load although pitch control aims to reduce the blade load.

Mitsumasa Iino; Toshiki Chujo; Makoto Iida; Chuichi Arakawa

2012-01-01T23:59:59.000Z

239

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

240

Improving the performance of floating solar pool covers  

SciTech Connect (OSTI)

Experimental and analytical analyses are presented for the evaluation of heat transfer through floating solar swimming pool covers. Two improved floating solar swimming pool cover designs are proposed and investigated in this paper. The results conclusively show that both new cover designs should have significantly better performance than conventional floating solar swimming pool covers.

Cole, M.A.; Lowrey, P. (San Diego State Univ., CA (United States). Dept. of Mechanical Engineering)

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Free Floating Atmospheric Pressure Ball Plasmas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Free-Floating Atmospheric Pressure Ball Plasmas Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos High School L Al NM 87544 Los Alamos, NM 87544 Presented at the PPPL Colloquium Sept. 17, 2008 U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA LA-UR-08-06284 Outline of this talk *A discussion of ball lightning reports in nature *How can ball plasmas be made in the laboratory? *Detailed experiments on long lived free floating *Detailed experiments on long-lived free-floating atmospheric pressure ball plasmas C i f l b b ll l i h "b ll *Comparison of laboratory ball plasmas with "ball lightning" *Summary U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

242

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

243

Hurricanes and Offshore Wind Farms  

Wind Powering America (EERE)

Hurricanes and Offshore Wind Farms Hurricanes and Offshore Wind Farms July 17, 2013 Man: Please continue to stand by. Today's conference will begin momentarily. Thank you. Coordinator: Welcome, and think you for standing by. At this time, all participants are in a listen only mode for the duration of today's call. Today's conference is being recorded. If you have any objections, you may disconnect at this time. Now I would like to turn the meeting over to Mr. Jonathan Bartlett. Sir you may begin. Jonathan Bartlett: Thank you. Good afternoon, this is Jonathan Bartlett. I'm speaking to you from the Department of Energy in Washington, D.C. Welcome everyone to the July Edition of the Wind Power in America webinar. This month we have two speakers, Joel Cline and Mark Powell will discuss the impacts of

244

CT Offshore | Open Energy Information  

Open Energy Info (EERE)

CT Offshore CT Offshore Place Otterup, Denmark Zip 5450 Sector Wind energy Product Denmark-based consultancy which provides assistance for project management, damage assessment and stabilization as well as other activities related to wind farms and subsea maintenance. Coordinates 55.543228°, 10.40294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.543228,"lon":10.40294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Offshore petroleum security: Analysis of offshore security threats, target attractiveness, and the international legal framework for the protection and security of offshore petroleum installations.  

E-Print Network [OSTI]

??The offshore petroleum industry is of critical importance to the global economy. Offshore petroleum installations are considered elements of critical national infrastructure in many nation-States… (more)

Kashubsky, Mikhail

2011-01-01T23:59:59.000Z

246

MHK Technologies/Hybrid Float | Open Energy Information  

Open Energy Info (EERE)

Float Float < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid Float.jpg Technology Profile Primary Organization PerpetuWave Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to be immersed in a wave front at once and thence moved upwards with the wave A further major feature of the Technology is the motion of the floats that due to the trailing arm type design move backwards as well as upwards so that the energy in the moving water and of any breaking waves on the floats is transferred to useable energy of the float by forcing the floats backwards as well as upwards This motion mimics the motion of an unattached float on the surface of the water as waves pass This is unique to our technology and combined with the large cross sectional area offered by the float design in the highest pulse loading possible This is repeated a number of times as a wave passes through with a resultant optimum energy extraction from the wave Below the vessel are fixed horizontal staliser plates that limit the r

247

World offshore energy loss statistics  

Science Journals Connector (OSTI)

Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 1970–2004. The impact of the 2004–2005 hurricane season in the Gulf of Mexico is summarized.

Mark J. Kaiser

2007-01-01T23:59:59.000Z

248

Design of a 6-DoF Robotic Platform for Wind Tunnel Tests of Floating Wind Turbines  

Science Journals Connector (OSTI)

Abstract Sophisticated computational aero-hydro-elastic tools are being developed for simulating the dynamics of Floating Offshore Wind Turbines (FOWTs). The reliabilty of such prediction tools for designers requires experimental validation. To this end, due to the lack of a large amount of full scale data available, scale tests represent a remarkable tool. Moreover, due to the combined aerodynamic and hydrodynamic contributions to the dynamics of FOWTs, experimental tests should take into account both. This paper presents the design process of a 6-Degrees-of-Freedom robot for simulating the dynamics of \\{FOWTs\\} in wind tunnel scale experiments, as a complementary approach with respect to ocean wind-wave basin scale tests. Extreme events were considered for the definition of the robot requirements and performance. A general overview on the possible design solutions is reported, then the machine architecture as well as the kinematic and dynamic analysis is discussed. Also a motion task related to a 5-MW Floating Offshore Wind Turbine nominal operating condition was considered and then the ability of the robot to reproduce such motions verified in terms of maximum displacements, forces and power, to be within the design boundaries.

I. Bayati; M. Belloli; D. Ferrari; F. Fossati; H. Giberti

2014-01-01T23:59:59.000Z

249

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

250

Will Offshore Energy Face “Fair Winds and Following Seas”?: Understanding the Factors Influencing Offshore Wind Acceptance  

Science Journals Connector (OSTI)

Most offshore energy studies have focused on measuring or ... the other surrounds a more general acceptance of offshore energy. Understanding what drives this second type ... s evaluations of the benefits and cos...

Mario F. Teisl; Shannon McCoy; Sarah Marrinan; Caroline L. Noblet…

2014-02-01T23:59:59.000Z

251

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

252

NREL: Wind Research - Offshore Wind Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

253

Tillamook Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Principle Power Developer Principle Power Location Offshore from Tillamook OR Coordinates 45.527°, -124.179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.527,"lon":-124.179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Galveston Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Wind Energy Systems Technology Developer Wind Energy Systems Technology Location Offshore from Galveston TX Coordinates 29.161°, -94.797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.161,"lon":-94.797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Can Oil Float Completely Submerged in Water?  

E-Print Network [OSTI]

Droplet formation in a system of two or more immiscible fluids is a celebrated topic of research in the fluid mechanics community. In this work, we propose an innovative phenomenon where oil when injected drop-wise into a pool of water moves towards the air-water interface where it floats in a fully submerged condition. The configuration, however, is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. The droplet contour is analyzed using edge detection. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number established the assumption of lubrication regime in the thin gap. A brief theoretical formulation also showed the temporal variation of the gap thickness

Nath, Saurabh; Chatterjee, Souvick

2013-01-01T23:59:59.000Z

256

Optimization of offshore natural gas field development.  

E-Print Network [OSTI]

?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

Johansen, Gaute Rannem

2011-01-01T23:59:59.000Z

257

Offshore Wind Technology Development Projects | Department of...  

Office of Environmental Management (EM)

optimized for installation and operation in the marine environment. Offshore wind turbines are frequently located far from shore, face greater potential for corrosion from...

258

Oregon Department of Energy Webinar: Offshore Wind  

Broader source: Energy.gov [DOE]

The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

259

Offshore Safety Regulations - The European perspective.  

E-Print Network [OSTI]

??The thesis consists of two parts which are closely interlinked together. Firstly, there is a description of the successful safety regimes in offshore oil and… (more)

Chourdaki, Dimitra

2012-01-01T23:59:59.000Z

260

Paraffin deposition in offshore oil production.  

E-Print Network [OSTI]

??The extreme environmental conditions typically encountered in offshore oil operations lead to a number of problems. Cool deep sea temperatures promote particle formation and deposition… (more)

Elphingstone, Gerald Mason

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

OFFSHORE CONTRACTS, : LIABILITY AND INDEMNITY REGIMES.  

E-Print Network [OSTI]

??The development phase of an offshore oil field involves a series of contracting activities which are no less complex than the projects themselves. Along the… (more)

Perivolaris, Ana Carolina

2008-01-01T23:59:59.000Z

262

Offshore Wind in NY State (New York)  

Broader source: Energy.gov [DOE]

NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

263

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

264

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

265

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

266

,"Federal Offshore California Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

267

,"Federal Offshore, Pacific (California) Proved Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

268

,"California State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release...

269

,"Federal Offshore, Pacific (California) Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",...

270

Deep Offshore and New Foundation Concepts  

Science Journals Connector (OSTI)

Abstract As the offshore wind power sector moves to deeper waters, new foundation concepts are being developed. The European Wind Energy Association (EWEA) has created a task force under its Offshore Wind Industry Group, to look specifically at the issues revolving around the development of deep offshore and new foundation concepts. Within this paper a comprehensive presentation of state-of-the-art concepts and their maturity is provided. In addition the main technical, economic and political challenges are discussed and recommendations are provided to accommodate the sustainable development of the deep offshore wind sector in Europe.

Arapogianni Athanasia; Anne Benedicte Genachte

2013-01-01T23:59:59.000Z

271

Condition Monitoring of Offshore Wind Turbines.  

E-Print Network [OSTI]

?? The growing interest around offshore wind power, providing at the same time better wind conditions and fewer visual or environmental impacts, has lead many… (more)

Wisznia, Roman

2013-01-01T23:59:59.000Z

272

Sandia National Laboratories: Offshore Wind Energy Simulation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

273

Structural reliability of offshore wind turbines.  

E-Print Network [OSTI]

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

274

IEEE Standard unifies arithmetic model Floating points  

E-Print Network [OSTI]

calls this quantity eps, which is short for machine epsilon. eps = 2^(­52) What is the output? a = 4/3 b of eps. The approximate decimal value of eps is 2.2204 · 10-16 . Either eps/2or eps can be called is rounded to the nearest floating-point number is eps/2. The maximum relative spacing between numbers is eps

Beron-Vera, Francisco Javier

275

Improving offshore communication by choosing the right coordination  

E-Print Network [OSTI]

Improving offshore communication by choosing the right coordination strategy Matthias Fabriek;Improving offshore communication by choosing the right coordination strategy Page 2 of 92 ABSTRACT This thesis researches communication and coordination in offshore custom software development (CSD) projects

Utrecht, Universiteit

276

Sandia National Laboratories: Innovative Offshore Vertical-Axis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

277

Electric power from offshore wind via synoptic-scale interconnection  

Science Journals Connector (OSTI)

...hub-height of modern offshore wind turbines. Our extrapolation...output of an offshore turbine at each selected station with wind speed measurements...Practical commercial offshore wind developments...minimum of 100 turbines at each location...

Willett Kempton; Felipe M. Pimenta; Dana E. Veron; Brian A. Colle

2010-01-01T23:59:59.000Z

278

An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion  

Science Journals Connector (OSTI)

Abstract A current trend in offshore wind is the quest for exploitation of ever deeper water sites. At depths between 50 m and 100 m a promising substructure is the column-stabilised semi-submersible floating type. This solution is currently being tested at full scale at the WindFloat and Fukushima Forward demonstrator sites in Portugal and Japan respectively. The semi-sub design class frequently adopts passive motion control devices based on the water entrapment principle, such as heave plates, tanks, and skirts. Whilst effective for small inclinations, these can underperform when the structure is inclined under wind loading. This study examines the alteration of potential hydrodynamics due to wind-induced trim (geometric non-linearity) and its impact on the wind turbine?s wave response with focus on heave plate performance. Firstly it is shown by using the boundary element approach that wind trim affects wave loading in the ocean wave band between 5 s and 15 s, and introduces hydrodynamic coupling typical of non-symmetric hulls. These features are incorporated in frequency-domain dynamic response analysis to demonstrate that said effects bear a significant impact on the turbine?s motion in waves. Accounting of heave plate excursion improves the assessment of the seaworthiness of floating wind turbine concepts, potentially leading to new design constraints.

Raffaello Antonutti; Christophe Peyrard; Lars Johanning; Atilla Incecik; David Ingram

2014-01-01T23:59:59.000Z

279

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network [OSTI]

squarely on offshore oil drilling, but contrary to what manyopposition to offshore oil drilling that would be comparableJE, editor. History of oil well drilling. Houston: Gulf

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

280

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network [OSTI]

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production.… (more)

Flatebø, Øystein

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Strategic Environmental Assessment in Norway's Offshore Oil and Gas.  

E-Print Network [OSTI]

??Strategic environmental assessment (SEA) is used as a policy tool in the management of offshore oil and gas. As offshore oil and gas exploration continues… (more)

Ohman, Tyra

2014-01-01T23:59:59.000Z

282

Robust Offshore Networks for Oil and Gas Facilities :.  

E-Print Network [OSTI]

??Offshore Communication Networks utilize multiple of communication technologies to eradicate any possibilities of failures, when the network is operational. Offshore Oil and Gas platforms and… (more)

Maheshwari, D.

2010-01-01T23:59:59.000Z

283

Assessment of Offshore Wind System Design, Safety, and Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of...

284

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Broader source: Energy.gov (indexed) [DOE]

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

285

SciTech Connect: Offshore Wind Jobs and Economic Development...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation) Citation Details In-Document Search Title: Offshore Wind Jobs and Economic Development...

286

DOE Announces Webinars on an Offshore Wind Economic Impacts Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

287

Louisiana Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million...

288

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

289

WINDExchange Webinar: Economic Impacts of Offshore Wind: Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs...

290

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

291

Offshore Resource Assessment and Design Conditions Public Meeting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's...

292

DOE Announces Webinars on Economic Impacts of Offshore Wind,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More...

293

New Report Highlights Trends in Offshore Wind with 14 Projects...  

Energy Savers [EERE]

Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced...

294

Advanced Offshore Wind Tech: Accelerating New Opportunities for...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

295

American Wind Energy Association Offshore WINDPOWER Conference & Exhibition  

Broader source: Energy.gov [DOE]

AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

296

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

297

Environmental Pollution in Offshore Operations [and Discussion  

Science Journals Connector (OSTI)

...Environmental Pollution in Offshore Operations [and Discussion...Gaskell B. White The oil industry has made contingency...as the North Sea, the oil companies have mutual...booms to minimize any oil that may be driven to...global mineral resources offshore policy pollution production...

1978-01-01T23:59:59.000Z

298

States' authority to veto offshore leasing limited  

Science Journals Connector (OSTI)

States' authority to veto offshore leasing limited ... In a controversial, 5-to-4 decision, the U.S. Supreme Court has ruled that coastal states do not have the authority to veto most of the leases granted by the federal government for offshore drilling and oil and natural gas explorations. ...

1984-01-23T23:59:59.000Z

299

Project X - a new multi-megawatt proton source at Fermilab  

E-Print Network [OSTI]

Project X is a multi-megawatt proton facility being developed to support intensity frontier research in elementary particle physics, with possible applications to nuclear physics and nuclear energy research, at Fermilab. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a future facility at the energy frontier.

Nagaitsev, S

2012-01-01T23:59:59.000Z

300

numerical models & information Systems, Nice: France (2013)" Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach  

E-Print Network [OSTI]

Abstract. This paper presents an approach for Environmental Impact Assessment through the use of geolocalized LCA approach, for fixed and floating offshore wind farms. This work was undertaken within the EUsponsored EnerGEO project, aiming at providing a versatile modeling platform for stakeholders allowing calculation, forecasting and monitoring of environmental impacts of different sources of energy. This paper described the geolocalized LCA approach, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms on global environnemental impacts are evaluated though the LCA approach. It takes into account the type of wind farm, the construction phase, all technical aspects, the operation and maintenance scheme and the decommissioning. It also includes geolocalized information such as wind resources, bathymetry, accessibility … Environmental impact parameters are accessible through a web service helping the decision makers in assessing the environnemental impacts. 1

Catherine Guermont; Lionel Ménard; Isabelle Blanc

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

302

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

303

Argo at PMEL: Intro http://floats.pmel.noaa.gov  

E-Print Network [OSTI]

, CTD -Check pneumatics -Replace batteries: alkaline -> lithium, increases float longevity -Check deployed in December 2007 �APEX APF-8 air pump limitation software -Prevents excess p

304

Floating Solar Chimney Technology: A Solar Proposal for China  

Science Journals Connector (OSTI)

The Floating Solar Chimney (FSC) Technology Power Plants, are made... • A large solar collector with a transparent roof that warms the air...

Christos Papageorgiou

2009-01-01T23:59:59.000Z

305

Evaluation of an approximate method for incorporating floating docks in harbor wave prediction models  

E-Print Network [OSTI]

coastal domains. However, floating structures such as floating breakwaters and docks are often encountered in the modeling domain. This makes the problem locally 3- dimensional. Hence it is problematic to incorporate a floating structure into the 2-d model...

Tang, Zhaoxiang

2005-11-01T23:59:59.000Z

306

MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC)  

E-Print Network [OSTI]

MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC) Fisheries and Marine Institute Memorial/PROGRAM APPLYING FOR: [ ] MED A1 Basic Safety [ ] Offshore Fire Team (OFT) [ ] Offshore Fire Team Recurrent Familiarization[ ] Offshore Survival Introduction (OSI) [ ] MED D Senior Officer [ ] HUET Helicopter Underwater

Oyet, Alwell

307

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource  

E-Print Network [OSTI]

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind

Pryor, Sara C.

308

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network [OSTI]

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

309

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs  

E-Print Network [OSTI]

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs Kiran Kumar Matam, prasanna}@usc.edu Abstract--Energy efficiency has emerged as one of the key performance metrics in scientific computing. In this work, we evaluate the energy efficiency of floating point matrix multipli

Prasanna, Viktor K.

310

A SIMULATION MODEL FOR FLOATING-GATE MOS SYNAPSE TRANSISTORS  

E-Print Network [OSTI]

A SIMULATION MODEL FOR FLOATING-GATE MOS SYNAPSE TRANSISTORS Kambiz Rahimi, Chris Diorio, Cecilia, Seattle, Washington ABSTRACT We propose an empirical simulation model for p-channel floating-gate MOS and accurate simulation model for the synaptic devices, many of these circuits were designed using equation

Diorio, Chris

311

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

312

Load Reduction of Floating Wind Turbines using Tuned Mass Dampers.  

E-Print Network [OSTI]

??Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to… (more)

Stewart, Gordon M

2012-01-01T23:59:59.000Z

313

Offshore Development Policy in the United States  

Gasoline and Diesel Fuel Update (EIA)

U.S. Legislation and Regulations Affecting U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Legislation and regulations regarding natural gas and oil exploration, development, and production from U.S. offshore lands developed over many decades in response to a variety of concerns and disputes that were most often engendered by competing priorities. This article discusses the evolution of offshore developments and the major legislation and regulations that have affected the natural gas and oil industry in the past 50 years. The most common early disputes revolved around ownership of coastal waters. Eventually, as offshore activities became more abundant, more complicated issues arose over the need to ensure that operations are accompanied by safety, equity, and the

314

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

315

Optimal Siting of Offshore Wind Farms  

Science Journals Connector (OSTI)

The goal of this study is finding the best location for constructing an offshore wind farm with respect to investment and operation costs and technical limitations. Wind speed, sea depth and distance between shor...

Salman Kheirabadi Shahvali…

2014-01-01T23:59:59.000Z

316

Visualization of vibration experienced in offshore platforms  

E-Print Network [OSTI]

In this thesis, I design and evaluate methods to optimize the visualization of vortex-induced vibration (VIV) in marine risers. VIV is vibration experienced by marine risers in offshore drilling platforms due to ocean ...

Patrikalakis, Alexander Marinos Charles

2010-01-01T23:59:59.000Z

317

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

318

,"LA, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

11RLASF1","RNGR9908RLASF1","RNGR9909RLASF1","RNGR9910RLASF1" "Date","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Louisiana--Stat...

319

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Current Catcher Wave Catcher This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOffshoreIslandsLtd&oldid76931...

320

Federal Offshore California Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Offshore Infrastructure Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOffshoreInfrastructureAssociatesInc&oldid769313...

322

Gulf of Mexico Federal Offshore Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

323

Expanders do payouts offshore North Sea  

SciTech Connect (OSTI)

Rich associated gas may be beneficially processed offshore, to yield high value condensate to be spiked into the crude, whilst still producing gas with an acceptable nett calorific value. Actual turbo expander operating experience on the Occidental Piper North Sea Platform has demonstrated that expanders are reliable offshore. This paper, describes both the process and mechanical aspects that affect the choice of an expander system for an offshore application. For a given typical rich associated gas, three process options are compared, Joule-Thompson expansion, external refrigeration and a turbo expander system. The process study illustrates that a turbo expander system is comparable for the offshore situation with the other two options. The paper also describes the mechanical features that should be incorporated into the specification of an expander for use on a platform topsides.

Barnwell, J.; Wong, W.

1984-02-01T23:59:59.000Z

324

Slow motion responses of compliant offshore structures  

E-Print Network [OSTI]

An efficient method is developed to predict slow motion responses of slender compliant offshore structures in the unidirectional irregular waves and currents. The environmental loads are computed using the modified Morison equation based on slender...

Cao, Peimin

2012-06-07T23:59:59.000Z

325

Investigation on installation of offshore wind turbines  

Science Journals Connector (OSTI)

Wind power has made rapid progress and should ... interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resou...

Wei Wang; Yong Bai

2010-06-01T23:59:59.000Z

326

Making Offshore Wind Areas Available for Leasing   

Broader source: Energy.gov [DOE]

When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEA) into auctionable leasing areas, the agency turned to DOE's National Renewable Energy Laboratory (NREL). Under an interagency agreement, wind energy experts from NREL helped develop a process to evaluate BOEM's designated offshore WEAs in terms of energy production, resource, water depth, and other physical criteria and delineate specific WEAs into two or more leasing areas.

327

Statistical energy analysis prediction of the response of offshore structures to random wave excitation  

Science Journals Connector (OSTI)

The principle of reciprocity is applied to dynamic response prediction of structures excited by ocean waves. It is shown that the modal wave force spectrum may be expressed in terms of the modal radiation damping coefficient. This leads to the familiar SEA result: that the damping controlled response of the resonator (a mode of an offshore structure) has an upper bound which occurs when the ratio of the radiation to the total damping approaches unity. This result is embodied in a general method for predicting the damping controlled response of a broad variety of oceanstructures. The method includes the effects of the highly directional nature of ocean wave spectra. Example calculations are presented for fixed and floating structures and the results of full scale tests are reported.

J. Kim Vandiver

1979-01-01T23:59:59.000Z

328

Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines  

SciTech Connect (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

Maples, B.; Hand, M.; Musial, W.

2010-10-01T23:59:59.000Z

329

A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade  

SciTech Connect (OSTI)

The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

Taylor, Gary [PPPL

2014-04-01T23:59:59.000Z

330

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

331

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

332

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

333

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

334

Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines  

Science Journals Connector (OSTI)

A large prestressed concrete bucket foundation (LPCBF) was used for the first offshore wind turbine in the Qidong sea area of Jiangsu Province in China. The most critical technique of the foundation is the self-floating towing technique based on a reasonable subdivision inside the bucket. To predict the dynamic behaviors of the LPCBF in waves supported by the air cushion the hydrodynamic software MOSES is used to simulate the three-dimensional motion of the foundation in the towing construction site. The prototype foundation models are established using MOSES with a water draft of 4?m 5?m and 6?m in given environmental conditions. The results show that the hydrodynamic responses of the large floater with air cushions depend not only on the wave conditions but also on the mass of the water column air cushion height and air pressure distribution. In addition the hydrodynamic characteristics can be tuned resulting in small dynamic responses in a particular sea state by changing the draft and water plug height. The floating technique of the LPCBF with supported air cushions in waves is highly competitive for saving cost while using few expensive types of equipment during the towing transportation.

Puyang Zhang; Hongyan Ding; Conghuan Le

2013-01-01T23:59:59.000Z

335

An economic analysis of Floating Liquefied Natural Gas (FLNG)  

E-Print Network [OSTI]

This report includes a discussion of the potential production of stranded natural gas reserves through the implementation of Floating Liquefied Natural Gas (FLNG) in a world of growing energy demand followed by an analysis ...

Marmolejo, Phillip Christian

2014-01-01T23:59:59.000Z

336

Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems  

E-Print Network [OSTI]

This paper presents case studies of two moderately sized ammonia refrigeration systems retrofitted for floating head pressure control. It also presents a parametric analysis to assist in selecting appropriate pressures in an ammonia refrigeration...

Barrer, P. J.; Jones, S. M.

337

Floating type ocean wave power station equipped with hydroelectric unit  

Science Journals Connector (OSTI)

The authors have invented the unique ocean wave power station, which is composed of the floating ... wave pitch and the counter-rotating type wave power unit, its runners are submerged in the ... as requested, be...

Shun Okamoto; Toshiaki Kanemoto; Toshihiko Umekage

2013-10-01T23:59:59.000Z

338

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

339

Advanced Technologies For Turbomachinery to Utilize Effectively Renewable Energies at Offshore  

Science Journals Connector (OSTI)

For the next leap in the sustainable energy exploitations we are under obligations not only to cope with the warming global environment but also to conserve natural ecosystems and to coexist with natures. This paper introduces the following advanced technologies in Kyushu Institute of Technology to utilize effectively the promising ocean and wind resources at the offshore. (1) Counter?Rotating Type Reversible Hydroelectric Unit which is composed of the tandem runners and the peculiar generator with the double rotational armatures is applicable to both rising and falling tides at the power station with the embankment in place of the traditional bulb type turbines. (2) Gyro?Type Reversible Hydraulic Turbine which is composed of some blades with the high aspect ratio is effective to utilize the tide power even at the shallow and/or the very low range of the tide. (3) Submerged Ocean Wave Power Unit where a pair of floats is lined up at the interval of one wave pitch and supports the vertical type hydroelectric unit submerged at the middle position can get velocity energy eight times higher than the traditional unit. (4) Intelligent Wind Power Unit which is composed of the tandem wind rotors and the double rotational armature type generator is suitable for the offshore wind farm.

Toshiaki Kanemoto

2010-01-01T23:59:59.000Z

340

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network [OSTI]

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Offshore Gross Withdrawals of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total Offshore 3,476,755 3,028,561 3,072,285 2,875,945 2,416,644 2,044,643 1977-2012 State Offshore 618,042 653,704 586,953 575,601 549,151 489,505 1978-2012 From Gas Wells 276,117 297,565 259,848 234,236 208,970 204,667 1978-2012 From Oil Wells 341,925 356,139 327,105 341,365 340,182 284,838 1978-2012 Federal Offshore 2,858,713 2,374,857 2,485,331 2,300,344 1,867,492 1,555,138 1977-2012 From Gas Wells 2,204,379 1,849,891 1,878,928 1,701,665 1,355,489 1,028,474 1977-2012 From Oil Wells 654,334 524,965 606,403 598,679 512,003 526,664 1977-2012 Alabama Total Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012 State Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012

342

E-Print Network 3.0 - autolifting floating drilling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7. Spar... that by one-third. o By producing more oil domestically though offshore drilling o Reducing our dependence... Ocean Explorer 12;Types of offshore drilling...

343

Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993  

SciTech Connect (OSTI)

This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

Francois, D.K.

1994-12-31T23:59:59.000Z

344

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

345

Apex Offshore Phase 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -77.12° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-77.12,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Apex Offshore Phase 2 | Open Energy Information  

Open Energy Info (EERE)

2 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -76.91° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-76.91,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

348

2012 & 2013 Offshore Wind Market & Economic Analysis Reports  

Broader source: Energy.gov [DOE]

The objective of these report is to provide a comprehensive annual assessment of the U.S. offshore wind market. Available for download are the 2012 & 2013 Offshore Wind Market & Economic Analysis full reports prepared by Navigant Consulting.

349

Prospects for Offshore Mineral Mining Remain in Doubt  

Science Journals Connector (OSTI)

Prospects for Offshore Mineral Mining Remain in Doubt ... Oil and gas exploration and exploitation offshore have been well established, and such sources are already supplying considerable quantities of energy and chemicals to the world economy. ...

JOSEPH HAGGIN

1988-11-07T23:59:59.000Z

350

New DOE Report Investigates Port Readiness for Offshore Wind...  

Energy Savers [EERE]

New DOE Report Investigates Port Readiness for Offshore Wind New DOE Report Investigates Port Readiness for Offshore Wind October 1, 2013 - 1:22pm Addthis This is an excerpt from...

351

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

352

National Offshore Wind Energy Grid Interconnection Study (NOWEGIS)  

Broader source: Energy.gov [DOE]

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

353

DOE Wind Program to Host Booth at Offshore WINDPOWER | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Wind Program to Host Booth at Offshore WINDPOWER DOE Wind Program to Host Booth at Offshore WINDPOWER September 12, 2014 - 10:16am Addthis The Department of Energy's Wind...

354

Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

-- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

355

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities  

Broader source: Energy.gov [DOE]

The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study that investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

356

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER...  

Energy Savers [EERE]

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER October 1, 2012 - 11:15am Addthis This is an excerpt...

357

Advanced Offshore Solutions ApS AOS | Open Energy Information  

Open Energy Info (EERE)

Offshore Solutions ApS AOS Jump to: navigation, search Name: Advanced Offshore Solutions ApS (AOS) Place: Tranbjerg, Denmark Zip: 8310 Sector: Wind energy Product: Denmark-based...

358

Department of Energy Awards $43 Million to Spur Offshore Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Awards 43 Million to Spur Offshore Wind Energy Department of Energy Awards 43 Million to Spur Offshore Wind Energy October 3, 2011 - 12:00pm Addthis This is...

359

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

360

Dynamic characteristics analysis of the offshore wind turbine blades  

Science Journals Connector (OSTI)

The topic of offshore wind energy is attracting more and more attention ... . The blades are the key components of offshore wind turbines, and their dynamic characteristics directly determine the effectiveness of...

Jing Li; Jianyun Chen; Xiaobo Chen

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lateral and Axial Capacity of Monopiles for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Offshore wind has enormous worldwide potential to generate increasing ... are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In ... of axial and lateral loa...

Aliasger Haiderali; Ulas Cilingir; Gopal Madabhushi

2013-09-01T23:59:59.000Z

362

Risk assessment of loss of structural integrity of a floating production platform due to gross errors  

Science Journals Connector (OSTI)

During the last years The Norwegian Petroleum Directorate, as well as Statoil, has put increased focus on how gross errors related to structural integrity are influencing the safety of offshore installations. Also, the loss of the P36, a floating platform outside Brazil in 2001, emphasised the importance to control gross errors in large projects. On this basis, a work to assess the risk of loss of the structural integrity of the Kristin platform, during operation, due to failure from gross errors was initiated. The Kristin platform is a permanently moored ring-pontoon semi-submersible production unit planned to be placed in the south-west part of Haltenbanken area in the North Sea in 2005. The water depth at the site is approximately 315 m. The objective of this work was to quantify the risk contribution from gross errors related to structural integrity and to pinpoint the most critical items that may govern the probability of gross error for the Kristin platform. Some of the main findings from this work are presented in this paper.

Inge Lotsberg; Odd Olufsen; Gunnar Solland; Jan Inge Dalane; Sverre Haver

2004-01-01T23:59:59.000Z

363

NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)  

SciTech Connect (OSTI)

Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

Not Available

2014-06-01T23:59:59.000Z

364

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Lease Condensate Estimated Production Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production Lease...

365

Avian collision risk at an offshore wind farm  

Science Journals Connector (OSTI)

...research-article Avian collision risk at an offshore wind farm Mark Desholm * Johnny Kahlert...can detect and avoid a large offshore wind farm by tracking their diurnal migration...waters. At present, two large offshore wind farms operate in Denmark, one of...

2005-01-01T23:59:59.000Z

366

Energy Efficient Pump Control for an Offshore Oil Processing System  

E-Print Network [OSTI]

Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system control, energy saving 1. INTRODUCTION Pump systems have been extensively used in offshore oil & gas

Yang, Zhenyu

367

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD  

E-Print Network [OSTI]

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD INFRASTRUCTURE UNDER COMPLEX FISCAL Pittsburgh, PA 15213 Abstract The optimal development planning of offshore oil and gas fields has received development planning. Keywords Multiperiod Optimization, Planning, Offshore Oil and Gas, MINLP, MILP, FPSO

Grossmann, Ignacio E.

368

OFFSHORE BOUNDARY-LAYER MODELLING H. Bergstrm1  

E-Print Network [OSTI]

OFFSHORE BOUNDARY-LAYER MODELLING H. Bergström1 and R. Barthelmie2 1) Uppsala Univ., Dept. of Earth) of the ENDOW (EfficieNt Development of Offshore Windfarms) project, where the objectives are to provide currently be incorporated into a wind farm design tool. The offshore thermal stratification climate is also

369

Modeling and Computational Strategies for Optimal Development Planning of Offshore  

E-Print Network [OSTI]

1 Modeling and Computational Strategies for Optimal Development Planning of Offshore Oilfields for offshore oil and gas fields as a basis to include the generic fiscal rules with ringfencing provisions-integer programming. 1 Introduction Offshore oil and gas field development planning has received significant attention

Grossmann, Ignacio E.

370

Numerical Simulation of Wave Loads on Static Offshore Structures  

E-Print Network [OSTI]

Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Workshop, Cambridge, 30 July 2014 Numerical Simulation of Wave Loads on Static Offshore Structures ­ p. #12 of Wave Loads on Static Offshore Structures ­ p. #12;VOF Free Surface Flow Model Modelling of Free Surface

371

Assessing Novel Foundation Options for Offshore Wind Turbines  

E-Print Network [OSTI]

Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms of these being the foundations for the offshore turbines. We review here the results of a recent research

Byrne, Byron

372

Ris National Laboratory Satellite SAR applied in offshore wind  

E-Print Network [OSTI]

Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

373

Scour around an offshore wind turbine W.F. Louwersheimer  

E-Print Network [OSTI]

Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University of Technology Ballast Nedam Faculty of Civil Engineering Egmond Offshore Energy Section of Hydraulic Engineering #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond

Langendoen, Koen

374

Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations  

E-Print Network [OSTI]

1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of uncertainty and complex fiscal rules in the development planning of offshore oil and gas fields which involve, Offshore Oil and Gas, Multistage Stochastic, Endogenous, Production Sharing Agreements (PSAs) 1

Grossmann, Ignacio E.

375

Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms  

E-Print Network [OSTI]

#12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars Brünner Frank Reier without clear reference to the source. #12;Hydroacoustic monitoring of fish communities in offshore wind

376

Access to and Usage of Offshore Liberty Ship  

E-Print Network [OSTI]

Access to and Usage of Offshore Liberty Ship Reefs in Texas ROBERT B. DITTON, ALAN R. GRAEFE to establish cover and habitat for fisheries. Offshore artificial reef con- struction began in 1935 led many other states to become interested in deploying offshore artificial reefs. The first reef

377

REVIEW Open Access Assessing environmental impacts of offshore wind  

E-Print Network [OSTI]

REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future Helen Bailey1* , Kate L Brookes2 and Paul M Thompson3 Abstract Offshore wind power literature and our experience with assessing impacts of offshore wind developments on marine mammals

Aberdeen, University of

378

Armelle Choplin et Jrme Lombard La Mauritanie offshore.  

E-Print Network [OSTI]

1 Armelle Choplin et Jérôme Lombard La Mauritanie offshore. Extraversion économique, �tat et du pouvoir. La « Mauritanie offshore » prime désormais sur l'intérieur du pays et sur la société well into the first circles of the power. The « offshore Mauritania » dominates henceforth

Boyer, Edmond

379

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER  

E-Print Network [OSTI]

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

Firestone, Jeremy

380

Ab Frhjahr 2009 startet hier der Bau von sechs Offshore-  

E-Print Network [OSTI]

Ab Frühjahr 2009 startet hier der Bau von sechs Offshore- Windenergieanlagen (OWEA) vom Typ Ent- wicklung der Offshore-Wind- energie besondere Bedeutung zu. Derzeit laufen in der Aus Vorhaben durchgeführt. Acht Einleitung Ziel der Bundesregierung ist es, bis zum Jahr 2030 Offshore

Vollmer, Heribert

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network [OSTI]

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

382

Avian collision risk at an offshore wind farm  

Science Journals Connector (OSTI)

...research-article Avian collision risk at an offshore wind farm Mark Desholm * Johnny Kahlert...ducks can detect and avoid a large offshore wind farm by tracking their diurnal...1994), and no fewer than 13000 offshore wind turbines are currently proposed...

2005-01-01T23:59:59.000Z

383

Quantifying the hurricane risk to offshore wind turbines  

Science Journals Connector (OSTI)

...Quantifying the hurricane risk to offshore wind turbines 10.1073/pnas.1111769109...observed in typhoons, but no offshore wind turbines have yet been built in the...Gulf coast is 460 GW (2). Offshore wind turbines in these areas will be at...

Stephen Rose; Paulina Jaramillo; Mitchell J. Small; Iris Grossmann; Jay Apt

2012-01-01T23:59:59.000Z

384

Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector  

SciTech Connect (OSTI)

Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaboration: NBI Team

2012-01-15T23:59:59.000Z

385

New Modeling Tool Analyzes Floating Platform Concepts | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Wind Program R&D Newsletter. The United States has a large and accessible offshore wind resource. According to a report published by DOE's National Renewable Energy...

386

Fully coupled dynamic analysis of a floating wind turbine system  

E-Print Network [OSTI]

The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

Withee, Jon E

2004-01-01T23:59:59.000Z

387

Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in  

E-Print Network [OSTI]

Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in Houston, Texas, 1­4 May 2000. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Byrne, Byron

388

Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in  

E-Print Network [OSTI]

Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in Houston, Texas U.S.A., 6­9 May 2002. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Knapp, Camelia Cristina

389

Titre franais : L'externalisation offshore de systme d'information Titre anglais : Information Systems Offshore Outsourcing  

E-Print Network [OSTI]

1 Titre français : L'externalisation offshore de système d'information Titre anglais : Information Systems Offshore Outsourcing De Dominique Geyer Dominique Geyer is Associate Professor in Financial Achats et de la Supply Chain). Résumé en français : L'externalisation offshore de système d

Boyer, Edmond

390

Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in  

E-Print Network [OSTI]

Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in Houston, Texas, 3­6 May 1999. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Byrne, Byron

391

Visual impact assessment of offshore wind farms and prior experience  

Science Journals Connector (OSTI)

Energy planners have shifted their attention towards offshore wind power generation and the decision is supported by the public in general, which in the literature has a positive attitude towards offshore wind generation. However, globally only a few offshore wind farms are operating. As more wind farms start operating and more people become experienced with especially the visual impacts from offshore wind farms, the public positive attitude could change if the experienced impacts are different from the initially perceived visual interference. Using a binary logit model, the present paper investigates the relation between different levels of prior experience with visual disamenities from offshore wind farms and perception of visual impacts from offshore wind farms. The differences in prior experience are systematically controlled for sampling respondents living in the areas close to the large scale offshore wind farms Nysted and Horns Rev and by sampling the a group of respondents representing the Danish population, which has little experience with offshore wind farms. Compared to previous results in the literature, the present paper finds that perception of wind power generation is influenced by prior experience. More specifically, the results show that people with experience from offshore wind farms located far from the coast have a significant more positive perception of the visual impacts from offshore wind farms than people with experience from wind farms located closer to the coast. These results are noteworthy on two levels. First of all, the results show that perceptions of offshore wind generation are systematically significantly influenced by prior experience with offshore wind farms. Secondly, and in a policy context, the results indicate that the future acceptance of future offshore wind farms is not independent of the location of existing and new offshore wind farms. This poses for caution in relation to locating offshore wind farms too close to the coast.

Jacob Ladenburg

2009-01-01T23:59:59.000Z

392

Controversy Bubbles Over Offshore Oil Development  

Science Journals Connector (OSTI)

When Chevron U.S.A. announced last year a major offshore oil discovery on tract 450 in California's Santa Maria Basin, the news didn't come as a surprise to the oil industry. Chevron and Phillips Petroleum, 50% partners in the tract, had bid, after all, a ...

RUDY BAUM

1983-05-23T23:59:59.000Z

393

Cleaning the Valhall offshore oil pipeline  

SciTech Connect (OSTI)

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

394

Offshore Gross Withdrawals of Natural Gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Jun-14 Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 View History Federal Offshore 103,230 105,028 107,756 104,940 108,655 100,590 1997-2014 From Gas Wells NA NA NA NA NA NA 1997-2014 From...

395

Offshore Wind Turbine Wakes Measured by Sodar  

Science Journals Connector (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

396

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

NREL: Wind Research - Grid Integration of Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

398

Salazar, Chu Announce Major Offshore Wind Initiatives | Department of  

Broader source: Energy.gov (indexed) [DOE]

Major Offshore Wind Initiatives Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore wind energy deployment and several high priority Wind Energy Areas in the mid-Atlantic that will spur rapid, responsible development of this abundant renewable resource. Deployment of clean, renewable offshore wind energy will help meet the President's goal of generating 80 percent of the Nation's electricity from

399

Global Offshore Wind Farms Database | Open Energy Information  

Open Energy Info (EERE)

Global Offshore Wind Farms Database Global Offshore Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website: www.4coffshore.com/offshorewind/ Equivalent URI: cleanenergysolutions.org/content/global-offshore-wind-farms-database,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This online database and interactive map for global offshore wind development contains details on over 900 wind farms in 36 countries. The 4C Offshore Interactive Map provides an interactive map-based view of wind farm data, as well as wind farm-related news and career information. References Retrieved from "http://en.openei.org/w/index.php?title=Global_Offshore_Wind_Farms_Database&oldid=514428"

400

Garden State Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Garden State Offshore Wind Farm Facility Garden State Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08°, -74.310556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.08,"lon":-74.310556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Internet Gambling Offshore: Caribbean Struggles over Casino Capitalism. Andrew F. Cooper. Basingstoke, U.K.: Palgrave Macmillan, 2011. xvii + 201 pp. (Cloth US$ 85.00)  

E-Print Network [OSTI]

Reviews Internet Gambling Offshore: Caribbean Struggles overcrisis. Antigua hosted offshore gambling operations thatweaker than those against offshore gambling. Furthermore,

Maurer, Bill

2013-01-01T23:59:59.000Z

402

Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten universiteiten en HBO-instellingen hierop reageren? Volgens Roel Wieringa  

E-Print Network [OSTI]

Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten internationaal karakter universiteiten' De discussie over offshoring laat een opmerkelijke consensus zien onder

Wieringa, Roel

403

MHK Technologies/Floating anchored OTEC plant | Open Energy Information  

Open Energy Info (EERE)

anchored OTEC plant anchored OTEC plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating anchored OTEC plant.jpg Technology Profile Primary Organization LAUSDEO Incorporated Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anchored floating OTEC plant Small volume above ocean surface so that device can avoid damage due to severe weather Water depth must exceed 600 meters Prefer to use power line to transmit electricity to shore facility Can use electrolysis to produce hydrogen and transport hydrogen to floating or shore facility Mooring Configuration The preferred mooring configuration is gravity base with three bottom weights The weights can be at depths up to 3000 meters

404

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

405

The Stiller-Smith Engine: Floating gear analysis  

SciTech Connect (OSTI)

The Stiller-Smith Engine employs a non-standard gear train and as such requires a closer examination of the design and sizing of the gears. To accomplish this the motion of the Stiller-Smith gear train is compared to more familiar arrangements. The results of a kinematic and dynamic analysis introduce the irregular forces that the gears are subjected to. The ''floating'' or ''trammel'' gear is examined more closely, first stochastically and then with finite element analysis. This pinpoints high stress concentrations on the gear and where they occur during the engine cycle. The configuration considered is an output shaft, negligible idler gear forces, and floating gear pins that are part of the connecting rods rather than the floating gear. Various loading techniques are discussed with possible ramifications of each.

Craven, R.; Smith, J.E.; Butler, S.

1987-01-01T23:59:59.000Z

406

Selection of deepwater floating oil platform based on grey correlation  

Science Journals Connector (OSTI)

Abstract To select a suitable floating oil platform for a given deepwater oilfield, a method based on grey-correlation theory was proposed and verified. By analyzing factors that may affect selection of deepwater platform, thirteen main factors were chosen. This article also summed up the statistics on 65 deepwater floating platforms (including tension leg platform, deep-draft column type platform, semi-submersible platform, and floating storage mining and unloading device) performing well in the world. With a deepwater oilfield to be developed as a sample, the application of the method was illustrated: Considering the factor series of the given oilfield to be developed as referent series, the relevance between referent series and factor series of each platform in statistics was calculated with grey-correlation analysis, and the optimal platform was identified as the one that had the highest relevance. Two examples proved the feasibility and reliability of the method.

Dongfeng MAO; Menglan DUAN; Xinzhong LI; Junwei SU; Yingying WANG

2013-01-01T23:59:59.000Z

407

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

estimate of future floating turbine depths. [ 32 ] Theenvisioned floating offshore wind turbines. Finally, global

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

408

Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea  

Science Journals Connector (OSTI)

Abstract Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.

Wei Shi; Jonghoon Han; Changwan Kim; Daeyong Lee; Hyunkyoung Shin; Hyunchul Park

2015-01-01T23:59:59.000Z

409

Prediction and measurement of the rotordynamic response of an automotive turbocharger with floating ring bearings  

E-Print Network [OSTI]

of lubricant heating and bearing clearance changes due to bearing power consumption. The floating ring bearing analysis provides both floating ring speeds and bearing force coefficients for use in a linear rotordynamic model. The linear rotordynamic...

Kerth, Jason Michael

2012-06-07T23:59:59.000Z

410

Measurement of Turbulent Kinetic Energy Dissipation Rate with a Lagrangian Float  

Science Journals Connector (OSTI)

This study tests the ability of a neutrally buoyant float to estimate the dissipation rate of turbulent kinetic energy ? from its vertical acceleration spectrum using an inertial subrange method. A Lagrangian float was equipped with a SonTek ...

Ren-Chieh Lien; Eric A. D'Asaro

2006-07-01T23:59:59.000Z

411

Development of a floating piston expander control algorithm for a Collins-type cryocooler  

E-Print Network [OSTI]

The multi-stage Collins-type cryocooler uses a floating piston design for the working fluid expansion in each stage. The piston floats between a cold volume, where the working fluid is expanded, and a warm volume. The ...

Hogan, Jake (Jake R.)

2012-01-01T23:59:59.000Z

412

Floated Catalyst CVD Generation of Single-Walled Carbon Nanotubes from Alcohol  

E-Print Network [OSTI]

Floated Catalyst CVD Generation of Single-Walled Carbon Nanotubes from Alcohol Shigeo Maruyama to other configuration, a floated catalyst type generation of SWNTs. Using ferrocene as a precursor of floated iron catalyst clusters, high-purity SWNTs were generated from alcohol. Mist of ferrocene ethanol

Maruyama, Shigeo

413

Intermediate-depth Circulation of the Indian and South Pacific Oceans Measured by Autonomous Floats  

E-Print Network [OSTI]

Intermediate-depth Circulation of the Indian and South Pacific Oceans Measured by Autonomous Floats of the World Ocean Circulation Experiment, 306 autonomous floats were deployed in the tropical and South autonomous floats that are not acoustically tracked, but rather surface at regular intervals to be located by

Davis, Russ

414

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

415

Compositional analysis of floating-point linear numerical filters  

E-Print Network [OSTI]

Compositional analysis of floating-point linear numerical filters David Monniaux CNRS / Laboratoire filters are used in a variety of applications (sound treatment, control/command, etc.), implemented experience with the Astr´ee static analyzer [3] is that precise analysis of the numerical behavior

Monniaux, David

416

A Combined Decimal and Binary Floating-point Divider  

E-Print Network [OSTI]

to most recent decimal divider designs, which are based on the Binary Coded Decimal (BCD) encoding, our Integer Decimal (BID) encoding. DPD is a compressed form of the Binary Coded Decimal (BCD) encoding on the BCD encoding [3],[4],[5], using the DPD encoding for floating-point and the BCD encoding for fixed

Nannarelli, Alberto

417

Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |  

Broader source: Energy.gov (indexed) [DOE]

Salazar to Announce Major Offshore Wind Energy Initiatives Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM EST WHO: Steven Chu, Secretary of Energy Ken Salazar, Secretary of the Interior WHERE: Half Moone Center 11 Waterside Dr Norfolk, VA 23510 DIAL-IN: News media, state and local stakeholders, industry representatives and other interested parties can join a listen-only teleconference of the announcement by dialing 800-369-3311 and entering code: OFFSHORE.

418

NREL: Wind Research - Energy Analysis of Offshore Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Analysis of Offshore Systems Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of successful research to understand and improve the cost of wind generation technology. As a research laboratory, NREL is a neutral, third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore wind. Market Analysis NREL's extensive research on installed and proposed projects in Europe, the United States, and other emerging offshore markets enables the compilation of a database of installed and proposed project costs. These are used to report on cost trends. Recent studies include: Analysis of capital cost trends for planned and installed offshore

419

New Reports Chart Offshore Wind's Path Forward | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reports Chart Offshore Wind's Path Forward Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity.

420

Overcoming Challenges in America's Offshore Wind Industry | Department of  

Broader source: Energy.gov (indexed) [DOE]

Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry November 18, 2013 - 4:40pm Addthis Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Gregory M. Matzat PE; Senior Advisor, Offshore Wind Technologies A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Blowing in the Wind ...Offshore | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles offshore, you'll find that the wind is even stronger and steadier. And it's like that all around the country. Along the eastern seaboard and west coast, in the Great Lakes and Gulf of Mexico, and even around Hawaii we have a massive clean energy resource waiting to

423

Offshore outsourcing and political risk: India in 2004  

Science Journals Connector (OSTI)

The results of the 2004 Indian elections were surprising as the victory of the Congress party was unforeseen by most pre-poll and exit surveys. The unexpected political change, with an associated shift from a centre-right to a centre-left government presented an unanticipated discontinuity in the business environment. We examine whether US companies that had offshored to India faced heightened levels of political risk when election results were announced. A unique contribution of the paper is that we also examine whether US companies that offshored to India in early-2004, faced greater political risk than companies that offshored to the country in 2002 and 2003. Results indicate an increase in political risk as manifested as an increase in systematic risk. Companies that offshored in 2004 faced greater political risk as compared to companies that offshored earlier. Our findings validate the use of a political risk premium when evaluating offshore ITES projects.

Niranjan Chipalkatti; Bruce Koch; Meenakshi Rishi

2013-01-01T23:59:59.000Z

424

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

427

Operational Impacts of Large Deployments of Offshore Wind (Poster)  

SciTech Connect (OSTI)

The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

Ibanez, E.; Heaney, M.

2014-10-01T23:59:59.000Z

428

PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monitoring birds, bats, and aquatic animals such as marine mammals, sea turtles, and fish in the offshore wind farm environment. Informed by monitoring results and research...

429

Offshore Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

and advanced technology demonstration. Technology Development Offshore wind turbines are frequently located far from shore, more than 60 percent, are in areas where...

430

Offshore Wind Market Acceleration Projects | Department of Energy  

Energy Savers [EERE]

on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

431

University of Michigan Gets Offshore Wind Ready for Winter on...  

Energy Savers [EERE]

Project Overview Positive Impact Understanding the impact of ice on offshore wind turbines. Modeling tool to analyze the ice buildup on wind turbine blades. Locations...

432

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

433

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301981"...

434

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

435

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

436

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012...

437

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

438

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1...

439

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves...

440

,"Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

442

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

443

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

444

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million...

445

Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade...

446

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1...

447

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

448

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

449

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

450

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

451

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

452

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1...

453

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1...

454

,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

455

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

456

,"Texas State Offshore Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

457

Design for safety framework for offshore oil and gas platforms.  

E-Print Network [OSTI]

??This main aim of this work is to develop a “design for safety” based risk assessment technique for the offshore platforms in order to facilitate… (more)

Umar, Abubakar Attah

2010-01-01T23:59:59.000Z

458

,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

459

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old...

460

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

462

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

463

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2...

464

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

465

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade...

466

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

467

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

468

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

469

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

470

NREL Assesses National Design Standards for Offshore Wind (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy Association...

471

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

472

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

473

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

474

California Federal Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

475

Federal Offshore California Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

476

,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1...

477

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

478

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

479

Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

480

,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

Note: This page contains sample records for the topic "megawatt floating offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

482

,"Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

483

California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

484

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

485

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

486

,"California State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

487

Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

488

California--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

489

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

490

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

491

,"Federal Offshore--Texas Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","1...

492

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

493

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

494

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

495

Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

496

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

497

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0...

498

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

499

,"Texas--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

500

,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...