National Library of Energy BETA

Sample records for mega kilo hecto

  1. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KiloPower Project - KRUSTY Experiment Nuclear Design Citation Details In-Document Search Title: KiloPower Project - KRUSTY Experiment Nuclear Design You are accessing a document...

  2. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KiloPower Project - KRUSTY Experiment Nuclear Design Citation Details In-Document Search Title: KiloPower Project - KRUSTY Experiment Nuclear Design This PowerPoint presentation...

  3. Mega Nap Kft | Open Energy Information

    Open Energy Info (EERE)

    Vrtesszls, Hungary Zip: 2837 Sector: Solar Product: Mega Nap designs solar cells and collectors for households and industrial users. References: Mega Nap Kft1 This...

  4. MEGA

    Energy Science and Technology Software Center (OSTI)

    002444SUPER00 Modular Environment for Graph Research and Analysis with a Persistent

  5. MegaWatt Solar | Open Energy Information

    Open Energy Info (EERE)

    energy company that delivers scalable solar power generation systems to the utility market. References: MegaWatt Solar1 This article is a stub. You can help OpenEI by...

  6. Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus Citation Details In-Document Search Title: Fully Kinetic Simulations of MegaJoule-Scale Dense...

  7. MEGA-BIO: Bioproducts to Enable Biofuels FOA Informational Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    MEGA-BIO: Bioproducts to Enable Biofuels Funding Opportunity Announcement (FOA) Informational Webinar will be held Tuesday, Feb. 16, 3:00 p.m.-4:00 p.m. ET. Standard application questions regarding the EERE Office and FOA procedures will be discussed. A recording of the webinar will be posted on the EERE Exchange Website.

  8. Annual Site Environmental Report Paducah Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Paducah Site 2011 PAD-REG-1012 BACK TABLE OF CONTENTS FORWARD Fractions and Multiples of Units Multiple Decimal Equivalent Prefix Symbol Engineering Format 10 6 1,000,000 mega- M E+06 10 3 1,000 kilo- k E+03 10 2 100 hecto- h E+02 10 10 deka- da E+01 10 -1 0.1 deci- d E-01 10 -2 0.01 centi- c E-02 10 -3 0.001 milli- m E-03 10 -6 0.000001 micro- μ E-06 10 -9 0.000000001 nano- n E-09 10 -12 0.000000000001 pico- P E-12 10 -15 0.000000000000001 femto- F E-15 10 -18 0.000000000000000001 atto-

  9. Paducah Site Annual Site Environmental Report for Calendar Year 2012

    Energy Savers [EERE]

    Paducah Site Annual Site Environmental Report for Calendar Year 2012 Fractions and Multiples of Units Multiple Decimal Equivalent Prefix Symbol Engineering Format 10 6 1,000,000 mega- M E+06 10 3 1,000 kilo- k E+03 10 2 100 hecto- h E+02 10 10 deka- da E+01 10 -1 0.1 deci- d E-01 10 -2 0.01 centi- c E-02 10 -3 0.001 milli- m E-03 10 -6 0.000001 micro- μ E-06 10 -9 0.000000001 nano- n E-09 10 -12 0.000000000001 pico- P E-12 10 -15 0.000000000000001 femto- F E-15 10 -18 0.000000000000000001 atto-

  10. The Church Mountain Sturzstrom (Mega-Landslide), Glacier, Washington

    SciTech Connect (OSTI)

    Carpenter, M.R.; Easterbrook, D.J. . Dept. of Geology)


    Detailed investigation of an ancient sturzstrom or mega-landslide near Glacier, Washington has revealed it areal extent, approximate volume, age, geomorphology, source area, and possible causes. Stratigraphic and lithologic investigations indicate Church Mountain as the source area; therefore, this mega-landslide has been named the Church Mountain Sturzstrom (CMS). The CMS deposit is approximately 9 km in length, averages about 1 km in width, and has an estimated volume of 3 [times] 10[sup 8] m[sup 3]. Characteristics of the morphology and stratigraphy of the CMS deposit are suggestive of a sturzstrom origin, and may be indicative of sturzstrom elsewhere in the world. The overall stratigraphy of the deposit mimics the stratigraphy of the source area. The deposit is very compact, poorly sorted, matrix supported, and composed of highly angular clasts. Over steepening of the mountain due to glacial erosion may have contributed to the cause of failure, although the age of the CMS is at least 7,000 years younger than deglaciation. Four trees were C[sup 14] dated, yielding ages of about 2,700 B.P. for the CMS. Several other mega-landslides have been identified within 5--30 km of the CMS. The close proximity of these mega-landslides to the CMS suggests the possibility that they may have been triggered by an earthquake, although the ages of the other slides are currently unknown. The age of the CMS correlates approximately with age ranges of co-seismic events occurring along the west coast of Washington, further suggesting the possibility of an earthquake triggering mechanism.

  11. Mega-Pore Nano-Structured Carbon - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Mega-Pore Nano-Structured Carbon Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryCurrent supercapacitor technologies cannot meet the growing demands for high-power energy storage. Meeting this challenge requires the development of new electrode materials.DescriptionScientists at ORNL have developed robust carbon monolithic having hierarchical

  12. Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus Citation Details In-Document Search Title: Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus Authors: Schmidt, A ; Link, A ; Welch, D ; Meehan, T ; Tang, V ; Halvorson, C ; May, M ; Hagen, E C Publication Date: 2014-09-19 OSTI Identifier: 1169854 Report Number(s): LLNL-JRNL-661056 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation:

  13. Energy Department Announces $11.3 Million Available for Mega-Bio:

    Office of Environmental Management (EM)

    Bioproducts to Enable Biofuels | Department of Energy 1.3 Million Available for Mega-Bio: Bioproducts to Enable Biofuels Energy Department Announces $11.3 Million Available for Mega-Bio: Bioproducts to Enable Biofuels February 8, 2016 - 11:03am Addthis The Energy Department today announced up to $11.3 million in funding to develop flexible biomass-to-hydrocarbon biofuels conversion pathways that can be modified to produce advanced fuels and/or products based on external factors, such as

  14. Entering the Era of Mega-genomics ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Schatz, Michael C [Cold Spring Harbor Laboratory] [Cold Spring Harbor Laboratory


    Michael Schatz from Cold Spring Harbor Laboratory on "Entering the Era of Mega-genomics" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  15. Entering the Era of Mega-genomics ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Schatz, Michael C [Cold Spring Harbor Laboratory


    Michael Schatz from Cold Spring Harbor Laboratory on "Entering the Era of Mega-genomics" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  16. Investigating Aeroelastic Performance of Multi-Mega Watt Wind Turbine Rotors Using CFD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Aeroelastic Performance of Multi-MegaWatt Wind Turbine Rotors Using CFD David A. Corson 1 Altair Engineering, Inc., Clifton Park, NY, 12065 D. Todd Griffith 2 Sandia National Laboratories, Albuquerque, NM, 87185 Tom Ashwill 3 Sandia National Laboratories, Albuquerque, NM, 87185 Farzin Shakib 4 Altair Engineering, Inc., Mountain View, CA, 94043 Recent trends in wind power technology are focusing on increasing power output through an increase in rotor diameter. As the rotor diameter

  17. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    MacLellan, D.  A.; Carroll, D.  C.; Gray, R.  J.; Booth, N.; Burza, M.; Desjarlais, M.  P.; Du, F.; Neely, D.; Powell, H.  W.; Robinson, A.  P. L.; et al


    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  18. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    SciTech Connect (OSTI)

    Trosseille, C. Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C.; Beck, T.; Gazave, J.


    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  19. Coherence imaging of scrape-off-layer and divertor impurity flows in the Mega Amp Spherical Tokamak (invited)

    SciTech Connect (OSTI)

    Silburn, S. A., E-mail:; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Harrison, J. R.; Meyer, H.; Michael, C. A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Howard, J. [Plasma Research Laboratory, Australian National University, Canberra, ACT 0200 (Australia); Gibson, K. J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)


    A new coherence imaging Doppler spectroscopy diagnostic has been deployed on the UKs Mega Amp Spherical Tokamak for scrape-off-layer and divertor impurity flow measurements. The system has successfully obtained 2D images of C III, C II, and He II line-of-sight flows, in both the lower divertor and main scrape-off-layer. Flow imaging has been obtained at frame rates up to 1 kHz, with flow resolution of around 1 km/s and spatial resolution better than 1 cm, over a 40 field of view. C III data have been tomographically inverted to obtain poloidal profiles of the parallel impurity flow in the divertor under various conditions. In this paper we present the details of the instrument design, operation, calibration, and data analysis as well as a selection of flow imaging results which demonstrate the diagnostic's capabilities.

  20. Kilo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    75C348.15 K 167 F 626.67 R 1 USGS Estimated Reservoir Volume: 1 km 1 USGS Mean Capacity: 2 MW 1 Click "Edit With Form" above to add content History and...

  1. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    SciTech Connect (OSTI)

    Hamel, M.; Normand, S.; Turk, G.; Darbon, S.


    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  2. Mega Energy, LP | Open Energy Information

    Open Energy Info (EERE)

    56247 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  3. Lubricants Market to Record 44,165.11 Kilo Tons Volume by 2020...

    Open Energy Info (EERE)

    over 50% of the global market share. Automotive oils sector is further segmented into hydraulic oil, engine oil, and gear oil. Improving GDP in developing nations such as India and...

  4. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect (OSTI)

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.


    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (130 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  5. Energy Department Announces $11.3 Million Available for Mega...

    Office of Environmental Management (EM)

    capitalize on revenue from bioproducts as part of cost-competitive biofuel production. ... Chaitanya Narula led analysis of an Oak Ride National Laboratory biofuel-to-hydrocarbon ...

  6. Gulf of Mexico miocene CO₂ site characterization mega transect

    SciTech Connect (OSTI)

    Meckel, Timothy; Trevino, Ramon


    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO2 storage in underlying sandstone units.

  7. Fully Kinetic Simulations of MegaJoule-Scale Dense Plasma Focus...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text preview image File size NAView Full Text View...

  8. SU-D-12A-02: DeTECT, a Method to Enhance Soft Tissue Contrast From Mega Voltage CT

    SciTech Connect (OSTI)

    Sheng, K; Gou, S; Qi, S


    Purpose: MVCT images have been used on TomoTherapy system to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation and adaptive radiation therapy is severely limited due to minimal photoelectric interaction and prominent presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. We aim to utilize a non-local means denoising method and texture analysis to recover the soft tissue information for MVCT. Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. BM3D is an imaging denoising algorithm developed from non-local means methods. BM3D additionally creates 3D groups by stacking 2D patches by the order of similarity. 3D denoising operation is then performed. The resultant 3D group is inversely transformed back to 2D images. In this study, BM3D was applied to MVCT images of a CT quality phantom, a head and neck and a prostate patient. Following denoising, imaging texture was enhanced to create the denoised and texture enhanced CT (DeTECT). Results: The original MVCT images show prevalent noise and poor soft tissue contrast. By applying BM3D denoising and texture enhancement, all MVCT images show remarkable improvements. For the phantom, the contrast to noise ratio for the low contrast plug was improved from 2.2 to 13.1 without compromising line pair conspicuity. For the head and neck patient, the lymph nodes and vein in the carotid space inconspicuous in the original MVCT image becomes highly visible in DeTECT. For the prostate patient, the boundary between the bladder and the prostate in the original MVCT is successfully recovered. Both results are visually validated by kVCT images of the corresponding patients. Conclusion: DeTECT showed the promise to drastically improve the soft tissue contrast of MVCT for image guided radiotherapy and adaptive radiotherapy.


    SciTech Connect (OSTI)



    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  10. Property:PotentialBiopowerGaseousCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  11. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  12. Property:GrossProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  13. Property:InstalledCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  14. Preparation of W-Ta thin-film thermocouple on diamond anvil cell...

    Office of Scientific and Technical Information (OSTI)

    MEGA PA 10-100; TANTALUM; TEMPERATURE MEASUREMENT; THERMOCOUPLES; THIN FILMS; TUNGSTEN; ZINC SULFIDES Word Cloud More Like This Full Text Journal Articles DOI: 10.10631.3579515

  15. Electricity Advisory Committee Meeting Presentations September...

    Broader source: (indexed) [DOE]

    Edward Cazalet, TeMix Inc. and MegaWatt Storage Farms, Inc. Susan Kennedy, Advanded Microgrid Solutions John Shelk, Electric Power Supply Association Mark Irwin, Southern...

  16. Geek-Up[09.24.10]-- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars

    Broader source: [DOE]

    Magical BEANs that mean mega-sized data storage, a new camera that will detect elements on Mars and new treatments to stop antibiotic resistance.

  17. NREL's Clean Energy Forum Attracts National Investment Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Devices, MegaWatt Storage Farms, Inc., Tellurian Biodiesel, Inc., Optony, Inc., LiquidPiston, Inc., Solar Red, Photon Synergy, QM Power, Inc., Ahura Energy, Inc., Deeya Energy, ...

  18. CX-004022: Categorical Exclusion Determination

    Broader source: [DOE]

    MegaWatt VenturesCX(s) Applied: A9, A11, B5.1Date: 09/09/2010Location(s): Orlando, FloridaOffice(s): Energy Efficiency and Renewable Energy

  19. CX-000474: Categorical Exclusion Determination

    Broader source: [DOE]

    Operation and Maintenance of 3-Mega Electron-Volt Van De Graaf AcceleratorCX(s) Applied: B3.10Date: 12/16/2009Location(s): IllinoisOffice(s): Science, Argonne Site Office

  20. CX-010792: Categorical Exclusion Determination

    Broader source: [DOE]

    Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect - Task 8 CX(s) Applied: A1, A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    science(36) (1) monocrystals (1) nonlinear problems (1) pressure range mega pa 10-100 (1) semiconductor materials ... range 0065-0273 k (1) thin films (1) Filter by Author ...

  2. CX-000450: Categorical Exclusion Determination

    Broader source: [DOE]

    Gulf of Mexico Miocene Carbon Dioxide Site Characterization Mega TransectCX(s) Applied: A9, B3.1Date: 11/24/2009Location(s): Austin, TexasOffice(s): Fossil Energy, National Energy Technology Laboratory

  3. Slide 1

    Office of Environmental Management (EM)

    of the last major steps before demolition begins * Demolition expected to be completed in Winter 2016 Mega site 8 9 Recently Completed D&D Projects Enabling and...

  4. TeamWorks10-28-04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "We're always impressed by the helpfulness and enthusiasm of WIPP employees who have assisted on the project," he adds. Scientists hope to begin testing the MEGA detectors in...

  5. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2012 [Education, Events] Mega Science Festival Draws Mega Crowds Bookmark and Share Two attendees pose for a picture with Professor Polar Bear. Two attendees pose for a picture with Professor Polar Bear. How do you interest kids in science, technology, engineering, and math? Hold the country's largest science fair. Drawing the second biggest crowd in Washington Convention Center history, the second USA Science & Engineering Festival was held in Washington D.C. from April 27-29. ARM

  6. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and

  7. Fermilab | Tevatron | Tevatron Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tevatron Operation Fermilab's Accelerator Complex Fermilab's Accelerator Complex has 10 accelerators. The Tevatron, which shuts down on Sept. 30, is one of those accelerators. The Cockcroft Walton accelerates negative hydrogen ions to 740 kilo electron volts (KeV). The negative ions are then accelerated down the LINAC to 400 MeV. The particles enter the booster where the electrons are stripped off, leaving the protons. In the Booster, the protons are then accelerated to 8 GeV. Once the protons

  8. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational


    Energy Savers [EERE]

    Merchant Energy Group of the Americas, Inc. Order No. EA-187 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On June 25, 1998, Merchant Energy Group of the Americas, Inc., (MEGA) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. MEGA does not own

  10. Creating, Diagnosing and Controlling High-energy-density Matter with Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab October 22, 2013, 3:00pm to 4:15pm Colloquia MBG Auditorium Creating, Diagnosing and Controlling High-energy-density Matter with Lasers Dr. Yuan Ping Lawrence Livermore National Laboratory Abstract: PDF icon COLL.10.22.13A.pdf *** PLEASE NOTE SPECIAL DATE AND TIME OF THIS COLLOQUIUM *** Since their invention in 1960's, lasers with power spanning from KiloWatt to PetaWatt have been widely used in almost every branch of science, leading to numerous discoveries

  11. Efficiency of clay-TiO2 nanocomposites on the photocatalytic eliminationof a model hydrophobic air pollutant

    SciTech Connect (OSTI)

    Kibanova, Daria; Cervini-Silva, Javiera; Destaillats, Hugo


    Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a bench-top photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (gamma max = 365 nm) or UVC (gamma max = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-TiO2 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of ~;;170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33 and 66percent relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA (R) sorbent tubes downstream of the reactor, with subsequent thermal desorption -- GC/MS analysis. The fraction of toluene removed, percentR, and the reaction rate, Tr, were calculated for each experimental condition from the concentration changes measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/I gamma, the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but not for Kao-TiO2. In all cases, reaction rates peaked at 10percent RH, with Tr values between 10 and 50percent higher than those measured under dry air. However, a net inhibition was observed as RH increased to 33percent and 66percent, indicating that water molecules competed effectively with toluene for reactive surface sites and limited the overall photocatalytic conversion. Compared to P25, inhibition by co-adsorbed water was less significant for Kao-TiO2 samples, but was more dramatic for Hecto-TiO2 due to the high water uptake capacity of hectorite.

  12. CX-002450: Categorical Exclusion Determination

    Broader source: [DOE]

    State of Arizona State Energy Program American Recovery and Reinvestment Act EE0000106 - Manufacturers' Energy-Efficiency Grant Assistance (MEGA) ProgramCX(s) Applied: B5.1Date: 06/01/2010Location(s): ArizonaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  13. Progress and prospects for an FI relevant point design

    SciTech Connect (OSTI)

    Key, M; Amendt, P; Bellei, C; Clark, D; Cohen, B; Divol, L; Ho, D; Kemp, A; Larson, D; Marinak, M; Patel, P; Shay, H; Strozzi, D; Tabak, M


    The physics issues involved in scaling from sub ignition to high gain fast ignition are discussed. Successful point designs must collimate the electrons and minimize the stand off distance to avoid multi mega-joule ignition energies. Collimating B field configurations are identified and some initial designs are explored.

  14. CX-004104: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    State Energy Program Conductor Optimized Rotary Energy Mega-Watt Scale Direct Wind GeneratorCX(s) Applied: A9, B5.1Date: 09/29/2010Location(s): Ronan, MontanaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  15. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui


    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  16. Advanced Engine Trends, Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Trends, Challenges and Opportunities Advanced Engine Trends, Challenges and Opportunities Presents mega trends for future powertrains facing energy diversity and powertrain efficiency issues PDF icon deer11_taub.pdf More Documents & Publications Looking From A Hilltop: Automotive Propulsion System Technology Quarterly Biomass Program/Clean Cities State Web Conference: May 6, 2010 Advanced Propulsion Technology Strategy

  17. Vehicle Technologies Office: AVTA- Neighborhood All-Electric Vehicles

    Broader source: [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the following vehicles is available in downloadable form: 2013 BRP Commander Electric, 2010 Electric Vehicles International E-Mega, 2009 Vantage Pickup EVX1000, and 2009 Vantage Van EVC1000.

  18. CX-007493: Categorical Exclusion Determination

    Broader source: [DOE]

    GoM Miocene Carbon Dioxide Site Characterization Mega Transect: High-Resolution 3-dimensional Seismic Acquisition Survey CX(s) Applied: B3.1 Date: 12/06/2011 Location(s): Texas Offices(s): National Energy Technology Laboratory

  19. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.


    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

  20. Isotope specific arbitrary material sorter

    DOE Patents [OSTI]

    Barty, Christopher P.J.


    A laser-based mono-energetic gamma-ray source is used to provide a rapid and unique, isotope specific method for sorting materials. The objects to be sorted are passed on a conveyor in front of a MEGa-ray beam which has been tuned to the nuclear resonance fluorescence transition of the desired material. As the material containing the desired isotope traverses the beam, a reduction in the transmitted MEGa-ray beam occurs. Alternately, the laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  1. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L.


    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  2. CX-010792: Categorical Exclusion Determination | Department of Energy

    Broader source: (indexed) [DOE]

    Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect - Task 8 CX(s) Applied: A1, A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory Perform administrative, planning, analyses in support of prime Statement of Project Objectives (SOPO) Task 8 - Leakage Pathways. MOD to reclassify vendor to subcontract TDI-Brooks. PDF icon CX-010792.pdf More Documents & Publications CX-010792: Categorical Exclusion Determination CX-000324:

  3. water-energy-workshop-2014 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 NETL Water-Energy Workshop Proceedings 2014 NETL Water-Energy Workshop in conjunction with the MEGA Symposium Baltimore Marriott Waterfront Baltimore, Maryland Announcement Workshop Agenda Welcome Regis K. Conrad, Director Advanced Energy Systems, DOE Office of Fossil Energy DOE Water-Energy Nexus Overview Robie E. Lewis, Crosscutting Research Program Manager, DOE Office of Fossil Energy Current Activities in Water Management Research and Development Susan M. Maley, Technology Manager,

  4. NREL Establishes New Center for Distributed Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishes New Center for Distributed Power Changing Electricity Market Demands Greater Flexibility, New Solutions For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Jan. 8, 2001 - The nation's straining electrical generation system can be enhanced by moving away from an historic reliance on "mega" power plants and toward a network of dispersed, smaller-scale generation facilities. That concept, known as "distributed power," will be

  5. LANSCE | About | LINAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) LINAC The core LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The 800-mega-electron-volt (800 MeV) LINAC provides beam current, simultaneously, to five major facilities with unique capabilities: the Proton Radiography (pRad) facility that supports NNSA Defense Program (DP) missions; the Weapons Neutron Research facility (WNR) that supports DP missions; the Lujan Neutron Scattering Center that supports DP and DOE Office of

  6. BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts December 22, 2015 - 2:38am Addthis The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled "MEGA-BIO: Bioproducts to Enable Biofuels." This FOA supports BETO's goal of meeting

  7. Bioenergy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy News Bioenergy News RSS December 22, 2015 BETO Announces Notice of Intent (NOI) to Develop Pathways to Biofuels and Bioproducts The Energy Department announces its intent to issue, on behalf of the Bioenergy Technologies Office (BETO), a funding opportunity announcement (FOA) entitled "MEGA-BIO: Bioproducts to Enable Biofuels." This FOA supports BETO's goal of meeting its 2022 cost target of $3/gallon gasoline equivalent for the production of hydrocarbon fuels from

  8. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.


    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  9. Solar Decathlon Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welcome STEAB 2007 2007 Solar Decathlon Accelerates R&D - Largest housing experiment ever held * Side-by-side comparison of building technologies - Testing and redesign * Iterative design process drives improvement 2002 Virginia Tech 2005 2007 Decathletes From all over the World ! 2007 2007 Moving in 2007 Mega lifts 2007 2007 2007 Solar Decathlon 2007 Schedule Sunday Monday Tuesday Wednesday Thursday Friday Saturday Oct 9 Oct 10 Oct 2 Oct 7 Oct 8 Oct 12 Oct 13 Oct 14 Oct 15 Oct 16 Oct 17


    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/04 Shipments expected this week: RFETS (13), SRS (6) A weekly e-newsletter for the Waste Isolation Pilot Plant team February 12, 2004 The Big Story SEGA and MEGA exemplify science@wipp Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Tools Acronym List Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 02/12/04 at 9:24 a.m.)

  11. membrane-mtr |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Pressure Membrane Contactors for CO2 Capture Project No.: DE-FE0007553 Membrane Technology and Research, Inc. (MTR) is developing a new type of membrane contactor (or mega-module) to separate carbon dioxide (CO2) from power plant flue gas. This module's membrane area is 500 square meters, 20 to 25 times larger than that of current modules used for CO2 capture. A 500-MWe coal power plant requires 0.5 to 1 million square meters of membrane to achieve 90 percent CO2 capture. The new

  12. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver


    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  13. Kicking the Tires | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kicking the Tires September 12, 2008 On Thursday, we heard a colloquium presentation from Barry Barish of Caltech, who leads the global efforts on the International Linear Collider. This, if built, would justifiably warrant the description "Mega-project." Barry's presentation impressed many. What is even more interesting is why Barry was here. He put it directly in the introduction to his talk: "We are here to kick the tires." Now often that's fine, unless you are a tire. And

  14. Theory of current-drive in plasmas

    SciTech Connect (OSTI)

    Fisch, N.J.


    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide.

  15. GSA Wind Supply Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind Resource Assessment: 7.4 m/s *Annual Production Estimate: 350,000 - 725,000 MWh * Interim 2013 renewable energy goal of 15% met and exceeded * Still short of 2020 goal to be 30% renewable * Renewable Power supply is an excellent method of meeting these goals 4 GSA's Renewable Mandate 5 Mechanics of Supply *MG2 would deliver

  16. EM's Liquid Waste Contractor Produces $21 Million in Savings with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Lean' System | Department of Energy Liquid Waste Contractor Produces $21 Million in Savings with 'Lean' System EM's Liquid Waste Contractor Produces $21 Million in Savings with 'Lean' System April 29, 2015 - 12:00pm Addthis SRR employees work through the Lean process. SRR employees work through the Lean process. “At the end of the waste disposition path, these mega-facilities allow us to give the decontaminated salt solution a safe, final destination,” DOE-Savannah River Waste

  17. Uncrackable code for nuclear weapons

    SciTech Connect (OSTI)

    Hart, Mark


    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  18. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank


    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  19. Flexible Friction Stir Joining Technology

    SciTech Connect (OSTI)

    Feng, Zhili; Lim, Yong Chae; Mahoney, Murray; Sanderson, Samuel; Larsen, Steve; Steel, Russel; Fleck, Dale; Fairchild, Doug P; Wasson, Andrew J; Babb, Jon; Higgins, Paul


    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  20. Recent Progress on Spherical Torus Research

    SciTech Connect (OSTI)

    Ono, Masayuki; Kaita, Robert


    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  1. How to Build a Superbeam

    SciTech Connect (OSTI)

    Hylen, James E.; /Fermilab


    A discussion of design issues for future conventional neutrino beam-lines with proton beam power above a megawatt. There are several conventional neutrino beam-lines currently in operation that are designed to handle proton beam power of a fraction of a mega-watt. By conventional neutrino beam-line is meant one where accelerated protons strike a target to produce charged pions, which are magnetically focused and allowed to decay to neutrinos. Several laboratories are considering accelerator upgrades over the next decade that could provide proton beam power above a mega-watt for neutrino beam-lines (see Table 1); conventional neutrino beams at such high power have been labeled Superbeams. Based on current experience, the most significant technical issues for this next generation of high-power neutrino beam-lines are radiation protection, target survivability, and reliability/reparability. A few examples are given of extrapolating from NuMI to LBNE (the proposed beam-line from FNAL to DUSEL in South Dakota using protons from the Project X accelerator upgrade).

  2. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda, and w from the First Year Data Set

    DOE R&D Accomplishments [OSTI]

    Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Lafoux, H.; Neill, J. D.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Courtois, H.; Ellis, R. S.; Filiol, M.; Goncalves, A. C.; Goobar, A.; Guide, D.; Hardin, D.; Lusset, V.; Lidman, C.; McMahon, R.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Tao, C.; Walton, N.


    We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

  3. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.


    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earths surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earths surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  4. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)


    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  5. Electric Power Delivery Testing Feasibility Study Task 6 Final Report

    SciTech Connect (OSTI)

    Thomas Tobin


    This Final Report is covers the completion of the Electric Power Delivery Testing Feasibility Study. The objective of this project was to research, engineer, and demonstrate high-power laboratory testing protocols to accurately reproduce the conditions on the electric power grid representing both normal load switching and abnormalities such as short-circuit fault protection. Test circuits, equipment, and techniques were developed and proven at reduced power levels to determine the feasibility of building a large-scale high-power testing laboratory capable of testing equipment and systems at simulated high-power conditions of the U.S. power grid at distribution levels up through 38 kiloVolts (kV) and transmission levels up through 230 kV. The project delivered demonstrated testing techniques, high-voltage test equipment for load testing and synthetic short-circuit testing, and recommended designs for future implementation of a high-power testing laboratory to test equipment and systems, enabling increased reliability of the electric transmission and distribution grid.

  6. Unmanned airships for near earth remote sensing missions

    SciTech Connect (OSTI)

    Hochstetler, R.D.


    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performance characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.

  7. Science and Technology Review April/May 2011

    SciTech Connect (OSTI)

    Nikolic, R J


    At Lawrence Livermore National Laboratory, the focus is on science and technology research to ensure the nation's security. That expertise is also applied to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight time a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for April/May 2011, the features are 'Dealing with the Nonlinear Battlefield' and 'From Video to Knowledge.' Research highlights are 'Kinetic Models Predict Biofuel Efficiency,' Going Deep with MEGa-Rays' and 'Energy on Demand.'

  8. Development of large scale production of Nd-doped phosphate glasses for megajoule-scale laser systems

    SciTech Connect (OSTI)

    Ficini, G.; Campbell, J.H.


    Nd-doped phosphate glasses are the preferred gain medium for high-peak-power lasers used for Inertial Confinement Fusion research because they have excellent energy storage and extraction characteristics. In addition, these glasses can be manufactured defect-free in large sizes and at relatively low cost. To meet the requirements of the future mega-joule size lasers, advanced laser glass manufacturing methods are being developed that would enable laser glass to be continuously produced at the rate of several thousand large (790 x 440 x 44 mm{sup 3}) plates of glass per year. This represents more than a 10 to 100-fold improvement in the scale of the present manufacturing technology.

  9. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    SciTech Connect (OSTI)

    Teresa E. Jordan


    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  10. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.


    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  11. Finite element modeling of magnetic compression using coupled electromagnetic-structural codes

    SciTech Connect (OSTI)

    Hainsworth, G.; Leonard, P.J.; Rodger, D.; Leyden, C.


    A link between the electromagnetic code, MEGA, and the structural code, DYNA3D has been developed. Although the primary use of this is for modelling of Railgun components, it has recently been applied to a small experimental Coilgun at Bath. The performance of Coilguns is very dependent on projectile material conductivity, and so high purity aluminium was investigated. However, due to its low strength, it is crushed significantly by magnetic compression in the gun. Although impractical as a real projectile material, this provides useful benchmark experimental data on high strain rate plastic deformation caused by magnetic forces. This setup is equivalent to a large scale version of the classic jumping ring experiment, where the ring jumps with an acceleration of 40 kG.

  12. X-Band RF Gun Development

    SciTech Connect (OSTI)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore


    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  13. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.; Lewandowski, J.; Limborg, Cecile; Weathersby, S.; /SLAC


    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program. Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.

  14. Structure of stagnated plasma in aluminum wire array Z pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Lebedev, S. V.; Ampleford, D. J.; Palmer, J. B. A.; Bott, S. C.; Rapley, J.; Chittenden, J. P.; Apruzese, J. P.


    Experiments with aluminum wire array Z pinches have been carried out on the mega-ampere generator for plasma implosion experiments (MAGPIE) at Imperial College London [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. It has been shown that in these arrays, there are two intense sources of radiation during stagnation; Al XII line emission from a precursor-sized object, and both continuum and Al XIII radiation from bright spots of either significantly higher temperature or density randomly distributed around this object so as to produce a hollow emission profile. Spatially resolved spectra produced by spherically bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  15. CEPH viewer: A client-server database to browse and manipulate CEPH physical mapping and linkage data

    SciTech Connect (OSTI)

    Nadkarni, P.M.; Bray-Ward, P.


    With their announcement of the first high-level physical map of the human genome, the Center for Study of Human Polymorphisms (CEPH) made the supporting data on the clones in their mega-YAC library and their linkage markers publicly available through anonymous ftp. Individual researchers as well as genome centers now need to constantly reference this voluminous body of data that, as of May 9, 1994, held information on approximately 4000 STSs, 33,500 YACs, 17,600 STS-YAC associations, 87,400 YAC-YAC associations based on Alu-PCR analysis, and 99,000 YAC-YAC associations based on a combination of fingerprint and Alu-PCR data, in addition to 6 sets of fingerprints for each YAC and a total of 1.5 million fingerprint fragments for all YACs. 2 refs., 1 fig.

  16. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al


    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is a MeV in grams? What is a MeV in grams? In the unlikely event that I fuse a couple of hydrogen nucleii what is the weight lost by the system? My reference says it's 3.2 MeV but that's not helpful. Hi, Let us start with eV (electron-volt). It is an energy unit used in High-energy physics. A MeV is the Mega electron-volt, e.g. million times more than eV. One eV is defined as the energy, that an electron ( or an other single-charged(q=1.6*10^-19 Coulombs) particle) gains when it undergoes a

  18. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect (OSTI)

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya


    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ?}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  19. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    SciTech Connect (OSTI)

    Yao, W; Farr, J


    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters.

  20. Evaluation of an aSi-EPID with flattening filter free beams: Applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc

    SciTech Connect (OSTI)

    Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L.; Fogliata, A.; Krauss, H.; Fenoglietto, P.


    Purpose: To demonstrate the feasibility of portal dosimetry with an amorphous silicon mega voltage imager for flattening filter free (FFF) photon beams by means of the GLAaS methodology and to validate it for pretreatment quality assurance of volumetric modulated arc therapy (RapidArc).Methods: The GLAaS algorithm, developed for flattened beams, was applied to FFF beams of nominal energy of 6 and 10 MV generated by a Varian TrueBeam (TB). The amorphous silicon electronic portal imager [named mega voltage imager (MVI) on TB] was used to generate integrated images that were converted into matrices of absorbed dose to water. To enable GLAaS use under the increased dose-per-pulse and dose-rate conditions of the FFF beams, new operational source-detector-distance (SDD) was identified to solve detector saturation issues. Empirical corrections were defined to account for the shape of the profiles of the FFF beams to expand the original methodology of beam profile and arm backscattering correction. GLAaS for FFF beams was validated on pretreatment verification of RapidArc plans for three different TB linacs. In addition, the first pretreatment results from clinical experience on 74 arcs were reported in terms of ? analysis.Results: MVI saturates at 100 cm SDD for FFF beams but this can be avoided if images are acquired at 150 cm for all nominal dose rates of FFF beams. Rotational stability of the gantry-imager system was tested and resulted in a minimal apparent imager displacement during rotation of 0.2 0.2 mm at SDD = 150 cm. The accuracy of this approach was tested with three different Varian TrueBeam linacs from different institutes. Data were stratified per energy and machine and showed no dependence with beam quality and MLC model. The results from clinical pretreatment quality assurance, provided a gamma agreement index (GAI) in the field area for six and ten FFF beams of (99.8 0.3)% and (99.5 0.6)% with distance to agreement and dose difference criteria set to 3 mm/3% with 2 mm/2% thresholds, GAI resulted (95.7.0 2.3)% and (97.2 2.1)%.Conclusions: The GLAaS methodology, introduced in clinical practice for conventional flattened photon beams for machine, IMRT, and RapidArc quality assurance, was successfully adapted for FFF beams of Varian TrueBeam Linac. The detector saturation effects could be eliminated if the portal images acquired at 150 cm for all nominal dose rates of FFF beams.

  1. SU-E-T-297: Small Field Dosimetry for Superficial Lesions

    SciTech Connect (OSTI)

    Ying, J; Casto, B; Wang, S; Talyor, T; Wichman, A; Ku, L; Taylor, M


    Purpose: Kilo-voltage (kV) photons and low megavoltage (MeV) electrons are the most common options for treating small superficial lesions, but they present complex dosimetry. Using a tertiary lead shield may protect the surrounding critical structures. Our goal was to quantitatively evaluate the dosimetric impact resulting from applying tertiary shields on superficial lesions. Method: We directly compared the beam characteristics of 80 kV (0.8 mm Al) photon setup abutting the water phantom surface and 6 MeV electron setup at 100 cm SSD. Profiles and depth doses were acquired using a 3D scanning water tank and an ion chamber (active volume 0.01 cm{sup 3}). Beam profiles were scanned at Dmax. Three lead sheets (2 mm thickness) with 2.7, 2.2, and 1.6, cm diameter circular cutouts were fabricated and placed at the water surface for both photon and electron fields. Results: The penumbra (80% 20%) of the open 44 cm{sup 2} electron insert was 10.7 mm, compared to an average of 7.2 mm with the tertiary cutouts. The penumbra of the open kV photon beam was 2.8 mm compared to an average of 1.8 mm with the tertiary cutouts. For field widths 2.7, 2.2, and 1.6 cm, the flatness of the electron beams was 16%, 17.3%, and 21%, respectively, and for the kV photon beams was 1.4%, 2.3%, 3.3%, respectively. The electron depth dose (PDD) shifted shallower and the photon PDD shifted deeper as the field size became smaller. Conclusion: The penumbra of small electron fields can be improved by adding tertiary lead shields. Both modalities are clinically feasible; however, kV photons still offer sharper penumbra and better flatness than that of 6 MeV electrons with tertiary shielding. Thus, kV photons may still be a superior option for small superficial lesions.

  2. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.


    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  3. Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator

    SciTech Connect (OSTI)

    Oulianov, Dmitri A.; Crowell, Robert A.; Gosztola, David J.; Shkrob, Ilya A.; Korovyanko, Oleg J.; Rey-de-Castro, Roberto C.


    We report ultrafast pulse radiolysis transient absorption (TA) spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC subpicosecond pulses of multi-mega-electron-volt electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic TA measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Normalization of the TA signal leads to an improvement in the signal to noise ratio by a factor of 5 to 6. Due the pointing instability of the laser this improvement was limited to a 5 to 10 min acquisition period, requiring periodic recalibration and realignment. Time resolution, defined by the rise time of TA signal from hydrated electron in pulse radiolysis of liquid water, of a few picoseconds, has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensitivity. Subpicosecond time resolution can be achieved by using thinner samples, more sensitive detection techniques, and improved electron beam quality.

  4. Radiation dosimetry at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.


    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.


    SciTech Connect (OSTI)



    This project is funded by the US Department of Energy's Federal Energy Technology Center (DOE/FETC) under a cost-sharing PRDA with Radian International. The Electric Power Research Institute (EPRI) is providing co-funding and technical oversight. The project is part of FETC's Advanced Power Systems Program, whose mission is to accelerate the commercialization of affordable, high-efficiency, low emission, coal-fueled electric generating technologies. This project was submitted in response to Area 4 of DOE's Mega-PRDA: Advanced High-Performance SO{sub 2} Control Concepts. The goals of this research area are to develop advanced flue gas desulfurization (FGD) processes that achieve greater than 99% SO{sub 2} removal efficiency, are 25% cheaper than commercial FGD systems, and provide a valuable byproduct that will be recycled rather than disposed. Area 4 also included the development of a byproduct process that could be added to FGD systems to produce high value byproducts for reuse rather than disposal.


    SciTech Connect (OSTI)

    Chen, Ying-Tung; Ip, Wing-Huen; Kavelaars, J. J.; Gwyn, Stephen; Ferrarese, Laura; Ct, Patrick; Jordn, Andrs; Suc, Vincent; Cuillandre, Jean-Charles


    We report the discovery of 2010 GB{sub 174}, a likely new member of the Inner Oort Cloud (IOC). 2010 GB{sub 174} is 1 of 91 trans-Neptunian objects and Centaurs discovered in a 76 deg{sup 2} contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS)a moderate ecliptic latitude survey reaching a mean limiting magnitude of g' ? 25.5using MegaPrime on the 3.6 m Canada-France-Hawaii Telescope. 2010 GB{sub 174} is found to have an orbit with a semi-major axis of a ? 350.8 AU, an inclination of i ? 21.6, and a pericenter of q ? 48.5 AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km (H{sub V} ? 6.2 mag) to be ? 11, 000. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that 'rediscovered' the IOC object Sedna) gives, for an assumed a power-law luminosity function for IOC objects, a slope of ? ? 0.7 0.2. With only two detections in this region this slope estimate is highly uncertain.

  7. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M


    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  8. Tests of the Hardware and Software for the Reconstruction of Trajectories in the Experiment MINERvA

    SciTech Connect (OSTI)

    Palomino Gallo, Jose Luis; /Rio de Janeiro, CBPF


    MINERvA experiment has a highly segmented and high precision neutrino detector able to record events with high statistic (over 13 millions in a four year run). MINERvA uses FERMILAB NuMI beamline. The detector will allow a detailed study of neutrino-nucleon interactions. Moreover, the detector has a target with different materials allowing, for the first time, the study of nuclear effects in neutrino interactions. We present here the work done with the MINERvA reconstruction group that has resulted in: (a) development of new codes to be added to the RecPack package so it can be adapted to the MINERvA detector structure; (b) finding optimum values for two of the MegaTracker reconstruction package variables: PEcut = 4 (minimum number of photo electrons for a signal to be accepted) and Chi2Cut = 200 (maximum value of {chi}{sup 2} for a track to be accepted); (c) testing of the multi anode photomultiplier tubes used at MINERvA in order to determine the correlation between different channels and for checking the device's dark counts.

  9. Magnetic reconnection in high-energy-density laser-produced plasmas

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.


    Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

  10. Post Fukushima tsunami simulations for Malaysian coasts

    SciTech Connect (OSTI)

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che


    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  11. A long-lived relativistic electron storage ring embedded in Earth's Outer Van Allen belt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Henderson, M. G.; Li, X.; Spence, H. E.; Elkington, S. R.; Friedel, R. H. W.; Goldstein, J.; Hudson, M. K.; et al


    Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts are thought to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is comprised predominantly of mega-electron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days depending primarily on external forcing by the solar wind. Thus, the spatially separated inner zone is comprised of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations revealmore » an isolated third ring, or torus, of high-energy (E > 2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.« less

  12. Asteroid diversion considerations and comparisons of diversion techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Owen, J. Michael; Miller, Paul; Rovny, Jared; Wasem, Joe; Howley, Kirsten; Herbold, Eric B.


    The threat of asteroid impacts on Earth poses a low-probability but high consequence risk, with possible outcomes ranging from regional to global catastrophe. However, unique amongst such global threats we have the capability of averting such disasters. Diversion approaches by either kinetic impactor or nuclear energy deposition are the two most practical technologies for mitigating hazardous near Earth asteroids. One of the greatest challenges in understanding our options is the uncertain response of asteroids to such impulsive techniques, due both to our lack of knowledge of the composition and structure of these objects as well as their highly varied nature.more » Predicting whether we will simply divert or break up a given object is a crucial: the weak self-gravity and inferred weak structure of typical asteroids present the strong possibility the body will fragment for modest impulses. Predictive modeling of failure and fragmentation is one important tool for such studies. In this paper we apply advances in modeling failure and fracture using Adaptive Smoothed Particle Hydrodynamics (ASPH) to understand mega-cratering on asteroids as a validation exercise, and show examples of diverting the near Earth asteroid Bennu using both a kinetic impactor and ablative blow-off due to nuclear energy deposition.« less

  13. Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin

    SciTech Connect (OSTI)

    Baumgartner, Lee J.; Deng, Zhiqun; Thorncraft, Garry; Boys, Craig A.; Brown, Richard S.; Singhanouvong, Douangkham; Phonekhampeng, Oudom


    Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstream fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6?m head) are proposed for the thousands of tributary streams throughout the Lower Mekong Basin and it is important that designs incorporate the best available science to protect downstream migrants. Recent advances in technology have provided new techniques which could be applied to Mekong fish species to obtain design criteria that can facilitate safe downstream passage. Obtaining and applying this knowledge to new infrastructure projects is essential in order to produce outcomes that are more favorable to local ecosystems and fisheries.

  14. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    SciTech Connect (OSTI)

    Hartemann, Fred; Albert, Felicie; Anderson, Scott; Barty, Christopher; Bayramian, Andy; Chu, Tak Sum; Cross, R.; Ebbers, Chris; Gibson, David; Marsh, Roark; McNabb, Dennis; Messerly, Michael; Shverdin, Miroslav; Siders, Craig; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Semenov, Vladimir; /UC, Berkeley


    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.

  15. Science and Technology of the 10-MA Spherical Tori

    SciTech Connect (OSTI)

    Peng, Y-K.M.


    The Spherical Torus (ST) configuration has recently emerged as an example of confinement concept innovation that enables attractive steps in the development of fusion energy. The scientific potential for the ST has been indicated by recent encouraging results from START,2 CDX-U, and HIT. The scientific principles for the D-fueled ST will soon be tested by NSTX (National Spherical Torus Experiment3) in the U.S. and MAST (Mega-Amp Spherical Tokamak4) in the U.K. at the level of l-2 MA in plasma current. More recently, interest has grown in the U.S. in the possibility of near-term ST fusion burn devices at the level of 10 MA in plasma current. The missions for these devices would be to test burning plasma performance in a small, pulsed D-T-fueled ST (i.e., DTST) and to develop fusion energy technologies in a small steady state ST-based Volume Neutron Source (VNS). This paper reports the results of analysis of the key science and technology issues for these devices.

  16. Fluidized-bed copper oxide process. Phase IV. Conceptual design and economic evaluation, Volume I. Final report

    SciTech Connect (OSTI)


    Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report was submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.

  17. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.


    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice silicon wafers on (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  18. Particle and recycling control in translation, confinement, and sustainment upgrade

    SciTech Connect (OSTI)

    Grossnickle, J. A.; Vlases, G. C.; Hoffman, A. L.; Melnik, P. A.; Milroy, R. D.; Tankut, A.; Velas, K. M.


    Previous work in the translation, confinement, and sustainment upgrade (TCSU) device [H. Y. Guo et al., Phys. Plasmas 15, 056101 (2008)] demonstrated improved plasma parameters; higher temperature, higher poloidal magnetic field, increased current drive, and increased energy confinement, for rotating magnetic field (RMF) driven field reversed configurations (FRC) relative to the earlier TCS device. This was accomplished by improving vacuum conditions and using moderate wall heating (approx100 deg. C) and glow discharge cleaning for wall conditioning. Two new wall conditioning techniques, siliconization and titanium gettering, have been employed to further reduce impurities and control recycling. Both techniques reduced oxygen line radiation by an order of magnitude, and total radiated power by 50%, but led to little change in overall FRC performance, reinforcing the earlier conclusion that TCSU FRCs are not radiation dominated. Titanium gettering substantially reduced deuterium recycling, requiring a new method of fueling to be developed. This is the first time a FRC has been operated without using wall recycling as the primary method of fueling. The low-recycling FRCs, maintained by enhanced puff fueling, performed similarly to standard recycling fueled FRCs in terms of a key current drive parameter B{sub e}/B{sub o}mega, the ratio of maximum sustained poloidal field to applied RMF field, but better density control allowed for higher temperatures.

  19. 500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application

    SciTech Connect (OSTI)

    Chu, Tak Sum; Anderson, Scott; Barty, Christopher; Gibson, David; Hartemann, Fred; Marsh, Roark; Siders, Craig; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC


    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.


    SciTech Connect (OSTI)

    Curtis, Jason L.; Wright, Jason T.; Wolfgang, Angie; Brewer, John M.; Johnson, John Asher


    Ruprecht 147 is a hitherto unappreciated open cluster that holds great promise as a standard in fundamental stellar astrophysics. We have conducted a radial velocity survey of astrometric candidates with Lick, Palomar, and MMT observatories and have identified over 100 members, including 5 blue stragglers, 11 red giants, and 5 double-lined spectroscopic binaries (SB2s). We estimate the cluster metallicity from spectroscopic analysis, using Spectroscopy Made Easy (SME), and find it to be [M/H] = +0.07 {+-} 0.03. We have obtained deep CFHT/MegaCam g'r'i'z' photometry and fit Padova isochrones to the (g' - i') and Two Micron All Sky Survey (J - K{sub S} ) color-magnitude diagrams, using the {tau}{sup 2} maximum-likelihood procedure of Naylor, and an alternative method using two-dimensional cross-correlations developed in this work. We find best fits for Padova isochrones at age t = 2.5 {+-} 0.25 Gyr, m - M = 7.35 {+-} 0.1, and A{sub V} = 0.25 {+-} 0.05, with additional uncertainty from the unresolved binary population and possibility of differential extinction across this large cluster. The inferred age is heavily dependent on our choice of stellar evolution model: fitting Dartmouth and PARSEC models yield age parameters of 3 Gyr and 3.25 Gyr, respectively. At {approx}300 pc and {approx}3 Gyr, Ruprecht 147 is by far the oldest nearby star cluster.

  1. SECA Coal-Based Systems - LGFCS

    SciTech Connect (OSTI)

    Goettler, Richard


    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program has been aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations as a path to commercialization. Significant progress was achieved in reducing to practice a higher performance and lower cost cell technology, identifying and overcoming degradation mechanisms, confirming the structural capability of the porous substrate for reliability, maturing the strip design for improved flow to allow high fuel utilization operation while minimizing degradation mechanisms and obtaining full scale block testing at 19 kW under representative conditions for eventual product and meeting SECA degradation metrics. The SECA program has played a key role within the overall LGFCS development program in setting the foundation of the technology to justify the progression of the technology to the next level of technology readiness testing.

  2. Advanced High-Speed 16-Bit Digitizer System

    SciTech Connect (OSTI)


    The fastest commercially available 16-bit ADC can only perform around 200 mega-samples per second (200 MS/s). Connecting ADC chips together in eight different time domains increases the quantity of samples taken by a factor of eight. This method of interleaving requires that the input signal being sampled is split into eight identical signals and arrives at each ADC chip at the same point in time. The splitting of the input signal is performed in the analog front end containing a wideband filter that impedance matches the input signal to the ADC chips. Each ADC uses a clock to tell it when to perform a conversion. Using eight unique clocks spaced in 45-degree increments is the method used to time shift when each ADC chip performs its conversion. Given that this control clock is a fixed frequency, the clock phase shifting is accomplished by tightly controlling the distance that the clock must travel, resulting in a time delay. The interleaved ADC chips will now generate digital data in eight different time domains. These data are processed inside a field-programmable gate array (FPGA) to move the data back into a single time domain and store it into memory. The FPGA also contains a Nios II processor that provides system control and data retrieval via Ethernet.

  3. Asteroid diversion considerations and comparisons of diversion techniques

    SciTech Connect (OSTI)

    Owen, J. Michael; Miller, Paul; Rovny, Jared; Wasem, Joe; Howley, Kirsten; Herbold, Eric B.


    The threat of asteroid impacts on Earth poses a low-probability but high consequence risk, with possible outcomes ranging from regional to global catastrophe. However, unique amongst such global threats we have the capability of averting such disasters. Diversion approaches by either kinetic impactor or nuclear energy deposition are the two most practical technologies for mitigating hazardous near Earth asteroids. One of the greatest challenges in understanding our options is the uncertain response of asteroids to such impulsive techniques, due both to our lack of knowledge of the composition and structure of these objects as well as their highly varied nature. Predicting whether we will simply divert or break up a given object is a crucial: the weak self-gravity and inferred weak structure of typical asteroids present the strong possibility the body will fragment for modest impulses. Predictive modeling of failure and fragmentation is one important tool for such studies. In this paper we apply advances in modeling failure and fracture using Adaptive Smoothed Particle Hydrodynamics (ASPH) to understand mega-cratering on asteroids as a validation exercise, and show examples of diverting the near Earth asteroid Bennu using both a kinetic impactor and ablative blow-off due to nuclear energy deposition.

  4. Quantitative law describing market dynamics before and after interest-rate change

    SciTech Connect (OSTI)

    Petersen, Alexander M.; Wang Fengzhong; Stanley, H. Eugene; Havlin, Shlomo


    We study the behavior of U.S. markets both before and after U.S. Federal Open Market Commission meetings and show that the announcement of a U.S. Federal Reserve rate change causes a financial shock, where the dynamics after the announcement is described by an analog of the Omori earthquake law. We quantify the rate n(t) of aftershocks following an interest-rate change at time T and find power-law decay which scales as n(t-T)approx(t-T){sup -O}MEGA, with OMEGA positive. Surprisingly, we find that the same law describes the rate n{sup '}(|t-T|) of 'preshocks' before the interest-rate change at time T. This study quantitatively relates the size of the market response to the news which caused the shock and uncovers the presence of quantifiable preshocks. We demonstrate that the news associated with interest-rate change is responsible for causing both the anticipation before the announcement and the surprise after the announcement. We estimate the magnitude of financial news using the relative difference between the U.S. Treasury Bill and the Federal Funds effective rate. Our results are consistent with the 'sign effect', in which 'bad news' has a larger impact than 'good news'. Furthermore, we observe significant volatility aftershocks, confirming a 'market under-reaction' that lasts at least one trading day.

  5. Future oil and gas: Can Iran deliver?

    SciTech Connect (OSTI)

    Takin, M.


    Iran`s oil and gas production and exports constitute the country`s main source of foreign exchange earnings. The future level of these earnings will depend on oil prices, global demand for Iranian exports, the country`s productive capability and domestic consumption. The size of Iranian oil reserves suggests that, in principle, present productive capacity could be maintained and expanded. However, the greatest share of production in coming years still will come from fields that already have produced for several decades. In spite of significant remaining reserves, these fields are not nearly as prolific as they were in their early years. The operations required for further development are now more complicated and, in particular, more costly. These fields` size also implies that improving production, and instituting secondary and tertiary recovery methods (such as gas injection), will require mega-scale operations. This article discusses future oil and gas export revenues from the Islamic Republic of Iran, emphasizing the country`s future production and commenting on the effects of proposed US sanctions.

  6. Analysis Efforts Supporting NSTX Upgrades

    SciTech Connect (OSTI)

    H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith


    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  7. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.


    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  8. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)


    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  9. Renewed interest in prop supports as a replacement for wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M.; Gearhart, D.F.


    Wood cribs have been the dominant form of supplemental support in coal mining for many years. Recently, there has been a renewed interest in prop supports as a replacement for wood cribbing due to the increasing cost of mine timber and engineering advancements in prop design to improve their stability and yield capability. Prop supports generally consume less material, can be installed in less time with less labor, and provide less restriction to mine ventilation than wood crib supports. Several prop supports are now available or under development. These include: (1) Strata Products Propsetter{trademark} Support System, (2) Heintzmann ACS and Super Prop; (3) MBK-Hydraulik MEGA prop; (4) Advanced Mining Technology Inc. (AMTI) BTS Mortar prop; (5) Dywidag Coal Post; (6) Western Support Systems YIPPI support; and (7) ``The Can`` support by Burrell Mining Products. A comparison of the performance and cost of these support systems to wood cribs is made to provide mine operators with information needed to underground installations are discussed. Included in this assessment are full scale tests of these supports conducted in the US Bureau of Mines` Mine Roof Stimulator.

  10. Innovative secondary support technologies for western mines

    SciTech Connect (OSTI)

    Barczak, T.M.; Molinda, G.M.


    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of other support systems. The recent success of cable bolts has engendered much interest from western operators. Several innovative freestanding support systems have been developed recently including: (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems.

  11. Measurement of Activation Reaction Rate Distributions in a Lead Assembly Bombarded with 500-MeV Protons

    SciTech Connect (OSTI)

    Takada, Hiroshi; Meigo, Shin-ichro; Sasa, Toshinobu; Tsujimoto, Kazufumi; Yasuda, Hideshi [Japan Atomic Energy Research Institute (Japan)


    Reaction rate distributions of various activation detectors such as the {sup nat}Ni(n,x){sup 58}Co, {sup 197}Au(n,2n){sup 196}Au, and {sup 197}Au(n,4n){sup 194}Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of {sup nat}Ni(n,x){sup 58}Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code.

  12. Development of the large neutron imaging system for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.


    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  13. The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada

    SciTech Connect (OSTI)

    Bowman, D.L.


    During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms of size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.

  14. Source of the tsunami associated with the Kalapana (Hawaii) earthquake of November 1975

    SciTech Connect (OSTI)

    Cox, D.C.


    The travel times of the tsunami generated on 29 November 1975 off the Kau-Puna coast of Hawaii to the tide gages at Hilo, Kahului, Honolulu, and Nawiliwili have been calculated from the arrival times indicated on the tide-gage records, applying gage-time corrections, assuming that the tsunami was generated at the time of the earthquake it accompanied. Travel times have also been calculated similarly to other places on the coast of Hawaii where arrival times of the tsunami were reported, and to Johnston Atoll. Inverse tsunami refraction diagrams have been constructed by graphical means for the path of the tsunami between the vicinity of its source and the places of known arrival times. The isochrones of the refraction diagrams corresponding to the respective calculated travel times for the tsunami front have been used to define the boundary of the area of upward sea-floor displacement from which the tsunami propagated. This area is about 15 or 20 miles long (parallel to the southeast coast of Hawaii) and on the order of 14 or 15 miles wide, considerably smaller than the area earlier considered the tsunami source. Coastal subsidence measured soon after the earthquake indicates that the area of initial upward displacement was separated from the coast by a narrow belt of downward displacement. Comparisons between the crest arrival times and the travel times indicated by the inverse refraction diagrams indicate a lag of about four minutes between the time of the earthquake and the accomplishment of the maximum upward displacement. Accuracies of estimation are insufficient to determine whether the maximum upward displacement occurred within the area of initial displacement or seaward of it within a distance of about 15 miles. Displacement resulting from a mega-landslide cannot be distinguished from strictly tectonic displacement by the comparison of arrival times and travel times. 14 references, 19 figures, 8 tables.

  15. Inventory of landslides in southern Illinois near the New Madrid Seismic Zone and the possible failure mechanism at three sites

    SciTech Connect (OSTI)

    Su, Wen June . Engineering Geology Section)


    A total of 221 landslides was inventoried along a 200-kilometer reach of the Ohio and the Mississippi Rivers from Olmsted to Chester, IL using Side-Looking Airborne Radar imagery, vertical, stereoscopic, black and white aerial photography at various scales, and low altitude, oblique color and color infrared photography. Features observed on aerial photographs were used to classify landslides into three types (rock/debris fall, block slide, and rotational/translational slide) at three levels of confidence: certain, probable, or possible. Some landslides combined two or more types at a single site. Only a few of the landslides showed evidence of repeated activity; most are ancient landforms. Most of the landslides were developed in the loess, alluvium, colluvium, and weak clay layers of the Chesterian Series or in the Porter's Creek Clay and McNairy Formation. Failure of three representative landslides was modeled under static (aseismic) and dynamic (seismic) situations using three different sliding mechanisms. Both the pseudo-static method and a simplified method of the Newmark displacement analysis were used to determine the stability of the slope under earthquake conditions. The three representative landslides selected for detailed slope stability analysis were the Ford Hill, Jones Ridge, and Olmsted landslides. The Ford Hill and Jones Ridge landslides have similar slope geometries. Their modes of failure were recognized as a translational block slide on a weak clay layer. The Olmsted landslide is a complex of several rotational slides of different ages and a mega block slide on weak clay layers. The stability analyses of these three landslides suggest that they would not have occurred under aseismic conditions. However, under earthquake loadings similar to those generated by the 1811-12 earthquakes, most of the slopes could have experienced large displacements leading to landslide initiation.

  16. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available


    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  17. Late Quaternary paleodune deposits in Abu Dhabi Emirate, UAF: Paleoclimatic implications

    SciTech Connect (OSTI)

    Brouwers, E.M.; Bown, T.M. (Geological Survey, Denver, CO (United States)); Hadley, D.G. (Geological Survey, Reston, VA (United States))


    Remnants of late Quaternary paleodunes are exposed near the coast of the Arabian Gulf and in large inland playas and interdunal areas in central and western Abu Dhabi Emirate over a distance of >45 km normal to the coast. Paleodunes occur south of Madinat Zayed (lat. 23[degree]35 N), which marks the northern limit of a modern dune field that grades into the mega-dune sand sea of the ar Rub al Khali, Saudi Arabia. Coastal paleodunes are composed of weakly cemented millolid foraminifers, ooids, and rounded biogenic grains, whereas inland and southward the paleodunes show a progressive increase in the proportion of eolian quartz sand. The paleodunes exhibit large-scale trough foresets in remnant exposures 0.5 to 10 m thick, indicating paleowind directions from 65[degree] to 184[degree] (dominantly southeast transport). Scattered paleoplaya remnants provide paleodune scale. Paleoplaya deposits form buttes 30--50 m high. If coeval with the Paleodunes, large-scale paleodune fields are implied (100+ m high), comparable to star dunes and sand mountains at the northwestern edge of the ar Rub al Khali. Based on U-Th isotopic analyses, the carbonate paleodune sands are >160ka and probably >250ka. The carbonate source was a shallow, nearly dry Arabian Gulf at a time when large areas were exposed during a low sea-level stand. Paleowind direction indicates that Pleistocene prevailing winds were northwesterly, the direction of the dominant (winter shamal) wind today. The geographic extend and implied magnitude of the paleodunes suggest large-scale eolian transport of carbonate sand during the Pleistocene disiccation, and admixed quartz sand identifies a youthful stage of contemporaneous evolution of the ar Rub al Khali. Wave-eroded paleodunes probably floor much of the present-day Gulf and extend beneath the modern dunes and sand mountains.

  18. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect (OSTI)

    Holmes, Richard L.


    Explosively-driven magnetic flux compression generators create substantial currents (10s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the Summary of key results section later in this paper.

  19. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.


    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.


    SciTech Connect (OSTI)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail:


    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  1. Where are the mini Kreutz-family comets?

    SciTech Connect (OSTI)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To; Kracht, Rainer


    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ?100 m sizes (mini comets) and have only been studied at small heliocentric distances (r {sub H}) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r {sub H} guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst), or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ?1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r{sub H}{sup ?4} while the others follow r{sub H}{sup ?7}. In particular, C/SWAN seems to have undergone an outburst (?m > 5 mag) or a rapid brightening (n ? 11) between r {sub H} = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r {sub H}. Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought.

  2. NSTX: Facility/Research Highlights and Near Term Facility Plans

    SciTech Connect (OSTI)

    M. Ono


    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  3. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao


    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. Innovative secondary support systems for gate roads

    SciTech Connect (OSTI)

    Barczak, T.; Molinda, G.M.; Zelanko, J.C.


    With the development of the shield support, the primary requirement for successful ground control in longwall mining is to provide stable gate road and bleeder entries. Wood cribbing has been the dominant form of secondary and supplemental support. However, the cost and limited availability of timber, along with the poor performance of softwood crib supports, has forced western U.S. mines to explore the utilization of support systems other than conventional wood cribbing. The recent success of cable bolts has engendered much interest from western operators. Eastern U.S. coal operators are also now experimenting with various intrinsic and freestanding alternative support systems that provide effective ground control while reducing material handling costs and injuries. These innovative freestanding support systems include (1) {open_quotes}The Can{close_quotes} support by Burrell Mining Products International, Inc., (2) Hercules and Link-N-Lock wood cribs and Propsetter supports by Strata Products (USA) Inc., (3) Variable Yielding Crib and Power Crib supports by Mountainland Support Systems, (4) the Confined Core Crib developed by Southern Utah Fuels Corporation; and (5) the MEGA prop by MBK Hydraulik. This paper assesses design considerations and compares the performance and application of these alternative secondary support systems. Support performance in the form of load-displacement behavior is compared to conventional wood cribbing. Much of the data was developed through full-scale tests conducted by the U.S. Bureau of Mines (USBM) at the Strategic Structures Testing Laboratory in the unique Mine Roof Simulator load frame at the Pittsburgh Research Center. A summary of current mine experience with these innovative supports is also documented.

  5. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi


    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  6. 130 LPW 1000 Lm Warm White LED for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter


    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. The high-power warm-white LED product developed has been proven to have good reliability through extensive reliability tests. The new kilo-lumen package has been commercialized under the product name LUXEON M. As of the end of the program, the LUXEON M product has been released in the following CCT/CRI combinations: 3000K/70, 4000K/70, 5000K/70, 5700K/70, 2700K/80, 3000K/80 and 4000K/80. LM-80 tests for the products with CCTs of 4000 K and higher have reached 8500 hours, and per IESNA TM-21-11 have established an L70 lumen maintenance value of >51,000 hours at A drive current and up to 120 °C board temperature.

  7. System Modeling of kJ-class Petawatt Lasers at LLNL

    SciTech Connect (OSTI)

    Shverdin, M Y; Rushford, M; Henesian, M A; Boley, C; Haefner, C; Heebner, J E; Crane, J K; Siders, C W; Barty, C P


    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG) stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.

  8. Laser-induced magnetic fields in ICF capsules, Final Report, DE-FG02-08ER85128, Phase 1

    SciTech Connect (OSTI)

    Lindman, Erick L


    Laser-induced magnetic fields in ICF capsules Final Report, DE-FG02-08ER85128, Phase 1 E. L. LINDMAN, Otowi Technical Services, Los Alamos, NM. The performance of an inertial-confinement-fusion (ICF) capsule can be improved by inserting a magnetic field into it before compressing it [Kirkpatrick, et al., Fusion Technol. 27, 205 (1995)]. To obtain standoff in an ICF power generator, a method of inserting the field without the use of low-inductance leads attached to the capsule is desired. A mechanism for generating such a field using a laser was discovered in Japan [Sakagami, et al., Phys. Rev. Lett. 42, 839 (1979), Kolodner and Yablonovitch, Phys. Rev. Lett. 43, 1402 (1979)] and studied at Los Alamos in the 1980s [M. A. Yates, et al., Phys. Rev. Lett. 49, 1702 (1982); Forslund and Brackbill, Phys. Rev. Lett. 48, 1614 (1982)]. In this mechanism, a p-polarized laser beam strikes a solid target producing hot electrons that are accelerated away from the target surface by resonant absorption. An electric field is created that returns the hot electrons to the target. But, they do not return to the target along the same trajectory on which they left. The resulting current produces a toroidal magnetic field that was observed to spread over a region outside the hot spot with a radius of a millimeter. No experimental measurements of the magnetic field strength were performed. Estimates from computer simulation suggest that field strengths in the range of 1 to 10 Mega gauss (100 to 1000 Tesla) were obtained outside of the laser spot. To use this mechanism to insert a magnetic field into an ICF capsule, the capsule must be redesigned. In one approach, a central conductor is added, a toroidal gap is cut in the outer wall and the DT fuel is frozen on the inner surface of the capsule. The capsule is dropped into the reaction chamber and struck first with the laser that generates the magnetic field. The laser hot spot is positioned at the center of the toroidal gap. As the magnetic field spreads from the hot spot over the surface that contains the toroidal gap, it will propagate through the gap and set up a steady state in the capsule. The main compression is then initiated. First, it closes the gap and crow-bars the field, then it compresses the fuel to ignition. In addition to this application, we discuss the use of this mechanism to induce Mega-gauss fields in laboratory apparatus for measurements of the effects of large magnetic fields on material samples. A preliminary target design for this purpose is presented. It is made of high-density material with no hydrogen surface contamination to minimize fast ion losses and to minimize x-ray preheat of the sample (the material, whose magnetic properties are to be measured). In it, the gap is designed to allow the magnetic field to move into the interior of the target while minimizing the flow of hot electrons into the interior. By adjusting the size of the gap as well as its configuration, the hot electron effects can be minimized. Since the strength of the magnetic field depends on the radial distance to the sample from the center of the conductor carrying the return current, the sample is located at a point of minimum conductor radius. This location also minimizes the effects on the measurement of any hot electrons that flow into the interior. Useful experiments can be accomplished with the seed field alone in this geometry. Compressing the capsule after the insertion of the seed field may allow experiments with even larger magnetic fields. We have used computer-simulation techniques to address a number of issues. Our conclusions include: This magnetic-field generating mechanism is a viable method for generating magnetic fields in ICF targets and for laboratory experiments. Useful experiments on material samples can be done with the seed field of 1 to10 Mega gauss (100 to 1000 Tesla) and higher magnetic fields can be obtained by subsequently compressing the capsule. The results reported here can be studied experimentally with a modest CO2 laser that emits 4.5 J of ene

  9. TH-C-17A-04: Shining Light On the Implementation of Cherenkov Emission in Radiation Therapy

    SciTech Connect (OSTI)

    Zlateva, Y; Quitoriano, N


    Purpose: We hypothesize that Cherenkov emission (CE) by radiotherapy beams is correlated with radiation dose, CE detection can be maximized by a spectral shift towards the near-infrared (NIR) window of biological tissue, and in certain tissue types (ex. breast/oropharynx), it could prove superior to mega-voltage (MV) imaging. Therefore, we compare CE imaging to onboard MV imaging. Methods: Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissuesimulating phantom composed of water, fat emulsion, and beef blood; plastic phantom with solid water insert. The optical spectrometry system consisted of a multi-mode optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated charge-coupled device (CCD). CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm, were used to achieve NIR shift of the CE signal. CE and MV images were acquired with a complementary metal-oxide-semiconductor (CMOS) camera and an electronic portal imaging device (EPID), respectively. Results: MC and experimental studies indicate a strong linear correlation between radiation dose and CE (Pearson coefficient > 0.99). CE by an 18 MeV beam was effectively shifted towards the NIR in water and in a tissue-simulating phantom, exhibiting a 50% increase at 650 nm for QD depths of ∼3 mm. CE images exhibited relative contrast superior to EPID images by a factor of 30. Conclusion: Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing, and QDs can be used to improve CE detectability, yielding image quality superior to MV imaging for the case of low density variability, low optical attenuation materials, such as breast or oropharyngeal cavities. Ongoing work involves microenvironment functionalization of QDs and application of multichannel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals. Funding received from the following organizations: Natural Sciences and Engineering Research Council of Canada, McGill University. YZ acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)

  10. The Fernald Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Murphy, Cornelius M.; Carr, Dennis


    For nearly 37 years, the U.S. Department of Energy site at Fernald - near Cincinnati, Ohio - produced 230,000 metric tons (250,000 short tons) of high-purity, low-enriched uranium for the U.S. Defense Program, generating more than 5.4 million metric tons (6 million short tons) of liquid and solid waste as it carried out its Cold War mission. The facility was shut down in 1989 and clean up began in 1992, when Fluor won the contract to clean up the site. Cleaning up Fernald and returning it to the people of Ohio was a $4.4 billion mega environmental-remediation project that was completed in October 2006. Project evolved through four phases: - Conducting remedial-investigation studies to determine the extent of damage to the environment and groundwater at, and adjacent to, the production facilities; - Selecting cleanup criteria - final end states that had to be met that protect human health and the environment; - Selecting and implementing the remedial actions to meet the cleanup goals; - Executing the work in a safe, compliant and cost-effective manner. In the early stages of the project, there were strained relationships - in fact total distrust - between the local community and the DOE as a result of aquifer contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholders groups in the decision-making process, the DOE and Fluor developed a public-participation strategy to open the channels of communication with the various parties: site leadership, technical staff and regulators. This approach proved invaluable to the success of the project, which has become a model for future environmental remediation projects. This paper will summarize the history and shares lessons learned: the completion of the uranium-production mission to the implementation of the Records of Decision defining the cleanup standards and the remedies achieved. Lessons learned fall into ten categories: - Regulatory approach with end-state determinations; - Interaction with stakeholders; - The balanced approach - on-site and off-site waste-disposal alternatives; - The contracting model; - Site safety performance; - Effectiveness of cleanup remedies; - Worker training and transition; - Client interface; - Cost and schedule performance; - Legacy management. Lessons learned can be applied: While each site and project has its own issues, the various lessons learned from the Fernald Closure Project, when taken from a global perspective, can be applied to similar efforts so that pitfalls are avoided and efficiencies realized.

  11. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.


    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  12. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and Into the Upper Unconfined Aquifer Below the B-Complex

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Keller, Jason M.; Thorne, Paul D.; Lanigan, David C.; Christensen, J. N.; Thomas, Gregory S.


    The B-Complex contains 3 major crib and trench disposal sites and 3 SST farms that have released nearly 346 mega-liters of waste liquids containing the following high groundwater risk drivers: ~14,000 kg of CN, 29,000 kg of Cr, 12,000 kg of U and 145 Ci of Tc-99. After a thorough review of available vadose zone sediment and pore water, groundwater plume, field gamma logging, field electrical resistivity studies, we developed conceptual models for which facilities have been the significant sources of the contaminants in the groundwater and estimated the masses of these contaminants remaining in the vadose zone and currently present in the groundwater in comparison to the totals released. This allowed us to make mass balance calculations on how consistent our knowledge is on the current deep vadose zone and groundwater distribution of contaminants. Strengths and weaknesses of the conceptual models are discussed as well as implications on future groundwater and deep vadose zone remediation alternatives. Our hypothesized conceptual models attribute the source of all of the cyanide and most of the Tc-99 currently in the groundwater to the BY cribs. The source of the uranium is the BX-102 tank overfill event and the source of most of the chromium is the B-7-A&B and B-8 cribs. Our mass balance estimates suggest that there are much larger masses of U, CN, and Tc remaining in the deep vadose zone within ~20 ft of the water table than is currently in the groundwater plumes below the B-Complex. This hypothesis needs to be carefully considered before future remediation efforts are chosen. The masses of these groundwater risk drivers in the the groundwater plumes have been increasing over the last decade and the groundwater plumes are migrating to the northwest towards the Gable Gap. The groundwater flow rate appears to flucuate in response to seasonal changes in hydraulic gradient. The flux of contaminants out of the deep vadose zone from the three proposed sources also appears to be transient such that the evolution of the contaminant plumes is transient.

  13. The mediation of environmental assessment's influence: What role for power?

    SciTech Connect (OSTI)

    Cashmore, Matthew; Axelsson, Anna


    Considerable empirical research has been conducted on why policy tools such as environmental assessment (EA) often appear to have 'little effect' (after Weiss) on policy decisions. This article revisits this debate but looks at a mediating factor that has received limited attention to-date in the context of EA - political power. Using a tripartite analytical framework, a comparative analysis of the influence and significance of power in mediating environmental policy integration is undertaken. Power is analysed, albeit partially, through an exploration of institutions that underpin social order. Empirically, the research examines the case of a new approach to policy-level EA (essentially a form of Strategic Environmental Assessment) developed by the World Bank and its trial application to urban environmental governance and planning in Dhaka mega-city, Bangladesh. The research results demonstrate that power was intimately involved in mediating the influence of the policy EA approach, in both positive (enabling) and negative (constraining) ways. It is suggested that the policy EA approach was ultimately a manifestation of a corporate strategy to maintain the powerful position of the World Bank as a leading authority on international development which focuses on knowledge generation. Furthermore, as constitutive of an institution and reflecting the worldviews of its proponents, the development of a new approach to EA also represents a significant power play. This leads us to, firstly, emphasise the concepts of strategy and intentionality in theorising how and why EA tools are employed, succeed and fail; and secondly, reflect on the reasons why power has received such limited attention to-date in EA scholarship. - Highlights: Black-Right-Pointing-Pointer Conducts empirical research on the neglected issue of power. Black-Right-Pointing-Pointer Employs an interpretation of power in which it is viewed as a productive phenomenon. Black-Right-Pointing-Pointer Analyses the influence of power in the trial application of a new approach to policy environmental assessment. Black-Right-Pointing-Pointer Demonstrates the importance of power dynamics in understanding the successes and failures of environmental assessment.

  14. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    SciTech Connect (OSTI)

    Yoo, A; Hysom, D; Gunney, B


    In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicate that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick layin

  15. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect (OSTI)

    Dr. Barry Karger


    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual components from the sequencing reaction and then developed a protocol to reduce the deleterio

  16. Sequestration Options for the West Coast States

    SciTech Connect (OSTI)

    Myer, Larry


    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost of $31/tonne (t), $35/t, or $50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.

  17. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect (OSTI)

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.


    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as Saltstone. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a mega vault and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0, 2.4, and 0.72. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 to 0.9. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

  18. SECA Coal-Based Systems - LGFCS

    SciTech Connect (OSTI)

    Goettler, Richard


    LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program is aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations in subsequent phases. LGFCS is currently in Phase 2 of the program with the Phase 1 test carrying over for completion during Phase 2. Major technical results covering the initial Phase 2 budget period include: Metric Stack Testing: 1. The Phase I metric test is a ~7.6 kW block test (2 strips) in Canton that started in March 2012 and logged 2135 hours of testing prior to an event that required the test to be shutdown. The degradation rate through 2135 hours was 0.4%/1000 hours, well below the Phase I target of 2%/1000 hours and the Phase 2 target of 1.5%/1000 hours. 2. The initial Phase II metric test consisting of 5 strips (~19 kW) was started in May 2012. At the start of the test OCV was low and stack temperatures were out of range. Shutdown and inspection revealed localized structural damage to the strips. The strips were repaired and the test restarted October 11, 2012. 3. Root cause analysis of the Phase 1 and initial Phase 2 start-up failures concluded a localized short circuit across adjacent tubes/bundles caused localized heating and thermal stress fracture of substrates. Pre-reduction of strips rather than in-situ reduction within block test rigs now provides a critical quality check prior to block testing. The strip interconnect design has been modified to avoid short circuits. Stack Design: 1. Dense ceramic strip components were redesigned to achieve common components and a uniform design for all 12 bundles of a strip while meeting a flow uniformity of greater than 95% of the mean flow for all bundles. The prior design required unique bundle components and pressure drops specifications to achieve overall strip fuel flow uniformity. 2. Slow crack growth measurements in simulated fuel environments of the MgO-MgAl2O4 substrate by ORNL reveal favorable tolerance against slow crack growth. Evidence as well of a high stress intensity threshold below which crack growth would be avoided. These findings can have very positive implications on long-term structural reliability. More testing is required, including under actual reformate fuels, to gain a deeper understanding of such time dependent reliability mechanisms. 3. A next generation (Gen2) substrate from the LGFCS supplier has been qualified. The substrate incorporates cost reductions and quality improvements. Cell Developments: 1. Subscale testing of the epsilon technology under system relevant conditions surpassed 16,000 hours with a power degradation rate of <1%/1000 hours. Key degradation mechanisms have been identified: (1) MnOx accumulation near the cathode-electrolyte interface and cathode densification (2) metals migration across the anode-ACC bilayer and general microstructure coarsening at high temperatures and peak fuel utilizations and (3) metal migration into primary interconnect (lesser mechanism) 5 2. Alternate LSM cathodes show slightly lower ASR and lesser free MnOx and chromium contamination. Long-term durability screening of three alternate cathodes is being performed. 3. Single layer anodes show very significant improvement in microstructure stability after 5000 hours testing at aggressive conditions of 925C and bundle outlet, high utilization fuel. 4. New primary interconnect designs are being tested that achieve lower ASR. Modeling performed to further balance ASR and cost through optimized designs.

  19. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.


    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  20. QER- Comment of Liberty Goodwin

    Broader source: [DOE]

    As suggested by Sen. Jack Reed, below and attached are my comments on energy policy for now and the future: ***************************************************************************** AN OUTLINE FOR PRACTICAL & FRUITFUL ENERGY DEVELOPMENT WITH SPECIAL ATTENTION TO SENSIBLE PUBLIC INVESTMENT (Thoughts on intelligent action for energy that is abundant, affordable, associated with many jobs and economic health in New England and the nation) ** CLINGING TO OUTMODED & DESTRUCTIVE TECHNOLOGIES – WE DON'T NEED TO ARGUE ABOUT CLIMATE CHANGE TO SEE THE WAY FORWARD 1. Fossil fuels and nuclear have clear and present dangers and damaging effects, on human and environmental health. This includes the uncontestable pollution involved in production and use, and the risks of greater disasters, along with concerns about toxic waste that can contaminate our water and more. 2. Renewable sources offer a vast number of possibilities for energy production for a variety of uses. To not explore them is wasteful. To stick to same-old, same-old is foolish, and will leave us at the rear of the pack re: future energy development. **SMALL IS BEAUTIFUL – LESS RISKY – MORE PRODUCTIVE – MORE LOCAL 1 Solyndra is the bad apple that makes the point. Because something costs millions, or even billions of dollars doesn't mean it is the way to achieve huge results. The only thing that is huge about propping up mega-corporations is the risk. 2 Making the money available in far smaller amounts to a variety of solar efforts is both less risky and more promising – gives more chance of positive results. And, to anyone who can do the math – millions of small installations is as productive as one giant. 3 Smaller projects tend to be more labor-intensive – and offer local employment in a bunch of different places, benefiting the economies of all. **BENEFICIAL INNOVATION IS NOT BORN IN A CORPORATE THINK TANK, BUT IN THE MINDS OF INDIVIDUAL GENIUSES. 1. History tells us that great inventions have been developed by unknowns working in garages, bike shops, etc. We need to look beyond the elite in corporate money tanks and prestigious academia to find the gems in our own backyards. 2. One such, Paul Klinkman, has at least 50 inventions on hand, is developing several, has one patent and a few more in process, most related to alternative energy production. 3. The point is that we would find many like him – if we would only look. 4. Also, we should be seeking not just new technologies, but new business models. Check out the example from our greenhouse flyer, below. **SAVVY INVESTORS DON'T PUT THE BULK OF THEIR FORTUNES IN JUST A COUPLE OF STOCKS. THEY SPREAD THE RISK BY DIVERSIFYING. LET US BE LIKEWISE SMART IN USE OF PUBLIC MONEY 1 "Renewable energy" is not just about electricity, or even that and hot water. It is not even just those and wind, and certainly more than "solar panels". 2 We need to explore and use the many different types of alternatives, just as we do in most other aspects of our society. 3 Taking the kind of money that was allocated to Solyndra (or even to 38 Studios here in Rhode Island, and instead investing it in even 10 small projects, is a much wiser choice than betting it on another big boondoggle. **WHAT TO DO? PUT OUR MONEY INTO SUPPORT FOR WIDESPREAD USE OF CURRENT "GREEN" ENERGY TECHNOLOGY, AND EVALUATION & DEVELOPMENT OF NEW, TRULY INNOVATIVE OPTIONS 1 Make renewable energy credits available for all solar, wind and other technologies that show promise for meeting our energy needs. 2 Consider setting up an Important Innovations Center like the one described on the other side. TWO EXAMPLES OF NEW & EXCITING RESEARCH & BUSINESS MODELS A. PROPOSED NEW KSD NON-PROFIT IMPORTANT INNOVATIONS CENTER PURPOSES **Provide a place where small inventors can get help in evaluating and developing their ideas. **Provide a place which will focus specifically on inventions that have the potential to benefit the world and its people. **Provide a place which will especially focus on solutions to energy needs – and to environmental pollution and other damage. **Provide a place to enable people interested in doing good rather than getting rich to network and cooperate on accomplishing this kind of change in our world. MEANS **Invite ideas to be submitted and considered. **Focus on those inventors who don't have a large corporation or prestigious university behind them. **Vet the submissions for both efficacy and social value. **Locate funding sources that will support such work. **Locate local and regional businesses interested in marketing and/or manufacturing new and beneficial designs and products. **Connect resources with inventors and their ideas. **Support projects that utilize such innovations for good. WHAT NOT TO DO: Turn these to large multi-national corporations to exploit for their own gain. ****************************************************************************** **** B. THE UNIQUE KSD BUSINESS MODEL FOR SOLAR GREENHOUSE DEVELOPMENT **Provide a KSD design package kit that will allow farmers & other handy people to build their own greenhouses **Include expert consultation & tech support to assist them throughout the process of building.. **Train able local people as helpers to do the on-site assistance in various parts of the country. **Provide training to locally owned small businesses such as sheet metal shops to manufacture desired parts, such as the solar concentrating collectors. **Work to develop a network of local resources that could market, manufacture & install greenhouses. Some might also produce & sell biofuel from algae. **Include non-profit organizations, as partners that could raise money from selling the kits & subsidize or give units to community gardens, food banks, etc.) **Develop a residential version that could provide gardening & sun space, as well as supplementary heat to an adjacent house. ****************************************************************************** ********* SUBMITTED BY: LIBERTY GOODWIN, CO-OWNER, (WITH PAUL KLINKMAN) KLINKMAN SOLAR DESIGN (KSD), P.O. Box 40572, Providence, RI 02940, Tel. 401-351-9193, E-Mail:, Website: ******************************************************************************

  1. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    SciTech Connect (OSTI)

    Lasley, Larry C.


    1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the towerâ??s sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribeâ??s energy policies with its economic development goals. Contribute to achieving the Tribeâ??s long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribeâ??s long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribeâ??s cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projectsâ?? energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind